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We describe how a single-particle tracking experiment should be designed in order for its recorded
trajectories to contain the most information about a tracked particle’s diffusion coefficient. The pre-
cision of estimators for the diffusion coefficient is affected by motion blur, limited photon statistics,
and the length of recorded time-series. We demonstrate that precision is negligibly affected by mo-
tion blur in typical experiments, while optimizing photon counts and the number of recorded frames
is the key to precision. Building on these results, we describe for a wide range of experimental
scenarios how to choose experimental parameters in order to optimize the precision. Generally, one
should choose quantity over quality: experiments should be designed to maximize the number of
frames recorded in a time-series, even if this means lower information content in individual frames.

I. INTRODUCTION

Single-particle tracking using time-lapse photogra-
phy [1, 2] enables investigation of diffusion of single
molecules, e.g., proteins on cellular structures such as
DNA [3] and microtubules [4], on cell membranes [1, 5],
and inside cells [6, 7]. Diffusion is ubiquitous at the
microscopic level and precise determination of diffusion
coefficients is paramount for understanding many chem-
ical and biological processes. Typical single-particle-
tracking experiments consist in recording the photons
emitted by a fluorescent particle (a fluorophore) using
time-lapse photography, and determining the particle’s
positions from recorded images using a super-resolution
technique [1, 2, 8, 9]. The number of photons emitted by
a fluorophore is limited, and traditionally, tracked par-
ticles have been recorded by leaving the camera shutter
open continuously to maximize the number of photons
recorded by the camera. The time the camera’s shutter
stays open to take a single image, its exposure time, is
then equal to the time elapsed between consecutive im-
ages, the time-lapse of recordings. The motion of the
tracked particle during the time-lapse results in motion
blur in the pictures (also referred to as dynamic error),
while diffraction and limited photon statistics result in
localization error (also referred to as static error) [9–11].
Additionally, the length of a time-series, i.e., the num-
ber of recorded positions, is usually limited, either due
to bleaching of the fluorophore or to the tracked parti-
cle diffusing out of the field-of-view. All of the above
adversely affect the precision of estimates of diffusion co-
efficients and make it important to get the most out of
experimental data.

A typical experiment for tracking single diffusing par-
ticles can be divided into multiple steps (Fig. 1): (i) de-
signing the experiment, e.g., choosing reagents, setting
the video rate of the camera and the intensity of the il-
lumination laser; (ii) carrying out the experiment, i.e.,
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recording images of the fluorescent particles; (iii) treat-
ing images, localizing particles, and creating time-series
of positions; (iv) estimating diffusion coefficients from
the time-series. Optimal estimates of the particles’ diffu-
sion coefficients is obtained by optimizing each individual
step. Recently, the questions of how to best localize and
track single particles [2, 8, 9] and of how to optimally
estimate diffusion coefficients from the resulting time-
lapse-recorded trajectories has been addressed [11–14].

With (near) optimal localization methods and estima-
tors of diffusion coefficients at hand, we can now address
the first step in the workflow: how should experiments be
designed in order for recorded trajectories to contain the
most information about diffusion coefficients? One may
turn several dials to influence the amount of information
available for estimation of diffusion coefficients: One may
adjust both the video rate of the camera and the photon
emission rate of the tracked fluorophores. Furthermore,
the motion blur in recorded images can be controlled by
leaving the shutter open for only part of the time-lapse,
following a given shutter sequence. The advent of strobo-
scopic tracking techniques [6], which synchronize illumi-
nation and recording of the sample, makes it possible to
control the motion blur without sacrificing photon econ-
omy.

Recent studies have partly addressed the question, but
a systematic investigation is lacking. It has namely
been suggested that one may increase the precision of
estimated diffusion coefficients by maximizing the mo-
tion blur using a double-pulse illumination sequence, i.e.,
short pulse-like illumination and recording of the sample
at the very start and end of each time-lapse [11]. An-
other study has investigated the effect of adjusting sev-
eral experimental parameters in more detail [13], though
without explicitly considering the trade-off between the
number of frames recorded (the time-series length) and
the signal in each frame. It suggested that for time-
independent illumination, the shutter should be left open
during the whole time-lapse to maximize photon econ-
omy, and the number of photons recorded in an image
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Motion blur: R

Video rate: 1/∆t

Fluorophore
emission rate: r

Design experiment → acquire images → localize & create trajectories [1, 2, 8, 9] →

D = D̂ ±∆D

estimate diffusion coefficient [14]

FIG. 1. Workflow for estimating diffusion coefficients from single-particle-tracking experiments. We are here concerned with
optimizing the first step: how to choose experimental parameters (motion blur, video rate, and photon emission rate of the
tracked fluorophore) for optimal precision of estimates of the diffusion coefficient of a tracked particle. The motion blur is
characterized by a motion blur coefficient, R ∈ (0, 1/4) [Eq. (8)] [11]. The motion blur coefficient, R, and video rate, 1/∆t, may
normally be controlled directly, while photon emission rate of the fluorophore, r, may be controlled indirectly, e.g., by varying
the laser intensity or adding chemical reagents to the solution. Optimization of other steps in the workflow is addressed in the
references given in the legends.

should be just enough to practically maximize the infor-
mation content in individual recorded frames. These re-
sults relied on assumptions that neglected subtle but im-
portant details of localization of diffusing particles. The
former study [11] neglected that motion blur increases the
width of the measured photon distribution at the camera
[the point-spread function (PSF)] increasing the localiza-
tion error. The latter [13] took this effect into account,
but neglected background noise, which is inevitable in
experiment and leads to a non-linear dependence of the
localization error on motion blur; this effect is especially
important when motion blur or background noise is high.

We here perform a systematic analytical and numeri-
cal study of how to choose experimental parameters for
tracking of diffusing particles in order to maximize the
information in recorded time-series. We consider two dif-
ferent scenarios which cover the experimental situations
usually encountered in single-particle tracking: (i) where
the time that a particle can be followed, the recording
time, ttot, is the limiting factor; (ii) where the photosta-
bility of the fluorophore, and thus the total number of
signal photons, Ptot, that can be recorded is the limiting
factor. We show for both cases how to optimize experi-
mental parameters.

In order to answer the question of how to optimally
choose experimental parameters for tracking of diffusing
particles, we first need to study how motion blur and
limited photon statistics influence the precision of opti-
mal estimators of the diffusion coefficient. This is done
in Secs. II and III, while Sec. IV applies these results to
optimize experimental design.

Specifically, we investigate in Sec. II how limited pho-
ton statistics and motion blur affect the precision of com-
monly used localization methods. We review analytical
results for the localization error that results from local-
izing a stationary particle. We then derive an expression
for the average measured width of the PSF of a diffusing
particle. Using this, we give an approximate expression
for the localization error for a diffusing particle, valid
when the mean diffusion length of the tracked particle is
smaller than the width of the PSF of a stationary fluo-

rophore.

In Sec. III, we next review the statistics of time-lapse
recorded data of a diffusing particle and use the results
of the previous section to investigate how motion blur
affects the precision of estimates of diffusion coefficients.
We show that recording using the double pulse illumi-
nation sequence suggested in [11] tends to increase the
error on diffusion coefficient estimates. However, when
recording with time-independent illumination and leav-
ing the shutter open continuously, the effect of motion
blur is negligible for relevant values of experimental pa-
rameters, and focus should be on photon economy.

