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Trust-based belief change

Emiliano Lorini1 and Guifei Jiang2 and Laurent Perrussel3

Abstract. We propose a modal logic that supports reasoning about

trust-based belief change. The term trust-based belief change refers

to belief change that depends on the degree of trust the receiver has

in the source of information.

1 Introduction

Trust in information sources plays a crucial role in many domains of

interaction between agents, in particular when information sources

are either human agents or software agents (e.g., banks, companies,

consultants, etc.), typical examples are in the field of e-commerce

or in the field of stock and bond market. In the latter case, an agent

may receive information from a given source about the evolution of

a stock’s price. In these situations, the agent’s trust in the source has

an influence on the dynamics of the belief about the evolution of the

stock’s price. The latter belief is fundamental for the agent to decide

whether to buy or sell stocks.

The aim of this paper is to improve understanding of the relation-

ship between belief and trust: we propose a logic for reasoning about

trust-based belief change, that is, belief change that depends on the

degree of trust the receiver has in the information source. We call this

logic DL-BT which stands for Dynamic Logic of graded Belief and

Trust. Using this logic, we stress out the interplay between trust and

belief change in a modular way. As opposed to numerous approaches

such as [4] where the interplay is predefined and thus specific, the

logic DL-BT allows to implement different trust-based belief change

policies.

On the technical level, the logic DL-BT consists of extending

Liau’s static modal logic of belief and trust [12] in three different

directions: (i) a generalization of Liau’s approach to graded trust, (ii)

its extension by modal operators of knowledge and by modal oper-

ators of graded belief based on Spohn’s theory of uncertainty [14],

and (iii) by a family of dynamic operators in the style of dynamic

epistemic logics (DEL) [16]. The latter allows for the representation

of the consequences of a trust-based belief change operation while

the second enables to handle iterated belief change.

Our contribution is twofold. First of all, our concept of trust-based

belief change does not presuppose that incoming information is nec-

essarily incorporated in the belief set of the agent. This is a key

difference with classical belief revision [1] whose primary princi-

ple of change (or success postulate) leads any agent to accept new

information and to revise her beliefs accordingly. This postulate has

been widely criticized in the literature and several approaches of non-

prioritized belief revision have been proposed [9]. Credibility-limited

revision approach [10, 5] assumes that revision will be successful

only if new information is credible, in the sense it does not conflict
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with the current beliefs of the agent. Differently from this approach,

our key criterion for acceptance of new information is not its credi-

bility but trust in the information source.

Secondly, our logic DL-BT provides a solution to the problem

of representing the author of a communicative act in the DEL-

framework. Indeed, existing dynamic epistemic logics [13, 3] do not

specify the author of the announcement, as they assume that the an-

nouncement is performed by some agent outside the system that is

not part of the logic’s object language.

The paper is organized as follows. We first present the syntax and

the semantics of the logic DL-BT and detail two trust-based belief

change policies: an additive policy and a compensatory policy. The

additive policy cumulates information received by different infor-

mation sources. In case different sources provide conflicting infor-

mation, the compensatory policy balances them depending on how

much they are trustworthy. We then provide a sound and complete

axiomatization for the variant of DL-BT implementing these two

policies.

2 Dynamic logic of graded belief and trust

In the next two sections we present the syntax and semantics of the

logic DL-BT that combines modal operators of knowledge, graded

belief and trust with dynamic operators of trust-based belief change.

2.1 Syntax of DL-BT

Let Atm = {p, q, . . .} be a countable set of propositional atoms and

let Agt = {i, j, . . .} be a finite set of agents. Moreover, let Num =
{0, . . . ,max} be a finite set of natural numbers with max ∈ N \ {0}
which represents the scale for trust and belief degrees. For instance,

the set Num = {0, 1, 2, 3, 4, 5} can be interpreted as a qualitative

scale where 0 stands for ‘null’ and 5 for ‘very high’. Finally, let Plc

be a set of trust-based belief change policies.

Let us stress that DL-BT should be conceived as a “family” of

logics rather than a single logic, each of which is parameterized by

a certain set of trust-based belief change policies Plc. Hereafter, a

specific member of the DL-BT family indexed by some set Plc, is

denoted DL-BTPlc .

The language L of DL-BT is defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | B≥α
i ϕ | Tα

i,jϕ | [∗fi ϕ]ϕ

where p ranges over Atm , i and j range over Agt , α ranges over

Num\{0}, and f ranges over the set of total functions with domain

Agt and codomain Plc.

The other boolean constructions ⊤, ⊥, ∨, →, ↔ are defined in

the standard way. Let Obj be the set of all boolean combinations of

atoms in Atm .The elements of Obj are called objective formulas.

