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SuperPixel Based Mid-Level Image Description for
Image Recognition

H. Emrah Tasli, Ronan Sicre and Theo Gevers
Intelligent Systems Lab Amsterdam - Informatics Institute, University of Amsterdam

Abstract
This study proposes a mid-level feature descriptor and aims to validate improve-
ment on image classification and retrieval tasks. In this paper, we propose a
method to explore the conventional feature extraction techniques in the image
classification pipeline from a different perspective where mid-level information
is also incorporated in order to obtain a superior scene description. We hypoth-
esize that the commonly used pixel based low-level descriptions are useful but
can be improved with the introduction of mid-level region information. Hence,
we investigate superpixel based image representation to acquire such mid-level
information in order to improve the accuracy. Experimental evaluations on image
classification and retrieval tasks are performed in order to validate the proposed
hypothesis. We have observed a consistent performance increase in terms of mean
average precision (MAP) score for different experimental scenarios and image
categories.
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1. Introduction

Object recognition is usually defined as the ability to assign labels to objects
at multiple conceptual levels, from specific identification to coarse categoriza-
tion. Possible identity preserving transformations like scaling, rotation, occlusion,
changes in intensity, size and pose might be present during the assignment proce-
dure. Ideally, a classification system should provide accurate performance in the
presence of such transformations.
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Recognizing and localizing semantic objects in a complex scene is a challeng-
ing problem that is solved efficiently and successfully by the human visual and
cognitive system. However, no method has offered a human-like performance
yet. This leads to the following natural question: Where is the ”gap” in the image
understanding pipeline?

High resolution cameras with good performance under low light conditions
and HDR functionality are available. With such equipment, more detailed shots
of a scene can be captured compared to bare human eyes; yet, current methods are
far beyond the capacity of a basic judgment of a human.

Previous work investigates the perceptual gap between the low-level visual
input and the high-level conceptual identification [1]. Studies in neuroscience
imply the importance of the feature extraction step for a more accurate visual un-
derstanding [2]. The human cognition process is composed of the combinations of
complex features [3]. From the computer vision perspective, in an attempt to ad-
dress these findings, biologically inspired feature descriptions are studied. These
approaches aim at exploring possible improvements in the feature extraction step
of the image understanding pipeline [4, 5].

In this paper the aim is to explore the feature description process by utilizing
hierarchical spatial information from mid-level cues in addition to the commonly
used pixel descriptors. Therefore, we investigate a superpixel based region de-
scriptor and apply it on object recognition tasks. The region adaptation power of
superpixels on the image boundaries, as shown in Figure 1, make them an ideal
candidate for our purposes.

Pixel based descriptors are widely used in object recognition tasks due to their
accepted performance for image description [6]. However, the use of middle and
higher level descriptors is important for a superior scene characterization. In the
proposed method, the aim is to extend the performance of low level descriptors by
utilizing middle level region descriptors. The advantage of the proposed adapta-
tion is that it does not require a fixed region size or shape to define the support area
of the descriptor. Region shape is adaptive depending on the spatial image charac-
teristics as shown in Figure 1. The proposed descriptor is based on the superpixel
mean color and variance information in the angular spatial neighborhood. Differ-
ent region and superpixel sizes as shown in Figure 1 are used to explore possible
contributions by fusing spatially different levels of information.

The rest of the paper is organized as follows. Related work and motivation
is presented in Section 2. Section 3 provides details on the construction of the
superpixel descriptors. The region adaptation idea using the superpixel patches is
also presented in the same section. The image classification and retrieval pipeline
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Figure 1: Describing an image with superpixels. Left: SPs with size 10 � 10 SP. Right: 20 � 20

SP. From top to bottom: Original image; Mean RGB values for each SP region; first (red), second
(green) and third (blue) order neigborhoods of randomly selected 3 SP regions.

and different ways of incorporating the proposed region descriptors and region
segments are presented in Section 4. The results are discussed in Section 5 before
concluding the paper with final remarks and future directions.

