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A PROBABILISTIC APPROACH TO CLASSICAL SOLUTIONS OF
THE MASTER EQUATION FOR LARGE POPULATION EQUILIBRIA

JEAN-FRANCOIS CHASSAGNEUX*, DAN CRISAN' AND FRANCOIS DELARUE?

ABSTRACT. We analyze a class of nonlinear partial differential equations (PDEs) de-
fined on R? x P2 (R?), where P2 (R?) is the Wasserstein space of probability measures on
R? with a finite second-order moment. We show that such equations admit a classical
solutions for sufficiently small time intervals. Under additional constraints, we prove
that their solution can be extended to arbitrary large intervals. These nonlinear PDEs
arise in the recent developments in the theory of large population stochastic control.
More precisely they are the so-called master equations corresponding to asymptotic
equilibria for a large population of controlled players with mean-field interaction and
subject to minimization constraints. The results in the paper are deduced by exploit-
ing this connection. In particular, we study the differentiability with respect to the
initial condition of the flow generated by a forward-backward stochastic system of
McKean-Vlasov type. As a byproduct, we prove that the decoupling field generated
by the forward-backward system is a classical solution of the corresponding master
equation. Finally, we give several applications to mean-field games and to the control
of McKean-Vlasov diffusion processes.

Keywords: Master equation; McKean-Vlasov SDEs; forward-backward systems; decou-
pling field; Wasserstein space; master equation.

MSC Classification (2000): Primary 93E20; secondary 60H30, 60K35.

1. INTRODUCTION

The theory of large population stochastic control describes asymptotic equilibria
among a large population of controlled players with mean field interaction and sub-
ject to minimization constraints. It has received a lot of interest since the earlier works
on mean-field games of Lasry and Lions [23| 24, 25] and of Huang, Caines and Malhamé
[20]. Mean-field game theory is the branch of large population stochastic control theory
that corresponds to the case when equilibria inside the population are understood in the
sense of Nash and thus describe consensus between the players that make the best deci-
sion they can, taking into account the current states of the others in the game. We cover
this class of control problems in Section There are other types of large population
equilibria in the literature yielding different types of asymptotic control problems. As an
example, the case when players obey a common policy controlled by a single center of
decision is investigated in [5], [9]. We cover this distinct control problem in Section [5.3]

Lasry and Lions described equilibria by means of a fully-coupled forward-backward
system consisting of two partial differential equations: a (forward) Fokker-Planck equa-
tion describing the dynamics of the population and a (backward) Hamilton-Jacobi-
Bellman equation describing the optimization constraints. In his seminal lectures at
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2 JEAN-FRANCGOIS CHASSAGNEUX, DAN CRISAN AND FRANCOIS DELARUE

the Collége de France, Lions noticed that the flow of measures solving the Fokker-Planck
equation (that is the forward part of the system) can be interpreted as the characteristic
trajectories of a nonlinear PDE. The equilibrium of a large population of players with
mean field interaction is characterized through a nonlinear partial differential equation
set on an enlarged state space that contains both the private position of a typical player
and the distribution of the population. The solution of the PDE contains all the neces-
sary information to entirely describe the equilibria of the game and, on the model of the
Chapman-Kolmogorov equation for the evolution of a Markov semi-group, it is called the
master equation of the game. This equation has the form []

dru(t, z, p) = Au(t, z, p) + f (z, u(t, z, p), Bu(t, z, ), v) —&—fRd [Cu(t, z, p)](-)dpu(-), (1.1)

for t > 0 and (z, u) € RY x Po(R?), where P2(R?) is the Wasserstein space of probability
measures on R? with a finite second-order moment. In , v is the image of u by
the mapping RY 5  + (x,u(t, z, u)); moreover, A and B are differential operators that
differentiate in the x variable, respectively at the second and first order, whilst C' is a non-
local operator that involves differentiation in the p variable. The notion of differentiation
in the measure variable follows Lions’ definition (see [4]).

Since its introduction in Lions’ lectures, there have been only a few papers on the
master equation. In the notes he wrote following Lions’ lectures (see [4]), Cardaliaguet
discusses the particular case when players have deterministic trajectories, and where the
solutions to the master equation is understood in the viscosity sense. In this framework,
the existence of classical solutions has just been investigated for short time horizons by
Gangbo and Swiech in the preprint [16]. Recently, in the independent works [T, 8] (17, L8]
and with different approaches, several authors revisited, mostly heuristically, the master
equation in the case when the dynamics of the players are stochastic. A few months ago,
in a lecture at the Collége de France |27], Lions gave an outline of a proof, based on PDE
arguments, for investigating the master equation rigorously in the latter case. In [I] [§],
the notion of master equation is extended to other types of stochastic control problem
with players that obey a common policy controlled by a single center of decision.

The goal of this paper is to develop a probabilistic analysis of the class of equations
. We seek classical solutions for a class of PDEs that incorporates the master equa-
tions for both types of policies (individual or collective) and for players with dynamics
that can be either deterministic or stochastic. Beyond their purely theoretical interest,
classical solutions (as opposed to viscosity solutions) are expected to be of use when
handling approximated equilibria in a variety of situations: For instance, they help in
proving the convergence of the equilibria, when computed over finite systems of play-
ers, toward the equilibria of the asymptotic game. This is indeed a challenging question
that remains partially open.ﬂ Similarly, the analysis of numerical schemes for computing
the equilibria certainly benefits from robust regularity estimates for the solution of the
master equation.

One of the reason for using a probabilistic approach is that there has been an ex-
panding literature in probability theory on forward-backward systems, which have been
widely used in stochastic control. Although mostly limited to the finite dimension, the
existing theory gives a helpful insight into the general mechanism for deriving the master
equation. One of the most noticeable results is that a forward-backward system may be

!The master equation is introduced here in its forward form. However in its application to mean field
games it is used in its backward form, see equation 1}
2See however the recent advances in [13} 22].
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decoupled by means of a decoupling field provided the system is uniquely solvable, see
e.g. [29, B0]. More precisely, the decoupling field allows one to express the backward
component of the solution as a function of the forward one. When the coefficients of the
forward-backward system are deterministic, the decoupling field satisfies (in a suitable
sense) a quasilinear PDE. In the case of mean-field games, the forward-backward system
consists of two coupled PDEs, one of Fokker-Planck type and another one of Hamilton-
Jacobi-Bellman type, and the corresponding quasilinear PDE is nothing but the master
equation.

Another reason for analysing the master equation by means of probabilistic argu-
ments is that equilibria in large population stochastic control problems driven by either
individual or collective policies may be characterized as solutions of finite-dimensional
forward-backward systems of the McKean-Vlasov type, see [5] [7]. The reformulation is
based either on the connection between Hamilton-Jacobi-Bellman equations and back-
ward SDEs or on the stochastic Pontryagin principle, see [14} 35] for the basic mechanisms
in the non McKean-Vlasov framework. This reformulation has a crucial role as it allows
one to reduce the infinite-dimensional system made of the Fokker-Planck equation and of
the Hamilton-Jacobi-Bellman equation to a finite dimensional system. The price to pay
is that the coefficients of the finite dimensional system may depend upon the law of the
solution, in the spirit of McKean’s theory of nonlinear SDEs. Inspired by Pardoux and
Peng’s work [31] on the connection between backward SDEs and classical solutions to
semilinear PDEs, we develop a systematic approach for analyzing the smoothness of the
solution of the master equation by investigating the smoothness of the flow generated by
the solution of the McKean-Vlasov forward-backward system with respect to the initial
input. However, because of the McKean-Vlasov nonlinearity, the analysis is far from a
straightforward adaptation of the classical result of Pardoux and Peng [31]. The main
issue is that the independent variable includes a probability measure, which requires
a non-trivial extension of the notion of differentiability with respect to a probability
measure.

Several notions of derivatives with respect to a probability measure have been in-
troduced in the literature. For example, the notion of Wasserstein derivative has been
discussed within the context of optimal transport, see the monograph by Villani [34].
An alternative, though connected, approach was suggested by Lions, see [4]. Generally
speaking, Lions’ approach consists in lifting (in a canonical manner) functions defined
on the Wasserstein space Po(R?) (the space of probability measures on RY, with finite
second-order moments endowed with the Wasserstein metric) into functions defined on
L?(Q, A, P;R%), the space of square integrable d-dimensional random variables defined
on the probability space (2,.4,P). In this way, the operation of differentiation with re-
spect to a probability measure is defined as the Fréchet differentiation in L?(0Q, A, P; R9).
This approach is especially suited to the mean field games framework. Indeed, the
probabilistic representation we use yields a canonical lifted representation of the equilib-
ria on L%(Q, A,P;R?%) that carries the underlying noise. The McKean-Vlasov forward-
backward system that models the equilibria consists of a forward component describing
the dynamics of the population and a backward one describing the dynamics of the so-
lution of the master equation along the state of the population. Any perturbation in
L?(Q, A, P;R?%) of the initial condition of the forward component thus generates a per-
turbation in L?(Q, A, P; R?) of the solution of the master equation. Using this strategy,
the smoothness of the solution of the master equation is deduced by investigating the
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smoothness of the flow generated by the McKean-Vlasov forward-backward system with
respect to an initial condition in L?(2, A, P;R%).

In the sequel, we apply this strategy to general forward-backward systems of equa-
tions of McKean-Vlasov type. Under suitable assumption, we prove that existence and
uniqueness of solutions holds for the system and that the corresponding decoupling field
is the unique classical solution of the time reversed version of the PDE . To do this
we prove first the smoothness of the decoupling field by using the notion of differentiation
described above. Next, we apply a tailor-made chain rule on the Wasserstein space to
identify the structure of the PDE from the coefficients of the forward-backward system.
In general, the result holds for sufficiently small time intervals, as it is usually the case
with forward-backward processes.

Inspired by [I1], we then show that, provided we have an a priori estimate for the
gradient of the solution of the master equation, existence and uniqueness of a classical
solution may be extended, via an inductive argument, to arbitrary large time intervals.
This requires the identification of a suitable space of solutions that is left invariant along
the induction, which is one of the most technical issues of the paper. In the framework of
large population stochastic control, we identify three classes of examples under which the
a priori bound for the gradient is shown to hold. The first two belong to the framework of
mean-field games. To bound the gradient in each of them, we combine either convexity
(in the first example) or ellipticity (in the second example) with the so-called Lasry-
Lions condition, used for guaranteeing uniqueness of the equilibria, see [4]. To the best
of our knowledge, except the aforementioned video by Lions [27], the solvability of the
master equation in the classical sense is, in both cases, a new resultﬂ The third example
concerns the situation when players obey a common center of decision, in which case
the stochastic control problem may be reformulated as an optimization problem over
controlled McKean-Vlasov diffusion processes. In this last example, the proof mainly
relies on convexity.

In a parallel work to ours made available recently, Buckdahn et al. [3] adopted
a similar approach to study forward flows, proving that the semigroup of a standard
McKean-Vlasov stochastic differential equation with smooth coefficients is the classical
solution of a linear PDE defined on RY x Py(R%). The results in [3] do not cover nonlinear
PDEs of the type that include master equations for large population equilibria.
It must be also noticed that a crucial assumption is made therein on the smoothness
of the coefficients, which restrict rather drastically the scope of applications. We avoid
this, however, we do pay a heavy price for working under more tractable assumptions,
see Remark 2.5 below.

We treat here systems of players driven by idiosyncratic (or independent) noises. Mo-
tivated by practical applications, see [§, [19], in subsequent work, the players will be
driven by an additional common source of noise, in which case the McKean-Vlasov in-
teraction in the forward-backward equations under consideration becomes random itself,
as it then stands for the conditional distribution of the population given the common
source of randomness.

The paper is organized as follows. The general set-up together with the main results
are described in Section ] The chain rule on the Wasserstein space is discussed in
Section [3] The smoothness of the flow of a McKean-Vlasov forward-backward system
is investigated in small time in Section In Section [5, we provide some applications

3 As far as we understand the sketch of the proof in [27], the underlying arguments are reminiscent of
the way in which we use convexity in the first class of examples.
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to large population stochastic control. The proofs of some technical results are given in
Appendix.

2. GENERAL STEP-UP AND OVERVIEW OF THE RESULTS

Let (2, A,P) be a probability space supporting a d-dimensional Brownian motion
(Wi)e=0 and a square integrable random variable £, independent of (W})i>o. We denote
by (]—"f’w)t;o the augmented filtration generated by £ and (W;)¢=o. For a given terminal
time T' > 0, we counsider the following system of equations:

{ XS = 5 + SS b(XTv Ytl‘v ZT': II;D(XT,Y,«))dr + SS U(XT7 Y;'v P(XT7YT))dWT7

selt,T] (2.1
}/S = g(XTa ]PXT) + S;F f(XT7 }/T') ZT? P(X7-,Y,-))dr - SZ Zr‘dwf') [ ] ( )

The processes X, Y and Z are d, m and m x d dimensional, respectively. The coefficients
b: REx R™ x R™*4 x Py(R? x R™) — R% o : RY x R™ x Po(R? x R™) — RIX4,
iR x R™ x R™*4 x Py(RY x R™) — R™ and g : R? x Py(R?) — R™ are measurable
functions that satisfy conditions that will be imposed below. P(x, y,) denotes the law of
(X,,Y,). The system is called a forward-backward system of McKean-Vlasov type.
Notice that, for simplicity, the coefficients b, o and f are time homogeneous and X has
same dimension as the noise W. These constraints can however be lifted and a similar
analysis will apply.

In the following, we will show that, under convenient assumptions, there exists a
unique solution of the forward-backward system together with a decoupling field
U:[0,T] x R x Po(R?) — R™ to (2:I). Namely, U is a function such that

Ys =U(s,Xs,Px,), 0<s<T. (2.2)
Finally, we will show
(t, 2, 1) € [0,T] x R? x Py(RY) — U(T — t,2, )

is a classical solution of the equation (1.1).

2.1. Definition of U. The construction of the decoupling field U is typically discussed
under the assumption that the existence and uniqueness of the solution of the system
is holds. See, e.g. [3] 6], [7], for conditions under which this holds for an arbitrary
time horizon T. We adopt here a different approach: We first focus on the case where
T is sufficiently small so that the existence and uniqueness of the solution of the system
hold. This helps us construct the decoupling field U for the same time horizon and,
therefore deduce the existence of a unique local solution of PDE . Secondly we use
results from [5, 7] to pass from a small time to an arbitrary time horizon and there justify
the existence of a unique global solution to .

A common strategy to introduce the decoupling field consists in letting the initial
time in vary. Without any loss of generality, we can assume that (£2,.4,P) is
equipped with a filtration (F;)i>0 (satisfying the usual condition) such that (2, Fo,P)
is rich enough to carry R%valued random variables with any arbitrary distribution in
P2(RY) and (W;)=0 is an (F})i=o-Brownian motion. In particular, £ in may be
taken as an JFp-measurable square-integrable random variable.

In the sequel, we often use the symbol u to denote the law of £&. We will use the
notation [O] := Pg to denote the law of the random variable © (so then u = [£]).
Within this set-up, we consider the following version of with the forward component
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starting at time ¢ from £ € LQ(Q Fi, P;R%):

X§’£ _ §+St (9t§ (0) )dT+S: Efjﬁz(o)’[e?f,(o)])dwm
R S ey YR T

with 65¢ = (XH€ Y€, Zt’é) and 0440 = (Xtaﬁ,yt:i).