Building on these results, we finally show in Sec. IV
how experiments should be optimized for maximum pre-
cision in the different experimental scenarios. In general,
experiments should be designed to maximize the number
of frames recorded, not the number of photons recorded
per frame—only enough photons should be recorded such
that localization does not fail. This maximizes the infor-
mation content in the time-series and, in turn, the pre-
cision of estimated diffusion coefficients. The reason for
this is that the precision of estimated diffusion coefficient
increases as the square root of the number of recorded
positions, while the decrease in the signal in individual
frames does not influence the precision as much, except
for very low signal where the two effects balance and the
precision approaches its maximum.

A short appendix details how the precision of the var-
ious localization methods was characterized on Monte
Carlo generated data.

II. LOCALIZING A DIFFUSING PARTICLE

In this section results for localization in single-particle
tracking are reviewed and the influence of motion blur
and limited photon statistics is investigated. We con-
sider in the following only diffusion in the image plane.
However, for typical particle tracking experiments, where
the focal plane is kept the same throughout the experi-
ment (i.e., focus is not changed to follow an individual
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particle), we show that diffusion along the optical axis ef-
fectively contributes to the localization error simply by a
constant additive term and a slight change of the motion
blur coefficient [9]. This means that conclusions drawn
here for 2D diffusion in the image plane also hold for 3D
diffusion.

In Subsec. A we review localization of stationary par-
ticles and give expressions for the localization error as-
sociated with different methods. In Subsec. B we then
derive an expression for the average width of the PSF
of a diffusing particle for a general time-dependent shut-
ter/illumination sequence. Finally, in Subsec. C, follow-
ing the approach of [9], we use this result to extend the
expressions for localization error to tracking of a diffus-
ing particle. We compare the analytical results to Monte
Carlo simulations and discuss the limits of the analytical
approach.

A. Localization error for a fixed particle

The diffraction-limited PSF emitted by a freely rotat-
ing fluorescent molecule or a fluorescent bead recorded by
a CMOS, CCD, or EMCCD camera is well approximated
by a two-dimensional (2D) Gaussian function plus a con-
stant background term [8]. For an isolated fluorophore of
this kind with fixed position, fitting a 2D Gaussian plus a
constant to the measured PSF allows us to estimate the
position of the molecule more precisely than the width
of the PSF. This is done optimally using the maximum
likelihood estimator with Gaussian PSF (MLEwG) [8].

When the fluorescent particle’s position is estimated
using MLEwG it leads to a white-noise localization error
with variance

σ2
0 =

Fs2
a

P

(
1 +

∫ t

0

ln t

1 + Pa2t/(2πb2s2
a)

dt

)−1

, (1)

for camera pixel width a, background photon count b2,
total number of signal photons P , and effective PSF
width s2

a = s2
0 + a2/12, where s0 is the width of the

PSF of a stationary fluorophore (typically s0 ≈ 100–
150 nm [8, 9]). Here F is a factor describing excess noise
in the camera: for a CCD or CMOS camera there is no
excess noise and F = 1, while for an EMCCD camera
electron multiplication leads to excess noise and F = 2.

The particle’s position is often estimated by a least
squares fit to the PSF—the Gaussian Mask Estimator
(GME) [8]—or by determining the centroid of an area
containing the PSF [9]. This results in a localization
error with variance of the form [8, 9]

σ2
0 =

Fs2
a

P

(
α+ β

2πb2s2
a

Pa2

)
, (2)

where for GME α = 16/9 and β = 4 [8], and for the
centroid method α = 1 and β = 81/8 when all pixels
contributing to the PSF, and only these, have been in-
cluded [9].

In the following we assume a linear relation between
the amplitude of the background photon noise and the
amplitude of the peak signal, i.e, b2 = qPa2/(2πs2

a). Here
q is the proportionality factor, which we shall refer to as
the background-to-signal ratio. This accounts for both
the background noise from autofluorescence and other
fluorophores, as well as the contribution from the power-
law tails of the true PSF [8]. The second can normally
be absorbed in the background, but is seen when the
background noise is low. The background-to-signal ratio
q is typically of the order of one [8]. Using this definition
of q, Eqs. (1) and (2) can be simplified: for MLEwG,

σ2
0 =

Fs2
a

P

(
1 +

∫ t

0

ln t

1 + t/q
dt

)−1

, (3)

and for GME or the centroid method,

σ2
0 =

Fs2
a

P
(α+ βq) . (4)

In practice, when localizing a particle, one must first
define a general region of interest (ROI) containing only
the particle one wants to track. The choice of the ROI
naturally affects the localization precision. The centroid
method is particularly sensitive to this as including pixels
which only contain background noise increases its error—
the error continues to increase as more background pixels
are included, diverging with the size of the ROI. GME
and MLEwG, which fit the background noise as a con-
stant offset, are less sensitive to background noise and
thus to the size of the ROI. However, errors in correctly
defining the ROI will adversely affect the performance of
any localization method. Common procedures for defin-
ing the ROI involve a thresholding procedure [15], which
only retains pixels with a photon count over a certain
threshold and selects the largest cluster of such pixels
as the ROI (Appendix). Correctly determining the ROI
notably becomes difficult when signal photons are few.

We investigate in Fig. 2 how limited photon statistics
affects the precision of the various localization methods
in practice. The localization error is approximately pro-
portional to 1/

√
P as predicted theoretically; for low P ,

it is somewhat higher in practice than theoretical results,
which can be expected due to difficulties in defining the
ROI and since Eqs. (3) and (4) are only strictly valid in
the limit of large P .

We also see that the localization procedures sometimes
simply fail to localize the particle (defined as when the
error between estimated and true average positions is
larger than three times the PSF width, 3sa) [16]. This
fraction, ε, is zero for large P and increases abruptly
for P < Pmin ≈ 100. Here Pmin then defines the mini-
mal number of photons needed for reliable localization,
which in general depends on the localization procedure
used. More advanced methods, notably methods using
the preceding and following positions of a tracked par-
ticle to localize it [2], may decrease Pmin. Conversely,
excess noise, which is not present in the simulations of
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FIG. 2. Performance of the various methods when localizing
a static particle as function of the number of signal photons
recorded, P . (a) Amplitude of localization errors of the var-
ious methods. (b) Fraction of cases where the localization
procedure fails to localize the particle (defined as when the
error between estimated and true average positions is larger
than 3sa) [16].

Fig. 2, will tend to make ROI determination harder since
it increases the variance of the background noise by a fac-
tor two. The overall shape of ε as function of P does not
change, however: it is practically zero for large P and ap-
proaches one for small P . (See [2] for a thorough review
of single-particle-tracking algorithms and comparison of
their performance.)

B. Motion blur increases the width of the
point-spread function

Now consider a fluorescent particle diffusing in the im-
age plane. A fluorescent molecule emits photons with a
fixed rate in a Poisson process. The photons are collected
by the camera during a time-lapse ∆t to create an image.

