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We describe how a single-particle tracking experiment should be designed in order for its recorded
trajectories to contain the most information about a tracked particle’s diffusion coefficient. The pre-
cision of estimators for the diffusion coefficient is affected by motion blur, limited photon statistics,
and the length of recorded time-series. We demonstrate for a particle undergoing free diffusion
that precision is negligibly affected by motion blur in typical experiments, while optimizing photon
counts and the number of recorded frames is the key to precision. Building on these results, we
describe for a wide range of experimental scenarios how to choose experimental parameters in order
to optimize the precision. Generally, one should choose quantity over quality: experiments should
be designed to maximize the number of frames recorded in a time-series, even if this means lower

information content in individual frames.

I. INTRODUCTION

Single-particle tracking using time-lapse photogra-
phy [1, 2] enables investigation of diffusion of single
molecules, e.g., proteins on cellular structures such as
DNA [3] and microtubules [4], on cell membranes [1, 5],
and inside cells [6, 7]. Diffusion is ubiquitous at the mi-
croscopic level and precise determination of diffusion co-
efficients is paramount for understanding many chemical
and biological processes. Typical single-particle-tracking
experiments consist in recording the photons emitted by
a fluorescent particle (a fluorophore) using time-lapse
photography, and determining the particle’s positions
from recorded images using a super-resolution localiza-
tion technique [1, 2, 8, 9], e.g., by fitting a Gaussian to
the intensity profile in each recorded image. The number
of photons emitted by a fluorophore is limited, and tradi-
tionally, tracked particles have been recorded by leaving
the camera shutter open continuously to maximize the
number of photons recorded by the camera. The time
the camera’s shutter stays open to take a single image,
its exposure time, is then equal to the time elapsed be-
tween consecutive images, the time-lapse of recordings.
The motion of the tracked particle during the exposure
time results in motion blur in the pictures (also referred
to as dynamic error), while diffraction and limited pho-
ton statistics result in localization error (also referred to
as static error) [9-11]. Additionally, the length of a time-
series, i.e., the number of recorded positions, is usually
limited, either due to bleaching of the fluorophore or due
to the tracked particle diffusing out of the field-of-view.
All of the above adversely affect the precision of estimates
of diffusion coefficients and make it important to get the
most out of experimental data.

A typical experiment for tracking single diffusing par-
ticles can be divided into multiple steps (Fig. 1): (i) de-
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signing the experiment, e.g., choice of fluorophore and la-
beling technique, setting the video rate of the camera and
the intensity of the illumination laser; (ii) carrying out
the experiment, i.e., recording images of the fluorescent
particles; (iii) treating images, localizing particles, and
creating time-series of positions; (iv) estimating diffu-
sion coefficients from the time-series. Optimal estimates
of the particles’ diffusion coefficients is obtained by op-
timizing each individual step. Recently, the questions of
how to best localize and track single particles [2, 8, 9]
and of how to optimally estimate diffusion coefficients
from the resulting time-lapse-recorded trajectories [11-
14] have been addressed.

With (near) optimal localization methods and estima-
tors of diffusion coefficients at hand, we can now address
the first step in the workflow: how should experiments be
designed in order for recorded trajectories to contain the
most information about diffusion coefficients? One may
turn several dials to influence the amount of information
available for estimation of diffusion coefficients: One may
adjust both the video rate of the camera and the photon
emission rate of the tracked fluorophores. Furthermore,
the motion blur in recorded images can be controlled by
leaving the shutter open for only part of the time-lapse,
following a given shutter sequence. The advent of strobo-
scopic tracking techniques [6], which synchronize illumi-
nation and recording of the sample, makes it possible to
control the motion blur without sacrificing photon econ-
omy.

Recent studies have partly addressed the question, but
a systematic investigation is lacking. It has namely
been suggested that one may increase the precision of
estimated diffusion coefficients by maximizing the mo-
tion blur using a double-pulse illumination sequence, i.e.,
short pulse-like illumination and recording of the sample
at the very start and end of each time-lapse [11]. An-
other study has investigated the effect of adjusting sev-
eral experimental parameters in more detail [13], though
without explicitly considering the trade-off between the
number of frames recorded (the time-series length) and
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FIG. 1. (Color online) Workflow for estimating diffusion coefficients from camera-based single-particle-tracking experiments.
We are here concerned with optimizing the first step: how to choose experimental parameters (motion blur, video rate, and
photon emission rate of the tracked fluorophore) for optimal precision of estimates of the diffusion coefficient of a tracked
particle. The motion blur is characterized by a motion blur coefficient, R € (0,1/4) [Eq. (8)] [11]. The motion blur coefficient,
R, and video rate—given by 1/At¢, where At is the time-lapse between measurements—may normally be controlled directly;
the photon emission rate of the fluorophore, r, may be controlled indirectly, e.g., by varying the laser intensity or by the choice
of fluorophore itself. Optimization of other steps in the workflow is addressed in the references given in the legends.

the signal in each frame. It suggested that for time-
independent illumination, the shutter should be left open
during the whole time-lapse to maximize photon econ-
omy, and the number of photons recorded in an image
should be enough to practically maximize the informa-
tion content in individual recorded frames. These results
relied on assumptions that neglected subtle but funda-
mental details of localization of diffusing particles. The
former study [11] neglected that motion blur increases the
width of the measured photon distribution at the camera
[the point-spread function (PSF)], increasing the localiza-
tion error. The latter [13] took this effect into account,
but neglected background noise, which is inevitable in
experiment and leads to a non-linear dependence of the
localization error on motion blur; this effect is especially
important when motion blur or background noise is high.

We here perform a systematic analytical and numeri-
cal study of how to choose experimental parameters for
tracking of freely diffusing particles in order to maximize
the information in recorded time-series. We consider two
different scenarios which cover the experimental situa-
tions usually encountered in single-particle tracking: (i)
where the time that a particle can be followed, the record-
ing time, tiot, is the limiting factor; (ii) where the pho-
tostability of the fluorophore, and thus the total number
of signal photons, P, that can be recorded is the lim-
iting factor. We show for both cases how to optimize
experimental parameters.

In order to answer the question of how to optimally
choose experimental parameters for tracking of diffusing
particles, we first need to study how motion blur and
limited photon statistics influence the precision of opti-
mal estimators of the diffusion coefficient. This is done
in Sections IT and III. Section IV applies these results
to optimize experimental design. Section V discusses the
choice of the estimator of diffusion coefficients in practice.

Specifically, we investigate in Section II how limited
photon statistics and motion blur affect the precision of
commonly used localization methods. We review analyt-
ical results for the localization error that ensues when
localizing a stationary particle. We then derive an ex-

pression for the average measured width of the PSF of a
diffusing particle. Using this, we give an approximate ex-
pression for the localization error for a diffusing particle,
valid when the mean diffusion length of the tracked par-
ticle is smaller than the width of the PSF of a stationary
fluorophore.

In Section III, we next review the statistics of time-
lapse recorded data of a freely diffusing particle and use
the results of the previous section to investigate how mo-
tion blur affects the precision of estimates of diffusion
coefficients. We show that recording using the double
pulse illumination sequence suggested in [11] tends to in-
crease the error on diffusion coefficient estimates. How-
ever, when recording with time-independent illumination
and leaving the shutter open continuously, the effect of
motion blur is negligible for relevant values of experimen-
tal parameters, and focus should be on photon economy.

Building on these results, we show in Section IV how
experiments should be optimized for maximum precision
in the different experimental scenarios. In general, ex-
periments should be designed to maximize the number
of frames recorded, not the number of photons recorded
per frame—only enough photons should be recorded such
that localization does not fail. This maximizes the infor-
mation content in the time-series and, in turn, the pre-
cision of estimated diffusion coefficients. The reason for
this is that the precision of estimates of the diffusion co-
efficient increases as the square root of the number of
recorded positions, while the decrease in the signal in in-
dividual frames does not influence the precision as much,
except for very low signal where localization will tend to
fail.

Section V finally gives a brief discussion of how to es-
timate diffusion coefficients in practice from optimally
recorded trajectories. We show that this is done opti-
mally using the regression-free covariance-based estima-
tor (CVE) of [14].

