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This study proposes a mid-level feature descriptor and aims to validate improvement on image classification and retrieval tasks. In this paper, we propose a method to explore the conventional feature extraction techniques in the image classification pipeline from a different perspective where mid-level information is also incorporated in order to obtain a superior scene description. We hypothesize that the commonly used pixel based low-level descriptions are useful but can be improved with the introduction of mid-level region information. Hence, we investigate superpixel based image representation to acquire such mid-level information in order to improve the accuracy. Experimental evaluations on image classification and retrieval tasks are performed in order to validate the proposed hypothesis. We have observed a consistent performance increase in terms of mean average precision (MAP) score for different experimental scenarios and image categories.

Introduction

Object recognition is usually defined as the ability to assign labels to objects at multiple conceptual levels, from specific identification to coarse categorization. Possible identity preserving transformations like scaling, rotation, occlusion, changes in intensity, size and pose might be present during the assignment procedure. Ideally, a classification system should provide accurate performance in the presence of such transformations.

Recognizing and localizing semantic objects in a complex scene is a challenging problem that is solved efficiently and successfully by the human visual and cognitive system. However, no method has offered a human-like performance yet. This leads to the following natural question: Where is the "gap" in the image understanding pipeline?

High resolution cameras with good performance under low light conditions and HDR functionality are available. With such equipment, more detailed shots of a scene can be captured compared to bare human eyes; yet, current methods are far beyond the capacity of a basic judgment of a human.

Previous work investigates the perceptual gap between the low-level visual input and the high-level conceptual identification [START_REF] Martens | Bridging the semantic gap using human vision system inspired features, Self-Organizing Maps[END_REF]. Studies in neuroscience imply the importance of the feature extraction step for a more accurate visual understanding [START_REF] Pinto | A high-throughput screening approach to discovering good forms of biologically inspired visual representation[END_REF]. The human cognition process is composed of the combinations of complex features [START_REF] Rust | Ambiguity and invariance: Two fundamental challenges for visual processing[END_REF]. From the computer vision perspective, in an attempt to address these findings, biologically inspired feature descriptions are studied. These approaches aim at exploring possible improvements in the feature extraction step of the image understanding pipeline [START_REF] Martens | Unsupervised texture segmentation using biologically inspired features[END_REF][START_REF] Zhang | A new biologically inspired color image descriptor[END_REF].

In this paper the aim is to explore the feature description process by utilizing hierarchical spatial information from mid-level cues in addition to the commonly used pixel descriptors. Therefore, we investigate a superpixel based region descriptor and apply it on object recognition tasks. The region adaptation power of superpixels on the image boundaries, as shown in Figure 1, make them an ideal candidate for our purposes.

Pixel based descriptors are widely used in object recognition tasks due to their accepted performance for image description [START_REF] Lowe | Object recognition from local scale-invariant features[END_REF]. However, the use of middle and higher level descriptors is important for a superior scene characterization. In the proposed method, the aim is to extend the performance of low level descriptors by utilizing middle level region descriptors. The advantage of the proposed adaptation is that it does not require a fixed region size or shape to define the support area of the descriptor. Region shape is adaptive depending on the spatial image characteristics as shown in Figure 1. The proposed descriptor is based on the superpixel mean color and variance information in the angular spatial neighborhood. Different region and superpixel sizes as shown in Figure 1 are used to explore possible contributions by fusing spatially different levels of information.

The rest of the paper is organized as follows. Related work and motivation is presented in Section 2. Section 3 provides details on the construction of the superpixel descriptors. The region adaptation idea using the superpixel patches is also presented in the same section. The image classification and retrieval pipeline and different ways of incorporating the proposed region descriptors and region segments are presented in Section 4. The results are discussed in Section 5 before concluding the paper with final remarks and future directions.

Related Work and Motivation

Image Classification

Object recognition tasks have been vastly studied in the literature [START_REF] Torralba | Context based vision system for place and object recognition[END_REF][START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF][START_REF] Everingham | The PASCAL Visual Object Classes Challenge 2007 Results[END_REF]. A typical object recognition pipeline consists of four major steps: 1) extraction of local image features, 2) encoding of local image descriptors, 3) pooling of encoded descriptors into a global image descriptor, 4) training and classification of pooled image descriptors for the purpose of object recognition. This paper focuses on exploring the first step where local image features are extracted.