2. Related Work and Motivation

2.1. Image Classification
Object recognition tasks have been vastly studied in the literature [7, 8, 9].

A typical object recognition pipeline consists of four major steps: 1) extraction
of local image features, 2) encoding of local image descriptors, 3) pooling of
encoded descriptors into a global image descriptor, 4) training and classification
of pooled image descriptors for the purpose of object recognition. This paper
focuses on exploring the first step where local image features are extracted.
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Several studies evaluate the performance of the first step in the pipeline; pixel
based shape, color, and texture descriptors [10]. Biological insight is also con-
sidered to obtain invariance under various viewing conditions [11]. Other studies
propose combining different levels (low - mid - high) of information [12]. The
second step of the object recognition pipeline has also been widely addressed.
For encoding a set of local descriptors into a single high dimensional feature vec-
tor, the Fisher Vector method in [13], achieves state-of-the-art performance. The
(third) pooling step is also shown to provide improvements. Especially spatial
and feature space pooling techniques have been widely investigated [14, 15, 8].
Concerning the final step of the pipeline, discriminative classifiers like SVM are
widely accepted as efficient and accurate in terms of classification performance.
Judging from the final performance of the-state-of-the-art [9], there is room for
improvement in the pipeline.

2.2. Biological Insight
The goal of the studies regarding the semantic gap in the image understanding

procedure is to determine where the machines lack accuracy compared to humans.
In order to address this issue, the way the brain solves visual object recognition
task has been investigated. The fact that half of the primate neocortex is engaged
during the visual processing, shows the complexity of the whole recognition pro-
cess [16]. Moreover, recent studies propose strong evidence that a cascade of
computations are engaged in the visual object recognition process [17]. However,
the underlying algorithm that produces the final result stays mostly undiscovered.

The focus of this paper is not to investigate the neural implications of visual
understanding. However, it is important to emphasize the results of recent studies.
These results can be valuable to better understand the object recognition process.
The neocortex patterns are known to be activated by at least moderately complex
combinations of visual features [3] and it has been observed that output of the
neocortex patters can be very informative for achieving robust and real time vi-
sual object categorization [18] [3]. The goal of this paper is to develop and analyze
extensions in feature description and encoding schemes with exploration of hier-
archically classified pixel (low level), region (mid level) and scene based (high
level) feature descriptors. With the proposed multi layered and region adaptive
approach, we hypothesize that a better information accumulation is possible.