The diffusion length during a time-lapse,
√

2D∆t, is
in general much smaller than the microscope’s field-of-
view. So we can assume that the dispersion of photons in
the microscope is independent of the particle’s position
during the time-lapse ∆t. This means that we can for
the moment neglect diffraction and finite photon statis-
tics. The effect of these are added later by convoluting
the PSF of a stationary particle with the distribution of
positions of the diffusing particle during the time-lapse.
Furthermore, since the motion in the x- and y-directions
of a particle diffusing in a homogeneous medium are in-
dependent, the motion along the two axes are identical
and can be treated separately as one-dimensional (1D)
problems. The result derived here is thus valid for both
one- and two-dimensional diffusion, and in the following
derivation we consider 1D diffusion only. Finally, since
the photon emission process is independent of the par-
ticle’s position, we do not need to take fluctuations in
photon emission into account to derive the average width
of the measured PSF.

We can thus split the time-lapse ∆t into M points in
time, τ0, τ1, . . . , τM . At each time-point τi the generic il-
lumination function Ii determines whether the particle’s

position is recorded. (It can be considered as an indica-
tor function, which is equal to 1 for time-points when the
particle’s position is recorded and is equal to zero other-
wise.) We then get a razor-sharp image of the tracked
particle’s trajectory. The width δx of the distribution of
recorded positions around the center of mass of such a
trajectory is given by

(δx)2 =
1

P

M∑
i=1

Ii(xi − x)2 , (5)

where P =
∑
i Ii is the total number of photons recorded

and x is the average position. Since P is large (typically
of the order of 100 or more) the sum is well approximated
by an integral, and the expected value of (δx)2 is

〈
(δx)2

〉
=

∫ ∆t

0

I(t)
〈
[x(t)− x]2

〉
dt , (6)

where x =
∫∆t

0
I(t)x(t)dt, and I is the continuous illu-

mination function, which satisfies
∫∆t

0
I(t)dt = 1. We

insert the expected value 〈x(t)x(t′)〉 = 2Dmin(t, t′) into
Eq. (6) and perform partial integration to get

〈
(δx)2

〉
= 2D

(∫ ∆t

0

I(t)dt−
∫ ∆t

0

I(t)

∫ ∆t

0

I(t′) min(t, t′)dt′dt

)

= 2D

(
−
∫ ∆t

0

I(t)

∫ t

0

I(t′)t′dt′dt+

∫ ∆t

0

I(t)S(t)tdt

)

= 2D

∫ ∆t

0

S(t)[1− S(t)]dt

= 2RD∆t , (7)

where R is the motion blur coefficient, defined by

R =
1

∆t

∫ ∆t

0

S(t)[1− S(t)]dt , (8)

and S(t) =
∫ t

0
I(t′)dt′ [11]. Important special cases are:

(i) Constant (time-independent) illumination, used in ex-
periments without stroboscopic setup to maximize pho-
ton count—here R = 1/6; (ii) an instantaneous illumi-
nation pulse, which minimizes motion blur—here R = 0;
(iii) the double pulse illumination suggested in [11], which
maximizes the motion blur—here R = 1/4.

Since the photon emission process is independent of
the particle’s position, the average width of the Gaussian
part of the measured PSF (the measured distribution mi-
nus the constant background) is

s2 = s2
a + 2RD∆t . (9)

For a constant illumination function (i.e. time-
independent illumination and continuously open shutter)
Eq. (9) simplifies to the result found in [9]. This differs
from the result found in [12, 17] since the initial positions
of the particle at the start of each time-frame in those
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studies were implicitly assumed to be known, which is
not the case in actual particle-tracking experiments.

When tracking particles undergoing 3D diffusion, e.g.,
using confocal microscopy, particles diffuse in and out of
focus, increasing the width of the measured PSF. Follow-
ing the approach of Deschout et al. [9, Supporting Ma-
terial], we may use Eq. (8) to extend their result for the
average width of the measured PSF emitted by a fluores-
cent particle undergoing both in-plane and out-of-plane
diffusion,

s2 = s2
a + 2RD∆t+ s2

0(z2
lim + 2RD∆t)/z2

0

= [1 + z2
lim/(3z

2
0)]s2

0 + 2R(1 + s2
0/z

2
0)D∆t . (10)

Here z0 = 4πns2
0/λ ≈ 4s0, with numerical aperture

of the objective n and photon wavelength λ, and zlim

is the distance from the focal plane where the particle
becomes undetectable. Diffusion along the optical axis
simply changes the effective stationary PSF width and
slightly changes the motion blur coefficient, i.e., by ap-
proximately 1/16 ≈ 6%. Thus, it does not qualitatively
alter the results derived below. We thus consider only
diffusion in the image plane in the following, but note
that conclusions found here also apply to 3D diffusion.

Examples of measured PSFs of a particle diffusing in
the image place obtained from Monte Carlo simulations
are shown in Fig. 3.

C. Localization error for a diffusing particle

Finally, we use the result derived above to extend ex-
pressions for the localization error presented in Sec. II A
to localization of diffusing particles.

Following the same mean-field approximation used
in [9, 13], we assume that the effect of motion blur on
localization error is found simply replacing by s2

a by s2

[Eq. (9)] in Eqs. (1)–(4) [Fig. 4(a)–(c)], e.g., for GME or
centroid localization,

σ2 =
F (s2

a + 2RD∆t)

P

[
α+ βq

(
1 +

2RD∆t

s2
a

)]
. (11)

Equation (11) shows that background noise leads to a
faster-than-linear increase in the localization error as
function of the motion blur.

The above result assumes a symmetrical PSF. How-
ever, since diffusion is not a stationary process, the con-
tribution to the measured photon distribution from the
diffusive movement is only symmetrical on average, not
in a single image. This means that we can expect the
analytical result to break down when motion blur be-
comes large enough to make the individual PSF signifi-
cantly asymmetrical. In practice, for continuously open
shutter, the theoretical result agrees well with numeri-
cal simulations when the diffusion length during a time-
lapse is smaller than s2

a, i.e., when
√

2RD∆t/sa < 1/
√

6
[Fig. 4(a)–(c)]. For experiments using the double-pulse
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FIG. 3. Monte Carlo simulated images of measured PSFs
emitted by stationary and diffusing fluorescent point-like par-
ticles at low background-noise conditions. (a) Stationary par-
ticle. (b) Particle diffusing in the image place with mean
diffusion length equal to the width of the PSF of a sta-
tionary particle,

√
2D∆t = sa. (c) Diffusing particle with√

2D∆t =
√

10sa. (d) Diffusing particle with
√

2D∆t = 10sa.
In all plots, the total number of photons emitted by the par-
ticle is P = 10 000, the background-to-signal ratio is q = 0.1,
the pixel size is a = 100 nm, and the width of the stationary
PSF is sa = 150 nm. Note that the amplitude of the back-
ground noise is the same in the four panels, the difference in
scale makes it appear higher in panels (c) and (d).

illumination sequence to maximize motion blur, the mea-
sured PSF is more asymmetrical, and the localization
error is in practice higher than theoretically predicted
even for modest motion blur. For low motion blur, the
MLEwg and GME estimators are slightly more precise
than the centroid estimator. For high motion blur, errors
in ROI determination dominates the localization error,
and all three estimators perform equivalently. Further-
more, high motion blur, especially when photon count is
low, significantly increases the fraction of particles that
are not correctly localized [Fig. 4(d)–(f)].