Several studies evaluate the performance of the first step in the pipeline; pixel based shape, color, and texture descriptors [START_REF] Pinto | Comparing state-of-the-art visual features on invariant object recognition tasks[END_REF]. Biological insight is also considered to obtain invariance under various viewing conditions [START_REF] Serre | Robust object recognition with cortex-like mechanisms[END_REF]. Other studies propose combining different levels (low -mid -high) of information [START_REF] Zheng | Detecting object boundaries using low-, mid-, and high-level information[END_REF]. The second step of the object recognition pipeline has also been widely addressed.

For encoding a set of local descriptors into a single high dimensional feature vector, the Fisher Vector method in [START_REF] Perronnin | Improving the fisher kernel for largescale image classification[END_REF], achieves state-of-the-art performance. The (third) pooling step is also shown to provide improvements. Especially spatial and feature space pooling techniques have been widely investigated [START_REF] Boureau | Ask the locals: multiway local pooling for image recognition[END_REF][START_REF] Grauman | The pyramid match kernel: discriminative classification with sets of image features[END_REF][START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF]. Concerning the final step of the pipeline, discriminative classifiers like SVM are widely accepted as efficient and accurate in terms of classification performance. Judging from the final performance of the-state-of-the-art [START_REF] Everingham | The PASCAL Visual Object Classes Challenge 2007 Results[END_REF], there is room for improvement in the pipeline.

Biological Insight

The goal of the studies regarding the semantic gap in the image understanding procedure is to determine where the machines lack accuracy compared to humans. In order to address this issue, the way the brain solves visual object recognition task has been investigated. The fact that half of the primate neocortex is engaged during the visual processing, shows the complexity of the whole recognition process [START_REF] Felleman | Distributed hierarchical processing in the primate cerebral cortex[END_REF]. Moreover, recent studies propose strong evidence that a cascade of computations are engaged in the visual object recognition process [START_REF] Dicarlo | How does the brain solve visual object recognition?[END_REF]. However, the underlying algorithm that produces the final result stays mostly undiscovered.

The focus of this paper is not to investigate the neural implications of visual understanding. However, it is important to emphasize the results of recent studies. These results can be valuable to better understand the object recognition process. The neocortex patterns are known to be activated by at least moderately complex combinations of visual features [START_REF] Rust | Ambiguity and invariance: Two fundamental challenges for visual processing[END_REF] and it has been observed that output of the neocortex patters can be very informative for achieving robust and real time visual object categorization [START_REF] Li | What response properties do individual neurons need to underlie position and clutter invariant object recognition[END_REF] [START_REF] Rust | Ambiguity and invariance: Two fundamental challenges for visual processing[END_REF]. The goal of this paper is to develop and analyze extensions in feature description and encoding schemes with exploration of hierarchically classified pixel (low level), region (mid level) and scene based (high level) feature descriptors. With the proposed multi layered and region adaptive approach, we hypothesize that a better information accumulation is possible.

