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We revisit Mandel’s notion that the degree of coherence equals the degree of indistinguishability by perform-
ing Hong-Ou-Mandel- (HOM-)type interferometry with single photons elastically scattered by a cw resonantly
driven excitonic transition of an InAs/GaAs epitaxial quantum dot. We present a comprehensive study of the
temporal profile of the photon coalescence phenomenon which shows that photon indistinguishability can be
tuned by the excitation laser source, in the same way as their coherence time. A new figure of merit, the coa-
lescence time window, is introduced to quantify the delay below which two photons are indistinguishable. This
criterion sheds new light on the interpretation of HOM experiments under cw excitation, particularly when pho-
ton coherence times are longer than the temporal resolution of the detectors. The photon indistinguishability is
extended over unprecedented time scales beyond the detectors’ response time, thus opening new perspectives to
conducting quantum optics with single photons and conventional detectors.

Indistinguishable photons are one of the keys for the im-
plementation of scalable quantum information systems [1, 2].
Indistinguishability is investigated using the coalescence phe-
nomenon: two photons with similar spectral, spatial and po-
larization properties will bunch when arriving simultaneously
on two opposite sides of a beam splitter. One of the pioneers
of photon coalescence, Mandel, stated in 1991 that the de-
gree of coherence equals the degree of indistinguishability
[3, 4] by investigating theoretically the interference of two
light sources, thus underlining the fundamental link of the
wave-particle duality of light.

In a two-photon interference Hong-Ou-Mandel (HOM) ex-
periment [5], the photons from two sources are combined at
the two inputs of a beam splitter and the coalescence will
be detected through a drop of the coincidence rate at the
outputs—the HOM dip. Under pulsed excitation, perfect tem-
poral matching between the arrival times of the photons at the
beam splitter will allow for the observation of the HOM dip.
When working with a two-level system, its coherence time T2
and its lifetime T1 are tightly linked to the photon indistin-
guishability. For example, perfect coalescence giving rise to
a zero value in the HOM dip is observed only if the radiative
limit T2 = 2T1 is reached. The figure of merit under pulsed
excitation is thus given by the ratio T2/2T1 which constitutes
a fundamental limit to the coalescence efficiency [6]. Under
continuous wave (cw) excitation, with two ideal ultrafast de-
tectors, the coincidence rate always vanishes at zero time de-
lay, even for deviations in the properties of the photons [7]. In
the case of real detectors, the indistinguishability is thus prop-
erly resolved only if the temporal resolution of the detectors
TR is shorter than the coherence time of the photons [8]. If
TR ∼ T1,T2, the HOM dip is strongly affected and will disap-
pear completely in the limit of very slow detectors. With a cw
source, the value at zero delay of the coincidence rate is thus
very sensitive to TR and does not accurately characterize the
intrinsic properties of the source with regard to photon indis-
tinguishability. A new figure of merit has to be considered.

Single semiconductor quantum dots (QD) [9], along with

other systems under extensive study including atoms [7, 10],
molecules [11–13], trapped ions [14, 15], and colored cen-
ters in diamond [16], are promising candidates for sources of
single indistinguishable photons. In the case of semiconduc-
tor QDs, photon indistinguishability is either limited by the
QD dynamics under pulsed excitation [6], or by the detec-
tors’ temporal resolution under cw excitation [17, 18]. Re-
cent experimental studies focused on the regime of resonant
Rayleigh scattering (RRS) under low power cw excitation,
where the incoming photons are elastically scattered. This is
a well-known phenomenon described by the two-level system
resonance fluorescence theory [23], which has been observed
with QDs [24–28]. As predicted by theory and shown by ho-
modyne and heterodyne detection experiments [26–28], the
scattered photons inherit the coherence time of the excitation
laser TL, which can be much longer than T2 and TR, while
still exhibiting sub-Poissonian statistics [24, 25]. The result-
ing QD emission spectrum can then be much narrower than
the natural linewidth imposed by the radiative limit, even if
the percentage of elastically scattered photons remains limited
to T2/2T1 [Fig. 1(b)]. Considering that under such conditions
the inherited coherence time surpasses TR, along with Man-
del’s notion that coherence equals indistinguishability [3], the
RRS regime constitutes the ideal ground for the generation of
highly indistinguishable photons.