A crucial remark for the subsequent analysis is to notice that the Yamada—Watanabe
theorem extends to equations of the same type as . More precisely, one can prove
that, whenever pathwise uniqueness holds, solutions are also unique in law [2I, Example
2.14]. As a consequence, it follows that the law of (X*¢ Y*¢) only depends upon the
law of £. In other words, [(X5%,V;"%)] is a function of [€] = p. Given u € Po(RY), it
thus makes sense to consider ([(X,Y;")])i<r<r without specifying the choice of the
lifted random variable £ that has u as distribution. We then introduce, for any = € R9,
a stochastic flow associated to the system ([2.3] , defined as

XPr = oot (00O ar + 5 o (007 (6250 )) aw,
YETR = g(XETIXEE]) 4§ F(6Em (6050 dr — §F ZE A,

with 5%+ = (Xta:u ybo,u thu) and Hta:u(O) (XtJ:;L Yta:u)

We now have all the ingredients to give the definition of a decoupling field to on
[0,T] x R? x Po(R%). For the following definition, assume for the moment that, for any
(t,x, ) € [0,T] x R x Po(R?) and any random variable & € L?(Q, F, P; R?) with dis-
tribution u, has a unique (progressively-measurable) solution (Xé’é, Y3, Zﬁ’i) se[t,T]
such that

e[t,T] (2.3)

(2.4)

T
sup \X§’5|2, sup |Yst’§|2, and J \Z§’5|2d3,
selt, T se[t, T t

are integrable. Assume also that (2.4) has a unique (progressively-measurable) solution
(XLmt Yot Zﬁ"r’i)se[tﬂ such that

T
sup |X§’x’5|2, sup \YZ’“’”QQ, and J \Zﬁ’x’f\st,
se[t,T] selt,T] t

are integrable. Then, we may let:
Definition 2.1 (The decoupling field U). The function U : [0,T] x R? x Py(R?) — R™
defined as

Ult,z,u) =Y (tz,p) € [0,T] x R? x Py(RY) (2.5)
is called the decoupling field of the forward-backward system (2.3|) (or, equivalently, of the
corresponding stochastic flow (2.4)).

The decoupling property (2.2 of U is proved in Proposition n below, under assump-
tions that guarantee existence and uniqueness to and (| .

Recall now that the 2-Wasserstein distance W5, deﬁned on Po(RF), k > 1 is given by

1/2
W2<u,u>=infU = o2y (du, dv); 7(- x BY) = 4, v(R’fx»:u} .
Y (Rk)2

As already mentioned, a very convenient way to prove strong existence and uniqueness

to (2.3) and (2.4) consists in working first with small time horizons. For T sufficiently
small, there exists a unique solution to the systems (2.3) and (2.4) under the following
assumption:
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Assumption ((HO)(i)). There ezists a constant L > 0 such that the mappings b, o,
f and g are L-Lipschitz continuous in all the variables, the distance on Po(R? x R™),
respectively Po(R?) being the 2- Wasserstein distance.

The existence of a local solution to the systems and under assumption
(HO)(i) is not new (see for instance [0, Proof of Lemma 2|). The proof consists of a
straightforward adaption of the results in [11] for classical forward backward stochastic
differential equations (FBSDEs). To be precise, one shows that the systems and
are uniquely solvable under assumption (HO)(i) provided T" < ¢ for a constant
¢:=c(L) > 0. Examples where the result can be extended to long time horizons will be
discussed in Section Bl

It is quite illuminating to observe that the system (2.4]) can be rewritten as a classical
coupled FBSDE with time dependent coefficients, as follows

{ Xo™t = x4 5 by.pu (7, 0771 )dr + §; otu(r, 9£7w7#7(0))dWr’ (2.6)

}/St’x#L — gt#jl (X;zxuu) + Si fmp, (,r.’ 0£7x7u)dr _ Sf Z/ﬁ’x”udWr,

with (l;tyu,fw,&w,gt#)(r,x,y, z) := (b, f,0,9)(x,y, 2, [9?5’(0)]). Basically, for this new
set of coefficients, the dependence upon the measure is frozen since p and [Gt’é’(o)] are
fixed and do not depend on z. In particular, when replacing = by £ in and (2.6)), for
some random variable £ with p as distribution, uniqueness of solutions to the classical
(time-inhomogeous) FBSDE implies that (Xb&#, V&R ZEGH) = g5¢. Then, the
representation allows us to characterize the decoupling field of the system as
follows:

Under (HO)(i), we know from the classical theory of coupled FBSDEs [11] that,
for T sufficiently small, for any ¢ € [0,7], there exists a continuous decoupling field
Uy o [6,T] x RY 3 (s,2) — Uppu(s,z) to such that Yi™* = U, (s, Xe™") for
s € [t,T], the representation remaining true when x is replaced by an Fj-measurable
square-integrable random variable (see |11, Corollary 1.5]). In particular, choosing s = t,
we get U(t,x,pu) = Uw(t, x). We deduce that

Proposition 2.2. Given (t,z,u) € [0,T] x R? x Po(RY) and ¢ € L?(Q, F;, P;R?), with
[€] = p, we have, for T small enough, for all s € [t,T],

UEM(S? (L‘) = U(Sv Z, [X?gD ) }/St,z,u = U(Sv ng’uv [X?g]) and Ysté = U(S7 X§7£7 [X?g])
Proof. By uniqueness of the solution to (2.3)), the processes

t,€ t,€
(X" Vo) ooy and  (XES Y9 e

u
t,€ t€
coincide, so that [(X5™, Vi) = [(X55, Vb)) for w e [s, T]. We deduce that
ﬁt,#(sv ) = US’[X?E](& ')a
which is the first equality. Now, the second equality follows from the fact that

YL = Oy, XE) = U, ey (3 X7,

The last inequality is obtained by inserting X§’§ instead of x in the first equality and
observing Uw(s,Xé’g) = UW(S,X?&“) = YIOH = vIE O
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2.2. Smoothness of U. Introduce now the additional assumption:

Assumption ((HO)(ii)). The functions b, o, f and g are twice differentiable in the vari-
ables x, y and z, the derivatives of order 1 and 2 being uniformly bounded and uniformly
Lipschitz-continuous in the variables x, y and z, uniformly in the parameter .

Under (HO)(i—ii), we know from the classical theory of coupled FBSDEs [11] that the
decoupling field Uy, is once continuously differentiable in time and twice continuously
differentiable in the x variable on [t, T'] x RZ. Tt also satisfies zbor Viu(s, Xﬁ’x’”) with

Viu(s, @) = 0,Up (s, 2)6¢,(s, , Uy (s, z)), sel[t,T], zeR% (2.7)

Notice that, throughout the paper, gradlents of real-valued functions are expressed as
row vectors. In particular, the term 0, U, u(s,x) is thus an m x d matrix as U, u takes
values in R™.

Moreover, the decoupling field is a classical solution of the following quasi-linear PDE
(or system of quasi-linear PDEs since m may be larger than 1)ﬁ

63[715,#(3; .7}) + azUt,u(S7 *r)i)t,u (37 z, Ut,,u(sa .’IJ), ﬁt,,u(sa .’IJ)) (28)
1 - .. - ; ~ .
+ iTr[angw(s,x)(at,#aliu) (s,:c, Utyu(s,:r))] + ft,,l(s,:r, Ut#(s,x),vt,#(s,x)) =0,

on [t, T] x R? with the final boundary condition Uy ,(T,z) = g;,(2), = € R%. In (2:8), the
trace reads as the m dimensional vector (Tr[@%mﬁti#(s, x)(c}w&lu)(s, x, UW(S, z))])1<i<m-
Recalling the link between Uy ,(t,-) and U(t,-,u), it is then clear that the function
U(t,-, ) is twice continuously differentiable in the x variable.

A more challenging question is the smoothness in the direction of the measure. Gener-
ally speaking, we will show that U(t,x, ) is twice differentiable in the measure direction,
in a suitable sense, provided that the coefficients of the system are also regular in
the measure direction. For the reader’s convenience, we provide next a brief introduction
to the notion of regularity with respect to the measure argument, further details being
given in Section 3]

Given a function V : Po(RY) — R, we call the lift of V on the probability space
(2, A, PY| the mapping V : L*(Q2, A, P) — R defined by

V(X)=V([X]), XeL*Q,AP).

Following Lions (see [4]), the mapping V is then said to be differentiable (resp. C!) on the
Wasserstein space Pa(R?) if the lift V is Fréchet differentiable (resp. Fréchet differentiable
with continuous derivatives) on L%(Q, A, P). The main feature of this approach is that
the Fréchet derivative DV(X), when seen as an element of L?(12, A, P) via Riesz’ theorem,
can be represented as
DV(X) = 0,V ([X])(X),

where 0,V ([X]) : R 5 v — 9,V([X])(v) € R? is in L*(R%,[X];R9). In this way the
tangent space to Po(R?) at a probability measure p is identified with a subspace of
L*(RY, p; RY).

Note that the map 0,V () : RY 5 v +— 9,V (u)(v) € R? is uniquely defined up to a
pu-negligible Borel subset. Choosing a version for each p might be a problem for handling

4For any matrix a we will denote its transpose by a' and its trace by Tr(a).

5For notational convenience, the lifting procedure is done onto the same probability space that carries
the driving Brownian motion W. Alternatively, one can use an arbitrary rich enough atomless probability
space, see [4] and Section [3|for details.
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it as a function of the joint variable (v, ). In the next section, we will present conditions
under which a continuous version of d,U(u)(-) can be identified, such a version being
uniquely defined on the support of . The next step is then to discuss the smoothness
of the map R? x Py(R?) 5 (v, ) — 9,V (u)(v). We say that V is partially C? if the
mapping P2(R?) x R? 5 (u,v) — 0,V (u)(v) is continuous at any point (u,v) such
that v € Supp(u) and if, for any pu € P2(R?), the mapping R? 5 v — 0,V (u)(v) is
differentiable, its derivative being jointly continuous with respect to p and v at any point
(11,v) such that v € Supp(u). The gradient is then denoted by 0,[0,V (1)](v) € R¥*4.

Note that, 0,V (u)(v) is a d-dimensional row vector and 0,[0,V (u)](v) is a d x d
matrix.

2.3. Solution of a Master PDE. In Section 8] we prove a chain rule for functions
defined on the space Po(R?) which are partially C* in the above sense. Applying the
chain rule to U(t, z,-), we get:

U(t, 2, [XE4]) — U(t,2,[€])
- L B [@U(t, 2, [XHE]) (CXHE)) b((OES), [eﬁvf@])] dr (2.9)

LB [MA 0 DO (707 (05, 00

The above identity relies on new notations. Indeed, in order to distinguish the original
randomness in the dynamics of , which has a physical meaning, from the random-
ness used to represent the derivatives on the Wasserstein space, we will represent the
derivatives on the Wasserstein space on another probability space, denoted by (Q, A, I@’)
(Q, A, IP’) is a copy of the original space (€2,.4,P). In particular, for a random variable £
defined on (2, A,P), we denote by (£) its copy on . All the expectations in the above
expression may be translated into expectations under E. Nevertheless, we will refrain
from doing this to avoid ambiguities between “lifts” and random variables constructed
on the original space (€2, A, P). We will state conditions under which the expectations in
are indeed well-defined.

Notice that, in , we used the same convention as in for denoting gradients.
The term 0,U (¢, , [X$])((XE®)) is thus seen as an m x d matrix and the trace term
Te[0u[0, U] (E, 2, [XES]) ((XEE) (00) (055D, [059])] as a vector of dimension m.

Combined with the analysis of the smoothness of U, we will then show that the
function [0, 7] x R? x Po(RY) 3 (¢, z, u) —> U(t,x, ) solves, up to a time reversal, a PDE
of the form . For the time being, we present a formal calculation to deduce this
claim, the complete argument being given in Section |4l The basic observation is that, in
the framework of Proposition [2.2] the time-increments of U may be expanded as

U(s+ h,z, [X;f]) —U(s,x, [X;g]) =U(s+ h,z, [X;f]) —U(s+ h,x, [Xth])

. ) (2.10)
+ Upp(s + h,x) — U (s, x),
for t < s < s+h < T. Applying the chain rule to the difference term U (s +h, z, [X5¢]) —

U(s+h,z, [Xth]) on the right hand side of the previous equality and assuming that the
derivatives in the chain rule are continuous in time so that we can let h tend to 0, we
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obtain
d
[@] |h=0

— SB[ (5,2, [XEDICEE) (00) (@), [02EON] | + 2005, ).

Uls + b, [XE€]) = =B [6(¢059), [0 ) ,U (5., [XED (XD | 211)

Choosing s = t, we deduce that U is right differentiable in time (it is then differentiable
in time provided that the right-hand side is continuous in time). Recalling together
with the notation p = [£] and using the transfer theorem to express the expectations
that appear in the chain rule as integrals over R?, we then get that U is a solution to
the equation

OU(t, 1) + 0,U(t, x, u)b(w, Ult,z,p), 05U (t,x, 1), v)

b S,U ) (00")] + (2 Utz 0), 25U (1,2, ), )

+ JRd ouU(t, , M)(v)b(v, U(t,v,p), 05U (t, v, @), V)d,u(v) (2.12)

+s f Te[2,[0,U (1, 2, 1] (v) (00 (v, U (£, 0, 1), ) [ du(w) = O,
Rd

for (t,z,pu) € [0,T] x R? x Py(R?), with the terminal condition U(T,z,u) = g(x, u),
where v is the law of (§ U(t,&, 1)) when [¢] = p and

tyx,p) = 0,U(t,x, w)o(x,U(t, z, pn),v).

2U(t,
In particular, u(t, -, ) = ( —t,-,) satisfies the equation (1.1]), the operators A, B and
C therein being defined as follows:

Au(t,z,p) = qu(t,x,,u)b(a:,u(t,x,u),ﬁgu(t,m,u),u)
g T2 u(t, v, ) (o0") (2, ult, 2, ), )]
Bu(t,z,pn) = 0u(t,x,p)o(z,u(t,z,pn),v)
Cu(t,z,p)(v) = dyu(t,z, p)(v )b(v,u(t,v,u),ﬁgu(t,v,u),l/)
+%Tr[é’v [Dult, 2, 1)] () (00) (0, u(t, v, ), )], v e BY,

with the initial condition u(0,x, 1) = g(x, ), and with the same convention as above for
the meaning of v and of dJu.

Our first main result is that, for small time horizons, all the partial derivatives that
appear above make sense as continuous functions whenever the coefficients are sufficiently
smooth. In this sense, U is a “classical” solution of , see Theorem right below.
We can actually prove that it is the unique one to satisfy suitable growth conditions, see
Theorem Our second main result is the extension to arbitrarily large time horizons
for three classes of population equilibria. We refer the reader to Subsection for a
short account of the second result and to Section | for complete statements.

2.4. Assumptions. For an L? space, we use the notation | - |2 as a generic notation
for the corresponding L?-norm. For a linear mapping Y on an L? space, we let || Y]] :=
Sup|y|,=1 | (v)l2, and for a bilinear form on an L? space, we let in the same way || || :=
SUD o =1, vz |2 =1 [ T (V1, V2) 2.

For a function h from a product space of the form R¥ x P (R!) into R, where k,1 > 1, we
denote by d,h(w, 1) the derivative (if it exists) of h with respect to the Euclidean variable
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w and by DH(w,x) the Fréchet derivative of the lifted mapping H : L*(Q, A, P;RY) 3
X — h(w,[x]). The Fréchet derivative is seen as a linear form on LZ.
Concerning the first order differentiability of the coefficients, we shall assume:

Assumption. (H1) In addition to (HO)(i), the mappings b, f, o, g are differentiable
in (w=(z,y, z),u)ﬁf with jointly continuous derivatives in (w,,u)m in the following sense:
There exist a constant L (in addition to the constant L defined in (HO)(i)), a constant
a =0 and a functional @, : [L2(Q, A,P;RH]? 3 (x, X') — Pa(x, X') € Ry, continuous at
any point (x,X) of the diagonal, such that, for all x,x" € L*(Q, A,P;RY),

/ 2c /2c 2c /12 1/2 /
a6 X) SE{(1+ P+ P+ B =X} whenx ~ ¥, (2.13)

and, for h matching any of the coordmate of b, f, o or g, for all w,w' € R* and
X, X' € L*(2, A, B R,

IDHw, )| < L, [[DH(w, x) = DH(w', X )| < L(jw — o' + ®a(x, X)),
and

|Cwh(w, XD < L. |wh(w, [x]) = duh(w’, [XD] < L(jw — w'| + @a(x, X))-
Moreover, for any x € L*(Q, A, P;R), the family (DH(w, X))werr, identified by Riesz’

theorem with a collection of elements in L?(Q2, A, P;RY), is uniformly square integrable.