Mid-Level Features

Several authors have shown the importance of adding an intermediate representation [START_REF] Parikh | Recognizing Jumbled Images: The Role of Local and Global Information in Image Classification[END_REF], often referred as the mid-level features or mid-level cues for lever-aging the performance. We observe three mains trends on mid-level description in the recent literature: hand-crafted, learned, and unsupervised features. A large variety of learned mid-level features have been proposed. One of the first method was the Deformable Part Model, proposed by [START_REF] Felzenszwalb | Object detection with discriminatively trained part-based models[END_REF]. Improvement have been further achieved by using appearance based clustering and sub-categories [START_REF] Divvala | How important are deformable parts in the deformable parts model?[END_REF] and by enforcing steerability and separability of the features [START_REF] Pirsiavash | Steerable part models[END_REF]. Similarly, semantic attributes [START_REF] Niu | Context aware topic model for scene recognition[END_REF][START_REF] Su | Improving image classification using semantic attributes[END_REF] have received a lot of interest. Within the learned mid-level features techniques, we observe a large variety in the nature of the learning data. While some feature are based on extra training data such as labeled fragments [START_REF] Liao | Building a dictionary of image fragments[END_REF], sketch tokens [START_REF] Lim | Sketch tokens: A learned mid-level representation for contour and object detection[END_REF] or pre-trained object detectors [START_REF] Endres | Learning collections of part models for object recognition[END_REF], most methods use a standard split of training and testing data to learn the distinctive features, as the structural element patch model [START_REF] Chua | Learning structural element patch models with hierarchical palettes[END_REF] or the blocks that shout [START_REF] Juneja | Blocks that shout: Distinctive parts for scene classification[END_REF]. Moreover, regarding unsupervised mid-level features, the work of [START_REF] Singh | Unsupervised discovery of mid-level discriminative patches[END_REF] aims at detecting distinctive patches in an image dataset without any label information. On the other hand, Hand crafted mid-level features aim at encapsulating information on groups of pixel such as superpixels [START_REF] Tighe | Superparsing: scalable nonparametric image parsing with superpixels[END_REF], patches [START_REF] Fernando | Effective use of frequent itemset mining for image classification[END_REF] or segments [START_REF] Carreira | Semantic segmentation with second-order pooling[END_REF]. These descriptors are computed similarly for any given image and do not require any learning, which is a great advantage for efficient image classification systems. Furthermore, these descriptors can be easily applied to image retrieval, which do not have a proper training and test split; and most of these descriptors can effectively encoded with recent well performing methods, such as the Fisher Vectors. The study in [START_REF] Boureau | Learning mid-level features for recognition[END_REF] proposes mid-level features for object recognition and presents a detailed analysis on different levels of pooling strategies. They define macro-feature vectors as jointly encoded small neighborhoods of SIFT descriptors. The neighborhoods are defined by a fixed size of squares that encode multiple SIFT descriptor into one as the macro-feature vector. This method pursues a similar spatial information utilization as proposed in our work. However, they use only fixed sized (multiple) square regions independent of the region properties. Our method on the other hand, aims at combining spatial characteristics of the region and encoding it into a descriptor that has flexible and adaptive coverage depending on the spatial region properties. A recent work [START_REF] Parikh | Recognizing Jumbled Images: The Role of Local and Global Information in Image Classification[END_REF] that investigates the role of local and global information in image classification also focuses on exploring the performance limitations of current techniques. Another study that aims at labelling image regions depending on the similarity of the SP features in the training set is presented in [START_REF] Tighe | Superparsing: scalable nonparametric image parsing with superpixels[END_REF]. In that study, scene-level matching with global image descriptors is followed by SP level matching of mid-level features. The study in [START_REF] Zheng | Detecting object boundaries using low-, mid-, and high-level information[END_REF] addresses the low-, mid-, and high-level cues. Individual classifiers are trained on different levels of descriptors and classification outputs are combined for the final decision. Descrip-tor level grouping has also been addressed in a more recent study [START_REF] Fernando | Effective use of frequent itemset mining for image classification[END_REF] where local histograms from larger neighboring regions have shown to improve classification performance. This method uses a fixed neighborhood definition to aggregate the local histograms; whereas, our method proposes a flexible and more natural region description.

In order to define the mid-level image regions, superpixel primitives are utilized in this paper. Superpixels (SP) are defined as small pixel groups in the image that are individually consistent in terms of color and textural similarity [START_REF] Ren | Learning a classification model for segmentation[END_REF] . This grouping provides advantages especially for graph based applications. By representing the image by SPs instead of pixels, the graph size greatly reduces and this is crucial for computational efficiency. SPs provide an efficient representation of the image that possesses the local color and textural structure in the region. This supports the assumption that pixels in the same SP belong to the same object or region. SP extraction has been widely utilized in computer vision applications mainly as a pre-processing step in order to simplify the node structure. For SP extraction, several methods have been proposed with different advantages [START_REF] Achanta | Slic superpixels compared to state-of-the-art superpixel methods[END_REF][START_REF] Levinshtein | TurboPixels: Fast Superpixels Using Geometric Flows[END_REF][START_REF] Van Den Bergh | Seeds: Superpixels extracted via energy-driven sampling[END_REF][START_REF] Veksler | Superpixels and supervoxels in an energy optimization framework[END_REF]. In our paper we use the method in [START_REF] Tasli | Super pixel extraction via convexity induced boundary adaptation[END_REF] mainly due to its computation efficiency and structural segmentation performance. A previous method for efficient representation of the images has been previously studied in [START_REF] Jojic | Epitomic analysis of appearance and shape[END_REF]. The epitome of an image is defined as its miniature, condensed version containing the essence of the textural and shape properties. Similarly, superpixels can also be seen as an efficient image representation with reduced resolution and information encapsulation property.