In this Letter, we report on the coalescence of photons emit-
ted by a cw resonantly driven single QD, under this RRS
regime. The coherence and indistinguishability properties are
defined by the laser coherence time which thus becomes a
free controllable parameter of the device. HOM experiments
show that photon indistinguishability can be extended to un-
precedented time scales and driven externally by the excita-
tion source, without being limited anymore by the QD dy-
namics or the detection system time response. Furthermore,
we revisit the way of estimating the indistinguishability of a
cw single photon source by introducing a new figure of merit,
the coalescence time window (CTW), to quantify the delay
below which photon coalescence occurs. This criterion sheds
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FIG. 1. (a) Unbalanced Mach-Zehnder interferometer for two-photon interference measurements. The QD emission is split by a first beam
splitter (BSA) in two paths of different lengths and recombined at a second one (BSB). Single mode polarization maintaining fibers ensure
high spatial overlap at BSB and a half-wave plate λ/2 controls the mutual polarization between the two interferometer arms. Photodetection is
monitored by two avalanche photodiodes (APD) placed at the BSB outputs, combined with spectrometers for spectral filtering and a correlator
for the intensity correlation function measurements. (Inset) Orthogonal excitation-detection geometry where a QD is excited via a fiber
positioned at the edge of the sample while its emission is collected by a microscope objective in an orthogonal configuration. (b) Power
dependence of the RRS intensity ratio with respect to the total QD emission intensity. The power P is given in units of the saturation power of
the excitonic transition P0, T1 = 0.30 ns and T2 = 0.50 ns. (c) Intensity correlation function for P = 0.1P0, fitted by the intensity correlation
function of a resonantly excited two-level system [19], convoluted by the HBT instrument response function (IRF).

new light on the interpretation of HOM experiments under
cw excitation of any two-level system, which was tradition-
ally restricted to the evaluation of the two-photon interference
visibility at zero delay. Our results also highlight the duality
between coherence and indistinguishability, first suggested by
Mandel [3], and provide a novel way of conducting quantum
optics experiments by overcoming the limited response func-
tion of the detectors.

Our system consists of a single InAs/GaAs self-assembled
QD embedded in a planar λ0-GaAs microcavity [24]. The
fundamental excitonic transition is excited resonantly in an
orthogonal excitation-detection geometry [24, 29], using a cw
tunable external cavity diode laser with variable coherence
time [19]. The QD emission is sent to a Mach-Zehnder (MZ)
interferometer [Fig. 1(a)]. In order to prevent fictitious an-
ticoincidences from one-photon interference when perform-
ing two-photon interference [19], the path difference must be
larger than the photon coherence time, and thus larger than
TL in the RRS regime. This is ensured using optical fibers
to reach an interferometer delay ∆τ = 43.5 ns. A half-wave
plate in one of the arms is used to change the polarization.
This allows us to make the polarization parallel or orthogo-
nal between the two arms, thus establishing or destroying the
interference at the output of the interferometer, respectively.
By simply blocking one arm, the setup becomes a Hanbury
Brown-Twiss (HBT) setup for measuring the intensity cor-
relation function g(2)(τ), where τ is the delay between the
detections of the photons. Figure 1(c) presents the latter at
an excitation power P well below the saturation power of the
two-level system P0, fitted by the theoretical g(2) [19]. An an-

tibunching dip is observed with g(2)(0) = 0.2 (> 0 due to the
time resolution of the detectors), demonstrating that the QD
is a single photon source in the RRS regime. The QD exciton
lifetime T1 = 0.30 ns and the coherence time T2 = 0.50 ns are
independently measured under resonant excitation [19].