Details on how the precision of the various localiza-
tion methods was characterized on Monte Carlo gener-
ated data is found in Appendix A, and supplemental fig-
ures are found in Appendix B.



II. LOCALIZING A DIFFUSING PARTICLE

In this section, results for localization in single-particle
tracking are reviewed and the influence of motion blur
and limited photon statistics is investigated. We con-
sider in the following only diffusion in the image plane.
However, for typical particle tracking experiments, where
the focal plane is kept the same throughout the experi-
ment (i.e., focus is not changed to follow an individual
particle), we show that diffusion along the optical axis
effectively contributes to the localization error simply by
a constant additive term and a slight change of the mo-
tion blur coefficient. This means that conclusions drawn
here for 2D diffusion in the image plane also hold for 3D
diffusion.

In Subsection A we review localization of stationary
particles and give expressions for the localization error
associated with different methods. In Subsection B we
then derive an expression for the average width of the
PSF of a diffusing particle for a general time-dependent
shutter /illumination sequence. Finally, in Subsection C,
following the same approach as [9], we use this result to
extend the expressions for localization error to tracking
of a diffusing particle. We compare the analytical results
to Monte Carlo simulations and discuss the limits of the
analytical approach.

A. Localization error for a fixed particle

The diffraction-limited PSF emitted by a freely rotat-
ing fluorescent molecule or a fluorescent bead recorded by
a CMOS, CCD, or EMCCD camera is well approximated
by a two-dimensional (2D) Gaussian function plus a con-
stant background term [8]. For an isolated fluorophore of
this kind with fixed position, fitting a 2D Gaussian plus a
constant to the measured PSF allows us to estimate the
position of the molecule more precisely than the width
of the PSF. This is done optimally using the maximum
likelihood estimator with Gaussian PSF (MLEwG) [8].

When the fluorescent particle’s position is estimated
using MLEwG it leads to a white-noise localization error
with variance
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for camera pixel width a, background photon count b2,
total number of signal photons in the Gaussian part of the
PSF, P [15], and effective PSF width s2 = s3 + a?/12,
where sg is the width of the PSF of a stationary fluo-
rophore (typically sp &~ 100-150nm [8, 9]) and the addi-
tive term a?/12 is due to camera pixelation and is inde-
pendent of microscope magnification [8]. Finally, F is a
factor describing excess noise in the camera: for a CCD
or CMOS camera, there is no excess noise and F = 1;
for and EMCCD camera, the stochastic electron multi-
plication stage leads to excess noise, i.e., a factor two

increase in the variance of photon counts in individual
pixels, resulting in F' = 2 [8].

The particle’s position is often estimated by a least
squares fit to the PSF—the Gaussian Mask Estimator
(GME) [8]—or by determining the centroid of an area
containing the PSF [9]. This results in a localization
error with variance of the form [8, 9]
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where for GME o = 16/9 and 5 = 4 [8], and for the
centroid method = 1 and 8 = 81/8 when all pixels
contributing to the PSF, and only these, have been in-
cluded [9].

In the following we assume a linear relation between
the amplitude of the background photon noise and the
amplitude of the peak signal, i.e, v?/a? = qP/(2ms2),
where b?/a? is the density of background photons and
P/(27s?) is the density of signal photons at the peak of
the PSF. Here ¢ is a proportionality factor, which we shall
refer to as the background-to-signal ratio. This accounts
for both the background noise from autofluorescence and
other fluorophores, as well as the contribution from the
power-law tails of the true PSF [8]. The second can nor-
mally be absorbed in the background, but is seen when
the background noise is low. The background-to-signal
ratio ¢ is typically of the order of one [8]. Using this
definition of ¢, Egs. (1) and (2) can be simplified: for
MLEwG,
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and for GME or the centroid method,
2
P

In practice, when localizing a particle, one must first
define a general region of interest (ROI) containing only
the particle one wants to track. The choice of the ROI
naturally affects the localization precision. The centroid
method is particularly sensitive to this as including pixels
that only contain background noise increases its error—
the error continues to increase as more background pixels
are included, diverging with the size of the ROI. GME
and MLEwG, which fit the background noise as a con-
stant offset, are less sensitive to background noise and
thus to the size of the ROI. However, errors in correctly
defining the ROI will adversely affect the performance of
any localization method. Common procedures for defin-
ing the ROI involve a thresholding procedure [9, 16],
which only retains pixels with a photon count over a
certain threshold and selects the largest cluster of such
pixels as the ROI (Appendix A). Correctly determining
the ROI notably becomes difficult when signal photons
are few.

We investigate in Fig. 2 how limited photon statistics
affects the precision of the various localization methods

(a+Bq) . (4)
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FIG. 2. (Color online) Performance of the various localization
methods for a static particle as function of the number of sig-
nal photons recorded, P. (a) Amplitude of localization errors
of the various methods. (b) Probability of failure, i.e., frac-
tion of cases where the localization procedure fails to localize
the particle (defined as when the error between estimated and
true average positions is larger than 3s,) [17]. Lines show the-
oretical results [Egs. (1)—(4)]; symbols show numerical results
(Appendix A); error bars are smaller than symbol sizes. To
produce the plots the following parameter values were used:
Sq = 153nm and g = 1.

in practice. The localization error is approximately pro-
portional to 1/ VP as predicted theoretically; for low P,
it is somewhat higher in practice than theoretical results,
which can be expected due to difficulties in defining the
ROI and since Egs. (1)—(4) are only strictly valid in the
limit of large P [Fig. 2(a)].

We also see that the localization procedures sometimes
simply fail to localize the particle [Fig. 2(b)]. The prob-
ability of failure, €, is zero for large P and increases
abruptly for P < Puin = 100. Here P,;, then defines
the minimal number of photons needed for reliable local-
ization, which in general depends on the localization pro-
cedure used. More advanced methods, notably methods
using the preceding and following positions of a tracked
particle to localize it [2], may decrease Ppi,. Conversely,
excess noise, which is not present in the simulations of
Fig. 2, will tend to make ROI determination harder since
it increases the variance of the background noise by a
factor two (see [8, Supplementary Note 1] for a detailed
treatise on how the electron multiplication step of an
EMCCD camera affects photon statistics of a recorded
image). The overall behavior of € as function of P does
not change, however: it is practically zero for large P
and approaches one for small P. (See [2] for a thorough
review of single-particle-tracking algorithms and compar-
ison of their performance.)

Note finally that for the relatively high g we consider
here—typical of SPT experiments—the performance of
the GME and MLEwG methods are practically indis-
tinguishable (see Appendix B for different values of ¢).
Thus, we will in the following show only results for cen-
troid and MLEwG localization, but note that results for
GME are the same as for MLEwG. (For very low ¢ and
high P, MLEwG is a factor ~ /2 times more precise
than GME [8].)

B. Motion blur increases the width of the
measured point-spread function

Now consider a fluorescent particle diffusing in the im-
age plane. A fluorescent molecule emits photons with a
fixed rate in a Poisson process. The photons are collected
by the camera during a time-lapse At to create an image.

The diffusion length during a time-lapse, v2DAt, is in
general much smaller than the microscope’s field-of-view.
This means that eventual aberrations in the microscope
do not change the shape of the PSF over the course of a
single time-lapse, and we may assume that the dispersion
of photons in the microscope is independent of the par-
ticle’s position during the time-lapse. Thus, we can for
the moment neglect diffraction and finite photon statis-
tics. The effect of these are added later by convoluting
the PSF of a stationary particle with the distribution of
positions of the diffusing particle during the time-lapse.
Furthermore, since the motion in the z- and y-directions
of a particle diffusing in a homogeneous medium are in-
dependent, the motion along the two axes are identical
and can be treated separately as one-dimensional (1D)
problems. The result derived here is thus valid for both
one- and two-dimensional diffusion, and in the following
derivation we consider 1D diffusion only. Finally, since
the photon emission process is independent of the par-
ticle’s position, we do not need to take fluctuations in
photon emission into account to derive the average width
of the measured PSF.