Mid-Level Cues from Superpixels

This paper aims to explore the feature description of the image classification pipeline by using hierarchically generated spatial information from mid-level cues. Therefore, we investigate a superpixel based region descriptor and apply it on object recognition tasks. The reason of selecting superpixels is the region adaptation power on the object boundaries.

The proposed improvement in the feature extraction step is the utilization of Superpixel based Angular Differences (SPAD) method. This technique uses the intensity difference between the superpixels in a local neighborhood. The angular intensity differences in the SP neighborhoods are accumulated in order to define the region covered by the irregular shaped superpixels.

Superpixel Extraction

For the purpose of our mid-level descriptor, extracted SP patches should possess several structural properties. Firstly, the extraction method preserves local structure by adapting to the local object and region boundaries. Secondly, undersegmentation of the regions is avoided to yield an expressive image representation. Thirdly, regular region identification is targeted with quasi-uniform SP regions. Uniform localization and compactness are required to form regular grid structure among the graph models with unbiased neighbor relations. Finally, computational complexity should be kept to a minimum. Based on these criteria, the method in [START_REF] Tasli | Super pixel extraction via convexity induced boundary adaptation[END_REF] is selected for our purposes. In order to generate a scalable descriptor, different sizes of SPs are hierarchically extracted based on the initial grid structure (Q ¢ Q, S ¢ S, IH ¢ IH, PH ¢ PH). Details regarding the superpixel extraction methodology can be found in our previous work [START_REF] Tasli | Super pixel extraction via convexity induced boundary adaptation[END_REF].

Superpixel Neigborhood Structure

Each SP patch p corresponds to a node v P V of an undirected graph G a @V; EA. Each edge e P E of the graph is assigned a weight depending on the similarity of the nodes that it connects. For each SP, the neighborhood of p is defined as N n p where n corresponds to the order of the neighborhood with n P fI; P; Qg in our implementation. For the given parameter settings, we can roughly calculate the region coverage with Q levels of neighborhood for PH¢PH SP size as @Pn C IA ¢ PH 3 IRH ¢ IRH pixels for n a Q. This coverage can be adjusted with different sized SPs or neighborhood levels. In our implementation we use up to the Q rd level of neighborhood with the following SP sizes: Q ¢ Q, S ¢ S, IH ¢ IH, PH ¢ PH.

While generating the neighborhood structure, we iterate over all the individual nodes and define the neighborhood relations. To obtain a color wise distance d p;q i between the adjacent nodes p and q i (q i P N p n ), the distance metric is computed over three color channels:

d c p;q i a e (p c c q i ) k sign( c p c q i ) k 1 c p ; k a I; P ; ( 1 
)
where c is the mean color of the c th index of the color channel. The parameter k is tested with two values for comparison, however no significant difference is observed. p is the variance of the mean color values in the n th neighborhood:

c P p a I kN n p k X iaIXkN n p k @ p c c q i A P ; (2) 
Figure 2: Computation of angular differences on the superpixel grid. Projection of the closest superpixels are accumulated on the final intensity difference. X represents the central SP and circles in different colors ("red", "green", and "blue") represent the 1 st ,2 nd , and 3 rd order neighbor superpixel centers where kN n p k is the total number of neighbors of the SP p within the n th neighborhood.

In order to compute the angular difference, the angular orientation of each SP with respect to the central SP is required. The angular orientation arg@p; q i A (argument of the vector (p qi ) in R P ) between the adjacent nodes p and q i (q i P N n p ) is computed as: arg@p; q i A a 8 > < > :

rtn@ @p y q i y A @p x q i x A A if x ! H rtn@ @p y q i y A @p x q i x A A C if x < H y ! H rtn@ @p y q i y A @p x q i x A A if x < H y < H

where p x , p y correspond to the x and y pixel coordinates of the SP p.

The calculated distance and angular orientations are used in the next step to compute the angular intensity differences.

Superpixel based Angular Differences (SPAD)

The generates superpixels and the neighboring relations are utilized to generate the proposed mid-level descriptor. Figure 2 presents the proposed idea where central and neighboring SPs are generated in a realistic configuration for illustration purposes. The coverage of the neighborhood depends on the size of the extracted SP and the number of neighbor levels. Local SP neighborhood in Figure 1 and3 shows the extracted SP boundaries on the original image. On the colored area, the different orders of neighborhoods of the central SP are emphasized with "red", "green" and "blue" colors.