Ki is the standard S5 epistemic operator [8]: Kiϕ stands for “agent

i knows that ϕ is true”.
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The formula B
≥α
i ϕ has to be read “agent i believes that ϕ is true

with strength at least α”. Similar operators of graded belief have been

studied in the past by [2, 15, 11]. The formula [∗fi ϕ]ψ has to be read

“after agent i has publicly announced that ϕ is true and each agent j
has revised her beliefs according to the trust-based belief change pol-

icy f(j), ψ will be true”. In other words, the dynamic operator [∗fi ϕ]
allows to represent the effect of agent i’s announcement of ϕ: each

agent revises her beliefs according to the trust-based belief change

policy prescribed by the function f . Finally, the formula T
α
i,jϕ has

to be read as “agent i trusts agent j’s judgement on formula ϕ with

strength α”. Note that, when i = j, the operator Tα
i,j captures a no-

tion of self-trust (or self-confidence).
We will use the following abbreviations in the rest of the paper.

For all i ∈ Agt and for all α ∈ Num \ {0,max} we define:

K̂iϕ =def ¬Ki¬ϕ Biϕ =def B
≥1

i ϕ

B̂iϕ =def ¬Bi¬ϕ Uiϕ =def ¬Biϕ ∧ ¬Bi¬ϕ

B
α
i ϕ =def B

≥α
i ϕ ∧ ¬B

≥(α+1)
i ϕ B

max

i ϕ =def B
≥max

i ϕ

B
0
iϕ =def ¬Biϕ Ti,jϕ =def

∨

α∈Num\{0}

T
α
i,jϕ

K̂i is the dual of Ki and K̂iϕ has to be read “ϕ is compatible with

agent i’s knowledge”.

The operator Bi captures the concept of belief and Biϕ has to

be read “agent i believes that ϕ is true”. Indeed, we assume that

“believing that ϕ is true” is the same as “believing that ϕ is true

with strength at least 1”.

B̂i is the dual of Bi and B̂iϕ has to be read “ϕ is compatible

with agent i’s beliefs”. The operator Ui captures the concept of un-

certainty or doubt, and Uiϕ has to be read “agent i is uncertain

whether ϕ is true”. The operator B
α
i captures the exact degree of

belief. Specifically, Bα
i ϕ has to be read “agent i believes that ϕ is

true with strength equal to α”. The special case B
max

i ϕ needs to be

defined independently since B
max+1

i ϕ is not a well-formed formula.

The abbreviation B
0
iϕ has to be read “agent i believes that ϕ with

strength 0” which is the same thing as saying that agent i does not

believe ϕ. Finally, Ti,jϕ has to be read “agent i trusts agent j’s judg-

ment on ϕ”.

We call L-BT the static fragment of DL-BT, that is, DL-BT formu-

las with no dynamic operators [∗fi ϕ]. The language L-BT is defined

as follows (as previously, p ranges over Atm , i and j range over Agt

and α ranges over Num\{0}):

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | B≥α
i ϕ | Tα

i,jϕ

2.2 Semantics for the static fragment

Let us first focus on the semantics of the static L-BT formulas. Se-

mantics is defined in terms of possible worlds with a special function

for ranking worlds according to their plausibility degrees, and a fam-

ily of neighbourhood functions for trust.

Definition 1 (Model). A model is a tuple M =
(W, {Ei}i∈Agt , κ, {Ni,j}i,j∈Agt ,V) where:

• W is a nonempty set of possible worlds or states;

• every Ei is an equivalence relation on W with Ei(w) = {v ∈ W :
wEiv} for all w ∈ W ;

• κ : W × Agt → Num is a total function mapping each world

and each agent to a natural number in Num such that:

(Constr1) for every w ∈ W and for every i ∈ Agt , there is

v ∈ W such that wEiv and κ(v, i) = 0;

• Ni,j : W × Num\{0} −→ 22
W

is a total function such that

for all w ∈ W , for all i, j ∈ Agt , for all X ⊆ W and for all

α, β ∈ Num\{0}:

(Constr2) if X ∈ Ni,j(w,α) and α *= β then X *∈ Ni,j(w, β);

(Constr3) if X ∈ Ni,j(w,α) then X ∈ Ni,j(v, α) for all v ∈
Ei(w);

(Constr4) if X ∈ Ni,j(w,α) then X ∩ Ei(w) *= ∅;

• V : W −→ 2Atm is a valuation function for propositional atoms.

As usual, p ∈ V(w) means that proposition p is true at world

w. The set Ei(w) is agent i’s information set at world w: the set of

worlds that agent i envisages at world w. As Ei is an equivalence

relation, if wEiv then agent i has the same information set at w and

v (i.e., agent i has the same knowledge at w and v).

The function κ provides a plausibility grading of the possible

worlds for each agent i. κ(w, i) = α means that, according to agent

i the world w has a degree of exceptionality α or, alternatively, ac-

cording to agent i the world w has a degree of plausibility max− α.