2.3. Mid-Level Features
Several authors have shown the importance of adding an intermediate repre-

sentation [19], often referred as the mid-level features or mid-level cues for lever-
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aging the performance. We observe three mains trends on mid-level description
in the recent literature: hand-crafted, learned, and unsupervised features. A large
variety of learned mid-level features have been proposed. One of the first method
was the Deformable Part Model, proposed by [20]. Improvement have been fur-
ther achieved by using appearance based clustering and sub-categories [21] and
by enforcing steerability and separability of the features [22]. Similarly, semantic
attributes [23, 24] have received a lot of interest. Within the learned mid-level
features techniques, we observe a large variety in the nature of the learning data.
While some feature are based on extra training data such as labeled fragments
[25], sketch tokens [26] or pre-trained object detectors [27], most methods use
a standard split of training and testing data to learn the distinctive features, as
the structural element patch model [28] or the blocks that shout [29]. Moreover,
regarding unsupervised mid-level features, the work of [30] aims at detecting dis-
tinctive patches in an image dataset without any label information. On the other
hand, Hand crafted mid-level features aim at encapsulating information on groups
of pixel such as superpixels [31], patches [32] or segments [33]. These descriptors
are computed similarly for any given image and do not require any learning, which
is a great advantage for efficient image classification systems. Furthermore, these
descriptors can be easily applied to image retrieval, which do not have a proper
training and test split; and most of these descriptors can effectively encoded with
recent well performing methods, such as the Fisher Vectors. The study in [34]
proposes mid-level features for object recognition and presents a detailed analy-
sis on different levels of pooling strategies. They define macro-feature vectors as
jointly encoded small neighborhoods of SIFT descriptors. The neighborhoods are
defined by a fixed size of squares that encode multiple SIFT descriptor into one
as the macro-feature vector. This method pursues a similar spatial information
utilization as proposed in our work. However, they use only fixed sized (multi-
ple) square regions independent of the region properties. Our method on the other
hand, aims at combining spatial characteristics of the region and encoding it into
a descriptor that has flexible and adaptive coverage depending on the spatial re-
gion properties. A recent work [19] that investigates the role of local and global
information in image classification also focuses on exploring the performance lim-
itations of current techniques. Another study that aims at labelling image regions
depending on the similarity of the SP features in the training set is presented in
[35]. In that study, scene-level matching with global image descriptors is followed
by SP level matching of mid-level features. The study in [12] addresses the low-,
mid-, and high-level cues. Individual classifiers are trained on different levels of
descriptors and classification outputs are combined for the final decision. Descrip-
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tor level grouping has also been addressed in a more recent study [32] where local
histograms from larger neighboring regions have shown to improve classification
performance. This method uses a fixed neighborhood definition to aggregate the
local histograms; whereas, our method proposes a flexible and more natural region
description.

In order to define the mid-level image regions, superpixel primitives are uti-
lized in this paper. Superpixels (SP) are defined as small pixel groups in the image
that are individually consistent in terms of color and textural similarity [36] . This
grouping provides advantages especially for graph based applications. By rep-
resenting the image by SPs instead of pixels, the graph size greatly reduces and
this is crucial for computational efficiency. SPs provide an efficient representa-
tion of the image that possesses the local color and textural structure in the re-
gion. This supports the assumption that pixels in the same SP belong to the same
object or region. SP extraction has been widely utilized in computer vision ap-
plications mainly as a pre-processing step in order to simplify the node structure.
For SP extraction, several methods have been proposed with different advantages
[37, 38, 39, 40]. In our paper we use the method in [41] mainly due to its com-
putation efficiency and structural segmentation performance. A previous method
for efficient representation of the images has been previously studied in [42]. The
epitome of an image is defined as its miniature, condensed version containing the
essence of the textural and shape properties. Similarly, superpixels can also be
seen as an efficient image representation with reduced resolution and information
encapsulation property.

3. Mid-Level Cues from Superpixels

This paper aims to explore the feature description of the image classifica-
tion pipeline by using hierarchically generated spatial information from mid-level
cues. Therefore, we investigate a superpixel based region descriptor and apply
it on object recognition tasks. The reason of selecting superpixels is the region
adaptation power on the object boundaries.

The proposed improvement in the feature extraction step is the utilization of
Superpixel based Angular Differences (SPAD) method. This technique uses the
intensity difference between the superpixels in a local neighborhood. The angular
intensity differences in the SP neighborhoods are accumulated in order to define
the region covered by the irregular shaped superpixels.
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3.1. Superpixel Extraction
For the purpose of our mid-level descriptor, extracted SP patches should pos-

sess several structural properties. Firstly, the extraction method preserves local
structure by adapting to the local object and region boundaries. Secondly, under-
segmentation of the regions is avoided to yield an expressive image representation.
Thirdly, regular region identification is targeted with quasi-uniform SP regions.
Uniform localization and compactness are required to form regular grid structure
among the graph models with unbiased neighbor relations. Finally, computational
complexity should be kept to a minimum. Based on these criteria, the method
in [41] is selected for our purposes. In order to generate a scalable descriptor,
different sizes of SPs are hierarchically extracted based on the initial grid struc-
ture (3� 3, 5� 5, 10� 10, 20� 20). Details regarding the superpixel extraction
methodology can be found in our previous work [41].