Remark 2.3. (i) In particular we note that |DH(w, x) - X'| < L||X'||2 (where “’ denotes
the action of the duality).

(ii) Notice that the right-hand side in (2.13|) might not be finite. Actually, we shall
make use of when x and X' coincide outside a bounded subset R!, namely x(w) =
X' (w) whenever |x(w)| and |x'(w)| are larger than some prescribed R = 0, in which cases
the right-hand side in is finite. For instance, choosing x = X', we get from ([2.13))
that ®, 1s zero on the diagonal. Notice also that, when o = 0, we can directly choose
®a(x, X) = E[lx — X"]'*.

(1i1) Pmposition below shows that, under (H1), the function Rl 3 v — ,h(w, p)(v)
admits, for any w € R¥ and p € P2(RY), a continuous version. It allows to represent
DH(w, x), when identified with an element of L?(2, A,P;R!) by Riesz’ theorem, in the
form 0,h(w,[x])(x). We stress that such a continuous version of R 5 v+ 0,h(w, u)(v)
is uniquely defined on the support of u. Reexpressing the bounds in (H1), il salisfies

Ef[0uh(w, ) ()] < L
Ef[0h(w. [X))(0) = auh(w’. D] < L{jw = w'| + @a(x. X)),

Moreover, the uniform square integrability property is equivalent to say that the family
(Quh(w, [X]) (X)) werr s uniformly square integrable for any x € L*(Q, A, P;RY).

(iv) The uniform integrability assumption plays a magor role in our analysis. Taking
into account the fact that all the (DH(w, X))yerr have a norm less than L, this amounts

(2.14)

6Here 1 stands for the generic symbol to denote the measure argument.

"Under the standing assumptions on the joint continuity of the derivatives, it is easily checked that
the joint differentiability is equivalent to partial differentiability in each of the two directions w and u.

8For the presentation of the assumption, it is here easier to take h as a real-valued function, which
explains why we identify h with a coordinate of b, f, o or g; however, we will sometimes say —rather
abusively— that h matches b, f, o or g.
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to require that

lim sup sup DH(w,x) - (A1a4)]| = 0.
P(A)—0,AeA ek AeLQ(Q,A,P;Rl):HAHgsL‘ ( ) |
We stress the fact that it is automatically satisfied when o = 0 in (2.13). Indeed, we shall
prove in (4.14) below that, whenever a = 0, there exists a constant C' = 0 such that, for
all we R¥, |DH(w, x)| (identified with a random variable) is less than C(1+ |x| + [x|2).

Concerning the second order differentiation of the coefficients, we shall assume:

Assumption ((H2)). In addition to (H1), all the mappings (x,y,z) — b(z,y,z, 1),
(x,y,2) — f(z,y,2z,1), (z,y) — o(z,y,n) and x — g(x,pn) are twice differentiable for
any p € P2(RY) the second-order derivatives being jointly continuous in (x,vy,z) and
w. Moreover, for h equal to any of the coordinates of b, f, o or g, for any w € R*
and p € Po(RY), with the appropriate dimensions k and 1, there erists a continuously
differentiable version of the mapping R! 3 v — Ouh(w, p)(v) such that the mapping
RE x Rl 5 (w,v) + 0,h(w, pu)(v) is differentiable (in both variables) at any point (w,v)
such that v € Supp(u), the partial derivative R* x Rl 5 (w,v) — 0,[0,h(w, 1)](v) being
continuous at any (w,v) such that v e Supp(u) and the partial derivative R* x Supp(u) 3
(w,v) > Ou[0uh(w, 1)](v) being continuous in (w,v). With the same constants L and o
as in (H1), for we R¥ and x € L*(Q, A,P;RY),

02w, D] + (0w [0 w, D] 00T + E[leu[uh(w, D] 0T < L,
and, for w,w' € R* and x,x’ € L?(Q, A, P;RY),
|0l (w, [X]) = O h (', XD (X)]
+ E[|0w [0 0w, D] 00) = w[uh(w’, D]
+ E[|6,[0,h(w, D] 00) = o [duh(aw’, D]
< L{lw —w'| + @a(x. X},
In (H2), we include the assumption:
Assumption ((Ho)). The function o is bounded by L.
Note that (H2) contains (HO0)(ii) (and obviously (H0)(i) and (H1)).

Remark 2.4. The specific form of (H1) and (H2) is dictated by our desire to establish
results for arbitrary large horizons. Generally speaking, such results are established by
means of a recursive argument, which consists in using the current value U(t,-,-) of the
decoupling field at time t as a new boundary condition, or put it differently in letting
U(t,-,-) play at time t the role of g at time T when the FBSDEs and are
considered on [0,t] instead of [0,T]. A delicate point in this construction is to choose
a space of boundary conditions which is stable, namely in which U(t,-,-) remains along
the recursion. We remark that we cannot prove that boundary conditions with globally
Lipschitz derivatives in the measure argument are stable, even in small time. One of
the contribution of the paper is thus to identify a space of terminal conditions which are
indeed stable and which permits to apply the recursion method.

Remark 2.5. The reader may compare (HO), (H1) and (H2) with the assumptions in
[B]. We first point out that, in [3], the first L bound in ([2.14) is assumed to hold in L.
The example h([£]) = |2, for which the derivative has the form 0,h([£])(v) = v/|]2,
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shows that asking O, h to be in L™ is rather restrictive. We also observe that, differently
from [3], we do not require the coefficients to admit second-order derivatives of the type
82 The reason is that we here establish the chain rule for functions from Po(R?) to R
see Theorem .

that may not have second-order derivatives of the type ﬁw,

2.5. Main results: from short to long time horizons and application to control.
Inspired by Assumptions (HO)(i), (H1) and (H2), we let:

Definition 2.6. Given non-negative real numbers B,a,b, with a < b, we denote by
Ds([a,b]) the space of functions V : [a,b] x RY x Py(RY) 5 (t, 2, u) > V (t,z, ) € R™ for
which we can find a constant C = 0 such that

(i) For any t € [a,b], the function V (t,-,-) : R? x Po(R?) 3 (2, p) = V (L, z, u) satisfies
the same assumption as g in (HO)(i), (H1) and (H2), but with o replaced by 5 and
with L and L replaced by C' (and thus with w = x € RY, v € R? and x € L*(Q, A,P;RY)
in the various inequalities where these letters appear);

(ii) For any x € RY and p € Po(RY), the function [a,b] 3 t — V(t,z,p) is differ-
entiable, the derivative being continuous with respect to (t,x, ) on the set [a,b] x R? x
Pa2(RY). Moreover, the functions

[a,b] x RY x L2(Q, A, P;RY) 3 (t,2,6) — 0,V (t z[£]) e RY

[a,0] x R x L2(Q, A, P;RY) 5 (t,2,8) — 3,V (t,z,[€])(€) € L*(Q, A, P;R?)
[a,b] x R? x L2(Q, A,P;RY) 3 (t,2,6) — 2V(t,z,[£]) € RY,

[a,b] x RT x L*(Q, A, P;RY) 3 (t,2,6) = 0:[0,V (1,2, [ED)](€) € L*(, A, P;RY)
[a,b] x RY x L2(Q, A, P;RY) 5 (t,2,€) — [0,V (t,z,[£])](€) € L*(Q, A, P;RY)

are continuous.

For the reader’s convenience, when [a, b] = [0,T"], we will simply use the notation Dg
for Ds([0,T7).

The set | J g=0 Dp is the space we use below for investigating existence and uniqueness
of a “classical” solution to (2.12)). For short time horizons, our main result takes the
following form (see Theorem {4.33]):

Theorem 2.7. Under Assumption (H2), there exists a constant ¢ = c(L) (c not de-
pending upon L nor o) such that, for T < ¢, the function U defined in (2.5)) is in Day1
and satisfies the PDE (2.12]).

Uniqueness holds in the class | J 520 Dag:

Theorem 2.8. Under (HO)(i) and (Ho), there exists at most one solution to the PDE
(2.12) in the class U,8>0 Dg (regardless of how large the time horizon T is).

The extension to arbitrarily large time horizons will be discussed in Section [5} The
principle for extending the result from small to long horizons has been already covered in
several papers, including [11, 29]. Basically, the principle is to prove that, following the
recursive step, the decoupling field remains in a space of admissible boundary conditions
for which the length of the interval of solvability can be bounded from below. Generally
speaking, this requires, first, to identify a class of functions on RY x Py(R?) left invariant
by the recursive step and, second, to control the Lipschitz constant of the decoupling
field, uniformly along the recursion. In the current framework, the Lipschitz constant
means the Lipschitz constant in both the space variable and the measure argument.
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As suggested by Theorem we are not able to prove that the space Dg, for a fixed
B = 0 is left invariant by the recursion step. In particular, for the case § = 0, this
means that, even in short time, we cannot prove that the decoupling field has Lipschitz
derivatives in the direction of the measure when the terminal condition ¢ has Lipschitz
derivatives. This difficulty motivates the specific form of the local Lipschitz assumption
in (H1) and (H2). Indeed, Theorem shows that the set (-, Dpg is preserved by the
dynamics of the master PDE under (H2) although none of the sets Dg has been shown
to be stable. More precisely, we allow the exponent « in (H1) and (H2) to increase by
1 at each step of the recursion, Theorem guaranteeing that the set (J 4>0 Dp is indeed
stable along the induction.

In Section [5] we give three examples when the Lipschitz constant of the decoupling
field can be indeed controlled. First, we consider the forward-backward system deriving
from the tailor-made version of the stochastic Pontryagin principle for mean-field games.
Then, we establish a Lipschitz estimate of U, in the case when the extended Hamiltonian
of the control problem is convex in both the state and control variables and when the
Lasry-Lions monotonicity condition that guarantees uniqueness of the equilibrium is
satisfied (see [4]). We then interpret U as the gradient in space of the solution of the
master equation that arises in the theory of mean-field games and, as a byproduct, we get
that, in this framework, the master equation for mean-field games is solvable. Second, we
propose another approach to handle the master equation for mean-field games when the
extended Hamiltonian is not convex in x. We directly express the solution of the master
equation as the decoupling field of a forward-backward system of the McKean-Vlasov
type. We then prove the required Lipschitz estimate of U when the cost functionals
are bounded in z and are linear-quadratic in «, the volatility is non-degenerate and
the Lasry-Lions condition is in force. Third, we consider the forward-backward system
deriving from the stochastic Pontryagin principle, when applied to the control of McKean-
Vlasov diffusion processes. Then, we establish a similar estimate for the Lipschitz control
of U, but under a stronger convexity assumption of the extended Hamiltonian —namely,
convexity must hold in the state and control variables and also in the direction of the
measure— (in which case there is no need of the Lasry-Lions condition). Again, this
permits us to deduce that the master equation associated to the control problem has a
global classical solution.

We may summarize with the following statement (again, we refer to Section [5| for a
complete account):

Theorem 2.9. We can find general examples taken from large population stochastic
control such that, for a given T > 0, (2.3) and (2.4) have a unique solution and the
decoupling field U belongs to UBBO Dy and satisfies the PDE (2.12). In particular, the

corresponding forward equation (1.1) has a unique classical solution on [0, 0).

2.6. Frequently used notations. For two random variables X and X', the relation-
ship X ~ X’ means that X and X’ have the same distribution. The conditional expec-
tation given F; is denoted by E;. Let t € [0,T). For a progressively-measurable process
(Xs)seft,r) With values in R!, for some integer [ < 1, we let

T P/2191/p 1p
X 3000 := Et[<f |X3|2ds> ] » X r = Be| sup |Xp]
t selt,T]

T p/291/p 1p
1 X 4r ;:E[U |X5|2ds) ] o X[ =B sup [X,p|
t se[t,T]

(2.15)
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In particular, we denote by SP([t,T];R!) the space of continuous and adapted random
processes from [t,T] to R! with a finite norm | - |s» and by HP([t, T];R!) the space of
progressively-measurable processes from [t,T] to R! with a finite norm | - | .

In the sequel, the generic letter C' is used for denoting constants the value of which
may often vary from line to line. Constants whose precise values have a fundamental role
in the analysis will be denoted by letters distinct from C.

3. CHAIN RULE — APPLICATION TO THE PROOF OF THEOREM

In this section, we discuss the chain rule used in and apply it to prove Theorem
2.8 Namely, we provide a chain rule for (U(u))i=0 where U is an R-valued smooth
functional defined on the space P2(R?) and (ju)¢=0 is the flow of marginal measures of
an R%valued Ité process (X¢)=o0.

There are two strategies to expand (U(u))i=0. The first one consists, for a given
t > 0, in dividing the interval [0, ¢] into sub-intervals of length h = ¢/N, for some integer
N =1, and then in splitting the difference U(u;) — U (o) accordingly:

N—-1
Uue) = Ulpo) = Y [U(in) = Uprg—1yn)]-
i=0

The differences U(uin) — U(p(i—1)n) are expanded by applying Taylor’s formula at order
2. Since the order of the remaining terms in the Taylor expansion are expected to be
smaller than the step size h, we can derive the chain rule by letting A tend to 0. This
strategy fits the original proof of Itd’s differential calculus and is presented in details in
[3, Section 6] and in [§, Section 6].

An alternative strategy consists in approximating the dynamics differently. Instead
of discretizing in time as in the previous strategy, it is conceivable to reduce the space
dimension by approximating the flow (u):>0 with the flow of empirical measures

1 N

t=0

where (X})i=0, ..., (X{¥)i=0 stand for N independent copies of (X;);>0. Letting
1N
vz!, ..., 2V e RY, uN(xl,...,wN)=U<NZ<5xz>, (3.1)
/=1

we expand (uV(X}, ..., X}N))=0 by standard Ité’s formula. Letting N tend to the
infinity, we then expect to recover the same chain rule as the one obtained by the first
method. Here u! is interpreted as a finite dimensional projection of U.

The first strategy mimics the proof of the standard chain rule. The second one gives
an insight into the significance of the differential calculus on the space of probability
measures introduced by Lions in [4]. Both strategies require some smoothness conditions
on U: Clearly, U must be twice differentiable in some suitable sense. From this viewpoint,
the strategy by particle approximation is advantageous: Taking benefit of the finite
dimensional framework, by using a standard mollification argument it works under
weaker smoothness conditions required on the coefficients. In particular, differently from
[3, 8], we do not require the existence of 6ZMU to prove the chain rule, see Theorem .
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3.1. Full C? regularity. We first remind the reader of the notion of lifted version of U.
On L%(Q, A, P;RY) (the o-field A being prescribed), we let

UX)=U([X]), XeL*Q,APRY.

Instead of (€2, A,P), we could use (Q, A,P), but since no confusion is possible with
the “physical” random variables that appear in and , we continue to work on
(Q, A P).

Following Lions’ approach (see [4, Section 6]), the mapping U is said to be differen-
tiable on the Wasserstein space if the lift ¢/ is differentiable in the sense of Fréchet on
L?*(Q, A,P). By Riesz’ theorem, the Fréchet derivative DU(X), seen as an element of
L?(Q, A,P;R%), can be represented as

DU(X) = 0,U ([X])(X),

where 0,U([X]) : R? 3 v — 9,U([X])(v) € R? is in L%(R?, u; RY), see [4, Section 6].
Recall that, as a gradient, d,U([X])(v) will be seen as a row vector.

A natural question to investigate is the joint regularity of the function ¢,U with
respect to the variables p and v. This requires a preliminary analysis for choosing a
‘canonical version’ of the mapping 0,U (1) : R? 3 v — 0,U (1) (v) € R%, which is a priori
defined just as an element of L?(RY, u; RY). In this perspective, a reasonable strategy
consists in choosing a continuous version of the derivative if such a version exists. For
instance, whenever DU is Lipschitz continuous, we know from [3] that, for any u €
P2(R?), there exists a Lipschitz continuous version of the function R% 5 v +— 0,U (1) (v),
with a Lipschitz constant independent of p. This result is made precise in Proposition
3.8 below.