We can thus split the time-lapse At into M points in
time, 79, 71,...,7n. At each time-point 7;, the generic il-
lumination function I; determines whether the particle’s
position is recorded. (It can be considered as an indica-
tor function, which is equal to 1 for time-points when the
particle’s position is recorded and is equal to zero other-
wise.) We then get a razor-sharp image of the tracked
particle’s trajectory. The width dz of the distribution of
recorded positions around the center of mass of such a
trajectory is given by

(6x)* = %Z Ii(z; — )%, (5)

where P =) I, is the total number of photons recorded
and 7 is the average position. Since P is large (typically
of the order of 100 or more) the sum is well approximated
by an integral, and the expected value of (6x)? is

At
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where T = fOAt I(t)x(t)dt, and I is the continuous illumi-
nation function, which satisfies fOAt I(t)dt = 1. We insert
the expected value (z(t)z(t')) = 2D min(¢,t')+z(0)? into
Eq. (6) and perform partial integration to get
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and S(t) = fot I(t")dt’" [11]. TImportant special cases
are: (i) continuous (time-independent) illumination, used
in experiments without stroboscopic setup to maximize
photon count—here R = 1/6; (ii) an instantaneous illu-
mination pulse, which minimizes motion blur—here R =
0; (iii) the double pulse illumination suggested in [11],
which maximizes the motion blur—here R = 1/4 [18].

Since the photon emission process is independent of
the particle’s position, the average width of the Gaussian
part of the measured PSF (the measured distribution mi-
nus the constant background) is

s = 52 + 2RDAt . (9)

For a constant illumination function (i.e. time-
independent illumination and continuously open shutter)
Eq. (9) simplifies to the result found in [9]. This differs
from the result found in [12, 19] since the initial positions
of the particle at the start of each time-frame in those
studies were implicitly assumed to be known, which is
not the case in actual particle-tracking experiments.

When tracking particles that undergo 3D diffusion,
e.g., using confocal microscopy, particles diffuse in and
out of focus, which tends to increase the width of the
measured PSF. Following the approach of Deschout et
al. [9, Supporting Material], we may use Eq. (8) to ex-
tend their result for the average width of the measured
PSF emitted by a fluorescent particle undergoing both
in-plane and out-of-plane diffusion,

s = 52 + 2RDAt + s3(27,,/3 + 2RDAt) /23
=52 4+ 5222 /(322) + 2R(1 + s2/22)DAt . (10)

Here zg = 4mns?/\ =~ 4sg, with numerical aperture of
the objective n and photon wavelength A, and zjj,y is
the distance from the focal plane where the particle be-
comes undetectable. Diffusion along the optical axis thus
simply changes the effective stationary PSF width and
slightly changes the motion blur coefficient (i.e., by ap-
proximately 1/16 ~ 6%). Thus, it does not qualitatively
alter the results derived below. We thus consider only
diffusion in the image plane in the following, but note
that conclusions found here also apply to 3D diffusion.
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FIG. 3. Monte Carlo simulated images of measured PSFs
emitted by stationary and diffusing fluorescent point-like par-
ticles at low background-noise conditions. (a) Stationary
particle. (b)—(d) Particle diffusing in the image plane with
mean diffusion length v2DA¢ equal to: (b) V2DAt = s,; (c)
V2DAt = \/ﬁsa; (d) V2DAt = 10s,. In all images the total
number of photons emitted by the particle is P = 10000, the
background-to-signal ratio is ¢ = 0.1, and the pixel size and
width of the stationary PSF are ¢ = 100 nm and sp = 150 nm,
respectively, giving s, = 153 nm. Note that the amplitude of
the background noise is the same in the four panels, the dif-
ference in scales makes it appear higher in panels (c) and (d).

Examples of measured PSF's of a particle diffusing in
the image place obtained from Monte Carlo simulations
are shown in Fig. 3.

C. Localization error for a diffusing particle

Finally, we use the result derived above to extend ex-
pressions for the localization error presented in Sec. IT A
to localization of diffusing particles.

Following the same mean-field approximation used
in [9, 13], we assume that the effect of motion blur on



localization error is found simply by replacing s2 by s
[Eq. (9)] in Egs. (1)—(4). We thus have for MLEwG lo-

calization:
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while for GME or centroid localization, we have:
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Equations (11) and (12) show that background noise
leads to a faster-than-linear increase in the localization
error as function of the motion blur [Fig. 4(a)—(c)].

The above result assumes a symmetrical PSF. How-
ever, since diffusion is not a stationary process, the con-
tribution to the measured photon distribution from the
diffusive movement is only symmetrical on average, not
in a single image. This means that we can expect the
analytical result to break down when motion blur is
high enough to make the individual PSF significantly
asymmetrical. In practice, for continuously open shut-
ter (R = 1/6), the theoretical result agrees well with
numerical simulations when the diffusion length during a
time-lapse is smaller than s,, i.e., when vV2DAt/s, < 1
[Fig. 4(a)—(c)]. For experiments using the double-pulse
illumination sequence to maximize motion blur, the mea-
sured PSF is more asymmetrical, and the localization
error is in practice higher than theoretically predicted
even when the diffusion length is relatively small. When
V2DAt < s, for continuously open shutter (R = 1/6),
the MLEwg and GME estimators are slightly more pre-
cise than the centroid estimator. When recording with
double-pulse illumination (R = 1/4) or for V2DAt > s,
with continuously open shutter (R = 1/6), errors in ROI
determination dominate the localization error, and all
three estimators perform equivalently. Furthermore, in-
creasing v2DAt, especially when photon count is low,
increases the probability of the localization procedures
to fail [Fig. 4(d)—(f)].

IIT. PRECISION OF ESTIMATORS OF THE
DIFFUSION COEFFICIENT FROM A SINGLE
TRAJECTORY

In this section we build on the results of the previ-
ous section to investigate how the precision of estimators
of diffusion coefficients depend on experimental param-
eters. In Subsection A we review the statistics of time-
lapse recorded time-series of diffusing particles and list
the parameters that determine the precision of estima-
tors of diffusion coefficients. In Subsection B we intro-
duce the Cramér-Rao lower bound (CRB) which limits
the precision of any unbiased estimator of the diffusion
coefficient—it thus defines the precision of optimal esti-
mators. In Subsection C we investigate how the CRB
depends on experimental parameters.
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FIG. 4. (Color online) Performance of the various localization
methods for a diffusing particle as function of vV2DAt/s,.
(a)—(c) Amplitude of localization errors, o, and (d)—(f) prob-
ability e of localization to fail. (The localization is considered
to have failed if the error between the estimated and true aver-
age positions is higher than 3s = 3v/s2 + 2RDAL.) [17] Lines
show theoretical results [Egs. (11) and (12)]; symbols show
numerical results (Appendix A); error bars are smaller than
symbol sizes. The number of signal photons per image are:
(a),(d) 200, (b),(e) 1000, and (c),(f) 5000. The width of the
stationary PSF is s, = 153 nm, the background-to-signal ra-
tio is ¢ = 1, and the results are for 2D diffusion in the image
plane. Discrepancies between numerical results and theory
are due to the asymmetry of the recorded PSF; this effect
is particularly strong when recording using the double-pulse
illumination sequence (R = 1/4) since the PSF here quickly
becomes highly asymmetric.

A. Statistics of recorded trajectories

In a single-particle-tracking experiment, a time-series
of N+1 positions (rg,r1,...,ry) of a particle undergoing
isotropic diffusion in d dimensions is determined from
images recorded with time-lapse At. Each position r,, is
given by

At
r, = —— / It (nAt — t)dt + %€, . (13)
0

At



Here r(t™"®) is the true position of the particle, and the
time integral describes motion blur when recording using
the illumination function I. The second term describes
localization errors associated with the time-averaged po-
sition given by the first term, where &, is a d-dimensional
zero-mean Gaussian variable of unit variance and ¥ de-
scribes the amplitude of the localization errors along each
coordinate; we define o; = X;;.

For diffusion in an isotropic medium, Eq. (13) sepa-
rates into d independent equations describing the mo-
tion along each coordinate (up to corrections to the off-
diagonal elements of ¥ due to possible correlations be-
tween the amplitude of localization errors along the op-
tical axis and in the image plane). Thus, the influence
of d is trivial—the problem of estimating the diffusion
coefficient from the trajectory of a diffusing particle is
essentially the same in 1, 2 or 3 dimensions. For simplic-
ity, we therefore consider here only 2D diffusion in the
image plane and assume that o, = o, = o, but note that
conclusions do not depend on this particular choice.