3.2. Superpixel Neigborhood Structure
Each SP patch p corresponds to a node v 2 V of an undirected graph G =

(V;E). Each edge e 2 E of the graph is assigned a weight depending on the
similarity of the nodes that it connects. For each SP, the neighborhood of p is
defined as Nn

p where n corresponds to the order of the neighborhood with n 2
f1; 2; 3g in our implementation. For the given parameter settings, we can roughly
calculate the region coverage with 3 levels of neighborhood for 20�20 SP size as
(2n+ 1)� 20! 140� 140 pixels for n = 3. This coverage can be adjusted with
different sized SPs or neighborhood levels. In our implementation we use up to
the 3rd level of neighborhood with the following SP sizes: 3� 3, 5� 5, 10� 10,
20� 20.

While generating the neighborhood structure, we iterate over all the individual
nodes and define the neighborhood relations. To obtain a color wise distance dp;qi
between the adjacent nodes p and qi (qi 2 Np

n), the distance metric is computed
over three color channels:

dcp;qi = e
�(�p

c
��cqi

)ksign(�cp��
c
qi

)k�1

�cp ; k = 1; 2 ; (1)

where �c is the mean color of the cth index of the color channel. The parameter
k is tested with two values for comparison, however no significant difference is
observed. �p is the variance of the mean color values in the nth neighborhood:

�c 2
p =

1

kNn
p k

X
i=1:kNn

p k

(�p
c � �c

qi
)2 ; (2)
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Figure 2: Computation of angular differences on the superpixel grid. Projection of the closest
superpixels are accumulated on the final intensity difference. X represents the central SP and
circles in different colors (”red”, ”green”, and ”blue”) represent the 1st,2nd, and 3rd order neighbor
superpixel centers

where kNn
p k is the total number of neighbors of the SP p within the nth neighbor-

hood.
In order to compute the angular difference, the angular orientation of each

SP with respect to the central SP is required. The angular orientation arg(p; qi)
(argument of the vector (~p� ~qi) in R2) between the adjacent nodes p and qi (qi 2
Nn

p ) is computed as:

arg(p; qi) =

8><
>:

arctan( (p
y�qi

y)
(px�qix)

) if x � 0

arctan( (p
y�qi

y)
(px�qix)

) + � if x < 0 y � 0

arctan( (p
y�qi

y)
(px�qix)

)� � if x < 0 y < 0

(3)

where px, py correspond to the x and y pixel coordinates of the SP p.
The calculated distance and angular orientations are used in the next step to

compute the angular intensity differences.

3.3. Superpixel based Angular Differences (SPAD)
The generates superpixels and the neighboring relations are utilized to gener-

ate the proposed mid-level descriptor. Figure 2 presents the proposed idea where
central and neighboring SPs are generated in a realistic configuration for illustra-
tion purposes.
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Figure 3: Angular difference computation. Red, green, and blue colored regions correspond to
the 1st,2nd, and 3

rd order neighborhood of the central SP. Angular differences are combined for
different neighborhood and SP sizes.

The coverage of the neighborhood depends on the size of the extracted SP
and the number of neighbor levels. Local SP neighborhood in Figure 1 and 3
shows the extracted SP boundaries on the original image. On the colored area, the
different orders of neighborhoods of the central SP are emphasized with ”red”,
”green” and ”blue” colors.

The extracted superpixels and the neighborhood structure are used to compute
the angular intensity differences and variances for different (1st,2nd, and 3rd) lev-
els of neighborhood in Section 3.3. This step is followed by the fusion of the
computed angular differences for different sizes of superpixels.

Angular Difference Computation.