III. PRECISION OF ESTIMATORS OF THE
DIFFUSION COEFFICIENT FROM A SINGLE

TRAJECTORY

In this section we build on the results of the previ-
ous section to investigate how the precision of estima-
tors of diffusion coefficients depend on experimental pa-
rameters. In Subsec. A we review the statistics of time-
lapse recorded time-series of diffusing particles and de-
fine the parameters that determine the precision of esti-
mators of diffusion coefficients. In Subsec. B we intro-
duce the Cramér-Rao lower bound (CRB) which limits
the precision of any unbiased estimator of the diffusion
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FIG. 4. (a)–(c) Amplitude of localization errors, σ, and
(d)–(f) fraction of incorrectly localized particles as a func-

tion of normalized motion blur
√

2RD∆t/sa. (The local-
ization is considered to have failed if the error between the
estimated and true average positions is higher than 3s =
3
√
s2a + 2RD∆t.) [16] Lines mark theoretical errors [Eqs. (1)–

(4)] and symbols mark mean errors (± s.e.m.) averaged over
1 000 MC simulations. The number signal photons per image
are (a),(d) 200, (b),(e) 1 000, and (c),(f) 5 000. The width of
the stationary PSF is sa = 150 nm, the background-to-signal
ratio is q = 1, and the results are for 2D diffusion in the image
plane.

coefficient—it thus defines the precision of optimal esti-
mators. In Subsec. C we investigate how the CRB de-
pends on experimental parameters.

A. Statistics of recorded trajectories

In a single-particle-tracking experiment a time-series
of N + 1 positions (r0, r1, . . . , rN ) of a particle diffusing
in d dimensions is determined with localization errors of
amplitude σ from images recorded with time-lapse ∆t.
We define the set of N single-time-lapse displacements
(∆r1, . . . ,∆rN ), given by ∆rn = rn − rn−1. These dis-
placements are Gaussian distributed with mean zero and

covariance [11]〈
|∆rn|2

〉
= 2dD∆t+ 2d(σ2 − 2RD∆t) (12a)

〈∆rn ·∆rn+1〉 = −d(σ2 − 2RD∆t) (12b)

〈∆rm ·∆rn〉 = 0 for |n−m| > 1 . (12c)

We define the signal-to-noise ratio (SNR) as the mean

diffusion length
√

2dD∆t of a particle during one time-
lapse divided by the mean contribution

√
2dσ of the lo-

calization error to the measured displacement,

SNR =

√
D∆t

σ
. (13)

This SNR, along with the motion blur coefficient R, the
time-series length N , and the dimension d, determines
the precision of any estimator of D. Since the SNR it-
self depends on F , q, P , the ratio

√
2D∆t/sa, and R,

the precision of estimates of D is completely determined
by seven parameters: (i) the ratio of the diffusion length

to the PSF width,
√

2D∆t/sa, (ii) the excess noise fac-
tor, F , (iii) the number of signal photons recorded per
image, P , (iv) the background-to-signal ratio in images,
q, (v) the motion blur coefficient, R, (vi) the number
N + 1 of frames in the recorded time-series or, equiva-
lently, the time-series length, N , and (vii) the dimension
of the recorded time-series, d.

For diffusion in an isotropic medium, the influence of
d is trivial, the variance of estimates of diffusion coeffi-
cients simply scales as ∝ 1/d; we thus consider here only
d = 2, but note that conclusions do not depend on d.
Excess and background noise, quantified here by F and
q, influence the precision of particle localization and thus
the precision of estimated diffusion coefficients. However,
since they do not change with ∆t, P , R, and N , changing
their values does not qualitatively change the results, and
thus neither the conclusions presented in this manuscript.
We fix in the following F = 1, corresponding to CDD
or CMOS cameras, and q = 1, corresponding to typical
background noise in experiment (other values of q are
considered in Supplemental Fig. 2) [18]. The parameters

we can control in an experiment are typically:
√

2D∆t/sa
(through ∆t, where

√
2D∆t/sa ∝

√
∆t), P (through

both ∆t and the photon emission rate, r, where P ∝ ∆t
and P ∝ r), R (by engineering the shutter/illumination
sequence), and N (through ∆t, where N ∝ 1/∆t).

B. Precision of optimal estimators for the diffusion
coefficient

One can construct estimators of the diffusion coeffi-
cient D and the variance σ2 of the localization error
based on a measured time-series (see e.g. [11, 13, 14]).
We want such an estimator to be as accurate as possible,
preferably unbiased. That is, an estimator of D should
on average give the true value of D. Furthermore, we
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want the estimator to be as precise as possible. The pre-
cision of any unbiased estimator of D is bounded by the
information limit, the Cramér-Rao bound (CRB).

An estimator which is unbiased and obtains the CRB
is considered optimal—the MLE [11, 13, 14] does this
asymptotically (for N → ∞), and a simple covariance-
based estimator (CVE) does this for SNR > 1 and all
N [14]. The commonly used least-squares fitting to
measured mean-squared displacements (e.g., as described
in [19]) is suboptimal and its use should be avoided (for
a complete discussion see [14]).

Technically, the CRB is a lower bound on the vari-
ance of any unbiased estimator of the set (D,σ2)—or of
D alone if σ2 has been determined independently. The
CRB is defined as I−1, where I is the Fisher informa-
tion. When both D and σ2 must be estimated from the
time-series, I is a matrix given by

I = d

 ∑N
k=1

1
ψ2

k

(
∂ψk

∂D

)2 ∑N
k=1

1
ψ2

k

∂ψk

∂D
∂ψk

∂σ2∑N
k=1

1
ψ2

k

∂ψk

∂D
∂ψk

∂σ2

∑N
k=1

1
ψ2

k

(
∂ψk

∂σ2

)2

 (14)

with [13]

ψk = 2D∆t+ 2

(
1− cos

πk

N + 1

)
(σ2 − 2RD∆t) , (15)

where ψk is the second moment of the normalized discrete
sine transform of (∆r1, . . . ,∆rN ).

It is usually possible to determine σ2 independently,
e.g., directly from the localization procedure as de-
scribed in [8] when the motion blur is sufficiently small

(
√

2D∆t ≤ sa), or by averaging over estimates of σ2

obtained from multiple time-series recorded under the
same experimental conditions as described in [14]. (Note
that the first method relies on an approximately sym-
metric PSF and, if the shutter is held open continuously,
thus that

√
2D∆t < sa; the second method assumes that

the time-series used in the average are recorded with the
same localization error, and thus approximately the same
motion blur.) With σ determined beforehand, all the in-
formation in the time-series is used to estimate D alone.
This increases the precision of the estimate [14]. If σ2 has
been determined independently with high precision, and
this information is used to estimate D from a time-series,
the CRB on the variance of this estimate is

I−1 =
2D2

d

 N∑
k=1

 1− 2R
(

1− cos πk
N+1

)
1 +

(
σ2

D∆t − 2R
) (

1− cos πk
N+1

)
2

−1

.