Figures 2(a-d) present intensity correlation measurements
realized with the HOM setup with orthogonal and parallel po-
larization configurations (first and second rows, respectively),
at low and high excitation powers (left and right columns, re-
spectively), and TL = 16 ns. The experimental data are fitted
by the theoretical intensity correlation functions g(2X)

⊥ and g(2X)

//
[17], convoluted by the IRF of the HOM setup of a FWHM of
TR = 1 ns [19]. For the orthogonal polarization configuration,

g(2X)

⊥ (τ) =
1
N

[
4(T 2

A +R2
A)RBTBg(2)(τ)

+4RATA

(
T 2

B g(2)(τ−∆τ)+R2
Bg(2)(τ +∆τ)

)]
(1)

where N = 4RATA(R2
B +T 2

B )+4RBTB(R2
A +T 2

A) is a normal-
izing factor, RA (B) and TA (B) are the reflection and transmis-
sion intensity coefficients of the beam splitters BSA (B) respec-
tively, and ∆τ is the delay between the two paths of the MZ
interferometer. For the parallel polarization configuration,
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FIG. 2. (a,b) Two-photon interference measurements for orthogo-
nal polarization configuration (⊥) below saturation (P = 0.17P0) and
above saturation (P = 1.27P0), respectively. (c,d) Same as (a,b) for
parallel polarization configuration (//). (e,f) Two-photon interference
visibility at P = 0.17P0 and P = 1.27P0, respectively. The exper-
imental data (dots) are fitted (line) by Eq. (1) for (a,b), Eq. (2) for
(c,d) and VHOM(τ) for (e,f). All the fits are convoluted by the IRF.
(g) Coalescence time window deduced from the experimental (dots)
and theoretical (line) visibilities as a function of the power P. The
laser coherence time is TL = 16 ns.

where an additional term accounting for two-photon interfer-
ence appears, with a parameter V0 including all experimen-
tal imperfections that destroy the overlap in space or polar-
ization of the two beams at BSB. Here, both equations (1)
and (2) depend on the second-order correlation function g(2),
while the first-order correlation function g(1), which is linked
to the coherence of the two-level system, appears only in Eq.
(2) as part of the two-photon interference term. This already
highlights that coherence and coalescence are dual notions,
as is further investigated below. Note also that because both
g(1) and g(2) depend on T1 and T2 (TL appearing only in g(1))
[19], the dynamics of g(2X)

⊥ and g(2X)

// are significantly different
from the nonresonant case [17]. We stress that the same set
of parameters has been used for every fit: RA (B) = 0.45 and
TA (B) = 0.55; T1 = 0.30 ns and T2 = 0.50 ns; ∆τ = 43.5 ns.
Regarding V0, its value is V0 = 0.8 (0.15) for parallel (orthog-

onal) polarization. The discrepancy between these extracted
values and the theoretical ones [V0 = 1(0) for parallel (orthog-
onal) polarization] comes from the spatial mode mismatch and
the nonperfect degree of mutual polarizations between the in-
terfering photons. These are mostly due to the use of com-
bined free space and fibered optics, nonpolarizing beam split-
ters which introduce a small polarization ellipticity, and the
gratings of the spectrometers which have a polarization re-
sponse that partly reestablishes interferences in the orthogonal
configuration.

In orthogonal polarization configuration [Fig. 2(a,b)], no in-
terference is expected and the measured g(2X)

⊥ function is re-
lated to the statistical properties of the single photon source
when light is sent through the MZ interferometer. Compared
to an HBT experiment, additional antibunching dips shifted
by the interferometer path difference are observed at τ =±∆τ ,
and the three measured dip values are resolution limited and
determined by the QD intrinsic times T1 and T2. At high power
[Fig. 2(b)], the QD undergoes Rabi oscillations [19], inducing
a narrowing of the antibunching dips [30] and thus a strong
reduction of their visibility for a given TR.