We define the set of N single-time-lapse displacements
(Ary,...,Ary), given by Ar, =r,, —r,_;. These dis-
placements are Gaussian distributed with mean zero,

(Ar,) =0, (14)
and, for 2D diffusion, with covariance [11]:

(|Ar,|*) = ADAt + 4(0® — 2RDAt) (15a)
(Ar,, - Ar, 1) = —2(0? — 2RDAt) (15b)
(Ary, - Ar,) =0 forjn—m|>1. (15¢)

)

Since free diffusion is translationally invariant, Eqgs. (14
and (15) completely characterize the statistics of the
recorded trajectory. Thus, the set of single-time-lapse
displacements, (Ary, ..., Ary), is a sufficient statistic for
the trajectory. This means that no estimator, no matter
how it uses the information present in the recorded tra-
jectory, can do better than an estimator which optimally
uses the information present solely in (Ary, ..., Ary). In
particular, it means that the Cramér-Rao bounds derived
below limit the precision of any unbiased estimator of the
diffusion coefficient based on a recorded trajectory.

We define the signal-to-noise ratio x of the trajectory
as the mean diffusion length v4DAt of a particle during
one time-lapse divided by the mean contribution v/4o of
the localization error to the measured displacement,

VDAL
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(16)

This signal-to-noise ratio, along with the motion blur co-
efficient R, and the time-series length N, determines the
precision of any estimator of D. Since & itself depends
on F, q, P, the ratio vV2DAt/s,, and R, the precision
of estimates of D is completely determined by six pa-
rameters: (i) the ratio of the diffusion length to the PSF
width, vV2DAt/s,, (ii) the excess noise factor, F', (iii) the
number of signal photons recorded per image, P, (iv) the

background-to-signal ratio in images, ¢, (v) the motion
blur coefficient, R, and (vi) the number N+1 of frames in
the recorded time-series or, equivalently, the time-series
length, N.

Excess and background noise, quantified here by F' and
q, influence the precision of particle localization and thus
the precision of estimated diffusion coefficients. However,
since they do not change with At, P, R, and N, chang-
ing their values will not qualitatively change results, and
thus the conclusions presented in this manuscript do not
depend on their specific values. We fix in the follow-
ing I’ = 1, corresponding to CDD or CMOS cameras,
and ¢ = 1, corresponding to typical background noise
in experiment (other values of ¢ are considered in Ap-
pendix B). The parameters we can control in an ex-
periment are typically V2DAt/s, (through At, where
V2DAt/s, o< v/At), P (through both At and the pho-
ton emission rate, r, where P o< r At), R (by engineering
the shutter/ illumination sequence), and N (through At,
where N o 1/At).

B. Precision of optimal estimators for the diffusion
coefficient

One can construct estimators of the diffusion coeffi-
cient D and the variance o2 of the localization error
based on a measured time-series (see e.g. [11, 13, 14]).
We want such an estimator to be as accurate as possible,
preferably unbiased. That is, an estimator of D should
on average give the true value of D. Furthermore, we
want the estimator to be as precise as possible. The pre-
cision of any unbiased estimator of D is bounded by the
information limit, the Cramér-Rao bound (CRB) [20].

An estimator which is unbiased and obtains the CRB
is considered optimal—the MLE [11, 13, 14] does this
asymptotically (for N — o0), and a simple covariance-
based estimator (CVE) does this for £ > 1 and all N [14].
The commonly used least-squares fitting to measured
mean-squared displacements (e.g., as described in [21])
is suboptimal and its use should be avoided (for a com-
plete discussion see [14]).

Technically, the CRB is a lower bound on the variance
or, equivalently, the standard error of any unbiased esti-
mator of the set (D,o?)—or of D alone if 02 has been
determined independently. We here let CRB refer to the
lower bound on the standard error, defined as Z—1/2,
where 7 is the Fisher information. When both D and

o2 must be estimated from the time-series, 7 is a matrix

given by
N o1 19y Oy,
T—9 Zkif( ) kiwga 022 (17)
S A3 T & (5%)
k k
with [13]

Y = 2DAE + 2 (1 — cos ) (02 —2RDAt) , (18)

7k
N+1
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FIG. 5. (Color online) Cramér-Rao bound (CRB) on the stan-
dard error of any unbiased estimator of the diffusion coeffi-
cient D as a function of kK = vV DAt/o. Shown for different
motion blur: no motion blur (R = 0), motion blur corre-
sponding to continuously open shutter (R = 1/6), and max-
imal motion blur (R = 1/4). The CRB is measured in units
of the true value of D. (a) If the amplitude of localization er-
rors, o, is unknown, increasing the motion blur while keeping
K constant lowers the standard error of an optimal estimator.
(b) For known o, the highest precision is obtained for mini-
mal (R = 0) motion blur. In both plots, results are for 2D
diffusion and the length of the time-series is N = 100.

where 1y, is the second moment of the normalized discrete
sine transform of (Ary,...,Ary).

It is usually possible to determine o2 independently,
e.g., directly from the localization procedure as de-
scribed in [8] when the motion blur is sufficiently small
(V2DAt < s,), or by averaging over estimates of o2 ob-
tained from multiple time-series recorded under the same
experimental conditions, as described in [14]. (Note that
the first method relies on an approximately symmetric
PSF and thus, if the shutter is held open continuously,
that vV2DAt < s,; the second method assumes that the
time-series used in the average are recorded with the
same localization error, and thus also approximately the
same motion blur.) With o determined beforehand, all
the information in the time-series is used to estimate D
alone. This increases the precision of the estimate [14].
If 02 has been determined independently with high pre-
cision, and this information is used to estimate D from
a time-series, the CRB on the standard error of this es-
timate is

2
N 1—2R(1—COS]\;T+]€1)
z V2= D Z o2 wk
k=1 1+(m*2R> (17COSN+1>
(19)

Increasing N naturally decreases the CRB (CRB ~
1/V/N for N > 1). Increasing & also decreases the CRB:
for k « 1/N < 1 the CRB scales with x as CRB ~
k2 [13], for 1/N < k < 1 we have CRB ~ /2 [13],
while for k > 1 the CRB approaches a constant value
(Fig. 5). For R = 0, this asymptotic value for the CRB
is equal to V3D / V/N when both D and o2 are estimated
from the same time-series [13], and it is equal to D/v/N
when o2 has been determined independently [14]. More

—1/2

surprisingly, when both D and o2 are estimated from a
time-series, higher R leads to a lower error [11]—if & is
kept the same (for R = 1/4, the CRB approaches D /v N
as K — o0). If 02 has been determined independently,
however, the CRB is lowest for minimal motion blur (R =
0) for all values of &.

C. Influence of motion blur

The surprising conclusion that engineering the experi-
ment (through the choice of I) to maximize the motion
blur coefficient, R, may decrease the error on estimated
diffusion coefficients hinges on the implicit, yet crucial,
assumption that changing R does not change x. How-
ever, as we have seen in Sec. II, increasing R increases
the localization error and consequently decreases k; espe-
cially if one uses the double pulse illumination sequence
to maximize R (Fig. 4). So, one should compare esti-
mator precision, not for fixed x, but for fixed physical
parameters, which are not affected by the choice of I:
the diffusion coefficient D, the PSF width s,, the time-
lapse At, and the time-series length N [22]. Inserting
Egs. (11) and (12) into Eq. (16) gives:

f (q [1 + LDND DAt P
F (s2 + 2RDAt) ’

(20)

K =

where f(z) = (1 + 81z/8)~! for centroid localization,
f(z) = (16/9 + 4x)~! for GME, and f(z) = 1 +
fol Int/(1+t/x)dt for MLEwG. [Since Egs. (11) and (12)
are accurate for vV2DAt/s, < 1, Eq. (20) is also accu-
rate for V2DAt/s, < 1.] Taking into account the mo-
tion blur’s influence on the localization error reveals that,
while maximizing R as suggested in [11] may in theory
increase precision of estimated diffusion coefficients, in
practice it decreases the precision due to its detrimental
effect on localization precision (Figs. 6 and 7).