Indeed, following [14], we assume that the degree of plausibility of

a world for an agent is the opposite of its exceptionality degree.

(Constr1) is a normality constraint for the plausibility grading

which ensures that an agent can always envisage a world with a min-

imal degree of exceptionality 0. This constraint is important because

it ensures that an agent’s beliefs are consistent, e.g., an agent cannot

believe ϕ and ¬ϕ at the same time (see below for more details).

The neighbourhood function Ni,j specifies a trust grading of the

subset of possible worlds and is used to interpret the graded trust for-

mulas Tα
i,jϕ. Since each set of possible worlds X ⊆ W is the seman-

tic counterpart of a L-BT formula, the meaning of X ∈ Ni,j(w,α) is

that, at world w, agent i trusts agent j’s judgment on the truth of the

formula corresponding to X with strength α. (Constr2)-(Constr4)

are natural constraints for trust. Specifically, (Constr2) requires that

an agent cannot trust the same agent on the same formula with differ-

ent strengths. (Constr3) corresponds to a property of positive intro-

spection for trust, i.e., an agent knows how much she trusts someone.

It is worth noting (Constr3) and the fact that Ei is an equivalence re-

lation together imply that if X /∈ Ni,j(w,α) then X /∈ Ni,j(v, α)
for all v ∈ Ei(w). The latter corresponds to negative introspection

for trust, i.e., if an agent does not trust someone then she knows this.

(Constr4) claims that an agent’s trust in someone must be compati-

ble with her knowledge. Specifically, if agent i trusts agent j’s judge-

ment on the truth of some formula, then there should be some world

that i envisages in which this formula is true.

We use a neighbourhood semantics for interpreting the graded

trust operators T
α
i,j because these modal operators are not normal.

We want to allow situations in which, at the same time, agent i trusts

agent j’s judgement about ϕ with strength α and i trusts agent j’s

judgement about ¬ϕ with strength α, without inferring that i trusts

agent j’s judgement about ⊥ with strength α, that is, we want for-

mula T
α
i,jϕ ∧ T

α
i,j¬ϕ ∧ ¬Tα

i,j⊥ to be satisfiable. For example, Bill

may trust Mary’s judgement about the fact that a certain stock will

go upward with strength α (i.e., Tα
Bill,MarystockUp) and, at the same

time, trust Mary’s judgement about the fact that the stock will not go

upward with strength α (i.e., Tα
Bill,Mary¬stockUp), without trusting

Mary’s judgement about ⊥ with strength α (i.e., ¬Tα
Bill,Mary⊥).4

4 Note that Constraint (Constr4) in Definition 1 makes formula ¬Tα
i,j⊥

valid for every trust value α. Thus, if Tα
i,j was a normal modal opera-

tor, ¬(Tα
i,jϕ ∧ Tα

i,j¬ϕ) would have been valid, which is highly counter-

intuitive.



Before providing truth conditions of L-BT formulas, we fol-

low [14] and lift the exceptionality of a possible world to the ex-

ceptionality of a formula viewed as a set of worlds.

Definition 2 (Exceptionality of a formula). Let M =
(W, {Ei}i∈Agt , κ, {Ni,j}i,j∈Agt ,V) be a model. Moreover, let

‖ϕ‖w,i = {v ∈ W : v ∈ Ei(w) and M, v |= ϕ} be the set of

worlds envisaged by agent i at w in which ϕ is true. The exceptional-

ity degree of formula ϕ for agent i at world w, denoted by κw,i(ϕ),
is defined as follows:

κw,i(ϕ) =

{
minv∈‖ϕ‖w,i

κ(v, i) if ‖ϕ‖w,i *= ∅

max if ‖ϕ‖w,i = ∅

The exceptionality degree of a formula ϕ captures the extent to

which ϕ is considered to be exceptional by the agent. The value

κw,i(¬ϕ) corresponds to the degree of necessity of ϕ according to

agent i at w, in the sense of possibility theory [7]. The following

definition provides truth conditions for L-BT formulas.

Definition 3 (Truth conditions). Let M =
(W, {Ei}i∈Agt , κ, {Ni,j}i,j∈Agt ,V) be a model and let w ∈ W .

Then:

M,w |= p iff p ∈ V(w)

M,w |= ¬ϕ iff M,w *|= ϕ

M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ

M,w |= Kiϕ iff ∀v ∈ Ei(w) : M, v |= ϕ

M,w |= B
≥α
i ϕ iff κw,i(¬ϕ) ≥ α

M,w |= T
α
i,jϕ iff ‖ϕ‖M ∈ Ni,j(w,α) with

‖ϕ‖M = {v ∈ W : M, v |= ϕ}

In the following, we say that the L-BT formula ϕ is valid, de-

noted by |= ϕ, if for every model M and for every world w in M
we have M,w |= ϕ. Moreover, we say that ϕ is satisfiable if ¬ϕ is

not valid. The following validity highlights that beliefs are necessar-

ily consistent: |= ¬(Biϕ ∧ Bi¬ϕ). In the next section, we provide

truth conditions for DL-BT formulas [∗fi ϕ]ψ, after introducing the

concept of trust-based belief change policy.