In parallel polarization configuration [Fig. 2(c,d)], in ad-
dition to the contribution of the photon statistics, a compo-
nent due to photon coalescence is observed. At low power
[Fig. 2(c)], two dynamics can be distinguished: a fast one at
τ � TR characterized by the intrinsic QD time constants T1
and T2, and a much slower one characterized by the excitation
laser coherence time TL. More specifically, the fast dynamics
reflects the photon statistics and the coalescence of the inelas-
tically scattered photons, whereas the slower one is directly
linked to the coalescence of the elastically scattered photons.
Consequently, these measurements exhibit very clearly two
time scales linked to the elastic and inelastic components. At
high power [Fig. 2(d)], the ratio of the elastically scattered
photons drops [see Fig. 1(b)], inducing the long time com-
ponent to get notably attenuated. These results constitute a
clear demonstration of the direct link between the additional
coalescence component and the g(1) function, and thus the co-
herence of the emitted photons. Furthermore, studying the
photon indistinguishability in the particular RRS regime pro-
vides a straightforward evidence of Mandel’s notion regarding
the duality between coherence and indistinguishability [3].

Figures 2(e,f) present the two-photon interference visibili-
ties VHOM(τ) =

[
g(2X)

⊥ (τ)−g(2X)

// (τ)
]/

g(2X)

⊥ (τ) at low and high
power, respectively. The usual way to assess the indistin-
guishability of the photons is to use VHOM(0). However, this
value is heavily altered by the time resolution of the detec-
tors TR. In order to take into account the long coherence time
of the elastically scattered photons along with the visibility at
τ = 0, a more appropriate figure of merit has to be considered:
the time integration of the visibility curve, or what we call the
CTW. This value should be used under cw excitation in order
to investigate the temporal behavior of the coalescence effi-
ciency. This CTW is equal to a weighted average time which
takes into account all the temporal components of the coales-
cence dynamics and therefore corresponds to a relaxation time
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beyond which no two-photon interference will be observed,
while being independent of TR. Figure 2(g) shows the power
dependence of the CTW. At low power (below saturation), it
can be as large as 4 ns due to the long coherence of the photons
inherited from the excitation laser in the RRS regime. When
the power increases, the CTW is drastically reduced and goes
below 1 ns above the saturation power. In this regime, the
QD emission mostly originates from inelastic scattering, gov-
erned by the intrinsic time constants T1 and T2 which are of
the order of TR. As a comparison, the CTW calculated for
a nonresonantly excited QD with the same time constants T1
and T2 equals 0.15 ns, similarly to the one measured at high
power (i.e. 0.4 ns at P = 5P0). Here, we conclude that pho-
ton coalescence can occur for time delays up to 4 times the
detectors’ temporal resolution when the QD is operated in the
RRS regime (with TL = 16 ns), thanks to the slow dynamics
achievable in this particular regime.
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FIG. 3. (a) Two-photon interference visibility for various laser co-
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Figure 3(a) presents two-photon interference visibilities
when the QD is in the RRS regime, at low power (P = 0.3P0),
for various laser coherence times. The experimental condi-

tions set the reachable range of TL, between 9.8 ns due to
the limitations of our diode laser [19], and 43.5 ns imposed
by the interferometer delay ∆τ . At a given excitation power,
the ratio of the elastically scattered photons remains constant
(IRRS/I ≈ 70%), and the increase of TL is directly reflected
on the slow component of the visibility. The correspond-
ing experimental CTWs are presented as a function of TL in
Fig. 3(b). The theoretical CTW can be calculated within the
present model only if TL > T1,T2 (domain of validity of the
rotating wave approximation). The observed increase of the
CTW is directly related to the increase of TL, resulting in a
value up to 8 ns with the current setup. Therefore, in the case
of RRS, photon indistinguishability as measured by the CTW
is limited neither by the intrinsic QD time constants nor TR,
and the higher the laser coherence time, the higher the CTW.
In addition, the ratio T2/2T1 only gives the proportion of elas-
tically scattered photons. Consequently, this result not only
demonstrates that coherence and indistinguishability are en-
twined, but also that the RRS regime allows for an unprece-
dented level of control of photon indistinguishability.