For all R > 0, the CRB depends non-monotonously on
V2DAt/s, (Figs. 6 and 7). As vV2DAt/s, is increased,
the CRB first decreases as k increases. For intermediate
V2DAt/s,, the CRB stays constant at its minimal value
since further increase in k¥ does not influence the CRB
when x is much larger than one. For high v2DAt/s,,
the CRB increases again; this is due to x eventually de-
creasing since the localization error increases faster than
linearly with the motion blur [Egs. (11) and (12)]. If one
also considers that motion blur may induce failure of the
localization procedure [Figs. 4(d)—4(f)], which effectively
reduces IV, the increase in the CRB due to high motion
blur is more dramatic (Appendix B). This is in contrast
to the result of [13], where the omission of background
noise led to the prediction that x would asymptotically
approach maximum, and thus that the CRB would ap-
proach minimum, as v2DAt/s, is increased.

For moderate values of vV2DAt/s,, however, the CRB
depends little on R. In particular, recording with con-
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FIG. 6. (Color online) Cramér-Rao bound (CRB) on the
standard error of any unbiased estimator of the diffusion co-
efficient in the presence of motion blur when the amplitude
of localization errors, o, is unknown. Results for: no mo-
tion blur (R = 0), continuously open shutter (R = 1/6),
and maximal motion blur (R = 1/4). Lines mark theoret-
ical results [from Eq. (17)]; symbols mark numerical results
(Appendix A); error bars are smaller than symbol sizes. The
particle’s positions have been determined using the centroid
method (a)—(c) or MLEwG (d)—(f). The number of signal
photons per image is (a),(d) 200, (b),(e) 1000, and (c),(f)
5000. The motion blur coefficient slightly affects estimator
precision, though in general the effect is negligible. For low
V2DAt/s, and P, and thus low k, the higher localization er-
ror of the centroid method leads to a somewhat higher CRB
compared to MLEwG. In all plots results are shown for 2D
diffusion, the background-to-signal ratio for photon count is
q = 1, and the time-series length is N = 100. Note that D,
At, and s, do not need to be set to specific values to pro-
duce the plots as their ratio vV2DAt/s, fully determines the
CRB. The difference between theory and numerical results for
R = 1/4 is due to the high asymmetry of the recorded PSF
here.

tinuously open shutter (R = 1/6) is optimal in prac-
tice as long as V2DAt/s, is on the order of one or
smaller. (For a typical value of the diffusion coefficient
of D =~ 1pum?2s™!, this means that At should be smaller
than s2/(2D) ~ 10ms; for different values of D, this
bound changes as o 1/D, e.g., for D = 0.1 um?s~1:

(a) 0.5 T (d) 0.5 T
-= R=0 == R=0
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FIG. 7. (Color online) Cramér-Rao bound (CRB) on the
standard error of any unbiased estimator of the diffusion co-
efficient in the presence of motion blur when the amplitude
of localization errors, o, has been determined independently.
Results for: no motion blur (R = 0), continuously open shut-
ter (R = 1/6), and maximal motion blur (R = 1/4). Lines
mark theoretical results [from Eq. (19)]; symbols mark numer-
ical results (Appendix A); error bars are smaller than symbol
sizes. The particle’s positions have been determined using
the centroid method (a)—(c) or MLEwG (d)—(f). The number
of signal photons per image is (a),(d) 200, (b),(e) 1000, and
(c),(f) 5000. If o has been determined independently, increas-
ing the motion blur coefficient always increases the estimation
error, although only by a negligible amount, unless using the
double pulse illumination sequence to maximize motion blur
(R =1/4). In all plots the tracked particle undergoes 2D dif-
fusion, the background-to-signal ratio is ¢ = 1, and the length
of the time-series is N = 100. Note that D, At, and s, do
not need to be set to specific values to produce the plots as
their ratio V2DAt/s, fully determines the CRB. The differ-
ence between theory and numerical results for R = 1/4 is due
to the high asymmetry of the recorded PSF here.

At < 100ms, or for D = 10 um?s~!: At < 1ms.)

We have above assumed that P is not affected by engi-
neering camera shutter and sample illumination in order
to either increase or decrease motion blur (i.e. changing
R from the value R = 1/6). In general, even if strobo-
scopic techniques are employed, this typically decreases
the number of photons recorded during a frame, i.e., since



the shutter is kept closed during part of the time-lapse.
Thus the precision obtained in practice when recording
with R~ 0 or R =~ 1/4 can be expected to be lower than
shown in Figs. 6 and 7, tipping the scale further in favor
of simply recording with the shutter continuously open.

In summary: as long as vV2DAt/s, S 1, which is the
relevant parameter range for optimizing the experiment
(we shall see below), leaving the shutter open continu-
ously gives the highest precision of estimated diffusion
coefficients.

IV. OPTIMIZING EXPERIMENTAL DESIGN

Using the results derived in the preceding sections, we
show how one should adjust the rate at which the tracked
fluorescent particle emits photons, r, the time-lapse of
recordings, At, and the motion blur coefficient, R, in
order to maximize the information about the diffusion
coefficient contained in a recorded time-series. We con-
sider two different experimental scenarios, which together
cover the experimental situations usually encountered in
single-particle tracking. In Subsection A we consider the
situation where the time that a particle can be followed,
tiot, is limited, e.g., since it diffuses out of the field of view
of the microscope. In Subsection B we consider the situ-
ation where the photostability of the fluorescent particle
limits the total number of photons that can be collected
for a single trajectory, Piot.

A. Limited experimental recording time

The total time a particle can be recorded, tiox =
(N + 1)At, may be limited by factors beyond experi-
mental control. The particle may for example detach
from the substratum on which it diffuses (e.g. a cellular
structure [23]). Or the particle may diffuse out of the
microscope’s field-of-view. The latter is typical for parti-
cles diffusing in three dimensions. Alternatively, we may
suspect the diffusion coefficient to change over time, and
we may thus be constrained to determine it from trajec-
tories measured over a short time to test this hypothesis.
If the relevant time-scale is shorter than the time-scale
of bleaching, it is clear that one should record with the
shutter continuously open (k scales as ~ VP, but de-
pends little on R for R < 1/6). Furthermore, we should
maximize photon count by maximizing the rate of photon
emission from the fluorescent particle. The fluorophore’s
emission rate is limited in practice by the photochemistry
of the fluorescent particle, by the laser power that may
be used without photodamaging the sample, or due to
detector saturation in the camera.

In the following, we thus set R = 1/6 and set r as high
as possible. The performance of estimators of the dif-
fusion coefficient is then determined by the parameters
D, sg, tior, and At. The parameters D and t; are be-
yond our experimental control, while s, is determined by
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the emission wavelength of the fluorophore, the numer-
ical aperture of the microscope, and the camera resolu-
tion [8], and in general varies little for typical choices of
the three. This leaves us with choosing At; we investigate
below how this should be done to optimize precision.

For a particle that can be tracked for a time ¢y,
the number of recorded signal photons per image is
P = rAt and the length of the recorded time-series is
N = tiot/At — 1, assuming that one is able to deter-
mine the particle’s position in all recorded images. Fig-
ures 8(b) and 8(c) show that the information content in
a time-series is then maximized by choosing At as small
as possible, even though this leads to smaller x for in-
dividual frames [Fig. 8(a)]. The reason for this is that
as long as k > 1, changing it does not change the CRB
much (Fig. 5), while the CRB always decreases with N
as CRB ~ 1/+/N [13]. Specifically, in the relavant range,
where 1/N < k < 1, we have CRB ~ N~1/25~1/2
(Fig. 5), and since k ~ At [Eq. (20) and Fig. 8(a)] and
N  At™', the CRB asymptotically approaches mini-
mum as At is decreased towards zero. Note that the
results of Figs. 8(b) and 8(c) hinge entirely on the scal-
ing discussed above. They do thus hold, regardless of the
values of physical parameters.

In practice, since the number of signal photons
recorded per time-lapse, P, decreases with At, the prob-
ability for the localization procedure to fail, €, increases
as At is decreased [Fig. 8(d)]. (Better performing track-
ing methods, which e.g. use information on the parti-
cle’s position inferred from preceding and following im-
ages, may need fewer photons per image for correct local-
ization; nonetheless, all localization methods, no matter
their performance, eventually fail as P decreases.) Thus,
the number of recorded positions is not (N + 1) when At
is small, but rather (1 —€)(/N +1). This means that one
cannot hope to obtain the ideal results of Figs. 8(b) and
8(c) in practice.