2.3 Trust-based belief change policies

A trust-based belief change policy specifies the way an agent’s plau-

sibility ranking of possible worlds should be modified depending on

the agent’s trust in the information source.

2.3.1 Additive policy

We start by considering an additive trust-based belief change policy

and denote it by the symbol add . It is inspired by Darwiche & Pearl’s

well-known iterated belief revision method [6].

Definition 4 (Additive policy). Let M =
(W, {Ei}i∈Agt , κ, {Ni,j}i,j∈Agt ,V) be a model and let f
be a function with domain Agt and codomain Plc such

that f(j) = add . Then, for all w ∈ W , we define:

κ∗
f
i
ϕ(w, j) =






Case 1. κ(w, j)

if M,w |= ¬Tj,iϕ

Case 2. κ(w, j)− κw,j(ϕ)

if M,w |= ϕ ∧ Tj,iϕ

Case 3. Cut(α+ κ(w, j))

if M,w |= ¬ϕ ∧ T
α
j,iϕ

where:

Cut(x) =






x if 0 ≤ x ≤ max

max if x > max

0 if x < 0

Suppose that the information source i publicly announces that ϕ is

true. Then, according to Definition 4, the additive rule rigidly boosts

the ¬ϕ-worlds up from where they currently are by the degree of

trust agent j has in the information source i. We show below that this

policy guarantees that information received by different information

sources is cumulated, in the sense that agent j ‘does not forget’ her

previous degree of belief about ϕ.

Note that Case 3 is well-defined because of Constraint (Constr2),

agent j cannot trust agent i with different strengths. Function Cut

is a minor technical device, taken from [2], which ensures that the

new plausibility assignment fits into the finite set of natural num-

bers Num . Moreover, note that the situation in which agent j knows

that ϕ is false is a special case of the preceding Case 1. Indeed, be-

cause of (Constr4) in Definition 1, formula Kj¬ϕ → ¬Tj,iϕ is

valid. Consequently, if i’s announcement of ϕ is incompatible with

j’s knowledge, then i’s announcement of ϕ does not have any effect

on j’s beliefs.

We are in position to give the truth condition of the dynamic oper-

ator [∗fi ϕ] for the logic DL-BT{add}.

Definition 5 (Truth conditions (cont.)). Let Plc = {add}, let M =
(W, {Ei}i∈Agt , κ, {Ni,j}i,j∈Agt ,V) be a model and w ∈ W . Then:

M,w |= [∗fi ϕ]ψ iff M∗
f
i
ϕ, w |= ψ

where M∗
f
i
ϕ = (W, {Ei}i∈Agt , κ

∗
f
i
ϕ, {Ni,j}i,j∈Agt ,V) and func-

tion κ∗
f
i
ϕ is defined according to the preceding Definition 4.

We generalize the notions of validity and satisfiability for DL-

BT{add} formulas from the the notions of validity and satisfiability

for L-BT formulas in the obvious way.

2.3.2 Properties of the additive policy

The next proposition highlights that the additive policy defined above

is syntax independent, in the sense that two public announcements

with logically equivalent formulas produce the same effects. This is

a consequence of the fact that the graded trust operator Tα
i,j is closed

under logical equivalence.

Proposition 1. If f(j) = add for all j ∈ Agt and |= ϕ1 ↔ ϕ2

then:

|= [∗fi ϕ1]ψ ↔ [∗fi ϕ2]ψ (1)

The following proposition captures two fundamental properties of

the additive policy.

Proposition 2. For all i, j ∈ Agt and for all α ∈ Num \ {0}, if

f(j) = add and ψ ∈ Obj then:

|= (Bα
j ψ ∧ ¬Tj,iϕ) → [∗fi ϕ]B

α
j ψ (2)

|= Tj,iψ → [∗fi ψ]Bjψ (3)

According to validity (2), if an agent does not trust the informa-

tion source then her beliefs about objective facts are not affected by

what the information source announces. The validity (3) is a weak-

ening of the AGM success postulate: agent j will revise her beliefs

with the objective formula ψ only if j trusts the information source’s

judgment on ψ. Validity (3) can be generalized to a sequence of an-

nouncements of any length n.



Proposition 3. For all j, i1, . . . , in ∈ Agt and for all n ∈ N, if

f(j) = add and ψn ∈ Obj then:

|= Tj,inψn → [∗f1i1 ψ1] . . . [∗
fn
in

ψn]Bjψn (4)

Let us consider the special case of the preceding validity with n =
2 and ψ ∈ Obj . We have:

|= Tj,i2ψ → [∗f1i1 ¬ψ][∗
fn
i2

ψ]Bjψ. (5)

This means that, in the case of the additive policy, if two sources

provide contradictory information, then the receiver will give priority

to the last information source, if she trusts her. Let us now illustrate

the cumulative effect of the additive policy.