The choice of a continuous version is especially meaningful when the support of u is the
entire R%, in which case the continuous version is uniquely defined. Whenever the support
of p is strictly included in R, some precaution is however needed, as the continuous
version may be arbitrarily defined outside the support of p. To circumvent this difficulty,
one might be tempted to look for a version of 0,U(u) : R? 3 v — 0,U(u)(v) € RY, for
each p € Po(R?), such that the global mapping

Po(R?) x R? 3 (,v) = 0,U (1) (v) € R (3.2)

is continuous. Noticing, by means of a convolution argument, that the set {u' € Po(R?) :
supp(i) = R} is dense in Po(R?), this would indeed permit to uniquely determine the
value of 0,U (1) (v) for v outside the support of u (when it is strictly included in R).

Unfortunately, in the practical cases handled below, the best we can do is to find a
version of 0,U(u) : R? 3 v — 0,U(u)(v) € RY, for each p € Po(RY), such that the global
mapping is continuous at the points (u,v) such that v € supp(p).

The fact that 0,U(u) : RY 5 v — 0,U(u)(v) € R? is not uniquely determined outside
the support of 4 is not a problem for investigating the differentiability of 0,U (p) in v. It
is an issue only for investigating the differentiability in p. We thus say that the chosen
version of R? 5 v — 9,U(u)(v) is differentiable in v, for a given u € Pa(R?), if the
mapping R? 3 v +— 0,U(u)(v) is differentiable in the standard sense, the derivative being
denoted by R? 5 v — 0,[0,U(p)](v) (which belongs to R4*4). Note that there is no
Schwarz’ theorem for exchanging the derivatives as U does not depend on v.

Now, if we can find a jointly continuous version of the global mapping (8.2), 0,U
is said to be differentiable in u, at v € RY, if the lifted mapping L*(Q, A,P;R%) 3
X — 0, U([X])(v) € RY is differentiable in the Fréchet sense. Then, according to
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the previous discussion, the derivative can be interpreted as a mapping R? 3 v/ —
A0, U([X])(0)](") € R in L2(RY, p; R¥*4), which we will denote by R? 5 v/
8ZU ([X])(v,0). In a first step, we will prove 1t6’s formula when this additional assump-
tion on the smoothness of d,U in p is in force. More precisely, we will say that U is fully
C? if the global mapping 9,U in is continuous and the mappings

Po(R) x RY 3 (1, v) = 0,U (1) (v),
Po(R) x RY 3 (1, v) = 0,[0,U ()] (v),
Po(RY) x R x R 3 (p,v,0") — HZU(M)(U,U'),

are continuous for the product topologies, the space P(R?) being endowed with the
2-Wasserstein distance.

Under suitable assumptions, it can be checked that full C? regularity implies twice
Fréchet differentiability of the lifting &/. As we won’t make use of such a result, we
refrain from providing its proof in the paper. We will be much more interested in a
possible converse: Can we expect to recover that U is C? regular (with respect to v and
1), given the fact that ¢ has some Fréchet or Gateaux differentiability properties at the
second-order? We answer this (more challenging) question in Subsection below.

To clarify the significance of the notion of full C? regularity, we now make the con-
nection between the derivatives of u”¥ and those of U:

Proposition 3.1. Assume that U is C'. Then, for any N > 1, the function u” is
differentiable on RY and, for all z',..., 2" € RY, the mapping

Rs2' — ouulN(zt,...,2V) e RY

reads
1 LN
N/ 1 Ny _ i
Opiu (T, ... ¢ )——Né’NU <N€:§15m2>(:c).

If, moreover, U is fully C?, then, for any N > 1, the function u is C* on RN and, for
all 2, ..., 2N € RY, the mapping

RY x R? 5 (2%, 27) — 0% ulN (... 2") e RPXY

satisfies

N N
2, sulN (xt a:N):ia 0,U l23(5 ()6 -—i—i&ZU iz& (z*,27)
2l sty N v|Cu N Pt x? 2,7 N2 n N = ¢ ) .

Proof. The formula for the first order derivative has been already proved in [5]. It
remains to deduce the formula for the second order derivative. When 4 & j, it is a direct
consequence of the first order formula. When ¢ = j, the computations require some
precaution as differentiability is simultaneously investigated in the directions of p and v
in 0,U(p)(v), but, by the joint continuity of the second-order derivatives é’zU(u)(v) and
0v0uU (1) (v,v"), they are easily handled. O

Remark 3.2. Assume that U is fully C?. Then, for any X € L*(Q, A, P;R?) and Y, Z €
L(Q, A, P;R?), the mapping

9 :R?3 (hk) —» U([X +hY +kZ]) eR
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is of class C* on R?, with

d  do d
5] k) = E[Q,U([X +hY +kZ])(X +hY + kZ)Z]

= E[Tr(0,0,U ([ X + hY + kZ]|)(X + hY + kZ)ZQ®Y )]
+EE[Tr(S2U ([X + hY + kZ]|)(X + hY +kZ, X + hY + kZ)ZQY)],

the triplet (X,Y, Z) denoting a copy of (X,Y,Z) on (Q,fl, ]f”) and the tensorial product
operating on R,

By Schwarz’ Theorem, the roles of Z andY can be exchanged, which means (choosing
h =k =0) that

E[Tr(0,0,U ([X])(X)Z®Y)] + EE[Tr (62U ([X])(X, X)ZQ®Y)]
= E[Tr(0,0,U ([X])(X)Y ® Z)]| + EE[Tr (62U ([X]) (X, X)Y ® Z)].
Choosing Y of the form cp(X) and Z of the form eyp(X), with P(e = 1) =P(e = —1) =

1/2 and € independent of X, and considering two bounded Borel measurable functions ¢
and v : R* - R?, we deduce that

E[Tr(2,0,U ([X]) (X)0(X) ® ¥(X))] = E[Tr(0,0,U ([X]) (X)(X) @ p(X)) ], (3.4)

from which we deduce that 0,0,U([X])(X) takes values in the set of symmetric matrices
of size d. By continuity, it means that 0,0,U (11)(v) is a symmetric matriz for any v € RY
when p has the entire RY as support. By continuity in u, we deduce that 0,0,U(p)(v) is
a symmetric matriz for any v e R and any p € Po(RY).

Now, choosing Y and Z of the form ¢(X) and (X) respectively and plugging
mto , we deduce that

(3.3)

EE[Tr (U ([X]) (X, X)p(X) @ ¥ (X))] = EE[Te(G;U ([X])(X w(X X))]
= EE[Tr (9,0 ([X]) (X, X)9(X) ® (X))
— s[4 (1X) (5.0 o(x ( >®¢<X>)]
iU([X])( X, X))!. By the same argu-

from which we deduce that 02U ([X])(X ,X) = (0
(n

ment as above, we finally deduce that (? )(v, ") = ((3 U(p )( o)), for any v, e R?

and any p € Po(RY).

3.2. The chain rule for U fully C2. We consider an R%valued It6 process
dX; = bdt + o dW;, Xoe L*(Q, A, P),

where (b;)i=0 and (o3);=0 are progressively-measurable processes with values in R¢ and,
respectively, R¥? respectively with respect to the (augmented) filtration generated by
W, such that

T
VT > 0, EU (ool + ]at|4)dt] < 400, (3.5)
0
The following is the main result of this section

Theorem 3.3. Assume that U is fully C* and that, for any compact subset KK < Pa(R?),

p[ | an) + U[auU<u>]<v>\2du<v>}<+oo, (3.6)

pekl
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Then, letting p; := [X¢] and a; := o¢(0y)T, for any t >0,

t

U(pe) = Ulpo) + fo E[0,U (ps)(Xs)bs|ds + ;L E[Tr(0,(0,U (1)) (Xs)as)]ds. (3.7)

The proof relies on a mollification argument captured in the proof of the following result:

Proposition 3.4. Assume that the chain rule (3.7)) holds for any function U that is fully
C? with first and second order derivatives that are bounded and uniformly continuous (with
respect to both the space and measure variables). Then Theorem holds, in other words,

the chain rule (3.7) is valid for any fully C? function U satisfying (3.6]).

Proof. [Proof of Proposition ] Let U be a fully C? function that satisfies [3-6). We
‘mollify’ U in such a way that its mollification is bounded with bounded first and second
order derivatives. Let ¢ : R? — R? be a smooth function with compact support and, for
arbitrary p € P2(R?) define

Yue Pa(RY),  (Uxg)(n) :=Ul(etp),

where pfu denotes the image of p by . The lifted version of U * ¢ is nothing but U o ¢,
where (with an abuse of notation) ¢ is canonically lifted as ¢ : L*(Q, A, P;R?%) 3 X
©(X). It is then quite standard to check that:

d
2V =)@ = (D[l (et (e()] S22
k=1 E Tl
d
AU+ elie.) = (3 [BUtem) (e0). o0, SEOF W),
k=1 ’ ! J O
! (3.8)
d 2
2ufault « 2l @) = (3 [ou (ot ()], =2 (0)
k=1 R

d
+ k; [&J [0,U (pti) ] (tp(v))]wa&z;’,C (@Z;@(@)M_l J
o~ £ 0x; j =Ly

Recall from Remark that the second-order derivatives that appear in have
some symmetric structure. Now, since ¢ is compactly supported, the mapping P2 (R?) 3
1 — ot has a relatively compact rangeﬂ (in P2(R%)). By the continuity of U and its
derivatives, we deduce that U * ¢ and its first and second order derivatives are bounded
and uniformly continuous on the whole space.

Assume now that the chain rule has been proved for any bounded and uniformly
continuous U with bounded and uniformly continuous derivatives of order 1 and 2. Then,
for some U just satisfying the assumption of Theorem [3.3] we can apply the chain rule
to U * ¢, for any ¢ as above. In particular, we can apply the chain rule to U x ¢, for any
n = 1, where (p,)n>1 is a sequence of compactly supported smooth functions such that
(s Oupns O2p[nlly - -5 02 [@nla)(v) — (v,14,0,...,0) uniformly on compact sets as
n — o0, Iz denoting the identity matrix of size d. In order to pass to the limit in the chain
rule , the only thing is to verify some almost sure (or pointwise) convergence in the
underlying expectations and to check the corresponding uniform integrability argument.

9Tightness is obvious. By boundedness of ¢, any subsequence converging in the weak sense is also
convergent with respect to Wo.
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Without any loss of generality, we can assume that there exists a constant C' such
that
on(0) < Clol,  |wpn(v)] S C and |07, [pn(v)]kl < C, 1<k <d, (3.9)

for any n > 1 and v € R? and that ¢, (v) = v for any n > 1 and any v with |v| < n.
Then, for any € Po(R?) and any random variable X with p as distribution, it holds

W3 (ntp, 1) < E[lon(X) = X "1 x2m] < CE[IX[* 1 x50} ],

which tends to 0 as n — o0. By continuity of U and its partial derivatives and by ({3.8)),
it is easy to deduce that, a.s.,

Uxpn(p) = Uln),  Ou[U*on](0)(X) — 0,U (1) (X),
000 (U % £0) | (1) (X) = 2,[,U ()] (X).
Moreover, we notice that
ig;;laﬂaﬂ [U % 0] () (X)” + |00 [0 (U * 02) (M)](X)|2] < . (3.11)
Indeed, by and , it is enough to check that

| [t (a0 a0 + [ oot (el ateasm ] <o

n=1

(3.10)

which follows directly from , noticing that the sequence (@pf1)n>1 lives in a compact
subset of Po(R?) as it is convergent.

By and and by a standard uniform integrability argument, we deduce
that, for any ¢ > 0 and any s € [0,¢] such that E[|bs|? + |os|*] < oo,

nlirile[aﬂ(U * o) ([XD(X)bs] = E[0,U([X])(X)bs],
Jim E{Tr[0y(0u(U * ) ([X])) (X)as|} = E{Tr[0,(0,U([X]))(X)as]}.

Recall that the above is true for any p € Po(R?) and any X € L%(Q, A, P;R?) with u
as distribution. In particular, we can choose p = us and X = X, in the above limits.
As the bound E[|bs|? + |os|*] < oo is satisfied for almost every s € [0,¢], this permits
to pass to the limit inside the integrals appearing in the chain rule applied to each of
the (U * ¢ )n>1. In order to pass to the limit in the chain rule itself, we must exchange
the pathwise limit that holds for almost every s € [0,¢] and the integral with respect to
the time variable s. The argument is the same as in ([3.11)). Indeed, since the flow of
measures ([ X;])o<s<:t is continuous for the 2-Wasserstein distance, the family of measures
(([on(Xs)])ogs<t)n>1 is relatively compact and thus

sup sup E[}auU([SOn(Xs)]) (Son(XS))}Q + ‘av [auU([SOn(XS)])] (Son(XS))‘2] < 90,

n=1 sel0,t]

which is enough to prove that the functions
(10,415 5 = E[0,(U * o) (LX) (Xo)b] + E{T[ 00 (U » 9n) (X)) (Xs)as ]} )

are uniformly integrable on [0, ]. O

We now turn to the proof of Theorem [3.3] We give just a sketch of the proof, as a
refined version of Theorem [3.3]is given later, see Theorem [3.5]in the next subsection.

Proof. [Proof of Theorem [3.3]] By Proposition 3.4} we can replace U by U * ¢, for
some compactly supported smooth function ¢. Equivalently, we can replace (X¢)i>o

n=1
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by (¢(Xt))t=0. In other words, we can assume that U and its first and second order
derivatives are bounded and uniformly continuous and that (X;);>o is a bounded Itd
process.

Finally by the same argument as in the proof of Proposition [3.4) we can also assume
that (b)i>0 and (0¢)i=0 are bounded. Indeed, it suffices to prove the chain rule when
(Xt)¢=0 is driven by truncated processes and then to pass to the limit along a sequence
of truncations that converges to (X;)¢>o.

Let ((X{)i=0)e=1 a sequence of i.i.d. copies of (X;);=0. That is, for any £ > 1,

dX}{ = bidt + ofdWf, t=0,

where ((bf, 0, W)i=0, X§)e=1 are i.i.d copies of ((bi, o¢, Wy)i=0, Xo)-
Recalling the definition of the flow of marginal empirical measures:

1N
-N
Ky = N Z 6Xf’
(=1
the standard It6’s formula yields together with Proposition P-a.s., for any ¢t = 0
N (XL xY) =N (X X

1 Nt - 1 N  t )

+ N;Jo 0uU (pd) (XE)bhds + N;L ouU () (XE)otaw! (3.12)
L (! N N, 1 [ 21 (=NY (vl vl L

+ m;fo Tr{av[ﬁuU(us )](Xs)as}ds + W;L Tr{@MU(,uS )(XS,XS)aS}ds,

with af := o(c))T.

We take expectation on both sides of the previous equality and obtain (the stochastic
integral has zero expectation due to the boundedness of the coefficients), recalling (3.1,

B[0) = 20+ % 35
+ 2iN szj EU: Tr{av[ﬁuU(ﬂév)](Xf)aﬁ}ds}
+ # i E[

All the above expectations are finite, due to the boundedness of the coefficients. Using
the fact that the processes ((a, b’ Xf)se[o,t])Ee{l,...,N} are i.i.d., we deduce that

f Cm {20 (i) (X, X§>a§}ds] |
0

E[U(a)] = E[U(@))] + EUO 8uU(ﬂf9V)(X;)b§ds} (3.13)
t

" ;E[ L Tr{a, [GMU(ﬂﬁ,V)](Xsl)ai}ds} (3.14)

+ ;VIEU; Tr{aiU(gf)(X;,X;)a;}ds] : (3.15)

In particular, because of the additional 1/N, the term in (3.15]) converges to 0. Moreover,
the coefficients (as)sefos) and (bs)sefo, being bounded, we know from [32, Theorem
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10.2.7]:

NlirgooE[Oigzt W5 (il ps)] = 0. (3.16)
This implies together with the uniform continuity of U with respect to the distance Wj,
that E[U ()] (resp. E[U(id)]) converges to U(ue) (resp. U(ug)). Combining the
uniform continuity of d,U on P2(R?) x R? with ([3-16)), the second term in the right-
hand side of converges. Similar arguments lead to the convergence of the term in
(13.14)). O

The notion of differentiation as defined by Lions plays an essential role in the chain
rule formula. It is the right differentiation procedure to give the natural extension from
the chain rule for empirical distribution processes to the chain rule for measure valued
processes.