If the density of fluorescent particles is not too high,
one is usually able to identify the full trajectory of a
particle, even if some positions are missing. One may
then fit the resulting time-series with an estimator that
accounts for missing positions (see Sec. V) [24-26]. In
this case, the time-lags between frames are not all equal
to At but are instead equal to integer multiples of At.
This means that Eqgs. (17) and (19) are no longer valid
here. The results of Figs. 8(b) and 8(c) do, however, pro-
vide lower bounds on the actual CRB; optimal estimators
from the intermittent trajectory are thus at most this pre-
cise. Conversely, since the signal (the diffusion length) is
higher for longer time-lags, the information contained in
time-series with missing positions is higher than the in-
formation contained in a time-series of the same length
(same number of positions) with all time-lags equal to
At. Thus, upper bounds on the CRB can be found from
Egs. (17) and (19) with N replaced by (1 —€)N; optimal
estimators from the intermittent trajectory are at least
this precise [“Contiguous” in Figs. 8(e) and 8(f)].

If one is unable to identify the tracked particle again
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FIG. 8. (Color online) Cramér-Rao bound (CRB) on the stan-
dard error of any unbiased estimator of the diffusion coeffi-
cient as function of time-lapse At for a time-series of limited
recording time tior = (N + 1)At. Lines mark theoretical re-
sults [from Eqgs. (17) and (19)]; symbols mark numerical re-
sults (Appendix A); error bars are smaller than symbol sizes.
(a) Signal-to-noise ratio, k, in a single frame as function of
At. (b),(c) CRB as function of A¢ when all N + 1 posi-
tions are found: (b) for unknown o, (c) for independently
determined o. (d) Probability e for localization to fail as
function of At. (e),(f) CRB as function of At when the par-
ticle is only localized in a fraction 1 — € of the N + 1 images
recorded, for the two different scenarios discussed in the main
text: (i) where a contiguous trajectory can be constructed
from the found positions (Contiguous), or (ii) where the par-
ticle cannot be reidentified after a position is missing and the
trajectory is split into smaller time-series (Split); (e) for un-
known o, (f) for known o. In all panels the total recording
time is tyot = 108, the rate of photon emission of the fluores-
cent particle is » = 10kHz, the width of the stationary PSF
is s = 153nm, the background-to-signal ratio in images is
g = 1, the shutter is held continuously open (R = 1/6), and
the particle undergoes 2D diffusion with diffusion coefficient

D =1pm?s %

after a position is missing, one is then left with multiple
shorter time-series. In this case, the CRB is given by
(M 7,,)7/2 [“Split” in Figs. 8(e) and 8(f)], where
T, is the Fisher information for the mth individual con-
tiguous time-series, given by Egs. (17) or (19) with N
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replaced by the length NV, of the individual time-series,
and M is the number of such time-series.

In both cases, the CRB initially decreases as At is
decreased, following the theoretical prediction. When P
becomes too small, the localization procedure starts to
fail, and the CRB rapidly increases when At is decreased
further since a smaller and smaller fraction of positions of
the particle are found. The sweet spot, where the CRB is
minimal—and precision thus is maximal—is found right
before localization fails for a substantial fraction of the
recorded images. Here the optimal choice of At is around
At = 10 ms, corresponding to P ~ Py, =~ 100.

The position of the optimum depends on the scal-
ing relations discussed above and on the onset of lo-
calization failure. The latter depends strongly on P,
but is insensible to other experimental parameters (for
V2DAt/s,). Thus, the optimal precision is always found
when P = Py (Appendix B).

This result differs from the recommendation of [13],
which did not consider explicitly the tradeoff between
At and N, and suggested choosing At in order to record
enough photons in each single image to ensure that x > 1,
and then maximizing the number of frames recorded, IV,
under this constraint.

B. Limited photostability

Experiments may be limited by the photostability of
the fluorescent particle, typical for proteins tagged with,
e.g., GFP or an organic dye and bound in a lipid mem-
brane [27]. In this case photon economy is paramount.
Let P,ot be the total number of photons emitted by
the fluorescent particle before bleaching. Then N =
Pioy/P — 1, with P the number of photons recorded per
image. In principle, an optimal strategy would be to use
a stroboscopic setup to record the particle’s position dur-
ing each frame using a short pulse of length 7, where 7 is
chosen such that the number of recorded photons P = rr
is equal to Pyin, and let the time-lapse between images
be very long in order to have x > 1.

In practice, less is needed, however. From Fig. 5
we know that x needs only be slightly higher than one
(or two if 02 is determined independently) for estimates
of the diffusion coefficient from a given time-series to
be maximally precise. We may thus simply choose At
large enough such that « is always larger than one, i.e.,
At > ¢%/(2D), but small enough to avoid the deleteri-
ous effects of high motion blur. Choosing At ~ s2/(2D)
accomplishes both in practice. It limits the negative
effect of motion blur (Figs. 6 and 7) and, since we in
practice always have o < s,, it assures that x > 1
(for At = s2/(2D), we have from Eq. (20) that x =
VP f(gl +R])/2F(1 + R)]; so for P > Pyin ~ 100,
we have x 2 3 when localizing using MLEwG or GME
and k 2 2 when using the centroid method). For typ-
ical values of physical parameters, D = 1pum?s~! and
Sq = 150nm, we should thus choose At ~ 10ms, i.e., a




video-rate of 100 Hz (similarly, for D = 0.1 yum?s~! one

should choose At =~ 100ms, while for D = 10 ym?s~!
one should choose At ~ 1ms, if possible).

When recording with continuously open shutter, 7 =
At and the performance of estimators of the diffusion
coefficient is thus determined by the parameters P, D,
Sa, At and 7. The parameters P;ot and D are beyond
our experimental control, while s, is determined by the
fluorophore, microscope and camera, and At is fixed by
our choice to set At = s2/(2D). This leaves us with
choosing r, which may be controlled experimentally by
adjusting the power of the illuminating laser.

In general, as above, maximizing the number of im-
ages recorded is more important than maximizing the
information in each image, so smaller r lead to higher
precision. Since changing r does not change 2DAt/s?, k
scales with r as k ~ /r [Fig. 9(a)], and since the CRB
scales as CRB ~ N~1/2571/2 for 1/N < k < 1, while
N ~ 7~ we thus have CRB ~ r'/% [Figs. 9(b) and
9(c)]. That is, the CRB asymptotically approaches zero
as 7 — 0. So, in theory, we should let r tend to zero in
order to optimize our experiment.

In practice, as r is decreased, P decreases too, which
eventually leads to failure of the localization procedure
[Fig. 9(d)]. As for the case of limited recording time,
the probability for localization to fail increases abruptly
for P < Puin =~ 100. If one is able to determine the
full trajectory of a particle in spite of the missing posi-
tions, Egs. (17) and (19) give lower bounds on the CRB;
estimators of the diffusion coefficient from the intermit-
tent trajectory are at most this precise. Conversely,
Eqgs. (17) and (19) with N replaced by (1 — ¢)N give
upper bounds on the CRB; optimal estimators from the
intermittent trajectory are at least this precise [“Contigu-
ous” in Figs. 9(e) and 9(f)]. If one is unable to identify
the tracked particle again after a position is missing, the
CRB is given by (XM, Z,,)"/2 [“Split” in Figs. 8(e)
and 8(f)], where Z,, is the Fisher information for the mth
individual contiguous time-series, given by Egs. (17) and
(19) with N replaced by the length N,, of the individual
time-series, and M is the number of such time-series.