In this Letter, we demonstrate the generation of highly in-
distinguishable single photons from a cw resonantly driven
QD operated in the RRS regime. As the excitation laser drives
the photon coherence time beyond the intrinsic properties of
the two-level system, the temporal dynamics of the photon
coalescence phenomenon can be experimentally investigated.
We define an appropriate figure of merit in order to quan-
tify the time window in which two-photon coalescence is ob-
served. This CTW fully characterizes the photon temporal
indistinguishability of a cw single photon source, particularly
in the RRS regime where photon coherence times are much
longer than the temporal resolution of the detectors. We fur-
ther show that the CTW can be tuned by the excitation laser
in the RRS regime and can be as large as 8 ns in the present
setup, compared to 0.15 ns for a nonresonantly excited QD,
or 0.4 ns for a resonantly driven QD at high power (above
saturation). We point out that this new experimental degree
of freedom can promote conducting quantum optics with con-
ventional detectors. More specifically, it could be used in a
Franson interferometer for the generation of time-bin entan-
gled states out of two single photons under cw excitation [31].
In such a scheme, as the CTW exceeds the temporal resolu-
tion of regular detectors, a precise timing of the photons could
be ensured without using narrow spectral filters or supercon-
ducting detectors, which would then allow implementing time
entanglement of photon pairs [32, 33].

The authors gratefully acknowledge P. Petroff for provid-
ing the sample, as well as A. Beveratos and E. del Valle
for useful and stimulating discussions. This work was fi-
nancially supported by the French ”Agence Nationale de la
Recherce” (ANR-11-BS10-010) and ”Direction Générale de
l’Armement” (DGA).
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Supplemental material:
Measuring the photon coalescence time-window in the continuous-wave regime for resonantly

driven semiconductor quantum dots

S1. LASER DIODE AND LASER COHERENCE CONTROLLER

The excitation laser is an external-cavity monomode continuous wave diode laser (Toptica DL pro 940). The losses in the
cavity and the longitudinal mode selection are ensured by a grating in Littrow configuration which can be rotated to tune roughly
the emission wavelength between 910 nm and 985 nm. The cavity length can be finely tuned thanks to a piezoelectric actuator.
The overall accuracy of the spectral relative position is less than 5 MHz, two orders of magnitude below the linewidth of the
quantum dot (QD).

The electrical current passing through the diode laser can be modulated by a noise generator (Toptica Laser Coherence Con-
troller – LCC). The LCC output is a white noise of electrical current with a bandwidth in the 10−250 MHz range, and variable
modulation power. The diode laser output is thus modulated in phase and amplitude, resulting in a broadened lorentzian spectral
line.

The coherence time of the laser emission is here defined as the decay time TL of the exponential in the first-order correlation
function g(1):

g(1)(τ) = e−
|τ|/TL (3)

According to the Wiener-Khintchine theorem, the corresponding spectral power density S(ν) is then:

S(ν) ∝
1

1+
( 2ν

∆ν

)2 (4)

where ∆ν = 1/(πTL) is the full width at half maximum.
The coherence time is measured with two different techniques: Fabry-Perot interferometry and g(2X)

// intensity correlation mea-
surement at the output of the unbalanced Mach-Zehnder interferometer used for the Hong-Ou-Mandel (HOM) type experiment.
The g(2X)

// function is given for a lorentzian spectrum of coherence time TL and no amplitude fluctuations by [1]:

g(2X)

// (τ) = 1− 1
2
·
∣∣g(1)(τ)∣∣2 = 1− 1

2
· e−2|τ|/TL (5)

As shown in figure S 1(a), these two techniques (red squares for Fabry-Perot and yellow diamonds for g(2X)

// ) show only small
differences. The coherence times in the main paper were measured using the g(2X)

// method which is the most reliable one (the
Fabry-Perot has a resolution of 10 MHz — of the order of the narrowest laser linewidths — and the measurement can then be
altered for the highest values of the laser coherence time).