The extracted superpixels and the neighborhood structure are used to compute the angular intensity differences and variances for different (I st ,P nd , and Q rd ) levels of neighborhood in Section 3.3. This step is followed by the fusion of the computed angular differences for different sizes of superpixels.

Angular Difference Computation.

We divide the angular space in V equal bins to compute the intensity differences of superpixels for different orders of neighborhood. Figure 2 illustrates the proposed idea where different colored centers contribute to the intensity difference term in the V bin angular orientations.

D c

is the angular intensity difference between the center SP p and its neighbors at the selected angle and color channel c. In our implementation, we use N ¢ a V bin orientations where P ¢ a fH; =R; =P; Q=R; ; S=R; Q=P; U=Rg.

The angular difference D c is computed as the summation of the projection of all the SPs assigned to this specific bin, as well as the projection of the SPs assigned to his P direct neighboors. SPs are assigned to their three closest (in terms of angular orientation) bins, following (4). Figure 2 shows the projected points for a H for the I st neighborhood and a Q=P for the P nd neighborhood. The dashed lines show the projection of SP centers on the corresponding orientations and intensity differences (positive or negative) are accumulated on each orientation as follows:

D c a X iPQ d c
p;q i os@arg@p; q i A A ; [START_REF] Martens | Unsupervised texture segmentation using biologically inspired features[END_REF] Where the q i are assigned to the three closest bins Q , as follows: Vi P N p ; i P Q @A Vj P I; ::; N ¢ ; P rgmin Q @j¢ j arg@p; q i AjA (5)

Incorporating Second Order Statistics.

In addition to the angular intensity difference, we also incorporate the angular distribution of second order statistics of the SP patches. As in (4), we compute the angular variances in the SP patches as shown below in [START_REF] Lowe | Object recognition from local scale-invariant features[END_REF].

V c a X q i ;iaIXQ c q i P os@arg@p; q i A A ; [START_REF] Lowe | Object recognition from local scale-invariant features[END_REF] where c q i P is the variance of the c th color channel in SP q i . Different color spaces and different number of color channels could be utilized in the proposed descriptor. However, in order to make a proper comparison with the gray channel SIFT descriptor and also to keep the descriptor length limited we have used only the gray channel information in the rest of the experiments.

Descriptor Fusion.

The computation of angular difference D c

and angular variance V c for V orientations produce a V ¢ I length vector each. In the proposed method, up to Q levels of neighborhood information are used to generate a RV ¢ I sized vector for D c and V c together. This vector constitutes the final region descriptor for the given hierarchy as illustrated in Figure 3 for different orders of neighborhoods and SP sizes.

Different sizes of SPs are used to obtain scale invariance and cover distinct mid-level region cues that we aimed for. The final structure of the descriptor when the angular difference and variance are combined is shown below.

v a D n 1 D n 2 ... D n 8 V n 1 V n 2 ... V n 8 Q naI
As a final step, two descriptors of n th neighborhood D n and V n are independently `P normalized over all neighborhoods. The normalization step has provided with an increase in the final classification accuracy.

Experimental Results

The experiments are conducted in a manner to justify the contribution of the proposed mid-level cue combination approach. It is hypothesized that the introduction of mid-level cues at the feature extraction step conceives a complementary information with respect to pixel level information. This has been tested using the image classification pipeline where the proposed superpixel descriptor is combined with the commonly used pixel descriptors. The performance of the proposed approach is further tested on the image retrieval tasks.

Image Classification

In the first part of the experiments, the descriptive performance of SPAD is evaluated on image classification. This task aims at detecting the predefined class of each image in a test set based on training samples. For this purpose, we use the Pascal VOC 2007 Classification Dataset [START_REF] Everingham | The PASCAL Visual Object Classes Challenge 2007 Results[END_REF], which consist of 9,963 images (5,011 for training and 4,952 for testing). Some examples of the 20 classes in the dataset are: person, motorbike, air plane, cat, cow, bottle, sofa, etc. The measure used to evaluate the performance of a given system is the Average Precision (AP) metric. The Mean Average Precision (MAP) is the averaged AP over all the classes tested.

Classification pipeline.