3.3. The chain rule for U partially C2. We observe that, in the formula for chain
rule , the second order derivative &‘zU does not appear. It is thus a quite natural
question to study its validity when (92U does not exist. This is what we refer to as ‘partial
C? regularity’. More precisely, we will say that U is partially C? (in v) if the lift I/ is
Fréchet differentiable and, for any u € P2(R?), we can find a continuous version of the
mapping R? 5 v — 0,U(p)(v) such that:

e the mapping P2(R%) x RY 5 (u,v) — 0,U(u)(v) is jointly continuous at any (i, v)
such that v € Supp(p),

o for any u € Po(RY), the mapping R? 5 v +— 0,U (1) (v) € R? is continuously differen-
tiable and its derivative is jointly continuous with respect to p and v at any point (u,v)
such that v € Supp(u), the derivative being denoted by R? 3 v — 0,[0,U (1)](v) € R*,

Recall from the discussion in Subsection that, for each p € R?, the mapping
ouU (@) - v — 0,U(p)(v) is uniquely defined on the support of p.

The following is the chain rule for is partially C?:

Theorem 3.5. Assume that U is partially C* and that, for any compact subset K —
Po(RY), (B.6) holds true. Then, the chain rule holds for an Ité process satisfying (3.5).

Notice that, in the chain rule, the mapping 0,U : Po(R?) x R? 5 (1, v) > 0,U (1) (v)
is always evaluated at points (u,v) such that v belongs to the support of  and thus for
which 0,U(p)(v) is uniquely defined.

Proof. First step. We start with the same mollification procedure as in the proof of
Theorem , see .

Repeating the computations, U x ¢ and its first and partial second order derivatives
are bounded. Nevertheless, contrary to the argument in the proof of Theorem [3.3] we
cannot claim here that 0,(U % ¢) and 0,[0,(U * ¢)] are continuous on the whole space
since 0,U and 0,[0,U] are only continuous at points (yx,v) such that v is in the support
of . In order to circumvent this difficulty, we first notice, from (3.8)), that 0,(U  ¢)
and 0,[0u(U * ¢)] are also continuous at points (p,v) such that v is in the support
of p, the reason being that v € Supp(u) implies p(v) € Supp(pfu). We then change
Pa(RY) 5 p v (U x @)(1) into Po(RY) 3 p — (U * @)(u * p) where p is a smooth
convolution kernel, with the entire R? as support and with exponential decay at infinity,
and p * p stands for the probability measure with density given by

R 3z — JRd p(z —y)dp(y).
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We then observe that

AU ) 0 = [ 2T ) )0 = (e,

QAU+ @) DNN0) = [ 210U x0) e )]0 = (e

Since the support of p is the whole R?, the measure p* p also has R? as support, so that,
for any v € R%, (u+ p,v) is a continuity point of both 0,(U * ¢) and 0,[0,(U * ¢)]. Since
Ou(U x ) and 0,0, (U * ¢)] are bounded, we deduce from Lebesgue’s theorem that the
maps (p,v) = (U » @) (p * p)(v) and (p,v) — Su[0u(U * ¢)(p * p)](v) are continuous
on the whole Py(R?) x R?.

Moreover, whenever p is chosen along a sequence that converges to the Dirac mass
at 0 (for the Wy distance), it is also easy to check that, for any u € Py(R?%) and any
v e Supp(n), (U * ) (1 * p) (v) and 0,[0,(U * 9)] (1% p)(v) converge to 6,(U = £) (1) (v)
and 0y[0u(U » ¢)](p)(v). In particular, if It6’s formula holds true for functionals of
the type P2(R%) 3 p — (U * ¢)(u % p), it also holds true for functionals of the type
Po(RY) 3 pi v (U * @) () and then for functionals of the type Pa(RY) 3 pu — U(p) by the
same approximation argument as in the proof of Theorem [3.3]

Therefore, without any loss of generality, we can assume that U and its first and
partial second order derivatives are bounded and uniformly continuous on the whole
space. As in the proof of Theorem , we can also assume that (X;);>0 is a bounded It6
process.

Second step. The proof requires another mollification argument. Taking now p as a
smooth compactly supported density on R? and using the same notations as above, we
define the convolution u) of u!V:

N N
ufz\[(xla s 7xN) = nNd f(]Rd)N UN(ml - ylv s 7xN - yN) Hp(nyé) def
=1 (=1

(3.17)
1N
= E[U(N ;5961'3/1‘/”)],
where Y1, ... Y" are N i.i.d. random variables with density p. Recalling that
N N N 1
1 1 1 Y*'. 2
W2 — O i_vi — 0. | < — —),
(5 Doy 20) < 5 200
we notice that
1 1Y C
2

as p has compact support. Above and in the rest of the proof, the constant C' is a general
constant that is allowed to increase from line to line. Importantly, it does not depend on
n nor N.

Observe now that, for two random variables X, X’ € L?*(Q, A,P;R%), we can find
t € [0, 1] such that

U([X]) = U(XD] = |E[0,U([tX + (1 - )X']) (¢ X + (1 - ) X') (X — X')]|
<o U([tX + (A=) X)) (tX + (1 =) X")[,I1X — X'

< l»
< COIX = X'|l2,
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the last line following from the fact that the function Pa(R%) x R? 5 (u,v) = 0,U () (v)
is bounded. Therefore, we deduce from (3.17) and (3.18) that

) (2, 2™) —uN (@ 2N = ‘E[UG[ JZ_V; 5miw/n) - U<le i 51)] ’ (3.19)

i=1

-1
<Cn .

Given a bounded random variable X with law p, we know from [32, Theorem 10.2.1]
that the quantity E[WZ2(u, i’¥)] tends to 0 as N tends to the infinity, 7" denoting the
empirical measure of a sample of size N of the same law as X. Moreover, the rate
of convergence of (E[W2(u, ™V)])n>1 towards 0 only depends upon the bounds for the
moments of X. Together with (3.19)), this says that we can find a sequence (g¢)s>1
converging to 0 as £ tends to oo such that, for any n, N > 1 and for any t > 0,

E[‘uflv(th, .. 7X,fv) - U(/it)’]
<E[|lu) (X}, XN oM (X X EU (YY) — U (1) [] (3.20)
<

(It is worth mentioning that the sequence (g¢)¢>1 may be assumed to be independent of
t.) By boundedness of U, we deduce that, for any p > 1 and any ¢ > 0,

E[[ul (X}, .., XN) = U () P17 < e® + &), (3.21)

for a sequence (z—:gp))gzl that tends to 0 as ¢ tends to oo (and the terms of which are
allowed to increase from line to line).
Now, by the first part in Proposition we compute

N N
ax 1 ) N: Ndf amN 1 1.“ df
b (z ;) =n . st (-, Eﬂ E Yy
N N
:n—Nd 25/ (z' —y") Hp dee
N (RdN ! =1 =1

_ ;VE[W(}V ; (wy%) (' - Y"/n)]-

Using the uniform continuity of 0,U on the whole space and following the proof of (3.20]),
we deduce that, for any ¢t > 0,

E[|Noy,ul (X, ..., X)) — 0,U () (X])|] < en +en. (3.22)
Again, by boundedness of d,U, we deduce that, for any p > 1 and any t > 0,
E[|Nogul (X2, .., XN) = 0,U () (XDP]P < e 4 W) (3.23)
Now, we differentiate once more in x;:
652% Uy, (ZL‘l,. ) .,xN)

:”]ji“ o { < Zaﬂ >z—y>}®w<nyi>ﬁp<nyf>1ﬂ[dy4

o+ =1
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the tensorial product operating on elements of R?. We then split the derivative into two
pieces:

]\7(9:,231:,:Z Uy (ml,...,xN) = Tiy’fv(ml,...,xN) +T5:iN(x1,...,:UN),
with
i (@)
nNd“J { ( DI )(9:1 — yl)} ®Vp(ny') [ [ p(ny®) [ [ dv*
(RE)N i i =1
2N a)

N
nNdHf 0uU iZM ‘
(Rd)N H Nle -y

(b e )] -} @ ot [T [ T

tFi o+ =1
By integration by parts (recall that R? 5 v — 0,U(u)(v) is differentiable), we can split

1,N .
Tn,i into

ooVt ) =T N @t N+ TN (e,

n,i n,i

with
N N N
26962 y)}m—y }Hpny dee

1
Till-’N(acl,...,xN) —nNdf {&,[%U(
(RN =1 =1 =1

N
TN (2N = e ool o (=S5, + =5,
n,? L AN VYK N ‘x*y Nw'b
(R%) (3
L .\ N N
=00 (5 X )| =0} ot [ Tav
/=1 (=1 (=1
The first term is treated as per (3.20)) and (3.22)). Namely, we have, for any ¢ > 0,
E[|T, 7N (X}, X)) = 0u[0,U ()| (X])]] < en +en. (3.24)
Then, by boundedness of 0,[0,U] for any p > 1 and any ¢ > 0,
E[|T5N (O XN = 000U ()| (XHI]? < e+ e (3.25)

To handle the second term, we use uniform continuity of 0,[0,U]. Indeed, we have
|T12N( L2 <ey as

W< Z&mz £+ dez ><N|y| <N,
1=
since, in T12 N(xl, ..., xV), ny’ belongs to the (compact) support of p. This says that,
for any t > O
E[|T,5N (X, X)) < ew. (3.26)

And, then, for any p > 1 and any t > 0,
N 1
E[|T2N (. XM < P, (3.27)
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We finally handle T’ le . Following the proof of (3.27)), we have, for any p > 1 and any
t>0,

E[ITZN (X}, .. X)) < nel?, (3.28)
the additional n coming from the differentiation of the regularization kernel.

Third step. In order to complete the proof, we apply Ito’s formula to (u®Y (X}, ..., X/¥))i=0
for given values of n and N. We obtain

Nt
0=ul (X}, .., X)) - (X3,..., x) —ZJ Opeul (X1, XN )blds

N ¢
n ZJ 5xeug( - edwé ZJ Tr{a:cz Un ,_,,Xév)aﬁ}ds,
/=1

with af := of(cf)T. To compare with the expected result, we take the difference with

AN = U) ~ Ulpo) ~ Z f 8l (1) (X1l
. (3.29)
1 t
- = f 0uU (1) (XE)obawt — N@;Jo Tr{0s[0,U (1s)](XE)al }ds.

From (3.21)), ([3.23]), (3-25), (3-27) and (3.28), we obtain, for any T > 0,
sup E[|AN]] < en + (1 +n)en,

o<t<T

the sequence (¢¢)s>1 now depending on T". Letting N tend to o0, we deduce from Fatou’s
lemma and the law of large numbers that

sup |A¢| < en, (3.30)
0<t<T

where

t 1 t
Ay = Upy) — Ulo) — L E[0,0 (1) (X:)b]ds — L E[Tr{2,[0,U (1) (X.)a} | ds.
Letting n tend oo in (3.30), we deduce that A = 0, which completes the proof.

3.4. A sufficient condition for partial C? regularity. The following is a sufficient
criterion for partial C? regularity used in the next section:

Theorem 3.6. Let U : P2(RY) — R be a function such that its lifted version U :
L2(Q, A, P;RY) 3 € — U([€]) € R is once continuously Fréchet differentiable. Assume
also that for any continuously differentiable map R 3 X\ — X* e L2(Q, A, P;R?), with
the property that all the (XM xer have the same distribution and that |[d/dN\]X*| < 1 (in
L%®), the mapping

R\ DUX?) - x =E[0,U([X])(XM)x] e R (3.31)
is continuously differentiable for any x € L?(, A,P;R%). Moreover assume that the

derivative of the mapping R 3 X — DU(X™?) - x at A = 0 depends on the family (X*)xer
only through the value of X° and of [d/d)\]|/\:0X>‘ (see footnotelﬂ below for more details),

10 This means that for two families (X*)xer and (X*)rer with X° = X% and [d/d\]x—oX* =
[d/dA]jx=0X ™, the derivatives [d/dA]jx=o[DU(X™) - x] and [d/dA]jx=o[DU(X ™) - X] are the same (the
variable x being given).
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so that we can denote

d
02 UX)i=—  [DUX)-
GX (X) d)\IA:O[ (X7) X]7
whenever X = X° and { := [d/d)\]|,\:0X>‘. Finally, assume that there ezist a constant
C and an exponent a > 0 such that, for any X, x and ¢ in L*(Q, A, P;RY), with |¢| < 1
(in L*), it holds (with ®, as in (H1) and in particular satisfying (2.13))):

(i) |1DUX) - x|+ 162, U(X)] < Cllx,
(i) |DUX) - x — DUX') - x| + 0Z U(X) = Z UX')| < CPa(X, X)X ]2

Then U is partially C> and satisfies for any compact subset K = Po(R?):

SUP[JRd|5uU (1) ()" dp(v) + fRdm [@MU(M)](U)Fd,u(v)} < o0,

pekl
so that the chain rule applies to an It6 process satisfying (3.5)).

Remark 3.7. The thrust of Theorem is to study the smoothness of the mapping
v — 9,U(p)(v) independently of the smoothness in the direction p by restricting the
‘test’ random variables (X*)er to an identically distributed family. One of the issue in
the proof is precisely to construct such a family of test random variables.

Proof. In the proof, we use quite often the following result, which is a refinement of
|5, Lemma 3.3| (see the adaptation of the proof in Subsection in Appendix):

Proposition 3.8. Consider a collection (V(u) : R 3 v — V(u)(v)), of Borel functions
from R? into R? indexed by elements p € Po(R?) such that, for any p € Po(RY), the
mapping RY 3 v +— V(u)(v) € R? belongs to L?(u, R4 RY).  Assume also that there
exist a constant C and an exponent o such that, for any p € Po(R?) and any £,¢ €
L*(Q, A, P;RY), such that & and & have distribution p, and

E[[V(1)(€) — V(u)(€)2]"* < CE[(1 + €] + |€'> + €]3%) € - €7]

Then, for any p € Po(RY), the mapping v — V(u)(v) admits a locally Lipschitz continu-
ous version, that satisfies

V2 (3.32)

V() (v) = V() ()] < 0[1 + 2max(Jo]2*, [0/*) + ( |, |xr2du<x>)a]l/2rv .

As a warm-up, we discuss what Proposition says in the framework of Theorem
3.6l Representing DU(X) - x as E[d,U([X])(X)x], we can write (choosing X = ¢ and
X' =¢ with [£] = [{'] = i, in part (i1) of the statement of Theorem [3.6)

B[ (0,U (1) (&) = 0,U (1)(€)) x]]
< CE[(1+ |62 + ¢/ + |€]3) 1€ — &'17]/*E[1x1?] /.

This says that, for any u € P(RY), we can find a locally Lipschitz continuous version
of the mapping R? 3 v — 0,U(u)(v), the local Lipschitz constant being at most of a-
polynomial growth, uniformly with respect to u in Wa-balls. In addition, Proposition
gives us a bit more. Consider a sequence (pi,)n>0 with values in Py(R%) such that
tn — p in the 2-Wasserstein distance. Then, the functions (R? 3 v — 0,U (115)(v))n=0
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are uniformly continuous on compact sets. Moreover, we notice, by Markov inequality
that P(|&,| = 2[&n]2) < 1/4, so that

2 inf 10,U(un)(v)| < E[1 0,0 (1) (€212
4|m<2mnh’ U (pn) (0)] < E[Lgje, <2160 1231 0T (1n) (n)7] (333

<E[10,U (1) ()] < C,

where &, has distribution p,, the last inequality following from (7) in the statement of
Theorem [3.6] This says that the family (infly<oje, |, |0,U (1) (v)])n=0 is bounded. As
the sequence ([&,]l2)n=0 is bounded and the mappings (R? 3 v — 0,U () (v))nz0 are
uniformly locally Lipschitz continuous, the sequence (|0,U (r,)(0)|)n>0 is also bounded.
Therefore, the family (R? 3 v+ 0,U () (v))nso is relatively compact for the topology
of uniform convergence on compact subsets. Passing to the limit E (up to a subsequence)
into the relationship
Du(&n) X = E[auU(Nn)(gn)X]»

we deduce, by identification, that the limit of 0,U(u,) must coincide with 0,U(u) on
the support of u. This says that the function P2(R%) x R? 5 (u,v) — 0,U(u)(v) is
(jointly) continuous at any point (u,v) such that v € Supp(u). Moreover, by point (i)
in the statement of Theorem we have {p,(0,U (1) (v)|*dp(v) < C, for a constant C
independent of p, which is the first part in the condition for applying the chain rule
to partially C? functions.