An example of a two-photon interference measurement performed on the laser only (i.e. g(2X)

// ) is shown in figure S 1(b) (light
gray dots). The quality of the theoretical fit (red solid line) demonstrates the robustness of the g(2X)

// method. However, a g(2)

measurement performed in a Hanbury Brown and Twiss (HBT) setup exhibits a very small bunching (dark gray dots), of the
order of 3%. This is linked to the LCC process, since the g(2) of a laser should read [2]:

g(2)(τ) = 1+F[RIN] (6)

where F[RIN] is the Fourier transform of the laser Relative Intensity Noise. Here, because of the strong modulation on the
diode laser current, the amplitude of the laser emission is also affected by the modulation, and the RIN goes from 10 MHz to
> 250 MHz, which would correspond to a bunching less than 8 ns wide. This bunching is in fact observed on the experimental
results and is about 4 ns wide. Nevertheless, this effect is very small and the excitation laser can be considered as a quite stable
field as far as the detection system is concerned. We also stress that, when measured on the QD, the single photon character
of the QD emission attenuates considerably the bunching effect inherent to the excitation laser since it occurs on the same time
scales. Thus, this phenomenon will affect very slightly the reliability of our model equations around zero delay. In this context,
the bunching effect due to the laser modulation has been neglected in all the g(2) and g(2X) measurements presented in the paper.
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FIG. S 1. Effect of the LCC modulation attenuation on the coherence time of the excitation laser. (a) Coherence time of the diode laser versus
the LCC attenuation (i.e. the modulation power) extracted from the Fabry-Perot measurements (red squares, deconvoluted by the Fabry-
Perot response) and the g(2X)

// measurements (yellow diamonds). (b) Experimental data (light gray dots) and fit (solid red line) of the intensity
correlation function g(2X)

// when only the laser is sent to the HOM interferometer. The intensity correlation function g(2), measured in a HBT
setup, is also shown (dark gray dots). The LCC attenuation is −31 dB and the coherence time extracted from the fit is TL = 17.0±0.5 ns.

S2. ONE- AND TWO-PHOTON INTERFERENCE MEASUREMENTS

The difference between one- and two-photon interference, also called second- and fourth-photon interference, is what is
measured in the experiment, i.e. whether detecting one or two photons [3]. In the case of two-photon interference with a single
source, the use of a strongly unbalanced interferometer prevents any constant phase correlation between its two outputs, or in
other words it ensures the absence of one-photon interference. One could argue that the measurement of photon pairs is not
altered by phenomena which modify the one-photon measurements. However, the individual rates fluctuations at the outputs
of the beamsplitter will affect the visibility of the two-photon interference measurements, in addition to their influence on the
coincidence rate.

Figure S 2(a) shows the effect of the LCC modulation on the one-photon interference: the fringes visibility (red dots) de-
creases when the laser linewidth increases. This measurement was performed without fibers, with an unbalanced Michelson
interferometer and a path difference of 27 ns (corresponding to 8 m). The result is consistent with the expected behavior of a
lorentzian spectrum when varying the FWHM (blue solid line). Figure S 2(b) shows a g(2X)

// measurement performed with the
HOM interferometer on the QD emission (in the resonant Rayleigh Scattering regime) when the laser coherence time TL = 43 ns
is very close to the interferometer delay ∆τ = 43.5 ns. This results in a long decay which reaches the secondary peaks at ±∆τ .
The experimental data are fitted by equation 2 of the main paper. We would like to stress that the model defined by equations 1-2
of the main paper cannot describe reliably the results of the HOM measurements as soon as the coherence time of the emitted
photons gets longer than ∆τ . The detection system Instrument Response Function (IRF) of the HOM type experiment is also
presented in figure S 2(b).