In both cases, the photon emission rate, r, should thus
be adjusted to be as low as possible without the local-
ization procedure failing. This means that one should
choose 7 such that the number of recorded signal pho-
tons per image is P &~ P,;, in order to obtain optimal
precision of estimates of the diffusion coefficients. For the
parameter values of Fig. 9, r &~ 10 kHz is optimal, corre-
sponding to Py, ~ 100. As in the case of limited exper-
imental recording time, the onset of localization failure
determines the position of the optimum. Since this de-
pends strongly on P but is largely insensible to other
experimental parameters, optimal precision is obtained
when P ~ P,;, regardless of the values of the physical
parameters (Appendix B).
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FIG. 9. (Color online) Cramér-Rao bound (CRB) on the

standard error of any unbiased estimator of the diffusion co-
efficient as function of photon emission rate r for a time-
series whose length is limited by the total number of pho-
tons that can be recorded before the fluorophore bleaches,
Piot = (N 4+ 1)P = (N + 1)rAt. Lines mark theoretical re-
sults [from Egs. (17) and (19)]; symbols mark numerical re-
sults (Appendix A); error bars are smaller than symbol sizes.
(a) Signal-to-noise ratio, &, in a single frame as function of r.
(b),(c) CRB as function of  when the particle is localized in
all N + 1 recorded images: (b) for unknown o, (c) for known
o. (d) Probability e for localization to fail as function of 7.
(e),(f) CRB as function of r when the particle is only local-
ized for a fraction 1 — e of the N + 1 images recorded, for the
two different scenarios discussed in the main text: (i) where
a contiguous trajectory can be constructed from the found
positions (Contiguous), or (ii) where the particle cannot be
reidentified and the trajectory is split into smaller time-series
(Split): (e) for unknown o, (f) for known o. In all panels the
total number of recorded photons is Po; = 10°, the time-lapse
of recordings is At = 10 ms, the width of the stationary PSF
is s, = 153 nm, the background-to-signal ratio in images is
g = 1, the shutter is held continuously open (R = 1/6), and
the particle undergoes 2D diffusion with diffusion coefficient
D=1 um?s™'.



V. ESTIMATING THE DIFFUSION
COEFFICIENT IN PRACTICE

The results of the previous section tell us how to
choose experimental parameters in order to maximize
the information in recorded time-series. This guaran-
tees maximum precision of estimated diffusion coeffi-
cients when using an estimator which attains the CRB
(i.e. an optimal estimator). In practice, we need to
make a concrete choice of estimation method. As dis-
cussed in detail in [14], common methods based on mea-
sured mean-squared displacements (MSDs) squander in-
formation and can be expected to perform less than opti-
mally. Maximum-likelihood estimators (MLEs) are guar-
anteed to approach optimality in the long time-series
limit (N — oo). They are not guaranteed to be unbi-
ased, however, and for short time-series the bias may be
substantial (it scales as N~1/2) [11, 14]. The covariance-
based estimator proposed in [14] is unbiased by construc-
tion and is practically optimal for k > 1. The CVE is
furthermore regression-free, which makes its implemen-
tation orders of magnitude faster than MLE and MSD-
based methods and allows us to calculate its standard
error exactly.

The CVE of [14] may be adapted in a straightforward
manner to estimate the diffusion coefficient from a tra-
jectory with missing positions, we show here. We define a
new index m = 0,1, ..., M that enumerates the frames in
which the particle is successfully localized, with M ~ Ne,
and we let At,, denote the time-lag between frame m — 1
and m.

For diffusion in 2D, and if the value of o2 is not known
a priori so both D and ¢2 must be estimated from the
time-series, the CVE defined as

N A m 2 A m ‘ A m
p = Brml® | Atmis Avm (21)
4At,, 2At,,
where “~~ denotes the average of - - -, is an unbiased esti-

mator of D. When the CVE given by Eq. (21) is used to
estimate D , it leads to a standard error of its estimate
of D given by [26]:

R 12 420 e+e2 2y +e)?
):D 312, + 752-1-8 n ( —:5)2 (@)
N (Im) N2 (Im)

where ¢ = (02 — 2RDAt)/(DAt) = k=2 — 2R, and
lm = Aty,,/At. Here l,, = 1 for all m if the particle
is successfully localized in all recorded frames.

If 02 has been estimated independently beforehand or
is known a priori, D may be estimated from an intermit-
tent time-series using

[Ar, 2 — 402

D=-"“—"m =
4(At,, — 2RAL)

(23)

In this case the standard error of the CVE’s estimate of
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FIG. 10. (Color online) Standard error (SE) of the covariance-
based estimator (CVE) of the diffusion coefficient [14] com-
pared to the Cramér-Rao bound (CRB) for the cases where
the tracked particle is successfully localized in all frames
(e = 0), and where localization of the particle fails for a frac-
tion € > 0 of the frames resulting in either a contiguous tra-
jectory with missing positions (cont.) or in multiple shorter
trajectories (split). Lines mark theoretical results [Egs. (17)
and (19) for CRB, Egs. (22) and (24) for CVE]; symbols mark
numerical results (Appendix A); error bars are smaller than
symbol sizes. (a),(b) Experimental scenario of limited record-
ing time. (c),(d) Experimental scenario of limited fluorophore
photostability. (a),(c) For unknown localization error vari-
ance, o2; (b),(d) for independently determined 2. In all
panels the width of the stationary PSF is s, = 153 nm, the
background-to-signal ratio in images is ¢ = 1, the shutter is
held continuously open (R = 1/6), and the particle under-
goes 2D diffusion with diffusion coefficient D = 1 um?s™'.
In (a),(b) the total recording time is tcot = 10 s and the rate
of photon emission of the fluorescent particle is » = 10 kHz.
In (c),(d) the total number of recorded photons is Py = 10°
and the time-lapse of recordings is At = 10 ms.

D is given by [26]:

. 3 97 2
SE(D):D lm+2ﬁzf+352/2 ’ (24)
N (I, — 2R)

where we have assumed that the error on the estimate of
o? is negligible.

We show in Fig. 10 how the precision of the CVE com-
pares to the CRB in practice. Although the precision
of the CVE deteriorates quickly for k < 1, the error is
here dominated by the failure of localization, and for a

(near) optimal choice of experimental parameters, the
CVE reaches the CRB in practice.



VI. CONCLUSION

We have shown that one should choose quantity over
quality when it comes to tracking diffusing particles. In
general, experiments should be designed with focus on
maximizing the number of frames recorded—the time-
series length—even if this means a low signal-to-noise
ratio for individual frames. In particular, if the time a
particle can be recorded is limited, e.g., by the particle
diffusing out of the field-of-view, one should record the
particle with a photon emission rate and a video rate that
are as high as possible. If the experiment is limited by
the fluorescent particle’s photostability, one should min-
imize the photon emission rate and record with a video
rate that is slow enough to maximize the information
content in each recorded frame yet fast enough to avoid
the deleterious effects of motion blur—this is achieved
by choosing the video rate such that the mean diffusion
length per time lapse is approximately equal to the PSF
width of a stationary particle. In both cases, the fun-
damental limit on the precision is set by the minimal
number, Py, of signal photons needed in a single image
for reliable localization.

The exact values of optimal At and r depend on ex-
perimental and physical parameters of the system un-
der study. However, the results presented in this paper
may be used in one of two following ways in practice. (i)
The quick and dirty way: according to whether recording
time or photostability limits time-series length, fix either
r or At and adjust the other to experimentally determine
Pohin as the point where probability for the localization
to fail a becomes significant (e.g. € ~ 0.01). The parame-
ters giving this Py, are then approximately the optimal
choice. (ii) The thorough way: if one wants to squeeze
out every last drop of information from the experiment,
one may follow the procedure described in the present
paper to numerically find optimal experimental parame-
ters for a given setup and localization method. This may
even be done iteratively as D is estimated from experi-
ments. In practice, diffusion coefficients can be estimated
optimally from recorded time-series using the covariance-
based estimator (CVE) introduced in [14].

Similar procedures to the one presented here may be
used to study how to optimize experimental parame-
ters for tracking particles undergoing more complicated
forms of motion, such as persistent random motion, ac-
tive transport, or anomalous diffusion. Note that opti-
mization in the definitive sense requires that an optimal
estimator exists for the motion studied. While this often
is not the case, at least not yet, one may still optimize
experiments for a given (suboptimal) estimator of the
motility parameters of the motion under study.
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Appendix A: Numerical simulations

The analytical results derived in the present paper rely
on two simplifying assumptions. First, they neglect that
in real-world tracking experiments, one must define a re-
gion of interest (ROI) containing the pixels which are
used in fitting the tracked particle’s position. The choice
of ROI is particularly important for the centroid method
where inclusion of background pixels increases the local-
ization error—in the extreme case of an infinite ROI, the
localization error of the centroid method is infinite. Sec-
ond, the derivation of the localization error in presence of
motion blur assumes an effectively symmetrical recorded
PSF. We expect the first assumption to break down for
low values of P and the second to break down for high
motion blur.