Proposition 4. For all i, j ∈ Agt and for all α, β ∈ Num \ {0}, if

f(j) = add and ϕ ∈ Obj then:

|=(Tα
j,iϕ ∧ B

β
j ϕ) → [∗fi ϕ]B

Cut(α+β)
j ϕ (6)

|=(Tα
j,iϕ ∧ ¬Bjϕ) → [∗fi ϕ]B

α
j ϕ (7)

Validity (6) highlights that the additive policy takes into account

not only agent j’s trust in the source, but also what agent j believed

before the source’s announcement. In particular, if agent j trusts i’s
judgment on the objective formula ϕ with degree α and believes ϕ
with strength β then, after i’s announcement of ϕ, j will believe ϕ
with strength Cut(α + β). Validity (7) captures the complementary

case in which agent j does not believe ϕ before the announcement.

In this case, the strength of j’s belief about ϕ is only determined by

j’s trust in the information source i.
The two validities of Proposition 4 can actually be generalized to

a sequence of announcements of any length n as it is highlighted by

Proposition 5. In particular, (i) if ϕ is an objective formula and j
believes ϕ with a certain degree α, then j’s degree of belief about ϕ
at the end of a sequence of n announcements of ϕ is equal to the sum

of α and j’s degrees of trust in the sources of the announcements;

(i) if ϕ is an objective formula and j does not believe ϕ, then j’s

degree of belief about ϕ at the end of a sequence of n announcements

of ϕ is equal to the sum of j’s degrees of trust in the sources of

the announcements. More generally, the additive policy cumulates

information about objective facts coming from different sources.

Proposition 5. For all j, i1, . . . , in ∈ Agt , for all α1 . . . , αn, γ ∈
Num \ {0} and for all n ∈ N, if f1(j) = . . . = fn(j) = add and

ϕ ∈ Obj then:

|=(Tα1

j,i1
ϕ ∧ . . . ∧ T

αn
j,in

ϕ ∧ B
γ
jϕ) →

[∗f1i1 ϕ] . . . [∗
fn
in

ϕ]B
Cut(α1+...+αn+γ)
i ϕ (8)

|=(Tα1

j,i1
ϕ ∧ . . . ∧ T

αn
j,in

ϕ ∧ ¬Bjϕ) →

[∗f1i1 ϕ] . . . [∗
fn
in

ϕ]B
Cut(α1+...+αn)
i ϕ (9)

In propositions 2–5, we only consider objective formulas as they

do not hold in general. If we drop the restriction to objective formu-

las, the validity (3) in Proposition 2 does not work anymore. To see

this, suppose that ψ is a Moore-like sentence of the form p ∧ ¬Bjp.

Then, the formula Tj,i(p∧¬Bjp) → [∗fi (p∧¬Bjp)]Bj(p∧¬Bjp)
is clearly not valid. In fact, Bj(p∧¬Bjp) is equivalent to ⊥. Similar

observations hold for Propositions 3–5.

Notice that the additive policy satisfies the following commutativ-

ity property.

Proposition 6. For all i1, i2 ∈ Agt , if f(j) = add for all j ∈ Agt

and ϕ ∈ Obj then:

|= [∗fi1ϕ][∗
f
i2
ϕ]ψ ↔ [∗fi2ϕ][∗

f
i1
ϕ]ψ (10)

This means that if all agents adopt the additive policy then the

order of the announcements of an objective formula ϕ performed by

several information sources does not matter.

Example 1. Let us illustrate the additive policy. Assume that

Num = {0, 1, 2, 3, 4, 5} s.t. 0 means ‘null’, 1 means ‘very weak’, 2
means ‘weak’, 3 means ‘fair’, 4 means ‘strong’ and 5 means ‘very

strong’.

Bill has to decide whether he buys a certain stock. He hesitates

because he is uncertain whether the stock will go upward (stockUp).

Assume the following initial epistemic state for Bill:

Hyp1 =def UBillstockUp

Bill asks two stockbrokers their opinions: Mary and Jack. He first

asks Mary. Then, he asks Jack. Both Mary and Jack say that the stock

will go upward and that it is convenient to buy it. We assume that

Bill trusts fairly Mary’s judgement on stockUp, and Bill trusts very

weakly Jack’s judgement on stockUp:

Hyp2 =def T
3
Bill,MarystockUp ∧ T

1
Bill,Jack stockUp

Suppose Bill uses the additive policy. In this situation, after having

received the information from Mary and Jack, Bill will strongly be-

lieve that proposition stockUp is true. As Proposition 5 above high-

lighs, Bill cumulates the information provided by the two information

sources. Specifically, if f(Bill) = f ′(Bill) = add then:

|=(Hyp1 ∧Hyp2 ) →

[∗fMarystockUp][∗f
′

Jack stockUp]B4
BillstockUp.