We divide the angular space in 8 equal bins to compute the intensity differ-
ences of superpixels for different orders of neighborhood. Figure 2 illustrates the
proposed idea where different colored centers contribute to the intensity difference
term in the 8 bin angular orientations.
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Dc
� is the angular intensity difference between the center SP p and its neighbors

at the selected angle � and color channel c. In our implementation, we use N� = 8
bin orientations where � 2 � = f0; �=4; �=2; 3�=4; �; 5�=4; 3�=2; 7�=4g.
The angular difference Dc

� is computed as the summation of the projection of all
the SPs assigned to this specific bin, as well as the projection of the SPs assigned to
his 2 direct neighboors. SPs are assigned to their three closest (in terms of angular
orientation) bins, following (4). Figure 2 shows the projected points for � = 0 for
the 1st neighborhood and � = 3�=2 for the 2nd neighborhood. The dashed lines
show the projection of SP centers on the corresponding orientations and intensity
differences (positive or negative) are accumulated on each orientation as follows:

Dc
� =
X
i2Q�

dcp;qi cos(arg(p; qi)� �) ; (4)

Where the qi are assigned to the three closest bins Q�, as follows:

8i 2 Np; i 2 Q� () 8j 2 1; ::; N�; � 2 argmin
3

(j�j � arg(p; qi)j) (5)

Incorporating Second Order Statistics.

In addition to the angular intensity difference, we also incorporate the angular
distribution of second order statistics of the SP patches. As in (4), we compute the
angular variances in the SP patches as shown below in (6).

V c
� =

X
qi;i=1:3

�c
qi

2 cos(arg(p; qi)� �) ; (6)

where �c
qi
2 is the variance of the cth color channel in SP qi.

Different color spaces and different number of color channels could be utilized
in the proposed descriptor. However, in order to make a proper comparison with
the gray channel SIFT descriptor and also to keep the descriptor length limited we
have used only the gray channel information in the rest of the experiments.

Descriptor Fusion.

The computation of angular difference Dc
� and angular variance V c

� for 8 orien-
tations produce a 8� 1 length vector each. In the proposed method, up to 3 levels
of neighborhood information are used to generate a 48 � 1 sized vector for Dc

�

and V c
� together. This vector constitutes the final region descriptor for the given
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hierarchy as illustrated in Figure 3 for different orders of neighborhoods and SP
sizes.

Different sizes of SPs are used to obtain scale invariance and cover distinct
mid-level region cues that we aimed for. The final structure of the descriptor
when the angular difference and variance are combined is shown below.

v = [Dn
�1
Dn

�2
... Dn

�8
V n
�1
V n
�2

... V n
�8
]3n=1

As a final step, two descriptors of nth neighborhood Dn
� and V n

� are indepen-
dently `2 normalized over all neighborhoods. The normalization step has provided
with an increase in the final classification accuracy.

4. Experimental Results

The experiments are conducted in a manner to justify the contribution of the
proposed mid-level cue combination approach. It is hypothesized that the intro-
duction of mid-level cues at the feature extraction step conceives a complemen-
tary information with respect to pixel level information. This has been tested
using the image classification pipeline where the proposed superpixel descriptor
is combined with the commonly used pixel descriptors. The performance of the
proposed approach is further tested on the image retrieval tasks.

4.1. Image Classification
In the first part of the experiments, the descriptive performance of SPAD is

evaluated on image classification. This task aims at detecting the predefined class
of each image in a test set based on training samples. For this purpose, we use the
Pascal VOC 2007 Classification Dataset [9], which consist of 9,963 images (5,011
for training and 4,952 for testing). Some examples of the 20 classes in the dataset
are: person, motorbike, air plane, cat, cow, bottle, sofa, etc. The measure used to
evaluate the performance of a given system is the Average Precision (AP) metric.
The Mean Average Precision (MAP) is the averaged AP over all the classes tested.

Classification pipeline.