(16)
Increasing N naturally decreases the CRB (CRB ∼

1/
√
N for N � 1). Increasing the SNR also decreases

the CRB: for low SNR the CRB approximately scales
with the SNR as CRB ∼ 1/

√
SNR [11], while for high

SNR the CRB approaches a constant value (Fig. 5); For
R = 0, this asymptotic value for the CRB is equal to√

6/(dN) when both D and σ2 are estimated from the
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FIG. 5. Cramér-Rao bound (CRB) on the standard error
of any unbiased estimator of the diffusion coefficient D as a
function of the SNR (

√
D∆t/σ). Shown for different motion

blur: no motion blur (R = 0), motion blur corresponding to
continuously open shutter (R = 1/6), and maximal motion
blur (R = 1/4). The CRB is measured in units of the true
value of D. (a) If the amplitude of localization errors, σ, is
unknown, increasing the motion blur while keeping the SNR
constant lowers the standard error of an optimal estimator.
(b) For known σ, the highest precision is obtained for min-
imal (R = 0) motion blur. Though in both cases (a,b) the
difference in precision is small. Independent determination
of σ lowers the standard error by up to a factor

√
3 ≈ 1.7

depending on the motion blur and the SNR. In both plots,
results are for 2D diffusion and the length of the time-series
is N = 100.

time-series [13], and it is equal to
√

2/(dN) when σ2 has
been determined independently [14]. More surprisingly,
when both D and σ2 are estimated from a time-series,
higher motion blur leads to a lower error [11]—if the
SNR is kept the same. Conversely, if σ2 has been de-
termined independently, the CRB is lowest for minimal
motion blur (R = 0).

C. Influence of motion blur

The surprising point that increasing the motion blur
may decrease the error on estimated diffusion coeffi-
cients hinges on the implicit, yet crucial, assumption that
changing the motion blur does not change the SNR. How-
ever, as we have seen in Sec. II, increasing the motion
blur increases the localization error and consequently de-
creases the SNR; especially if one uses the double pulse
illumination sequence to maximize R (Fig. 4). So, one
should compare estimator precision, not for fixed SNR,
but for fixed

√
2D∆t/sa (below, the time-series’ length

N , the signal photon count P , and the background noise
b2 are assumed to be unchanged when changing R). This
reveals that while motion blur may theoretically increase
precision of estimated diffusion coefficients, in practice,
increasing R decreases the precision (Figs. 6 and 7).

For all R > 0, the CRB depends non-monotonously on√
2D∆t/sa (Figs. 6 and 7): as

√
2D∆t/sa is increased,

the CRB first decreases as the SNR increases; for inter-
mediate

√
2D∆t/sa, the CRB stays constant at its min-

imal value since further increase in the SNR does not in-
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FIG. 6. Cramér-Rao bound (CRB) on the standard error
of any unbiased estimator of the diffusion coefficient in the
presence of motion blur when the amplitude of localization
errors, σ, is unknown. Results for: no motion blur (R = 0),
continuously open shutter (R = 1/6), and maximal motion
blur (R = 1/4). The particle’s positions have been deter-
mined using the centroid method (a)–(c) or MLEwG (d)–(f).
The number of signal photons per image is (a),(d) 200, (b),(e)
1 000, and (c),(f) 5 000. The motion blur coefficient slightly
affects estimator precision, though in general the effect is neg-
ligible. For low

√
2D∆t/sa and P , and thus low SNR, the

higher localization error of the centroid method leads to a
somewhat higher CRB compared to MLEwG. In all plots re-
sults are shown for 2D diffusion, the background-to-signal ra-
tio for photon count is q = 1, and the time-series length is
N = 100. Note that D, ∆t , and sa do not need to be set to
specific values to produce the plots as their ratio

√
2D∆t/sa

fully determines precision.

fluence the CRB when the SNR is much larger than one;
for high

√
2D∆t/sa, the SNR decreases again since the

localization error increases faster than linearly with the
motion blur [Eq.(11)], eventually leading to an increase
in the CRB. If one also considers that motion blur may
induce failure of the localization procedure [Fig. 4(d)–
(f)], which effectively reduces N , the increase in the CRB
due to high motion blur is more dramatic [Supplemental
Fig. 3] [18]. This result is in contrast to the result of [13],
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FIG. 7. Cramér-Rao bound (CRB) on the standard error
of any unbiased estimator of the diffusion coefficient in the
presence of motion blur when the amplitude of localization
errors, σ, has been determined independently. Results for:
no motion blur (R = 0), continuously open shutter (R =
1/6), and maximal motion blur (R = 1/4). The particle’s
positions have been determined using the centroid method
(a)–(c) or MLEwG (d)–(f). The number of signal photons
per image is (a),(d) 200, (b),(e) 1 000, and (c),(f) 5 000. If
σ has been determined independently increasing the motion
blur coefficient always increases the estimation error, although
only by a negligible amount, unless using the double pulse
illumination sequence to maximize motion blur (R = 1/4).
In all plots the tracked particle undergoes 2D diffusion, the
background-to-signal ratio is q = 1, and the length of the
time-series is N = 100.

where the omission of background noise led to the predic-
tion that the SNR asymptotically approaches maximum
as
√

2D∆t/sa is increased.

For moderate values of the motion blur, however, the
CRB depends little on the motion blur coefficient. In
particular, the difference between recording with instan-
taneous shutter (R = 0) and continuously open shutter

(R = 1/6) is not significant as long as
√

2D∆t/sa <
1. (For a typical value of the diffusion coefficient of
D ≈ 1µm2s−1, this means that ∆t should be smaller
than s2

a/(2D) ≈ 10 ms; for different values of D, this
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bound changes as ∝ 1/D, e.g., for D = 0.1µm2s−1:
∆t < 100 ms, or for D = 10µm2s−1: ∆t < 1 ms.)

We have above assumed that P is not affected by engi-
neering camera shutter and sample illumination in order
to either increase or decrease motion blur (i.e. changing
R from the value R = 1/6). In general, even if strobo-
scopic techniques are employed, this typically decreases
P , and consequently increases the CRB.

In summary: as long as
√

2D∆t/sa < 1, which is the
relevant parameter range for optimizing the experiment
(we shall see below), leaving the shutter open continu-
ously gives the highest precision of estimated diffusion
coefficients.

IV. OPTIMIZING EXPERIMENTAL DESIGN

Using the results derived in the preceding sections, we
show how one should adjust the rate at which the tracked
fluorescent particle emits photons, r, the time-lapse of
recordings, ∆t, and the motion blur coefficient, R, in
order to maximize the information about the diffusion
coefficient contained in a recorded time-series. We con-
sider two different experimental scenarios, which together
cover the experimental situations usually encountered in
single-particle tracking. In Subsection A we consider the
situation where the time that a particle can be followed,
ttot, is limited, e.g., since it diffuses out of the field of view
of the microscope. In Subsection B we consider the situ-
ation where the photostability of the fluorescent particle
limits the total number of photons that can be collected
for a single trajectory, Ptot.

A. Limited experimental recording time

The total time a particle can be recorded ttot =
(N+1)∆t may be limited by factors beyond experimental
control. The particle may, e.g., detach from the substra-
tum on which it diffuses, e.g. a cellular structure [20].
Or the particle may diffuse out of the microscope’s field-
of-view. The latter is typical for particles diffusing in
three dimensions. If this happens on a time-scale which
is shorter than the time-scale of bleaching, it is clear that
one should maximize photon count by maximizing the
rate r of photons collected from the fluorescent particle.
This rate is limited in practice either by the photochem-
istry of the fluorescent particle or by the power of the
available laser.

For a particle, which can be tracked for a time ttot,
the number of recorded signal photons per image is
P = r∆t and the length of the recorded time-series
is N = ttot/∆t − 1, assuming that one is able to de-
termine the particle’s position in all recorded images.
Figure 8(b),(c) shows that the information content in
a time-series is maximized by choosing ∆t as small as
possible, even though this leads to a smaller SNR in in-
dividual frames [Fig. 8(a)]. The reason for this is that

as long as SNR > 1, changing it does not change the
CRB much [13], while the CRB always decreases with

N as CRB ∼ 1/
√
N (Fig. 5); when SNR � 1, the CRB

behaves as CRB ∼ 1/
√

SNR [Figs. 5(a),(b)], and since
SNR ∼ 1/N [Fig. 8(a)], the CRB asymptotically ap-
proaches minimum as ∆t is decreased towards zero.