We follow the conventional image classification pipeline presented in [START_REF] Chatfield | The devil is in the details: an evaluation of recent feature encoding methods[END_REF]. In the first step, mid-level superpixel descriptors are densely extracted from the image. We use the VLFeat toolbox [START_REF] Vevaldi | Vlfeat an open and portable library of computer vision algorithms[END_REF] to compute the SIFT descriptors and reduce the dimension of the SIFT features to 64, by using principal component analysis (PCA).

Encoding of the local image descriptors is achieved using the Fisher Vectors (FV). This method is proven to outperform other encoding methods on various tasks such as classification [START_REF] Chatfield | The devil is in the details: an evaluation of recent feature encoding methods[END_REF]. FVs partition the space using a Gaussian Mixture Model (GMM) and propose the use of first and second order statistics of the difference between the image feature data and the GMM to describe images.

Finally, the training and classification is achieved using linear Support Vector Machine (SVM), as it is shown to perform well with Fisher vector encoding. SVM is trained independently in a one-vs-rest fashion for each image class. Test scores are ranked depending on the output likelihood of each image to belong to the classes in the training set.

We include the proposed method in this pipeline by modifying the feature extraction process. SPADs are computed on each image instead of dense SIFT descriptors. The remaining parts of the pipeline are kept similar; SPADs are encoded with the Fisher Vectors method and SVM is utilized for classification. 

Classification results.

SPs used in these experiments are extracted based on different grid sizes: Q¢Q, S ¢ S, IH ¢ IH, and PH ¢ PH, see Figure 3. The SPAD descriptor is computed hierarchically on different scales (SPAD3, SPAD5, SPAD10, SPAD20) for all the images in the dataset.

Construction choices: In this work, various design choices are evaluated.

The distance metric chosen: d p with k a I is shown to perform better than other possibilities, see Table 1. Next, The number of selected neighborhood in the descriptor is set to n a Q. Although n a R offers a slight improvement, we selected n a Q as it allows a faster computation and smaller descriptor, see Table 2. Finally, we evaluate the performance the distance metric D and the variance V . As we see in Table 3, the variance offers a complementary information to the distance resulting in a large improvement when the two measures are combined.

Fusions of different scales: The MAP scores for each SP are calculated individually as shown in the first four rows in Table 4. The last four rows show the improved accuracy with the combined scales. The combination of the descriptors is achieved by early-fusion or mid-fusion methods. Early-fusion encodes all scales of SPAD together and generates a single fisher vector; whereas, mid-fusion concatenates the fisher vectors of each scales encoded separately. We note that the concatenation step in mid-fusion method results in a larger image descriptor compared to early-fusion.

Table 4 reveals an improvement in the performance as the SP scale decreases with the increased and finer details. This is expected since the lower scales contain only a rough representation of the image as seen in Figure 3. This is in accordance with the hypothesis that the lower level pixel information is already well captured with SIFT-like descriptors and we would like to obtain the mid-level additional information that is available in the proposed SPAD descriptors. Moreover, combinations of all scales offer even better results since several levels of region information is incorporated in the combined features. We also observe that mid-fusion outperforms early-fusion in terms of the MAP score. 

RV ¢ P ¢ k

Comparison with SIFT: The MAP scores using only the SPAD descriptors are observed to be inferior compared to the state-of-the-art. This is mainly because SP representation is analogous to downscaling the image and running the classification on a lower resolution image. Therefore, in order to obtain a fair comparison between the SPAD and SIFT, we reduced the image dimension so each pixel used to compute SIFT would cover a surface area similar to the area used for SPAD. Therefore, the image is downscaled by 3, 5, and 10 before computing SIFT to obtain the Mini-SIFT (M-SIFT) descriptors. Table 5 shows the individual and combined performance of M-SIFT and SPAD descriptors for scales of 3 and 5 and 10. On the individual performance M-SIFT is observed to be better for the scales 3 and 5, worse of scale 10. However, the combination of these two methods with SIFT, on its original size, shows that SPAD outperforms Mini-Sift for every sizes. This observation validates the initial hypothesis that SPAD could incorporate complementary information so that SIFT benefits largely from SPAD combination.

Combination with SIFT: As a final experiment, the proposed SPAD descriptor has been tested against the baseline method where only densely sampled SIFT descriptors are used in the Fisher encoding. Table 6 presents the SIFT baseline MAP score compared with the proposed early and mid fusion of SIFT and SPAD combination.