Now, suppose that Mary and Jack provide contradictory informa-

tion about proposition stockUp. As highlighted by Proposition 3,

priority will be given to the last information source. That is, if

f(Bill) = f ′(Bill) = add then:

|=(Hyp1 ∧ Hyp2 ) →

[∗fMary¬stockUp][∗f
′

Jack stockUp]BBillstockUp.

In the next section we present a new policy, the compensatory pol-

icy that does not satisfy the general property given in Proposition 3.

In case of two contradictory information provided by two sources,

the compensatory policy balances them depending on the degrees of

trust in the sources.

2.3.3 Compensatory policy

The compensatory policy, denoted by the symbol comp, is defined

as follows.

Definition 6 (Compensatory policy). Let M =
(W, {Ei}i∈Agt , κ, {Ni,j}i,j∈Agt ,V) be a model and let f
be a function with domain Agt and codomain Plc such

that f(j) = comp. Then, for all w ∈ W , we define:

κ∗
f
i
ϕ(w, j) =






Case 1. κ(w, j)

if M,w |= ¬Tj,iϕ

Case 2. Cut(κ(w, j)− α)

if M,w |= ϕ ∧ T
α
j,iϕ

Case 3. Cut(α+ κ(w, j))

if M,w |= ¬ϕ ∧ T
α
j,iϕ ∧ B̂jϕ

Case 4. κ(w, j)

if M,w |= ¬ϕ ∧ Tj,iϕ ∧ Bj¬ϕ

where Cut(x) is the same as in Definition 4.



Let us focus on Cases 2, 3 and 4, as Case 1 is the same as the

one in Definition 4. Case 2 states that, if j trusts i’s judgment on ϕ
then, after i’s announcement of ϕ, the exceptionality degree of a ϕ-

world for j should be decreased depending on how much j trusts i,
in order to decrease the strength of j’s belief about ¬ϕ. Cases 3 and

4 distinguish the situation in which ϕ is compatible with j’s beliefs

from the situation in which it is not. For Case 3, the exceptionality

degree of a ¬ϕ-world for j should be increased in order to increase

the strength of j’s belief about ϕ. For Case 4, agent j should not

change her plausibility ordering in order to preserve consistency of

beliefs. Case 4 guarantees that (Constr1) in Definition 1 is preserved.

The truth condition of the dynamic operator [∗fi ψ] as well as the

notion of validity for the logic DL-BT{add,comp} are defined in a

similar way from the ones for the logic DL-BT{add} given above.

It is important to remark that the compensatory policy as well as

the additive policy guarantee that the updated model M∗
f
i
ϕ is indeed

a model in the sense of Definition 1. In particular:

Proposition 7. If M is a model in the sense of Definition 1 and

f(j) ∈ {add , comp} for all j ∈ Agt , then M∗
f
i
ϕ is a model in the

sense of Definition 1 too.

2.3.4 Properties of the compensatory policy

Let us consider some basic properties of the compensatory policy.

The first point to remark is that, different from the additive policy, the

compensatory policy does not satisfy the weakening of the success

postulate of Proposition 2. That is, if f(j) = comp and ψ ∈ Obj ,

the formula Tj,iψ → [∗fi ψ]Bjψ is not valid.

The following Proposition 8 provides a list of validities for the

compensatory policy.

Proposition 8. For all i, j, i1, i2 ∈ Agt , for all α, α1, α2, β ∈
Num \ {0}, if f(j) = f ′(j) = comp and ϕ ∈ Obj then:

|=(Tα
j,iϕ ∧ B

β
j ϕ) → [∗fi ϕ]B

Cut(α+β)
j ϕ (11)

|=(Tα
j,iϕ ∧ Ujϕ) → [∗fi ϕ]B

α
j ϕ (12)

|=(Tα
j,i¬ϕ ∧ B

β
j ϕ) → [∗fi ¬ϕ]B

Cut(β−α)
j ϕ (13)

|=(Tα1

j,i1
ϕ ∧ T

α2

j,i2
¬ϕ ∧ B

β
j ϕ) →

[∗fi1ϕ][∗
f ′

i2
¬ϕ]BCut(Cut(β+α1)−α2)

j ϕ (14)

|=(Tα1

j,i1
ϕ ∧ T

α2

j,i2
¬ϕ ∧ Ujϕ) →

[∗fi1ϕ][∗
f ′

i2
¬ϕ]BCut(α1−α2)

j ϕ (15)

According to the validities (11) and (12), if i announces the ob-

jective formula ϕ, ϕ is consistent with j’s beliefs and j adopts the

compensatory policy, then j will increase the strength of her belief

about ϕ w.r.t. her trust’s degree in i. The two validities distinguish

the situation whether j believes ϕ, or whether j is uncertain about ϕ.