In practice, since the number of signal photons
recorded per time-lapse, P , decreases with ∆t, the frac-
tion of images for which the localization procedure fails,
ε, increases as ∆t is decreased [Fig. 8(d)]. (More perfor-
mant tracking methods, which e.g. use the particle’s es-
timated position in preceding and following images, may
need fewer photons per image for correct localization;
nonetheless, all localization methods, no matter how per-
formant, eventually fail as P decreases.) Thus, the num-
ber of recorded positions is not (N+1) when ∆t is small,
but rather (1 − ε)(N + 1). If the density of fluorescent
particles is not too high, one is usually able to identify
the full trajectory of a particle, even if some positions
are missing. One may then fit the resulting time-series
with an estimator that accounts correctly for missing po-
sitions [21]. In this case, Eqs. (14) and (16) with N
replaced by (1− ε)N give lower bounds on the CRB, i.e.,
optimal estimators using this approach are at least this
precise [grey symbols in Figs. 8(e),(f)]. If one is unable
to identify the tracked particle again after a position is
missing, one is then left with multiple shorter time-series.

In this case, the CRB is given by (
∑M
m=1 Im)−1 [black

symbols in Figs. 8(e),(f)], where Im is the Fisher infor-
mation for the mth individual contiguous time-series and
M is the number of such time-series.

In both cases, the CRB initially decreases as ∆t is
decreased, following the theoretical prediction. When P
becomes too small, the localization procedure starts to
fail, and the CRB rapidly increases as ∆t is decreased
further since a smaller and smaller fraction of positions of
the particle are found. The sweet spot, where the CRB is
minimal—and precision is thus maximal—is found right
before localization fails for a substantial fraction of the
recorded images. Here the optimal choice of ∆t is around
∆t = 10 ms, corresponding to P ≈ Pmin ≈ 100.

This result differs from the recommendation of [13],
which suggested recording enough photons in each single
image to ensure that SNR > 1, and then maximizing the
number of frames recorded under this constraint.

Note finally, that a stroboscopic setup is of no practical
use in this case, since the camera shutter must be kept
open during the entire experiment to maximize photon
count. Furthermore, since ∆t should be chosen as short
as possible, motion blur is usually not an issue and need
not be taken explicitly into account in the localization
procedure.

B. Limited photostability

Conversely, experiments may be limited by the photo-
stability of the fluorescent particle, typical for proteins



10

1 10 100 1000

∆t (ms)

0.1

1

10

100
S
N

R
(a)

MLEwG

Centroid

1 10 100 1000

∆t (ms)

0.01

0.1

1

C
R

B
/D

(b)

1 10 100 1000

∆t (ms)

0.01

0.1

1

C
R

B
/D

(c)

1 10 100 1000

∆t (ms)

0.0

0.2

0.4

0.6

0.8

1.0

ε

(d)
MLEwG

centroid

1 10 100 1000

∆t (ms)

0.01

0.1

1

C
R

B
/D

(e)

1 10 100 1000

∆t (ms)

0.01

0.1

1

C
R

B
/D

(f)

Contiguous

Split

FIG. 8. Cramér-Rao bound (CRB) on the standard error of
any unbiased estimator of the diffusion coefficient as function
of time-lapse duration, ∆t, for a time-series of limited record-
ing time ttot = (N + 1)∆t (a) Signal-to-noise ratio (SNR) in
a single frame as function of ∆t. (b),(c) CRB as function of
∆t when all N + 1 positions are found: (b) for unknown σ,
(c) for independently determined σ. (d) Fraction, ε, of images
for which localization fails as function of ∆t. (e),(f) CRB as
function of ∆t when the particle is only localized for a fraction
ε of the N +1 images recorded, for the two different scenarios
discussed in the main text: (i) where a contiguous trajectory
can be constructed from the found positions (Contiguous), or
(ii) where the particle cannot be reidentified after a position
is missing and the trajectory is split into smaller time-series
(Split); (e) for unknown σ, (f) for known σ. In all plots, the
total recording time is ttot = 10 s, the rate of photon emis-
sion of the fluorescent particle is r = 10 kHz, the width of
the stationary PSF is sa = 150 nm, the background-to-signal
ratio in images is q = 1, the shutter is held continuously open
(R = 1/6), and the particle undergoes 2D diffusion with dif-
fusion coefficient D = 1 µm2s−1.

tagged with, e.g., GFP or an organic dye and bound in
a lipid membrane [22]. In this case photon economy is
paramount.

Let Ptot be the total number of photons emitted by
the fluorescent particle before bleaching. Then N =
Ptot/P −1, with P = r∆t. From Fig. 5 we know that the

SNR needs only be slightly higher than one (or two if σ2

is determined independently) for estimates of the diffu-
sion coefficient from a given time-series to be maximally
precise. We may thus simply choose ∆t large enough that
the SNR is always larger than one, i.e., ∆t > σ2/(2D).
In practice, we have σ < sa—higher error is indicative of
failure of the localization procedure (Figs. 2 and 4)—and
typically σ � sa. So for typical values of physical param-
eters, D = 1 µm2s−1 and sa = 150 nm, we may choose
∆t = 10 ms ≈ s2

a/(2D), i.e., a video-rate of 100 Hz;
this way the motion blur is small enough to not influence
localization error significantly, while the SNR is always
higher than one for relevant values of P . (Note that the
choice of ∆t scales with 1/D; for D = 0.1 µm2s−1 one
should choose ∆t ≈ 100 ms, while for D = 10 µm2s−1

one should choose ∆t ≈ 1 ms, if possible.)
In general, as above, maximizing the number of im-

ages recorded is more important than the information in
each image. The photon emission rate, r, should thus
be adjusted to be as low as possible without the local-
ization procedure failing (Fig. 9). This means choosing
r such that the number of recorded signal photons per
image is P ≈ Pmin for optimal precision of estimates of
the diffusion coefficients. Here r ≈ 10 kHz is optimal,
corresponding again to Pmin ≈ 100.

Note that, as above, a stroboscopic setup is typically
of no practical relevance for optimizing the experiment.
For fast diffusion proteins (e.g., D ∼ 10 µm2s−1) one
may not be able to choose ∆t small enough (∆t ≈ 1 ms),
e.g., if the camera cannot record fast enough. Here a
stroboscopic setup may be used. One should then simply
maximize r and only let the shutter stay open for the
short time-interval Pmin/rmax to minimize motion blur,
while the time-lapse between measurements should be
chosen to maximize the information content per image,
i.e., letting ∆t > 4σ2/(2D) (Fig. 5).