To complete the proof we have two main steps. The first one uses a new mollification
argument. The second consists in a coupling lemma, which permits to choose relevant
versions of the random variables along which the differentiation is performed.

First step. Given a distribution g and a random variable ¢ with distribution u, we
introduce the convoluted version p™ of w:

p" = g Ng(0, 2 1),

n denoting an integer larger than 1 and Ny(0, (1/n)I4) denoting the d-dimensional Gauss-
ian distribution with covariance matrix (1/n)I;, where I is the identity matrix of di-
mension d. Then, we can define the mapping

V' (p,v) = JRd 0, U (1) (v — u)nd/Qp(nl/Qu)du, (3.34)

where p stands for the standard d-dimensional Gaussian kernel. The mapping V" is
the convolution of 0,U(u™)(-) with the measure Ny(0,(1/n)ly). By the warm-up,
the sequence (9,U(u")(0))n>1 is bounded and the functions (9,U(u") : R 3 v —
0, U(p")(v) € R¥),>1 are locally Lipschitz, the Lipschitz constant being at most of
a-polynomial growth, uniformly in n > 1. In particular, the sequence of functions
(V™(p, ) )n=0 is relatively compact for the topology of uniform convergence on compact
subsets. Any limit must coincide with 0,U(u) at points v in the support of u or, put it
differently, any limit provides a version of d,U(u) which is locally Lipschitz continuous,
the Lipschitz constant being at most of a-polynomial growth, uniformly in 4 in bounded
subsets of Py (R%). When y has full support, the sequence (V*(u, -))n=0 converges to the
unique continuous version of 0, U (1), the convergence being uniform on compact subsets.

1 From [34, Theorem 6.9], w, converges weakly to u. Using the Skorokhod representation theorem,
we can find a sequence (&,) converging almost surely to £&. The convergence holds also in L? since this
sequence is uniformly square integrable, recall [34] Definition 6.8(iii)].
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Letting £" = £ +n~Y2G, where G is an Ny(0,1;) Gaussian variable independent of &,
we then observe that, for any R%valued square integrable random variable y such that
the pair (£, x) is independent of G,

pu(en) - x = B[00 () € = E| ([ 066 - un ot Pujan )y
= E[V" (1, )x],

where V" (i, €) is viewed as a row vector. We note that the mapping R? 3 v — V*(u, )
is differentiable with respect to v (this was not the case for the original mapping R? 3
v — 0,U(p)(v) at this stage of the proof).

(3.35)

Second step. We construct now, independently of the measure u considered above, a
family (Y*)\cr that is differentiable with respect to A in L?(£, A, P; R) but which is, at
the same time, invariant in law, all the Y, for A\ € R, being uniformly distributed on
[—7/2,7/2]. The strategy consists in starting with the uniform distribution:

Given two independent N (0, 1) random variables Z and Z’, we let, for any \ € R,

ZN = cos(\)Z +sin(\) 2/, Z'" = —sin(A\)Z + cos(\) Z/,
so that (Z*, Z'*) has the same law as (Z, Z') (because of the invariance of the Gaussian
distribution by rotation). We then let
z* , z*
) = arcsin(—————).
\/(Z’\)Q + (Z/,/\)2 72 1 (Z/)Q
It is easy to check that Y* has a uniform distribution on [—m/2,7/2] for any A € R.
Pathwise, the mapping R 3 A — Y is differentiable at any A such that Z"* + 0.
Noticing that [d/d\]Z* = Z* (pathwise), we get:
d ZA ZM)?2 ~1/2
Sy o (1- \Z7) ) = sign(2").
dA Z2 +(2')? (ZM)?2 + (Z'2)?
On the event {Z"0 + 0} = {Z' + 0}, which is of probability 1, the set of \’s such
that Z"* = 0 is locally finite. The above derivative being bounded by 1, this says that,
pathwise, the mapping R 3 A\ — Y is 1-Lipschitz continuous. Therefore, the random

variables (Y* — Y9)/\, X & 0, are bounded by 1. Moreover, still on the event {Z’ # 0},
the above computation shows that

Y = arcsin(

YA —yo
lim ———— = sign (Z'). (3.36)
Therefore, by Lebesgue’s dominated convergence theorem, the mapping R 3 A — Y e
L?(Q, A,P;R) is differentiable at A = 0 with sign(Z’) as its derivative. In the sequel, we
will denote Y? by Y.

Actually, by a rotation argument, differentiability holds at any A € R, with [d/d\]Y? =
sign(Z"). Tt is then clear that R 3 A — sign(Z"*) e L*(Q, A,P;R?) is continuous. In-
deed, the path R 3 X\ — Z"* is continuous. Composition by the function sign preserves
continuity since, for any A € R, the set of zero points of Z’* is of zero probability.

Third step. Assume now that p denotes a given distribution as in the first step. We
then choose a random variable £ with p as distribution, £ being independent of the pair
(Z,2"). Given the same (Y*))cr as above and some parameter § > 0, we let

VAeR, & =(0xYMNe+¢,
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where e is an arbitrary deterministic unitary vector in R%. (We omit the dependence
upon § in the notation €*.) Then, we know that the mapping R 3 A — &* is continuously
differentiable in L?(2, A, P; R?), with
4
dAx=0
Going back to (3.35), we get for another random variable y € L%(Q, A, P;R%), with
(&,x, Z,Z") independent of G,

DU + =G) - x = E[V"([€1],€Y)x],

where V"(u,v) is seen as a row vector. As the mapping R 3 A\ — & is continuously
differentiable in L%(Q, A,P;R%) and since all the random variables (£})ycr have the
same distribution, we deduce that (for (£, x, Z, Z’) independent of G)

= (0 x sign(Z'))e.

Osgn(zne U (6 +0Y e+ G) =

sign

il ML 1y
dAx=0 [Du(e™™ + \/ﬁG) d

_Ld Ay la).

B (Sd)\|,\=0[Du(g MECIARY

= E[Tr{0,V"([¢ + 6Ye],& + 0Ye) ((sign(Z')x) @) }].
Noticing that the random variable [sign(Z’)| is equal to 1 almost surely, we can replace

X by sign(Z')x (recall that |x| must be less than 1) with (§, x) independent of (Z, Z'),
so that

62

Sign(z’)e,sign(Z/)Xu (§ +d0Ye +

%G’) = E[Tr{0,V"([¢ + 6Ye], £+ 0Ye) (xRe) }].

Finally, we let
W™ (1, J O V" (% p°, v + Sue)p(u)du, (3.37)
where p is the uniform density on [~ /2, 7/2] and p°(-) = p(-/6)/6 is the uniform density
n [—dm/2,dm/2]. Moreover u*p° is an abbreviated notation for denoting the convolution

of p with the uniform distribution on the segment [—(d7/2)e, (d7/2)e]. Since the pair
(&, x) is independent of (Z, Z'), we end up with the duality formula:

a;gn( Zesign(z U (€ + Y e+ ﬁe) = E[Te{W™° (1, &) (x ®e) }]. (3.38)

By the smoothness assumption on (92%2/{ (see (ii) in the statement of Theorem , we
deduce that, for another ¢, with distribution p as well, such that the triple (§,&’, x) is
independent of (Z, Z’) and the 5-tuple (£, x, Z, Z’) is independent of G,

E[Te{ (W™ (11, €) = W™ (11, €)) (x ® ) }]|
/
< CE[(1+ (6% + 1§/ + 18V P + | 2-GP + e13)le - 7] B[]

< CE[(1+ [¢[* + ¢/ + €13) 1€ — &'12) R [Ix?]) 7, (3.39)

where we used the independence of (£,¢') and (Z,Z’) to pass from the second to the
third line, the value of C varying from the second to the third line (but remaining
independent of § and n, when ¢ is taken in a bounded set). The above is true for any
o(€,¢)-measurable y € L?(Q, A, P). We deduce that, for any other ¢/ € R? with |¢/| = 1,

E[|Te{ (W™ (1, €) = W™ (1,)) (¢ @) }|7]
< CE[(1+ € + |/ + ¢3) 1€ — ]



CLASSICAL SOLUTIONS TO THE MASTER EQUATION 31

By Proposition this says that R? 3 v +— Tr{W™%(u,v))(¢’ ® )} has a locally
Lipschitz version, the local Lipschitz constant on a ball of center 0 and radius + is less
than C(1 + ), the constant C' being uniform with respect to & in L? balls.

Fourth step. From (3.34) and (3.37)), we know that
W (i, v) = J O V™ (p* p°, v + Sue)p(u)du
R
= pld+1)/2 f OpU (o * p° * Ny (0, 110, 0 + 6ue)p(u)p’(n1/2(v —w))dudw.
RxR4

Since g * Ny(0, (1/n)I, has full support, we know from the warm-up that ,U(u * p°
Na(0, (1/n)1g),-) converges towards d,U (p* Ng(0, (1/n)1y),-) as d tends to 0, uniformly
on compact subsets. We deduce that, as ¢ tends to 0, W”75(u,v) converges to

W™ (p,v) = n(dﬂ)/QJ U (1 N(0, 115), w)pf (nl/z(v —w))dw

R4
=2, (nd/zf OuU (1 N (0, 1), w) p(n (v - w))dw) = 2,V (1, v).
R

Therefore, we deduce that the mappings (R? 3 v — Tr{(0,V"(11,v))(¢/ ® €)})n>1 are
locally Lipschitz continuous, uniformly in x4 (the local Lipschitz constant being at most of
a-polynomial growth). Since 0, V"™ (1, v) is independent of e, this says that the mappings
(R% 3 v — 0,V" (1, v))n>1 are locally Lipschitz continuous, uniformly with respect to u
in sets of probability measures with uniformly bounded second-order moments.

By (3.38) and (%) in the statement of Theorem

sup E[’Tr{(W""s(p,,g))(e’®e)}‘2] < C, (3.40)
n=1,6€[0,1]

for a possibly new value of C. Letting § tend to 0, we deduce from Fatou’s lemma that
SuanIE[|Tr{(avvn(u7§))(€, ® e)}‘Q] < C and thus that SupnzlEHavvn(:U’ug)F] < Cv
which implies that, by local Lipschitz property of 0, V" (u, -) (the local Lipschitz constant
being at most of a-polynomial growth),

Vn > 1, inf [0,V"(p,v)| < C, (3.41)

[v]<2|€]2

where we used the same argument as in . This says that the sequence of mappings
(RY 3 v+ 0,V (11, v))n>1 is relatively compact for the topology of uniform convergence.
By the warm-up, the sequence of functions (R? 3 v — (V*(u,v), 3 V™(it,0)))n>1 is
relatively compact for the topology of uniform convergence. As any limit of the sequence
(R? 5 v — V™"(u,v))n>1 provides a version of 0,U (i), we deduce that there exists a
version of 9,U(u) : R? 3 v + 0,U (1) (v) which is continuously differentiable with respect
to v. By , we deduce that, for any pu € Po(R?) and any & € L?(Q, A, P;R?) with p
as distribution, E[|0,[0,U (1)](€)[?] < C, for a constant C independent of y. Moreover,
passing to the limit in (3.38)) (first on ¢ and then on n), we get

aSQign(Z’)e,sign(Z’)XL{(5) = E[TI‘{ (av [a/rLU(N)] (5)) (X ® 6) }] (342)

Combining the above identity and point (i) in the statement of Theorem [3.6] we recover
the fact that (g, [0u[0,U ()] (v)|*dp(v) < C, for a constant C independent of p, which is
a required condition for applying the chain rule.
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Last step. We have just found, for any pu € P2(RY), a version of the mapping
0uU(p) that is differentiable in the variable v, with 0,[0,U(u)] denoting its deriva-
tive. In order to complete the proof, it remains to prove that the resulting mapping
P2(RY) x R? 5 (u,v) +— 0,[0,U(p)](v) is continuous in the joint variable (u,v) at
any point v € Supp(u). We already know that it is locally Lipschitz continuous with
respect to v, the local Lipschitz constant being at most of a-polynomial growth, uni-
formly in p in sets of probability measures with uniformly bounded second-order mo-
ments. For a sequence (u"),>1 in Pa(RY) converging for the 2-Wasserstein distance to
some p, we deduce from the local Lipschitz property and by the same argument as in
that the sequence of functions (R 3 v — 0,[0,U(1")](v))n>1 is relatively compact
for the topology of uniform convergence on compact subsets. By means of the bound
sup,>1 E[|0[0,U(1™)](€M)|?] < C, with £ ~ u™, it is quite easy to pass to the limit in
the right-hand side of (3.42). By (i) in the statement of the theorem, we can also pass
to the limit in the left-hand side. Equation then permits to identify any limit with
0v[0,U (1)] on the support of p. Since the mappings (0,[0,U (1£")])n>1 are uniformly con-
tinuous on compact subsets, we deduce that, for an additional sequence (v"),>1, with
values in RY, that converges to some v € Supp(u), the sequence (0,[0,U(u™)](v™))n>1
converges, up to a subsequence, to d,[0,U(u)](v). Now, by relative compactness of the
sequence (R 3 v — 0,[0,U(u™)](v))n>1, the sequence (0,[0,U(1"™)](v™))n=1 is bounded.
By a standard compactness argument, the sequence (0,[0,U(1™)](v"™))n>1 must be con-
vergent with 0,[0,U(1)](v) as limit. O

3.5. Proof of Theorem In order to prove Theorem we first need an extension
of the chain rule to functions that depend on time, space and measure:

Proposition 3.9. Consider an Ito process (Xi)epo,r) driven by (be, ot)iejo,r) satisfying
(3.5) and a function V : [0, T] x R? x Po(R?) — R™ belonging to Up=0 Dg, see Definition
2.6, Then, P almost surely, for any t € [0,T],

V (t, X, [X:¢]) — V (0, Xo, [X0])

~ [ (VX0 1) + 20V X XD+ B[00V (5 X LX) (X))

o [ (M 60 L) )]

0
+ BIT[2u[0,V] (r, X, [X]) (X)) D)]] ) dr

t
+ J oV (r, Xy, [X,]) ordW,.
0

Remark 3.10. In comparison with Theorem the formula is stated here in terms of
the expectation E on the auxiliary probability space (2, A,P). The goal is to distinguish
the random variables X,, b, and O'TO'I, observed on the “physical space” (2, A,P), from

the random variables (X,), (b,> and (o0} that are used to express the derivatives in
the direction (.

Proof. The proof is similar to that outlined in Subsection As in the proof of
Theorem we can assume that the processes (by)ie[o,r] and (0¢)sejo,r] are bounded.
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Given s € [0,7] and h > 0 such that s + h € [0,T], we then expand
V(s + h Xopn, [Xosn]) =V (s, Xs, [Xs])
=V (s+h, Xein, [Xon]) = V(s + h, Xoin, [Xs]) (3.43)
+ V(s +h, Xsin, [XS]) — V(S,XS, [Xs]).
Thanks to the regularity assumptions in (H1) and (H2), we notice that, almost surely,

the map P2(R%) 3 p — V(s + h, Xop, ) satisfies the assumption of Theorem .
Therefore, we can write

V(S + h> Xs+h7 [Xs—l-h]) - V(3 + h7 Xs-i—ha [Xs])

s+h
_ J E[0,V (s + by Xy [X, D) (X)), ] dr

s+h
5 | BT @[V (s + b X [X D)X Ko h) ar
Recall that any versions of R? 5 v+ 0,V (s + h, Xsyn, 1) (v) and R? 5 v > 0,[0,V (s +
hy Xsih,t)](v) may be used in the writing of the above formula. In particular, we can
choose the versions of 0,V and 0,[0, V] that satisfy (H1) and (H2). By the assumption
we have on the regularity of 0,V and 0,[0, V] in the variable z, see (H1) and (H2), and
in the variable t, see (i) in Definition , we deduce that there exists a sequence of
non-negative random variables (€3)n>0 that tends to 0 in probability with h, such that

‘V(S + h, Xerha [Xs+h]) - V(S + ha Xerha [Xs])

s+h
_ j [0,V (r, X, [X,1) (X)) by ] dr

s

sth
_1 J B[Tr (0, [0,V (r, Xy, [ X, )] (X)) oty |dr| < hen.