We follow the conventional image classification pipeline presented in [43].
In the first step, mid-level superpixel descriptors are densely extracted from the
image. We use the VLFeat toolbox [44] to compute the SIFT descriptors and
reduce the dimension of the SIFT features to 64, by using principal component
analysis (PCA).
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Encoding of the local image descriptors is achieved using the Fisher Vectors
(FV). This method is proven to outperform other encoding methods on various
tasks such as classification [43]. FVs partition the space using a Gaussian Mix-
ture Model (GMM) and propose the use of first and second order statistics of the
difference between the image feature data and the GMM to describe images.

Finally, the training and classification is achieved using linear Support Vector
Machine (SVM), as it is shown to perform well with Fisher vector encoding. SVM
is trained independently in a one-vs-rest fashion for each image class. Test scores
are ranked depending on the output likelihood of each image to belong to the
classes in the training set.

We include the proposed method in this pipeline by modifying the feature
extraction process. SPADs are computed on each image instead of dense SIFT
descriptors. The remaining parts of the pipeline are kept similar; SPADs are en-
coded with the Fisher Vectors method and SVM is utilized for classification.

Table 1: Evaluation of the distance metric dp and jdpj for k = 1; 2, see Eq. 1. SPs of size 25 are
utilized and descriptors are further encoded with Fisher Vectors and k = 256 Gaussians.

jdpj dp

k=1 0.173 0.185

k=2 0.168 0.160

Table 2: Evaluation of the number of neighborhood utilized to compute the final descriptor.

neighborhood order mAP

N12 0.220

N123 0.237

N1234 0.239

Classification results.

SPs used in these experiments are extracted based on different grid sizes: 3�3,
5 � 5, 10 � 10, and 20 � 20, see Figure 3. The SPAD descriptor is computed

12



hierarchically on different scales (SPAD3, SPAD5, SPAD10, SPAD20) for all the
images in the dataset.

Construction choices: In this work, various design choices are evaluated.
The distance metric chosen: dp with k = 1 is shown to perform better than other
possibilities, see Table 1. Next, The number of selected neighborhood in the de-
scriptor is set to n = 3. Although n = 4 offers a slight improvement, we selected
n = 3 as it allows a faster computation and smaller descriptor, see Table 2. Fi-
nally, we evaluate the performance the distance metric D and the variance V . As
we see in Table 3, the variance offers a complementary information to the distance
resulting in a large improvement when the two measures are combined.

Fusions of different scales: The MAP scores for each SP are calculated in-
dividually as shown in the first four rows in Table 4. The last four rows show the
improved accuracy with the combined scales. The combination of the descrip-
tors is achieved by early-fusion or mid-fusion methods. Early-fusion encodes all
scales of SPAD together and generates a single fisher vector; whereas, mid-fusion
concatenates the fisher vectors of each scales encoded separately. We note that
the concatenation step in mid-fusion method results in a larger image descriptor
compared to early-fusion.

Table 4 reveals an improvement in the performance as the SP scale decreases
with the increased and finer details. This is expected since the lower scales contain
only a rough representation of the image as seen in Figure 3. This is in accordance
with the hypothesis that the lower level pixel information is already well captured
with SIFT-like descriptors and we would like to obtain the mid-level additional
information that is available in the proposed SPAD descriptors. Moreover, com-
binations of all scales offer even better results since several levels of region infor-
mation is incorporated in the combined features. We also observe that mid-fusion
outperforms early-fusion in terms of the MAP score.

Table 3: Results obtained for Mean and Variance descriptors for various SPs sizes.

Mean Var Mean & Var

SPAD 20 0.194 0.184 0.252

SPAD 10 0.238 0.195 0.300

SPAD 5 0.316 0.233 0.356

SPAD 3 0.353 0.246 0.381
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Table 4: SPAD classification MAP scores for Pascal VOC 2007, using Fisher vectors with k=256
Gaussians. Descriptors are combined using early-fusion and mid-fusion.