V. CONCLUSION

We have shown that one should choose quantity over
quality when it comes to tracking diffusing particles. In
general, experiments should be designed with focus on
maximizing the number of frames recorded—the time-
series length—even if this means a low SNR in individ-
ual frames. In particular, if the time a particle can be
recorded is limited, e.g., by the particle diffusing out of
the field-of-view, one should record the particle with a
photon emission rate and a video rate that are as high
as possible. If the experiment is limited by the fluores-
cent particle’s photostability, one should minimize the
photon emission rate and record with a video rate that is
slow enough to maximize the information content in each
recorded frame yet fast enough to avoid the deleterious
effects of motion blur—this is achieved by choosing the
video rate such that the mean diffusion length per time
lapse is equal to or slightly smaller than the PSF width
of a stationary particle. In both cases, the fundamental
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FIG. 9. Cramér-Rao bound (CRB) on the standard error of
any unbiased estimator of the diffusion coefficient as function
of photon emission rate, r, for a time-series whose length is
limited by the total number of photons that can be recorded
before the fluorophore bleaches, Ptot = (N+1)P = (N+1)r∆t
(a) Signal-to-noise ratio (SNR) in a single frame as function of
r. (b),(c) CRB as function of r when the particle is localized in
all N + 1 recorded images: (b) for unknown σ, (c) for known
σ. (d) Fraction, ε, of images for which localization fails as
function of r. (e),(f) CRB as function of r when the particle
is only localized for a fraction ε of the N + 1 images recorded,
for the two different scenarios discussed in the main text: (i)
where a contiguous trajectory can be constructed from the
found positions (Contiguous), or (ii) where the particle cannot
be reidentified and the trajectory is split into smaller time-
series (Split). (e) for unknown σ, (f) for known σ. In all plots,
the total number of recorded photons is Ptot = 105, the time-
lapse of recordings is ∆t = 10 ms, the width of the stationary
PSF is sa = 150 nm, the background-to-signal ratio in images
is q = 1, the shutter is held continuously open (R = 1/6), and
the particle undergoes 2D diffusion with diffusion coefficient
D = 1 µm2s−1.

limit on the precision is set by the minimal number, Pmin,
of signal photons needed in a single image for reliable lo-
calization.

The exact values of optimal ∆t and r depend on ex-
perimental and physical parameters of the system un-

der study. However, the results presented in this paper
may be used in one of two following ways in practice. (i)
The quick and dirty way: according to whether recording
time or photostability limits time-series length, fix either
r or ∆t and adjust the other to determine experimen-
tally Pmin as the point where localization starts to fail a
substantial number of times (e.g. ε ≈ 0.1); the parame-
ters giving this Pmin are then approximately the optimal
choice. (ii) The thorough way: if one wants to squeeze
out every last drop of information from the experiment,
one may follow the procedure described in the present pa-
per to numerically find optimal experimental parameters
for a given setup and localization method. This may even
be done iteratively as D is estimated from experiments.

Similar procedures to the one presented here may be
used to study how to optimize experimental parame-
ters for tracking particles undergoing more complicated
forms of motion, such as persistent random motion, ac-
tive transport, or anomalous diffusion. Note that opti-
mization in the definitive sense requires that an optimal
estimator exists for the motion studied. While this often
is not the case, at least not yet, one may still optimize
experiments for a given (suboptimal) estimator of the
motility parameters of the motion under study.
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APPENDIX: NUMERICAL SIMULATIONS

The analytical results derived in the present paper rely
on two simplifying assumptions. First, they neglect that
in real-world tracking experiments, one must define a re-
gion of interest (ROI) containing the pixels which are
used in fitting the tracked particle’s position. The choice
of ROI is particularly important for the centroid method
where inclusion of background pixels increases the local-
ization error—in the extreme case of an infinite ROI, the
localization error of the centroid method is infinite. Sec-
ond, the derivation of the localization error in presence of
motion blur assumes an effectively symmetrical recorded
PSF. We expect the first assumption to break down for
low values of P and the second to break down for high
motion blur.

To confirm the analytical approach for cases where
we expect it to hold, and to investigate cases where it
does not, we performed Monte Carlo simulations of a
point-like diffusing fluorescent particle emitting photons
recorded through a microscope by a CCD or CMOS cam-
era. From such images we used an automated procedure
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for selecting the ROI and fitting the PSF recorded inside
this ROI in order to determine the precision of localiza-
tion methods in practice.

Images were simulated using a continuous variant of
the exact Gillespie algorithm [23], which uses that since
photon emission is a Poisson process, the times elapsed
between a particle emits two consecutive photons are ex-
ponentially distributed. The particle was started out
at (xtrue, ytrue) = (0, 0). An exponentially distributed
waiting time until emission of the first photon was then
drawn, τ1 ∼ Exp(r). [Here τ1 ∼ Exp(r) is short for τ1
is exponentially distributed with mean 1/r.] The dis-
placement undergone by the particle in each perpen-
dicular direction during the time-interval τ1 was then
drawn as dxtrue, dytrue ∼ N(0, 2Dτ1), i.e., both nor-
mally distributed with mean zero and variance 2Dτ1.
The position of the particle at time t = τ1 was then
(xtrue, ytrue) = (dxtrue, dytrue); from this position the
particle emitted a photon whose apparent position, as
recorded by the camera, was equal to the particle’s true
position plus a photon noise term due to diffraction
in the microscope, ξx, ξy ∼ N(0, 2s2

a). A new waiting
time τ2 ∼ Exp(r) was drawn; the particle’s position
was updated by adding dxtrue, dytrue ∼ N(0, 2Dτ2) to
(xtrue, ytrue); the particle emitted a photon from its new
position which was recorded with a photon noise term,
ξx, ξy ∼ N(0, 2s2

a). The procedure was repeated until∑P+1
i=1 τi > ∆t, where the last photon (corresponding to

P + 1) was not recorded. The recorded photon positions
were then compared to a 64×64 pixel grid of individual
dimensions a× a = 100 nm× 100 nm (the grid was large

enough that the particles did not diffuse out of the “cam-
era” during the time-lapse); each position falling inside a
given pixel added one to its count. Finally, Poisson dis-
tributed background noise was added to each pixel with
mean b2 = qPa2/(2πs2

a).

The resulting image, I, was then treated as follows to
estimate the particle’s average position. A thresholding
procedure was performed which removed all pixels under
a certain threshold equal to nthresb

2, yielding a binary
matrix A, with ones in pixels where the photon count
was above the threshold and zeros where it was below.
To remove single background pixels that were over the
threshold due to random fluctuations, binary erosion of
A by a 3 × 3 matrix was performed. The ROI was then
expanded by a number ndilate of successive binary di-
lations of A by a 3 × 3 matrix. The thresholds nthres

and ndilate were chosen for the highest localization preci-
sion, and depended on P ; for GME and MLEwG, ndilate

needed only be large enough to include a substantial part
of the PSF, while for the centroid method, ndilate needed
to be chosen as function of nthres and P to maximize pre-
cision. The particle was then localized [8, 9] using only
pixels of I that corresponded to non-zero entries of A.
For the centroid method, fitting involved first subtract-
ing the average background amplitude from all pixels [9];
the average background was estimated from pixels in a
perimeter of three pixels around the ROI.

The above procedure was repeated 1 000 times for each
set of parameter values in order to estimate the localiza-
tion error of the various methods.
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[5] Wieser, S. & Schütz, G. J. Tracking single molecules in
the live cell plasma membrane-do’s and don’t’s. Methods
46, 131–140 (2008).

[6] Elf, J., Li, G.-W. & Xie, X. S. Probing transcription
factor dynamics at the single-molecule level in a living
cell. Science 316, 1191–1194 (2007).