To confirm the analytical approach for cases where
we expect it to hold, and to investigate cases where it
does not, we performed Monte Carlo simulations of a
point-like diffusing fluorescent particle emitting photons
recorded through a microscope by a CCD or CMOS cam-
era. From such images we used an automated procedure
for selecting the ROI and fitting the PSF recorded inside
this ROI in order to determine the precision of localiza-
tion methods in practice.

Images were simulated using a continuous variant of
the exact Gillespie algorithm [28], which uses that since
photon emission is a Poisson process, the times elapsed
between a particle emits two consecutive photons are ex-
ponentially distributed. The particle was started out
at (Tirues Ytrue) = (0,0). An exponentially distributed
waiting time until emission of the first photon was then
drawn, 7y ~ Exp(r). [Here 71 ~ Exp(r) is short for
71 is exponentially distributed with rate r.] The dis-
placement undergone by the particle in each perpen-
dicular direction during the time-interval 7; was then
drawn as dZirue, QYtrue ~ N(0,2D7y), i.e., both nor-
mally distributed with mean zero and variance 2DT.
The position of the particle at time ¢ = 71 was then
(xtrueaytrue) = (dxtrueadytrue); from this pOSitiOl’l the
particle emitted a photon whose apparent position, as
recorded by the camera, was equal to the particle’s true
position plus a photon noise term due to diffraction
in the microscope, &;,&, ~ N(0,s2). A new waiting
time 75 ~ Exp(r) was drawn; the particle’s position
was updated by adding dxiyue, d¥Ytrue ~ N(0,2D73) to
(Ztrues Ytrue); the particle emitted a photon from its new
position which was recorded with a photon noise term,
£:,& ~ N(0,s2). The procedure was repeated until
Ziﬁl 7; > At, where the last photon (corresponding to
P + 1) was not recorded. The recorded photon positions
were then compared to a 64x64 pixel grid of individual



dimensions a x a = 100 nm x 100 nm (the grid was large
enough that the particles did not diffuse out of the “cam-
era” during the time-lapse); each position falling inside a
given pixel added one to its count. Finally, Poisson dis-
tributed background noise was added to each pixel with
mean b? = qPa?/(27s?).

The resulting image, I, was then treated to estimate
the particle’s average position. A thresholding proce-
dure was performed which removed all pixels under a
certain threshold equal to nhresb?, vielding a binary ma-
trix A, with ones in pixels where the photon count was
above the threshold and zeros where it was below. To re-
move single background pixels that were over the thresh-
old due to random fluctuations, binary erosion of A by
a 3 x 3 matrix was performed. The ROI was then ex-
panded by a number ngjate Of successive binary dilations
of A by a 3 x 3 matrix. The thresholds ngpres and ngjate
were chosen for the highest localization precision, and
depended on P; for GME and MLEwGQG, ngjate needed
only be large enough to include a substantial part of the
PSF, while for the centroid method, ngjate needed to be
chosen as function of n¢pes and P to maximize preci-
sion. The particle was then localized [8, 9] using only
pixels of I that corresponded to non-zero entries of A.
For the centroid method, fitting involved first subtract-
ing the average background amplitude from all pixels [9];
the average background was estimated from pixels in a
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perimeter of three pixels around the ROI.

The above procedure was repeated 1 000 times for each
set of parameter values in order to estimate the localiza-
tion error o, of the various methods and the probability
ep for localization to fail in practice.

For the case where particles are assumed to be suc-
cessfully localized in all images, the values o, were used
in Egs. (17) and (19) to obtain numerical numerical esti-
mates of the CRB. For cases where localization fails for
some images, the numerical estimates of the CRB were
found using both o}, and €, as described in Section IV.

Appendix B: Supplemental figures

This appendix contains four supplemental figures that
support the conclusions and discussion in the main text.
Figure 11 shows that localization error and probability of
failure only depend weakly on the choice of the threshold
that defines when localization is considered to have failed.
Figure 12 shows how localization error and CRB depend
on background noise (i.e. the value of the background-to-
signal ratio ¢). Figure 13 shows how the CRB depends on
V2DAt/s, when the effect of localization failure is taken
into account. Figure 14 investigates how the values of
physical parameters, i.e., D, r, tn, At, and Py, influence
the optimal choice of experimental parameters.
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FIG. 11. (Color online) Performance of localization methods as function of normalized motion blur, V2RDAt/s,, where
localization is considered to have failed if the error between the estimated and true average positions is higher than (a)—(f)
2s = 2v/s2 + 2RDAt or (g)—(1) 4s = 4v/s2 + 2RDAt. (a)—(c),(g)—(1) Amplitude of localization errors, o, and (d)—(f),(j)—(1)
probability of localization to fail. Lines mark theoretical errors [Egs. (11) and (12)] and symbols mark mean errors (error bars
the values are smaller than symbol sizes) averaged over 1000 MC simulations. The number signal photons per image are (a),(d)
200, (b),(e) 1000, and (c),(f) 5000. The width of the stationary PSF is s, = 153 nm, the background-to-signal ratio is ¢ = 1,
and the results are for 2D diffusion in the image plane.
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FIG. 12. (Color online) Influence on background noise on localization error and estimator precision for continuously open
shutter (R =1/6). (a),(d),(g) Localization error as function of the background-to-signal ratio ¢. (b),(c),(e),(f),(h),(i) Cramér-
Rao bound (CRB) on the standard error of any unbiased estimator of diffusion coefficients as a function of ¢ for: (b),(e),(h)
unknown localization error variance o and (c),(f),(i) known o?; Results are shown for (a)—(c) centroid, (d)—(f) GME, and
(g)—(1) MLEwG localization. Increasing g, i.e., increasing the background noise, adversely affects the precision of the centroid
method , though only for low vV2DAt/s,; for low background the precision of the centroid method approaches that of MLEwG.
The precision of GME is lower than MLEwG for low ¢, though rapidly approaches it as ¢ is increased. Changing ¢ does however
not change the qualitative results presented in Figs. 6-9. In all plots, the number of photons recorded per image is P = 1 000,
the time-series length is NV = 100, the stationary PSF width is s, = 153 nm, and the particle diffuses in 2D.
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FIG. 13. (Color online) Cramér-Rao bound (CRB) on the standard error of any unbiased estimator of the diffusion coefficient
in the presence of motion blur where a fraction e of the particle’s positions are missing in the recorded time-series: (a)—(f)
for unknown o, (g)—(1) for known o. The centroid method is used for localization in (a)—(c) and (g)—(i), while MLEwG is
used in (d)—(f) and (j)—(1). The number of signal photons recorded per image is in (a),(d),(g),(j) 200, (b),(e),(h),(k) 1000, and
(¢),(£),(i),(1) 5000. In all panels results are shown for 2D diffusion, the background-to-signal ratio is ¢ = 1, the number of

recorded images is N 4+ 1 = 101, and the time-series length is (1 — €)N [see Figs. 4(d)-4(f) for corresponding values of ¢].
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FIG. 14. (Color online) Influence of the value of physical parameters on the normalized Cramér-Rao bound on the standard
error of any unbiased estimator of the diffusion coefficient (CRB/D): (a)—(f) for limited experimental recording time; (g)—(1) for
limited photostability of the fluorescent marker. (a),(d),(g),(j) Influence of the value of the diffusion coefficient D (values for D
given in legends are in units of pum?s™'). (b),(e) Influence of the value of the photon emission rate r (values in legends are given
in kHz). (c),(f) Influence of the limit ¢ on the length of the recorded time-series (values in legends are given in s). (h),(k)
Influence of the time-lapse At (values in legends are given in ms). (i),(1) Influence of the total number of photons recorded, P.

In all panels, results are for 2D diffusion, background-to-signal ratio ¢ = 1, and stationary PSF width s, = 153 nm.