The last three key validities (13)–(15) characterize the compensatory

aspect. According to the validity (13), if ϕ is an objective formula

then, after i announces that ϕ is false, j will decrease the strength of

her belief about ϕ depending on how much she trusts i. The validi-

ties (14) and (15) considers information about objective facts coming

from two different sources. Suppose that i1 says ϕ, while i2 says ¬ϕ.

Then, j should compensate the information received from i1 by de-

creasing the strength of her belief about ϕ depending on how much

she trusts i2. Let us illustrate this by revisiting our previous example.

Example 2. Let us suppose that Mary and Jack provide contra-

dictory information about proposition stockUp. Suppose Bill trusts

Mary’s judgment on stockUp with degree 3 and trusts Jack’s judg-

ment on ¬stockUp with degree 1:

Hyp2 ′ =def T
3
Bill,MarystockUp ∧ T

1
Bill,Jack¬stockUp

Now, assume Mary announces that stockUp is true and Jack an-

nounces that stockUp is false. If Bill adopts the compensatory policy,

he will then believe that stockUp is true with strength 3 − 1 = 2.

That is, if f(Bill), f ′(Bill) = {comp} :

|=(Hyp1 ∧ Hyp2
′) →

[∗fMarystockUp][∗f
′

Jack¬stockUp]B2
BillstockUp.

3 Axiomatization

In this section, we provide a complete axiomatization for the variant

of DL-BT where Plc = {add , comp}, namely DL-BT{add,comp}.

This logic has so-called reduction axioms which allow to reduce ev-

ery formula to an equivalent L-BT formula without dynamic oper-

ators [∗fjψ]. That elimination together with the rule of replacement

of equivalent axioms and rules of inference for the static logic L-BT

provides an axiomatization.

Proposition 9 provides reduction axioms for boolean formulas, as

well as the knowledge and graded trust operators.

Proposition 9. The following equivalences are valid:

[∗fjϕ]p ↔ p

[∗fjϕ]¬ψ ↔ ¬[∗fjϕ]ψ

[∗fjϕ](ψ1 ∧ ψ2) ↔ ([∗fjϕ]ψ1 ∧ [∗fjϕ]ψ2)

[∗fjϕ]Kiψ ↔ Ki[∗
f
jϕ]ψ

[∗fjϕ]T
α
i,kψ ↔ T

α
i,k[∗

f
jϕ]ψ

The following abbreviation is useful to formulate the reduction

axioms for the graded belief operators. For all α > max we give the

following abbreviation:

B
≥α
i ϕ =def Kiϕ.

Proposition 10 provides the reduction axiom for the graded belief

operators based on the additive policy.

Proposition 10. Let f(i) = add and α ∈ Num \ {0}. Then, the

following equivalence is valid:

[∗fjϕ]B
≥α
i ψ ↔

(
(¬Ti,jϕ → B

≥α
i [∗fjϕ]ψ)∧

∧

β∈Num\{0},γ1∈Num

(
(Tβ

i,jϕ ∧ B
γ1

i ¬ϕ) →

(B≥α+γ1

i (ϕ → [∗fjϕ]ψ)∧

B
≥Cut(α−β)
i (¬ϕ → [∗fjϕ]ψ))

))

Proposition 11 provides the reduction axiom for the graded belief

operators based on the compensatory policy.

Proposition 11. Let f(i) = comp and α ∈ Num \ {0}. Then, the

following equivalence is valid:

[∗fjϕ]B
≥α
i ψ ↔

(
(¬Ti,jϕ → B

≥α
i [∗fjϕ]ψ)∧

∧

β∈Num\{0}

(
((Tβ

i,jϕ ∧ B̂iϕ) →

(B≥α+β
i (ϕ → [∗fjϕ]ψ)∧

B
≥Cut(α−β)
i (¬ϕ → [∗fjϕ]ψ)))∧

((Tβ
i,jϕ ∧ Bi¬ϕ) →

(B≥α+β
i (ϕ → [∗fjϕ]ψ)∧

B
≥α
i (¬ϕ → [∗fjϕ]ψ)))

))



These two propositions translate the different cases considered in

Definitions 4 and 6. For instance, line 1 of Prop.10 describes Case 1

of Def. 4 (no change if no trust) while lines 2–4 correspond to the

two options for changing when trust holds (Cases 2 and 3 of Def. 4).

As the rule of replacement of equivalences ψ1↔ψ2

ϕ↔ϕ[ψ1/ψ2]
preserves

validity, the equivalences of Propositions 9, 10 and 11 together with

this allow to reduce every DL-BT{add,comp} formula to an equiva-

lent L-BT formula. Call τ the mapping which iteratively applies the

above equivalences from the left to the right, starting from one of

the innermost modal operators. τ pushes the dynamic operators in-

side the formula, and finally eliminates them when facing an atomic

formula.