The increase in the AP scores of the individual classes for the proposed SIFT and SPAD combination is also presented in Figure 4. The increase in AP score in different classes varies between 0.1% to 5.6%. On the large majority of the classes, we observe a very stable improvement: between 2% and 4%. Increase is obtained regardless of the nature of the data, due to the adaptivity of the proposed descriptor. This observation supports our hypothesis concerning the information gained by utilizing the mid-level cues. 

Image Retrieval

In this section, the evaluation of SPAD for the image retrieval task is performed. The aim is to retrieve all samples of a specific query object in an image dataset. The Holidays dataset [START_REF] Jégou | Hamming embedding and weak geometric consistency for large scale image search[END_REF] is used in the evaluation. The Holidays dataset consists of 1,491 high resolution personal photos of various locations and objects. 500 images are used as query samples in the experiments. The performance is computed similarly by the Mean Average Precision (MAP) score. 

Retrieval pipeline.

The generic image retrieval pipeline is composed of the following sub-processes: 1) Local image feature extraction. 2) Encoding of the local image descriptors. 3) Image ranking based on the descriptor similarities. In our evaluation, we follow the pipeline proposed by [START_REF] Jégou | Aggregating local image descriptors into compact codes[END_REF]. A dense selection of points for SIFT descriptor extraction performed in the first step. The descriptors are then encoded using Fisher vectors. Finally, the descriptor distance is computed between the query and the test image from the database using the Euclidean distance of the Fisher vector.

Retrieval results.

In terms of the resulting performance, replacement of SIFT descriptors with the proposed SPAD descriptor is evaluated. Furthermore, combination of SIFT descriptors on each superpixels center with SPAD is also tested as shown in Table 7. Finally, the results are compared with a recent work by Jegou et al [START_REF] Jégou | Aggregating local image descriptors into compact codes[END_REF]. The experimental evaluations show that the MAP scores obtained with early-fusion and mid-fusion are very similar for the retrieval case. Image description using SIFT is shown to benefit from the proposed SPAD combination, with an increase of 3.2% in MAP score as shown in Table 7.

Discussion

This study focuses on the hypothesis that tasks of object recognition and image retrieval can be improved by exploring the limitations at the feature extraction Previous mid-level techniques mostly define a fixed image region and accumulate the low-level information in this predefined window. Different scales of the SIFT descriptor can also collect information from a larger but fixed sized area on the image. On the contrary, we propose a descriptor in the SP domain and define the regions according to the spatial characteristics of the image. The advantage of such an approach is to incorporate region specific information in the descriptor. One can observe the similarities of the proposed method with the LBP descriptor [START_REF] Ojala | Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[END_REF], especially in the hierarchical neighborhood idea. However, the two techniques differ in many aspects. The LBP method stores the sign of the differences in the predefined locations of the image. The binary vectors of the sign differences are then accumulated in a histogram on a predefined window. Our method, on the other hand, stores not only the sign but also the magnitude of the difference. Moreover, the shape and size adaptive region coverage makes the proposed method stronger as a spatial region descriptor. The experimental results show supporting evidence that the proposed method is useful for improving the performance of the object recognition and image retrieval task. The initial hypothesis that the proposed region adaptation could capture additional information is validated with the experiments and could further be extended to improve the performance of any other pipeline where SIFT based feature description is required.

Conclusion

This paper focuses on the image recognition task with an emphasis on the feature extraction. We explore the conventional feature extraction techniques from the perspective that mid-level information can be incorporated in this step to obtain a superior scene description. We hypothesize that pixel based low-level descriptions are useful but can be further improved with the introduction of midlevel region information. Thus, we propose a novel descriptor that encapsulates the mid-level information based on SP structure. Image regions are described by computing the oriented mean differences between a central superpixel and its various orders of neighborhood. The variance of the neighbors is further included for a better description. The performance of the proposed descriptor is evaluated on the image classification and retrieval tasks. For the experimental evaluations, baseline score is achieved using SIFT descriptors and we observe P:U7 and Q:P7

MAP improvements over the baseline on classification and retrieval tasks, respectively. Based on the experimental evaluations, we could verify our hypothesis that mid-level cues enrich the image description and improve the performance of low-level cues.