[7] Smith, M. B. et al. Interactive, computer-assisted track-
ing of speckle trajectories in fluorescence microscopy: ap-
plication to actin polymerization and membrane fusion.
Biophys. J. 101, 1794–1804 (2011).

[8] Mortensen, K. I., Churchman, L. S., Spudich, J. A. &
Flyvbjerg, H. Optimized localization analysis for single-

molecule tracking and super-resolution microscopy. Nat.
Methods 7, 377–381 (2010).

[9] Deschout, H., Neyts, K. & Braeckmans, K. The influ-
ence of movement on the localization precision of sub-
resolution particles in fluorescence microscopy. J. Bio-
photonics 5, 97–109 (2012).

[10] Savin, T. & Doyle, P. S. Static and dynamic errors in
particle tracking microrheology. Biophys. J. 88, 623–638
(2005).

[11] Berglund, A. J. Statistics of camera-based single-particle
tracking. Phys. Rev. E 82, 011917 (2010).

[12] Michalet, X. Mean square displacement analysis of single-
particle trajectories with localization error: Brownian
motion in an isotropic medium. Phys. Rev. E 82, 041914
(2010).

[13] Michalet, X. & Berglund, A. J. Optimal diffusion coeffi-
cient estimation in single-particle tracking. Phys. Rev. E
85, 061916 (2012).

[14] Vestergaard, C. L., Blainey, P. C. & Flyvbjerg, H. Op-
timal estimation of diffusion coefficients from single-
particle trajectories. Phys. Rev. E 89, 022726 (2014).

[15] K. Braeckmans, J. D., D. Vercauteren & Smed, S. C. D.
Single particle tracking. In Diaspro, A. (ed.) Nanoscopy
and Multidimensional Optical Fluorescence Microscopy
(Chapman and Hall/CRC 2010, 2010).



[16] Note that while the choice of the threshold is arbitrary, its
specific value does not influence the results qualitatively
(see Supplemental Fig. 1) [18].

[17] Schuster, J., Cichos, F. & von Borczyskowski, C. Diffu-
sion measurements by single-molecule spot-size analysis.
J. Phys. Chem. A 106 (22), 5403 (2002).

[18] Supplemental figures are found at the end of the
manuscript.

[19] Qian, H., Sheetz, M. P. & Elson, E. L. Single particle
tracking. analysis of diffusion and flow in two-dimensional
systems. Biophys. J. 60, 910–921 (1991).

[20] Blainey, P. C., van Oijen, A. M., Banerjee, A., Verdine,

G. L. & Xie, X. S. A base-excision dna-repair protein
finds intrahelical lesion bases by fast sliding in contact
with dna. Proc. Natl. Acad. Sci. USA 103, 5752–5757
(2006).

[21] Shuang, B. et al. Improved analysis for determining dif-
fusion coefficients from short, single-molecule trajectories
with photoblinking. Langmuir 29, 228–234 (2013).

[22] Domanov, Y. A. et al. Mobility in geometrically confined
membranes. Proc. Natl. Acad. Sci. USA 108, 12605–
12610 (2011).

[23] Gillespie, D. T. Exact stochastic simulation of cou-
pled chemical reactions. J. Phys. Chem. 81, 2340–2361
(1977).



SUPPLEMENTAL FIGURES



13

0.03 0.1 0.3 1 3√
2RD∆t/sa

3

10

30

100

300
σ
 (

n
m

)
(a)

Centroid

GME

MLEwG

R=1/6

R=1/4

0.03 0.1 0.3 1 3√
2RD∆t/sa

3

10

30

100

300

σ
 (

n
m

)

(b)

0.03 0.1 0.3 1 3√
2RD∆t/sa

3

10

30

100

300

σ
 (

n
m

)

(c)

0.03 0.1 0.3 1 3√
2RD∆t/sa

0.0

0.2

0.4

0.6

0.8

1.0

ε

(d)

0.03 0.1 0.3 1 3√
2RD∆t/sa

0.0

0.2

0.4

0.6

0.8

1.0

ε

(e)

0.03 0.1 0.3 1 3√
2RD∆t/sa

0.0

0.2

0.4

0.6

0.8

1.0

ε

(f)

0.03 0.1 0.3 1 3√
2RD∆t/sa

3

10

30

100

300

σ
 (

n
m

)

(g)

Centroid

GME

MLEwG

R=1/6

R=1/4

0.03 0.1 0.3 1 3√
2RD∆t/sa

3

10

30

100

300

σ
 (

n
m

)

(h)

0.03 0.1 0.3 1 3√
2RD∆t/sa

3

10

30

100

300

σ
 (

n
m

)

(i)

0.03 0.1 0.3 1 3√
2RD∆t/sa

0.0

0.2

0.4

0.6

0.8

1.0

ε

(j)

0.03 0.1 0.3 1 3√
2RD∆t/sa

0.0

0.2

0.4

0.6

0.8

1.0

ε

(k)

0.03 0.1 0.3 1 3√
2RD∆t/sa

0.0

0.2

0.4

0.6

0.8

1.0

ε

(l)

Supplemental FIG. 1. Precision of localization methods as function of normalized motion blur,
√

2RD∆t/sa, where local-
ization is considered to have failed if the error between the estimated and true average positions is higher than (a)–(f)
2s = 2

√
s2a + 2RD∆t or (g)–(l) 4s = 4

√
s2a + 2RD∆t. (a)–(c),(g)–(i) Amplitude of localization errors, σ, and (d)–(f),(j)–

(l) fraction of incorrectly localized particles. Lines mark theoretical errors [Eqs. (1)–(4)] and symbols mark mean errors (±
s.e.m.) averaged over 1 000 MC simulations. The number signal photons per image are (a),(d) 200, (b),(e) 1 000, and (c),(f)
5 000. The width of the stationary PSF is sa = 150 nm, the background-to-signal ratio is q = 1, and the results are for 2D
diffusion in the image plane.
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Supplemental FIG. 2. Cramér-Rao bound (CRB) on the standard error of any unbiased estimator of diffusion coefficients as a
function of the background-to-signal ratio, q, for continuously open shutter (R = 1/6). (a),(b) For centroid localization, and
(c),(d) for MLEwG localization. Increasing q, i.e., the background noise, adversely affects the precision of the centroid method

and thus of diffusion coefficients estimated using it, though only for low
√

2D∆t/sa; for low background the precision of the

centroid method approaches that of MLEwG for all
√

2D∆t/sa. Changing q does however not change the qualitative results
presented in the Figs. 6–9. In all plots, the number of photons recorded per image is P = 100, the time-series length is N = 100,
the stationary PSF width is sa = 150 nm, and the particle diffuses in 2D.
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Supplemental FIG. 3. Cramér-Rao bound (CRB) on the standard error of any unbiased estimator of the diffusion coefficient
in the presence of motion blur where a fraction ε of the particle’s positions are missing in the recorded time-series: (a)–(f)
for unknown σ, (g)–(l) for known σ. The centroid method is used for localization in (a)–(c) and (g)–(i), while MLEwG is
used in (d)–(f) and (j)–(l). The number of signal photons recorded per image is in (a),(d),(g),(j) 200, (b),(e),(h),(k) 1 000, and
(c),(f),(i),(l) 5 000. In all plots results are shown for 2D diffusion, the background-to-signal ratio for photon count is q = 1, the
number of recorded images is N+1 = 101, and the time-series length is (1− ε)N [see Figs. 4(d)–(f) for corresponding values of
ε].