S3. AUTOCORRELATION FUNCTIONS OF A TWO-LEVEL SYSTEM UNDER RESONANT EXCITATION

For a two level system under resonant excitation, the first- and second-order correlation functions g(1) and g(2) are given by
[4]:

g(1)(τ) = e−
τ/TL

[
T2

2T1
· 1

1+Ω2T1T2
+

e−τ/T2

2
+

e−ητ

2
(α cos(ντ)+β sin(ντ))

]
(7)

and

g(2)(τ) = 1− e−ητ

(
cos(ντ)+

η

ν
sin(ντ)

)
(8)
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FIG. S 2. Condition on the HOM interferometer path difference for accurate two-photon interference measurements. (a) Visibility (red dots) of
the one-photon interference fringes, measured in a Michelson interferometer with a delay of 27 ns (corresponding to 8 m), as a function of the
excitation laser linewidth. The blue solid line is the expected behavior for a lorentzian spectrum at such delay. (b) Top: Intensity correlation
function g(2X)

// measured in the HOM type experiment for TL = 43 ns (gray markers), fitted by Eq. 2 of the main paper (red solid curve). Bottom:
Instrument Response Function of the HOM experiment (IRF, blue solid curve).

with 

η =
1
2

(
1
T1

+
1
T2

)

ν =

√
Ω2− 1

4

(
1
T1
− 1

T2

)2

α = 1− T2

T1 (1+Ω2T1T2)

β =
Ω2T1 (3T2−T1)− (T1−T2)

2

T1T2

2νT1 (1+Ω2T1T2)

(9)

τ is the delay between detections, TL the coherence time of the resonant excitation laser (TL > T1,T2), and Ω the Rabi frequency
defined as:

Ω
2 =

P
P0

1
T1T2

(10)

S4. DYNAMICAL PROPERTIES OF THE QUANTUM DOT EMISSION

Figure S 3 shows two experimental results used to assess the lifetime T1 and the coherence relaxation time T2 of the two-level
system model that describes the QD. All the fits presented in the paper were done with the same experimental values of T1 and
T2.

For T1, a decay curve measurement was performed using a pulsed Ti:Sapphire laser tuned in resonance with the QD excitonic
transition (see Fig. S 3(a)), with a pulse width of the order of 10 ps. The IRF (dashed green line) is presented and the IRF-
convoluted exponential decay used for the fit (red solid line) implies a lifetime T1 = 0.34±0.05 ns.

For T2, a g(1) measurement is performed in a balanced Mach-Zehnder interferometer by measuring the fringes contrast as
a function of the interferometer delay (see Fig. S 3(b)). The strong background of 20% is due to residual scattered laser. The
experimental results are fitted by the g(1) function of a two-level system, given by Eq.1, and the deduced coherence time is
T2 = 0.5± 0.05 ns. The two panels correspond to two different excitation powers. In particular, on the bottom panel, the
Rabi oscillations that the two-level system undergoes when it is strongly coupled to the resonant laser above saturation are
observable. The experimental value of T2 reproduces accurately the data from the whole set of measurements performed for
several excitation powers (not shown here). Moreover, the combination of the measured T1 and T2 describes reliably all the HBT
and HOM measurements, raising a high level of confidence about these values.
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FIG. S 3. Dynamical properties of the quantum dot emission. (a) T1 measurement: the experimental decay curve (blue dots) is presented with a
fit (red solid line) of an exponential decay with a time constant T1 = 0.34±0.05 ns, convoluted by the Instrument Response Function (dashed
green line). (b) T2 measurement: fringes visibility as a function of the interferometer delay (blue dots), fitted by the g(1) function of a two-level
system (Eq. 1) (red solid line). The excitation power is P = 2P0 for the top panel and P = 29P0 for the bottom panel. T1 = 0.3 ns for both.
The extracted value of the coherence time is T2 = 0.5±0.05 ns.
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