Figure 1 :

 1 Figure 1: Describing an image with superpixels. Left: SPs with size 10 ¢ 10 SP. Right: 20 ¢ 20 SP. From top to bottom: Original image; Mean RGB values for each SP region; first (red), second (green) and third (blue) order neigborhoods of randomly selected 3 SP regions.

Figure 3 :

 3 Figure 3: Angular difference computation. Red, green, and blue colored regions correspond to the 1 st ,2 nd , and 3 rd order neighborhood of the central SP. Angular differences are combined for different neighborhood and SP sizes.

Figure 4 :

 4 Figure 4: AP score increase (in percentage) with the proposed SPAD-Mid combination compared to the standard SIFT, for individual classes of Pascal VOC.

  

Table 1 :

 1 Evaluation of the distance metric d p and jd p j for k = 1; 2, see Eq. 1. SPs of size 25 are utilized and descriptors are further encoded with Fisher Vectors and k = 256 Gaussians.

	jd p j d p
	k=1 0.173 0.185
	k=2 0.168 0.160

Table 2 :

 2 Evaluation of the number of neighborhood utilized to compute the final descriptor.

	neighborhood order mAP
	N12	0.220
	N123	0.237
	N1234	0.239

Table 3 :

 3 Results obtained for Mean and Variance descriptors for various SPs sizes.

		Mean Var Mean & Var
	SPAD 20 0.194 0.184	0.252
	SPAD 10 0.238 0.195	0.300
	SPAD 5	0.316 0.233	0.356
	SPAD 3	0.353 0.246	0.381

Table 4 :

 4 SPAD classification MAP scores for Pascal VOC 2007, using Fisher vectors with k=256 Gaussians. Descriptors are combined using early-fusion and mid-fusion.

	Method	Fisher 256	Dimensions
	SPAD 3	0.381	RV ¢ P ¢ k
	SPAD 5	0.356	RV ¢ P ¢ k
	SPAD 10	0.300	RV ¢ P ¢ k
	SPAD 20	0.252	RV ¢ P ¢ k
	SPAD 3,5 Mid	0.406	P ¢ RV ¢ P ¢ k
	SPAD 3,5,10 Mid	0.417	Q ¢ RV ¢ P ¢ k
	SPAD 3,5,10,20 Mid	0.421	R ¢ RV ¢ P ¢ k
	SPAD 3,5,10,20 Early	0.410	

Table 5 :

 5 SPAD and Mini-SIFT classification MAP scores for Pascal VOC 2007, using Fisher vectors with k=256 Gaussians. Descriptors are further combined with standard dense SIFT using mid-fusion.

	Method	Fisher 256 Combined with SIFT
	SPAD 3	0.381	0.569
	SPAD 5	0.356	0.567
	SPAD 10	0.300	0.563
	M-SIFT 3	0.434	0.566
	M-SIFT 5	0.378	0.563
	M-SIFT 10	0.281	0.557

Table 6 :

 6 MAP scores for the standard pipeline and combination with SPAD for Pascal VOC 2007, using Fisher vectors with k=f16,64,256g Gaussians. SPAD are combined on the four scales using Early and Mid fusion.

	Method	Fisher 16 Fisher 64 Fisher 256
	SIFT standard	0.440	0.491	0.549
	SIFT & SPAD-Early	0.457	0.514	0.563
	SIFT & SPAD-Mid	0.468	0.527	0.576

Table 7 :

 7 SPAD retrieval MAP scores for Holidays, using Fisher vectors with k=256 Gaussians

	Method	Fisher 256	Dimensions
	SPAD 3	0.587	RV ¢ P ¢ k
	SPAD 5	0.592	RV ¢ P ¢ k
	SPAD 10	0.581	RV ¢ P ¢ k
	SPAD 20	0.552	RV ¢ P ¢ k
	SPAD 3,5,10,20 Mid	0.626	R ¢ RV ¢ P ¢ k
	SPAD 3,5,10,20 Early	0.614	RV ¢ P ¢ k
	SIFT on SPs	0.630	TR ¢ P ¢ k
	SIFT & SPAD-Early	0.663	@TR C RVA ¢ P ¢ k
	SIFT & SPAD-Mid	0.662	@TR C R ¢ RVA ¢ P ¢ k
	Jegou et al. [46]	0.610	IPV ¢ k

step. Current low-level image descriptors are widely explored for such purposes; however, utilization of mid-level cues can capture additional spatial information.