Method Fisher 256 Dimensions

SPAD 3 0.381 48� 2� k

SPAD 5 0.356 48� 2� k

SPAD 10 0.300 48� 2� k

SPAD 20 0.252 48� 2� k

SPAD 3,5 Mid 0.406 2� 48� 2� k

SPAD 3,5,10 Mid 0.417 3� 48� 2� k

SPAD 3,5,10,20 Mid 0.421 4� 48� 2� k

SPAD 3,5,10,20 Early 0.410 48� 2� k

Comparison with SIFT: The MAP scores using only the SPAD descriptors
are observed to be inferior compared to the state-of-the-art. This is mainly because
SP representation is analogous to downscaling the image and running the classifi-
cation on a lower resolution image. Therefore, in order to obtain a fair comparison
between the SPAD and SIFT, we reduced the image dimension so each pixel used
to compute SIFT would cover a surface area similar to the area used for SPAD.
Therefore, the image is downscaled by 3, 5, and 10 before computing SIFT to
obtain the Mini-SIFT (M-SIFT) descriptors. Table 5 shows the individual and
combined performance of M-SIFT and SPAD descriptors for scales of 3 and 5
and 10. On the individual performance M-SIFT is observed to be better for the
scales 3 and 5, worse of scale 10. However, the combination of these two meth-
ods with SIFT, on its original size, shows that SPAD outperforms Mini-Sift for
every sizes. This observation validates the initial hypothesis that SPAD could in-
corporate complementary information so that SIFT benefits largely from SPAD
combination.

Combination with SIFT: As a final experiment, the proposed SPAD descrip-
tor has been tested against the baseline method where only densely sampled SIFT
descriptors are used in the Fisher encoding. Table 6 presents the SIFT baseline
MAP score compared with the proposed early and mid fusion of SIFT and SPAD
combination.

The increase in the AP scores of the individual classes for the proposed SIFT
and SPAD combination is also presented in Figure 4. The increase in AP score
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Table 5: SPAD and Mini-SIFT classification MAP scores for Pascal VOC 2007, using Fisher
vectors with k=256 Gaussians. Descriptors are further combined with standard dense SIFT using
mid-fusion.

Method Fisher 256 Combined with SIFT

SPAD 3 0.381 0.569
SPAD 5 0.356 0.567
SPAD 10 0.300 0.563

M-SIFT 3 0.434 0.566

M-SIFT 5 0.378 0.563

M-SIFT 10 0.281 0.557

in different classes varies between 0.1% to 5.6%. On the large majority of the
classes, we observe a very stable improvement: between 2% and 4%. Increase is
obtained regardless of the nature of the data, due to the adaptivity of the proposed
descriptor. This observation supports our hypothesis concerning the information
gained by utilizing the mid-level cues.

Table 6: MAP scores for the standard pipeline and combination with SPAD for Pascal VOC 2007,
using Fisher vectors with k=f16,64,256g Gaussians. SPAD are combined on the four scales using
Early and Mid fusion.

Method Fisher 16 Fisher 64 Fisher 256

SIFT standard 0.440 0.491 0.549

SIFT & SPAD-Early 0.457 0.514 0.563

SIFT & SPAD-Mid 0.468 0.527 0.576

4.2. Image Retrieval
In this section, the evaluation of SPAD for the image retrieval task is per-

formed. The aim is to retrieve all samples of a specific query object in an image
dataset. The Holidays dataset [45] is used in the evaluation. The Holidays dataset
consists of 1,491 high resolution personal photos of various locations and objects.
500 images are used as query samples in the experiments. The performance is
computed similarly by the Mean Average Precision (MAP) score.
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Figure 4: AP score increase (in percentage) with the proposed SPAD-Mid combination compared
to the standard SIFT, for individual classes of Pascal VOC.

Retrieval pipeline.

The generic image retrieval pipeline is composed of the following sub-processes:
1) Local image feature extraction. 2) Encoding of the local image descriptors. 3)
Image ranking based on the descriptor similarities. In our evaluation, we follow
the pipeline proposed by [46]. A dense selection of points for SIFT descriptor ex-
traction performed in the first step. The descriptors are then encoded using Fisher
vectors. Finally, the descriptor distance is computed between the query and the
test image from the database using the Euclidean distance of the Fisher vector.