Proposition 12. Let ϕ be a DL-BT{add,comp} formula. Then: (i)

τ(ϕ) has no dynamic operators [∗fjψ], and (ii) τ(ϕ) ↔ ϕ is valid.

The axiomatic system of the logic DL-BT{add,comp} consists of

the axioms and rules of inference in Figure 1. Notice that the rule

of necessitation for graded belief (i.e., from ϕ infer B
≥α
i ϕ) does not

need to be added, as it is deducible from the rule of necessitation for

knowledge, the fifth axiom for graded belief and modus ponens.

(1) Axioms for L-BT :

– all tautologies of classical propositional logic

– axioms K, T, 4 and 5 for knowledge

∗ Ki(ϕ → ψ) → (Kiϕ → Kiψ)

∗ Kiϕ → ϕ

∗ Kiϕ → KiKiϕ

∗ ¬Kiϕ → Ki¬Kiϕ

– axioms for graded belief

∗ B
≥α
i (ϕ → ψ) → (B≥α

i ϕ → B
≥α
i ψ)

∗ ¬(B≥1
i ϕ ∧ B

≥1
i ¬ϕ)

∗ B
≥α
i ϕ → KiB

≥α
i ϕ

∗ ¬B
≥α
i ϕ → Ki¬B

≥α
i ϕ

∗ Kiϕ → B
≥α
i ϕ

∗ B
≥α+1
i ϕ → B

≥α
i ϕ

– axioms for graded trust

∗ Tα
i,jϕ → ¬T

β
i,jϕ if α $= β

∗ Tα
i,jϕ → KiT

α
i,jϕ

∗ Tα
i,jϕ → K̂iϕ

(2) Rules of inference for L-BT:

– from ϕ and ϕ → ψ infer ψ

– from ϕ infer Kiϕ

– from ϕ ↔ ψ infer Tα
i,jϕ ↔ Tα

i,jψ

(3) Further axioms and rules of inference for DL-BT:

– from ψ1 ↔ ψ2 infer ϕ ↔ ϕ[ψ1/ψ2]

– reduction axioms of Propositions 9, 10 and 11

Figure 1. Axiomatization of DL-BT{add,comp}

Theorem 1. The logic DL-BT{add,comp} is completely axiomatized

by the principles given in Figure 1.

(Sketch). Thanks to Prop. 12 and the fact that DL-BT{add,comp} is

a conservative extension of L-BT, we only need to prove that L-BT

is completely axiomatized by the group of axioms (1) and the group

of rules of inference (2) in Figure 1. The proof consists of two steps.

First, we provide a relational semantics for L-BT and prove that this

semantics is equivalent to the L-BT semantics of Def. 1. Then, we

use the canonical model construction in order to show that the group

of axioms (1) and the group of rules of inference (2) in Fig. 1 provide

a complete axiomatics for L-BT with respect to this semantics.

4 Conclusion

We have proposed a dynamic logic of graded belief and trust that

supports reasoning about trust-based belief change. We have consid-

ered two kinds of trust-based belief change policy and studied their

logical properties in detail. In addition, we have provided a sound

and complete axiomatization for our logic.

Following the belief revision tradition, in future work we plan to

extend the present work with an axiomatic analysis of the additive

and compensatory policies. More concretely, for every policy, we in-

tend to come up with a list of postulates that fully characterize it.
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[10] S. O. Hansson, E. Fermé, J. Cantwell, and M. Falappa, ‘Credibility lim-

ited revision’, Journal of Symbolic Logic, 66, 1581–1596, (2001).
[11] N. Laverny and J. Lang, ‘From knowledge-based programs to graded

belief-based programs, part ii: off-line reasoning’, in Proc. of IJCAI’05,
pp. 497–502, (2005).

[12] C.-J. Liau, ‘Belief, information acquisition, and trust in multi-agent sys-
tems: a modal logic formulation’, Art. Intel., 149(1), 31–60, (2003).

[13] J. A. Plaza, ‘Logics of public communications’, in Proc. of the 4th In-

ternational Symposium on Methodologies for Intelligent Systems, 201-
216, (1989).

[14] W. Spohn, ‘Ordinal conditional functions: a dynamic theory of epis-
temic states’, in Causation in decision, belief change and statistics,
105–134, Kluwer, (1988).

[15] H. van Ditmarsch, ‘Prolegomena to dynamic logic for belief revision’,
Synthese, 147(2), 229–275, (2005).

[16] H. van Ditmarsch, W. van der Hoek, and B. Kooi, Dynamic Epistemic

Logic, volume 337 of Synthese Library, Springer, 2007.