2Js

It must be noticed that the family (e7,)n>0 may be chosen independently of s € [0,T]. The
reason is that, thanks to (H1) and (H2), for any continuous R%valued path (Tt)sefo,1)5

im  sup B[|0,V (520, [X]) (X)) = 0V (rap, [X]) (X)) = 0,
6—0 r,s€[0,T]:|r—s|<d
with a similar result when 0,V is replaced by 0,[0,V]. By means of the standard Ito
formula, the second difference on the right hand side of can be handled in a similar
way, vielding a similar bound (for the relevant expansion) on an interval of length h. We
then easily complete the proof by dividing any interval [0,¢] < [0,T] into pieces of length
less than h, applying the above bound on each piece of the subdivision and then by letting
h tend to 0. (|

We now turn to

Proof. [Proof of Theorem [2.8]] The proof is a variant of the four-step-scheme used in
[28]. We divide it into two steps.

First step. Given a solution U to in the class | J- Dp and given ¢ € [0,7] and
€ e L*(Q, F,P;RY), we build a solution to 2.3).

Letting

Ut i, 1) = U (1, w)or (2, U 2, 10),[(6,U 1, ,))]),
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with & ~ u, we indeed claim that the McKean-Vlasov SDE

dXs = b(Xs, U(s, Xy, [Xs]), 05U (5, X5, [Xs]), [Xs, U(s, X5, [Xs])]) ds

+ 0 (X5, U(s, X5, [Xo]), [ Xs, U(s, X, [Xs]) ) AW, Xp =€, (3.44)

has a solution (the idea that we shall exploit in the proof being that the triplet process
(Xs,U(s, X5, [Xs]), 02U (8, X5, [Xs]))sefe,r] solves the system (2.3))). The proof is not
completely straightforward as 07U is not Lipschitz continuous in the direction of the
measure (see (H1)). In particular, we cannot apply Sznitman’s result in [33], which
relies on a contraction argument. Instead, we make use of Schauder’s theorem, applying
the same strategy as in [6].

The argument is as follows. Let C([t, T], P2(R%)) be the family of marginal measures
(#r)refe,r) With finite second-order moments such that the mapping [¢,T] 3 r — pu, €

Py (RY) is continuous. For (10 ) refe,) € C([t, T], P2(R%)), we may solve
dXs = b(Xs, U(s, X, ts), 05U (8, X5, pus), [Xs, U (s, X, is)]) ds
+U(X57U(3aX57,UJS)a [Xqu(saXSnu'S)])dWSa Xt =¢.

By Sznitman’s result, the above equation admits a unique solution, which we will denote

by (X S(MT)"G[“T]) seft,r]- We then consider the mapping

( ’V‘)T‘E N
®: (MT)re[t,T] = ([XSM . T]])se[t,T]’

which maps C([t, T], Po(R?)) into itself. By standard stability arguments, it is quite clear
that the mapping @ is continuous, C([t, T], P2(R?)) being endowed with the supremum
distance d((pr)refe,r7s (Br)refe,r]) = SUPrefe,r) Wa(tir, fir). Moreover, by boundedness of
0,U and o and by the Lipschitz property of U, we can find a constant C' (independent
of the input (4r),e[,7]) such that, for any S € [¢, T

S
B[ sup [X{“7)reem) 4] 2 0(1 + ¢ +J J IwIQdus(a:)d,s;).
s€(t,S] t JRd

This proves that, when
Vse [t 7], de 22djis(x) < C(1 + [€13) exp(Cs — ), (3.45)

the same holds for E[|X§W)Te[t’T] 2] for all s € [t,T]. In such a case, we also have

Et[ SFI?S] ‘Xs(ur)re[t,T]’4]1/2 < C(l I |§‘2) T C(l + ng%) exp(CT).
sE(t,

so that, for any event A € A and any real R > 0, Cauchy-Schwarz inequality yields

E[1a sup [XO 5 012] < CE[B[14]V2((1+[€2) + (1+ €]3) exp(CT)) ],
s€(t,S]

< c((1 +R2) + (14 [€]2) exp(CT))P(A)l/Q

+ CE[1ggm (1 +1€P) + (1 + [¢8) exp(eT) ) |
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In particular, choosing A = {|X§MT)TE[’£’T]\ > R*} for some s € [t,T], applying Markov
inequality and using the fact that (3.45]) is also satisfied by E[| X S(MT)TGB’T] 1], we get that

|X(#r)re[z,T] |2]

S

sup IE[

(Hr) f T
se(t,S] {Ixs 7

l>R1}
< V2R (14 B) + (1 63 exp(D)) (1 + Jel3) exp(em)) S (340
+ CB| 1 (14 16 + (1 + JeB) exp(cT)) |

For a given s € [t,T], we now denote by Ky the subset of Py(R?) made of proba-

bility measures such that {.,|z|?du(x) is less than the right-hand side in (3.45) and
R

S{‘I|>R4} |z|?dp(x) is less than the right-hand side in (3.46]) for any R > 0. It is easy to

checked that K, is a compact subset of Po(R?). Indeed, any sequence in K is tight and
admits a subsequence that converges in the weak sense. Using , the subsequence is
square-uniformly integrable. Using Skorohod’s representation theorem, we deduce that
the sequence converges in the Wy-Wasserstein sense. By Fatou’s lemma, ICg is closed.
Below, we let KC = {(1ir) e, € C([t, T], P2(R)) : Vr € [t,T], pr € Ky}

Notice now that, under (3.45)), we have, for all s,s’ € [t,T],

EUXS(fM-)re[t,T] _ Xélh-)re[t,T]F] < Cl|8/ _ S|,

for a constant C’ depending upon C, |{|2 and T. This says that the map is [t,T] 3

5 — X(W)T“T L*(Q, A,P;R%), is continuous, uniformly in (tr)refe,r] € K. Using
the Arzeld-Ascoli theorem, we deduce that the restriction of ® to I has a relatively
compact range. Since K is closed and convex, Schauder’s theorem applies and has
a solution.

Second step. We consider another solution U’ to in the class U6>0 Dg. With X
a solution of (3.44), we can apply the chain rule to both (Yy = U(s, Xy, [X]))sept,r) and
(Y = U'(s, Xs, [Xs]))sefe,)> the drift of X being square-integrable and o being bounded.
Letting (ZS = 6gU<37 Xs, [XS]))SE[t T]> (Z/ = aIU/(Sv X, [XS]) (X87 Ys/7 [st }/s]))se[t,TL

(98 = (XS7Y:97ZS)>SE[t,T]7 (Q/s = (styt;Z ))se[tT7 (ng) = (st}/;))se[t,T] and (ng)/ =
(Xs, YY) seft, 7], we deduce from the master PDE (2.12)) that

+ {a (r, X [X (  [01) = b(0;,101°7) )

WU, X, [X ) (CG0) (5(¢00, 10]) = b(<01, [671) ) | ar
% [0, X 16 ((007) 00, 109) — (007) 01,1697
[ r[&v[ﬁuU](T X, [X,]) ((X0)

<« ((o0") (0. B0) — (o) (00" 007D ) |

— f T(Zr — 0,U" (r, X, [ X))o (07, [69])) AW

ﬁ>
>
Q
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By using Assumptions (H0)(i) and (Ho) on the coefficients and Assumptions (H1) and
(H2) that enter in the definition of Dg, we deduce from stability estimates for BSDEs,
in the spirit of [31], that
T
E[‘Ys - Ys,|2] + EJ | Zy — axU/(Ta Xr, [Xr])g(eq(no),a [97(-0),])|2d7”
S
T 1 (7
< CEJ Y, — Y!?dr + 2EJ | Z, — Z!|*dr,
S S

from which we get, by the boundedness of 0,U’, that

T T T
E[|Y; — Y/]*] + EJ | Z, — Z!2dr < CEJ Y, — Y!dr + ;EJ | Z, — Z!|*dr.
We deduce that Y = Y/ for any s € [¢, T], that is U(t, &, [£]) = U'(t,&, [£]) almost surely.
When [¢] has full support over R?, continuity of U and U’ yield U(t, z, [¢]) = U'(t, z, [€])
for all 2 € RY. When the support of [€] is strictly included in R?, we can approximate
¢ by a sequence (&,)n>1 that converges to & in L? such that, for each n > 1, &, has full
support over R%. Passing to the limit in the relationship U(t, z, [¢,]) = U'(t, z, [€4]), we
complete the proof. O

4. SMOOTHNESS FOR SMALL TIME HORIZONS — PROOF OF THEOREM [2.7]

The purpose of this section is to prove that the mapping U given in Definition sat-
isfies the required smoothness property for applying the chain rule. Generally speaking,
this is proved by showing the smoothness of the corresponding stochastic flows defined
in and . More precisely, we prove that the stochastic flows defined in and
are differentiable with respect to &, = and p in the sense discussed in Section .
This is not a straightforward generalization of the method used by Pardoux and Peng in
[31] in order to prove the smoothness of the flow generated by the solution of a classical
backward stochastic differential equation as we are facing here two additional difficulties:
First, the initial conditions live in non-Euclidean spaces, which requires some special
care; second, the backward equation is fully coupled to the forward equation. In order to
handle the full coupling between the forward and backward components, we shall assume
that T is small. In particular, throughout the whole section, T is less than 1. In the
following section, we shall give sufficient conditions for extending the results from small
to arbitrary large time horizons.

Below, Assumption (H2) is in force. We shall use quite intensively the following
lemma, which is an adaptation of the stability estimates in [I1]:

Lemma 4.1. For any p > 1, there exist two constants ¢, := cp(L) > 0 and C, = 0 such
that, for T < cp, for any t € [0,T], x € R? and € € L*(Q, F, P;RY),

| X5 sme + Y55 5ot + [ 2 e < Cp (L + €]+ [1€]2), (4.1)
| x5 go + [Vl 5o + | 2551 3 < Cp(1 4 [2] + €]l2),
and, for any 2’ € R? and € € L*(Q, F,, P;RY),
| X5 = X sp g+ |V — Y oy + | 25 — 2
<C — |+ W ) ' )
pll€ =€+ W2([€), [€)] (4.2)

|xtele — xtelE) g, 4 |yl — y el g, 4 2056 — 2828,
< Cpllw — 2’| + Wa([€]. [€]) ]
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In the statement above, the notation ¢, := ¢,(L) emphasizes the fact that ¢, only
depends on the Lipschitz constant L introduced in (HO0) — (H1). The constant C), is
allowed to depend on the other parameters appearing in (HO0) — (H2), but there is no
need to keep track of them for our purpose.

4.1. Stability estimate for McKean-Vlasov linear FBSDEs. The strategy for in-
vestigating the derivatives of the solutions to and is standard. We identify
the derivatives with the solutions of linearized systems, obtained by formal differenti-
ation of the coefficients. For that reason, the analysis of the differentiability relies on
some preliminary stability estimates for linear FBSDEs. Unfortunately, because of the
McKean-Vlasov structure of the coeflicients, we cannot borrow any estimate from the
literature. We thus have to use a tailor-made version, which is the precise purpose of
this subsection.

4.1.1. General set-up. Generally speaking, we are dealing with a linear FBSDE of the
form

YR f B(r,0,,0,5) (6, (003)dr + j 5(r, 09, (G%) (99), (30Y) W,
! . ! - (4.3)

Vs = G(X7,{X1)) (Xr,{Xr)) +f F(r,0,, 00 (9, (0y)dr — J Z,.dW,,

S
where 7 is an initial condition in L?(Q, F;,P;RY), § = (X,Y, Z) and 6 = (X,f/, Z) are
solutions of or (2.4), 9 = (X, ), Z) denotes the unknowns in the above equation and
¥ = (X,Y, Z) is an auxiliary process, which may be o itself (in which case it is unknown).
The exponent (0) denotes the restriction of the processes to the two first coordinates, as

and . The processes X, X X and X have the same dimension, the same
belng true for the processes Y, Y Y and Y and for the processes Z, Z Z and Z. In
particular, the mappings B, Z, F and G take values in Euclidean spaces of according
dimensions. The symbol () is used to denote the copy of the underlying random variable
onto the probability space (Q,fl, ]f”) Although the role of the copy is rather vague at
this stage of the paper, it indicates that the coefficients may depend in a non-Markovian
way of the various stochastic processes involved. Here is an example:

Example 4.2. As a typical example for the coefficients B, &2, F and G, we may think
of the derivatives, with respect to some parameter X\, of the original coefficients b, f, o
and g when computed along some triplet (0* = (X*,Y*, Z*)) solving [2.1). As a typical
example for the parametrization by \, we may think of the parametrization with respect
to the initial condition which is applied to the entire system.

The shape of the coefficients B, X, F' and G can then be derived by replacing b, f, o
and g by a generic continuously differentiable Lipschitz function h : (R? x R™ x R™*4) x
Po(RY x R™) — R. Given such a generic h, we can indeed consider a process of the form

(n(62. 10>7))

where R 3 \ — (Gﬁ)mﬁﬂ e S2([t, T]; RY) x S%([t, T];R™) x H2([t, T]; R™*9) is differen-
tiable with respect to \, with (derivatives being taken in the aforementioned space)

d

- 6
dA\ppa=0 "

relt, T

0 =0 = 0y, =9, reltT],
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the process (U;)refe,| taking its values in R? x R™ x R™*? (and, for the moment, having
nothing to do with the solution of ) Then, it is easy to check that the mapping
RaXw (h(ﬁ?,[ﬁé\’(o)])re[t,ﬂ e H2([t,T];R) is differentiable and that the derivative
reads as follows

HY(r,0,,0)) (0, (D)) 1= 00(0r, [00]) 0 + E[0,1(0r, [00]) (O ) (D)), (4.4)
0

Of course, if h only acts on ((9£0), [Hqgg)]))re[tﬂ"] instead of ((0r, [0y )]))re[t,T]: then differ-
entiability holds in S*([t, T];R).