Retrieval results.
In terms of the resulting performance, replacement of SIFT descriptors with the
proposed SPAD descriptor is evaluated. Furthermore, combination of SIFT de-
scriptors on each superpixels center with SPAD is also tested as shown in Table 7.
Finally, the results are compared with a recent work by Jegou et al [46]. The ex-
perimental evaluations show that the MAP scores obtained with early-fusion and
mid-fusion are very similar for the retrieval case. Image description using SIFT is
shown to benefit from the proposed SPAD combination, with an increase of 3.2%
in MAP score as shown in Table 7.

5. Discussion

This study focuses on the hypothesis that tasks of object recognition and im-
age retrieval can be improved by exploring the limitations at the feature extraction
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Table 7: SPAD retrieval MAP scores for Holidays, using Fisher vectors with k=256 Gaussians

Method Fisher 256 Dimensions

SPAD 3 0.587 48� 2� k

SPAD 5 0.592 48� 2� k

SPAD 10 0.581 48� 2� k

SPAD 20 0.552 48� 2� k

SPAD 3,5,10,20 Mid 0.626 4� 48� 2� k

SPAD 3,5,10,20 Early 0.614 48� 2� k

SIFT on SPs 0.630 64� 2� k

SIFT & SPAD-Early 0.663 (64 + 48)� 2� k

SIFT & SPAD-Mid 0.662 (64 + 4� 48)� 2� k

Jegou et al. [46] 0.610 128� k

step. Current low-level image descriptors are widely explored for such purposes;
however, utilization of mid-level cues can capture additional spatial information.
Previous mid-level techniques mostly define a fixed image region and accumulate
the low-level information in this predefined window. Different scales of the SIFT
descriptor can also collect information from a larger but fixed sized area on the
image. On the contrary, we propose a descriptor in the SP domain and define the
regions according to the spatial characteristics of the image. The advantage of
such an approach is to incorporate region specific information in the descriptor.
One can observe the similarities of the proposed method with the LBP descriptor
[47], especially in the hierarchical neighborhood idea. However, the two tech-
niques differ in many aspects. The LBP method stores the sign of the differences
in the predefined locations of the image. The binary vectors of the sign differ-
ences are then accumulated in a histogram on a predefined window. Our method,
on the other hand, stores not only the sign but also the magnitude of the differ-
ence. Moreover, the shape and size adaptive region coverage makes the proposed
method stronger as a spatial region descriptor.

The experimental results show supporting evidence that the proposed method
is useful for improving the performance of the object recognition and image re-
trieval task. The initial hypothesis that the proposed region adaptation could cap-
ture additional information is validated with the experiments and could further
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be extended to improve the performance of any other pipeline where SIFT based
feature description is required.

6. Conclusion

This paper focuses on the image recognition task with an emphasis on the fea-
ture extraction. We explore the conventional feature extraction techniques from
the perspective that mid-level information can be incorporated in this step to ob-
tain a superior scene description. We hypothesize that pixel based low-level de-
scriptions are useful but can be further improved with the introduction of mid-
level region information. Thus, we propose a novel descriptor that encapsulates
the mid-level information based on SP structure. Image regions are described by
computing the oriented mean differences between a central superpixel and its var-
ious orders of neighborhood. The variance of the neighbors is further included
for a better description. The performance of the proposed descriptor is evaluated
on the image classification and retrieval tasks. For the experimental evaluations,
baseline score is achieved using SIFT descriptors and we observe 2:7% and 3:2%
MAP improvements over the baseline on classification and retrieval tasks, respec-
tively. Based on the experimental evaluations, we could verify our hypothesis
that mid-level cues enrich the image description and improve the performance of
low-level cues.
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