In Example the coefficients B, X, F' and G are obtained by replacing h by b, o, f
and g and by computing BW v pM) and gMW accordingly. Leaving Example and
going back to the general case, we apply the same procedure: In order to specify the shape
of B, ¥, F and G (together with the assumptions they satisfy), it suffices to make explicit
the generic form of a function H that may be B, ¥, F' or GG and to detail the assumptions it
satisfies. Given square-integrable processes (V..),e[¢,r) and (V?a)re[t’T], (Vi-)repe, 1) possibly

matching (X)ep, 77, (67(00)),,€[t7T] or (0 )yefe,r), and similarly for (V;.),ef, 7, together with
other square-integrable processes (V;)re, 1) and (Vr)refe, 7], (Vr)reft,r] Possibly matching
(X )relt, 1] (1950))%[@;” or (Jy)re[,r], and similarly for (]A/,,)Te[th], we thus assume that
H(r,V,, <f/r(0)>) acts on (Vr, %0)) in the following way:

H(r, Vo, VOV, V) = Ho(Vr, VO (W, VD) + Ha(r), (4.5)

where H,(r) is square-integrable and Hg(%,<‘7r(0)>) acts linearly on (Vr,f),go)) in the
following sense

He(Ve, (V) Ve, V) = he(Ves (VOO + E[He (Vi (VOO)VID] (4.6)

Here hy and Hy are maps from R x LQ(Q, A, P R!) into R and from R¥ x L2 (Q, A, P; RY)
into L2(Q), A, P; R"") respectively, for suitable k, [, I’ and I”. Moreover, there exist three
constants C, K, > 0 and a function ®, : [L?(Q, A,P;R))]?> — R, continuous at any
point of the diagonal, such that, for w,w’ € R¥ and VO, VO’ e L2(Q, A, P;RY),

[he(w, (VO] + B[ | Ho(w, (VO P < K, (4.7)
[y, (VO < O(1+ KTO[tt 4 [T O g+, (4.8)
[ (w, (V@) — hg(w!, (VO 4 B[| By, (V) — Hy(u!, (VO]

< C{|w — W+ (VO V<0>')}, (4.9)

with the condition that, when V(© ~ V(0
O, (VO VO < CE[(1 + [V O 4 (VO 2 1y (O 20 |y (O) _ 7(00712]
We shall also require the additional assumption:
For any V(©), the family (|ﬁg(w, <V(0)>)|2)weRkiS uniformly integrable. (4.11)

Conditions (.7), (£.9), (£.10) and (4.11)) must be compared with (H1), the constant K
in (4.7) playing the role of L in (H1). It is worth mentioning that the constant K has
a major role in the sequel as it dictates the size of the time interval on which all the
estimates derived in this section hold true.

The comparison between ({4.7)—(4.8)—(4.9)—(4.10)—(4.11) and (H1) may be made more

explicit within the framework of Example

Y2 (4.10)
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Example 4.3. (Continuing Ezample

Assumptions , , and read in the following way when, in the de-
composition [{4), he(Ve, (VA7) = 0uh(6,, [0 and Hy(Vy, (V) = 0,h(6,, [67]):

(1) Equation expresses the fact that h is Lipschitz continuous with respect to
(w, 1), so that the derivatives are bounded, in L™ in the direction w and in
L? in the direction . Importantly (and as already suggested), the constant K
corresponds to L in (H1).

(2) Equation expresses the fact that, for any (w,p), v — 0 h(w, p)(v) admits
a version that is at most of polynomial growth (in v) under (H1) (see the proof
right below).

(8) Equation says that the derivatives in the direction w and in the direction of
the measure are continuous (in a suitable sense). Except when o = 0, derivatives
may not be Lipschitz continuous in the direction of the measure, which is a crucial
relazation for our purpose.

(4) Condition ([A.11)) expresses the fact that, for x € L, the family (0,h(w, 1)(X)) werk
must be uniformly square-integrable.

The existence of a version of v — 0,h(w, p)(v) that is at most of polynomial growth can
be proved as follows. When h is understood as one of the coefficients b, o, f or g, we know
that, under (H1), d,h (which might be identified with a Fréchet derivative) satisfies, for
two random variables x and X', with the same distribution pu,

E[|0,h(w, 1) (x) — dub(w, 1) (x)]*]"*
< CE[(1+ [ + [P + I3 - x'12),

which implies that the mapping v — J h(w, pu)(v) is locally Lipschitz continuous, see
Proposition[3.8, More precisely, for a random variable x with p as distribution,

Buh(w, 1)) — Quh(w, 1) ()] < C(L+ o] + [0 + [x[5) o — .

Now, we know that,

(4.12)

E[|8,h(w, p)()1?]"* < C. (4.13)

Therefore, by the same method as in (3.33), we deduce that
inf  (0uh(w, ) (v)] < C.

i
[v]<2[x]2
which, together with local Lipschitz property, says that, for any w € R¥,
|Ouh(w, 1) (0)] < C+ C(1+ [ol* + [x]5) (o] + [x]2)
<O+l + xlg™),
which completes the proof of the polynomial growth property.

Remark 4.4. The reader may wonder about the sharpness of the bound . Indeed,
when specialized to the case o = 0 and h independent of w, provides just a linear
growth bound for the derivative R! 3 v — Ouh(p)(v) of a Lipschitz-continuous function
h: Po(RY) 3 — h(p) (the Lipschitz continuity of h follows from (@.13)). This might
seem rather weak and it might be tempting to expect an L™ bound instead of a linear
growth bound. As shown by the example in Remark [2.5, there is no way of guaranteeing
that the derivative d,h of the Lipschitz-continuous function h is bounded in L™, even
when o = 0 (which is the strongest case) . Boundedness of the derivative only holds in

L2, as is written in ({.13)).

(4.14)
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This important feature explains why the space of boundary conditions we consider in
the paper is not limited to functions with derivatives that are globally Lipschitz with respect
to the measure argument. Because of the gap in the growth of the derivatives, we would
fail to prove that the derivatives of the solution of the master equation (or equivalently
of the decoupling field of the FBSDEs ) are also globally Lipschitz with respect to
the measure argument. Due to this lack of stability, we would not be able to extend the
results from short to long time horizons.

4.1.2. Estimate of the solution. Part of our analysis relies on stability estimates for sys-
tems of a more general form than (4.3)), namely

Xy =1 +f B(r,0,,09) (0, (D)) dr +f S (r, 0,¢0)) (919, (I) AW,
t t

R . T B . _ . T
Ve = G X, (X)) (X, GE0) + | F(r8,,00) (0r T)ar — | 2, (419

s

the difference between (4.15) and (4.3) being that the coefficients (except the terminal
boundary condition) may depend on other triplets 6, 6, ¥ and ¢. We shall make use of
the following definition, directly inspired from (4.7):

Definition 4.5. Given triplets (0, = (X,,Yy, Z,))reper) and (0, = (Xp, Y, Zo))reper
of the same form as above, we say that a subset J of L*(Q x Q,A@A,P@P;RQ 18
admissible for (0,0) if

(i) for any r € [t,T], for H matching B, ¥, F or G and (V,, IA/}(O)) matching (X,, X, ),
(0, 91&0)) or (97@, éﬁo)), there exists A € J such that E[|Hy(r,V;., <Vr(0)>)|2]1/2 < A

(ii) any A in J satisfies P(E(A?)Y2 < K) = 1.
Notations. Throughout , J is an admissible class for both (,) and (6, 0). For a
real v > T, an integer p > 1, a real C' > 0, a triplet ¥ = (X, Vs, Z5) se[,r] With values in

S?2([t, T]; RY) x S2([t, T];R™) x H2([t, T]; R™*?) and a pair of random variables (X, x)
with values in a Euclidean space, we let

T p/2
My (9) = M[ sup ([P +1V2D5JP) + 412 ( | |zs|2ds) ]
se(t, T t
NGE(X,x) (4.16)

-~ essupnesM| | {4 n [+ BIIGOP] + 1x15+) E00PT| |

with the convention that M can be E; or E (in the latter case esssup is just a sup). Note
that M%,(9) depends on v, ¢t and T. We shall omit this dependence in the notation

ME (). With these notations, we shall write M (9()) for Mp (X, Y,0). Similarly,

we shall not specify the dependence upon ¢ in the notation NIIV)H’C(X ,X). Regarding the
structure of the coefficients, B, X, I’ and G, we also let

RE = Et[,yl/QlGa(T)‘p—i- (JT\(BG,FG)(S)\ds> U 1Za(s)| ds)p/ } (4.17)

From Cauchy-Schwarz’ inequality and (%) in Definition we get that:

Lemma 4.6. For any pair (X, x) and any p > 1, NPC(X X) < KP|x|5.
We deduce that
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Lemma 4.7. For any p > 1, there ezist two constants T'p :=T'p(K) > 1 and C > 0 (C
independent of p), such that, for T <~ < 1/T'), and for any solution ¥ to a system of the

same type as (4.15), it holds
MP () <T, sz +2MP (D) + RZP

(4.18)
PN (Rop )+ sup NEC (60, (M, <19<0>>)1/2)}].
s€[t,T]
In particular (redefining the value of '), if necessary),
2
M) < Tp| (Il + Inll2)” + R + B[RZ]” w1

+ 2 (MED) + [MEDO)] + [MEOO)) .

Proof. We make use of standard results for solutions of an FBSDE. We can indeed
start with the trivial case when the coefficients By, ¥y and Fy are null and G’g is also null
(see and for the notations). Then, (£.15]) reads as a system driven by the linear
part gy — that appears in the decomposition @ of G — plus a remainder involving B,
Y, Fy and G,. Without any McKean-Vlasov interaction, follows from stability
estimates for standard linear FBSDEs. For instance, following Delarue [I1], we get that,
for any p > 1, we can find I'y, := I',(K) > 0 (the value of which is allowed to increase
from line to line), such that for v < 1/T', holds, but with a simpler right-hand
side just consisting of Tp[|n|% + RP].

In the case when By, 2@, F, are non-zero, we view them, when taken along the values
of (0, 60 9 19(0)) as parts of By, g and Fy. Similarly, we can see Gy, when taken along
the values of (X7, <XT>), as a part of G,. We are thus led back to the previous case, but
with a generalized version of the remainder term R,. In order to complete the proof, it
suffices to bound this remainder in L?. The analysis of the remainder may be spht into
three pieces: One first term involves by, oy and f;; another one involves Bg, Eg, Fy and
Gg, the last one involves B,, X,, F, and G, and corresponds to the original R,. As a
final bound, we get

MP (@) < Tyl (4.20)

e ([ (b 1) 0., (00 fas) g (J (@), <é§0>>>z§2|2ds)p] (421)

+ F;o’yl/2 [Et [‘E[ée(){% <XT>)<}€T>] ‘21)]

+ 4P ess sup Et[\E[@g,Fe,2»(9‘5,<é§°>>><6§0>>]12p]} (1.22)
se[t,T]

L T,E [71/2|Ga(T)‘2p + (fy(Ba,Fa)(s)yds>2p + (Lﬂﬁa(s)fds)p}.

Observe that, in , we used the supremum to get TP, which we bounded by 71/2
times /2.

Making use of , we easily handle the term . In , it gives the contri-
bution of the form 71/2./\/112572(@), the v1/2 in front of Mg, and the 4'/2 in the definition

of Mﬁfz (9) arising as follows. When handling (by, f¢), we can let a power 2 enter inside
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the time integral. This introduces the H?-norm of Z times an additional T less than -,
which can be split into 41/2 and ~%/2.
Next we discuss the second term in For this we use and (| . Wlth

the shortened notation H = (B,F,E), we can indeed either say that Hg(95,<93 >) is
bounded in L? or use the polynomial growth assumption. We get
M|

B[ 21,06, GONOO|| < B[{Aq n (C+ LB+ C1oO 1) e

where Ay is a shortened notation for |Hy(f,, <9§0)>)|. Now, using the conditional Cauchy-
Schwarz inequality and the obvious bound E;[S A So] < Ei[S1] A E¢[S2] for two non-
negative random variables S7 and Se, we obtain:

B[ (0, BN ||

[ . T 1/2
< E[{Et[Ag]l/Q A (c + CR, (92022 4 ¢)60 Haﬂ) }Et[1<z9g0>>|2] ]

Taking the power 2p and the conditional expectation E;, we get a term which is less
than NZP’ (65 )7,0(0)) Multiplying by 7#/? (see the prefactor in ([#.22)), we get that it is
less than Ngf” (0&0), [|2]% +~Y2|s|2]*/?) which is less than Nﬁf’c(égm, (MZ, (9(0))1/2),
Of course, we can use the same kind of argument for the first term in (4.22) and get
Nﬁf’C(XT, Xr) as resulting bound.

The second claim follows from Lemma H.6l O

In particular, we have the following useful result for systems of the form (4.3]) obtained
by considering ¥ = ¥ and 9 = 9 in (#19) and setting  small enough.

Corollary 4.8. For any p > 1, there exists a constant I'y, := I',(K) > 1 such that, for
T < v < 1/Ty and for any solution ¥ to a system of the same type as (4.3), it holds

ME () < Ty (n+ |nla)” + R + B[RE] + (MO (429)
When 0 = 9, we have (modifying the constant T'), if necessary):
M) <Ty[(n+ Inl)” + R + BRI (420

Proof. Inequality (4.23)) directly follows from (4.19). To get (4.24]), we choose p = 1 and
then take the expectation. For y small enough, we obtain M2 (9) < I'1(|n]3 +E[R2]) (up
to a new value for I'1). Plugging the bound into (4.23)), we deduce that 1} holds. [

AT v A — v

drlven by two different sets of inputs (9 9 0,9,9,9) and (0',0,0', 9,9, 19’ ) but with the

same starting point 7. Throughout §4.1.3, 7 is an admissible class for (6, 9) and (6,6).
Given an integer p > 1, define snmlar notatlons to (£.10)) and (#.16)) (but without ~'/2
in front of the terms in y)

0, (00, 9O0) = sup {@, (00, H0)}

set, T
M, ) = sup {Eo|A + V7] + [R5 + D3} + 2138
se[t,T] (4.25)

WEP(0,0).(0,9)) = M2 (0 — 9 = ) + 22 (90 5),

MPPI] = MPP(9,9), M*P[9,9'] := M?P((9,9), (¢, 9)),
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and denote by ARZ the quantity (recall (#17) for the definition of RaP):

AR .= E, {VWIGG(T) - G;(T)F”

. <LT|(Ba _B.F, - Fé)(s)’ds> ’ + (LT\(ZQ - E;)(s)!2d3>p].

(The notations B, F), ¥/ and G, refer to the fact, along the processes labelled with a
‘prime’, the remainders in the decomposition of the coefficients may be different.) Then,
we have

(4.26)

Lemma 4.9. For any p > 1, there exist three constants C (independent of p), T'p,
I'y(K) >1 and Cp > 0, such that for T <~y <1/T,,

M9 —0') ST PAMP (9 =) + NgP© XT,JET — X
E¢ p E;
+ sup NZC (g ( (M2, (00 19<0>’))1/2>} (4.27)

se(t, T
G| (M0 ) + M (@) ) 2
AL n (MP((0.0).(0.0)) + M*((0.6). (0 é))>}1/2+AR§P].

In particular, choosing p = 1 and taking exzpectation, we have, for some constant I :=
I'"(K) such that T <~ < 1/I' and for some C" > 0,

MW —9) <32 MB(9 = F) + ME(DO = 9O) + ME(HO — 3O}
_ R o N1)2
+ C’E[<M4(19’,19’) + MW 19')) (4.28)
AL (M((0.6),01.8)) + M ((0.6),0.))) }1/2 +AR2).

Remark 4.10. Specialized to the case when 0 = 0 = 9’ =0, 0=0=0=0,9=0=
19 = 19 V=70 =9 =9 and ARZ =0, Lemma S reads as a uniqueness result to
in short time when ¥ =V therein.

Proof. We start with the proof of (4.27). We take benefit of the linearity to make
the difference of the two systems of the form satisfied by ¢ and 9. The resulting
system is linear in AY 1= 9 — ¢, AJ := 9 — ¥, AJ := J — 9 and A := J — ¥, but
contains some remainders. We denote these remainders by AB,, AF,, AY, and AG,.
Using the notations introduced in and , they may be expanded as:

AHo(s) = (he(Bs, (02)) — he (8, (07,

+ B[ (Hp (0, 0)y) — Hy (0, 0)) D] + Ha(s) — Hy(s),
AG(T) = (ge(X7,{X7)) — ge( X/, (X)) X

+ B[(Ge(X1,(X1)) — Ge( X, (X)L + Ga(T) — Gi(T),

where H may stand for B, F or X, with a corresponding meaning for hy, Hy and Hy: hy
may be by, fo, op; Hy may be By, Fy, or ¥y; H, may be B,, F, or ¥,; and H, may be
B!, F} or ¥!. With these notations in hand, the terms AH,(s) and AG,(T') come from

(4.29)
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(recall ):
(1,0 G0)) (01 ) — H (. GO) (7. %)

= Hy (0, 61))) (A0, (AID)) + AH,(r),
G(XT’ <XT>) (XTv <22T>) - G(X’il”’ <X’ZF>) (X’.;“v <)€’.;“>)
=Gy (XT, <XT>) (AXT, <A)2T>) + AGQ(T) .

We will apply Lemma In the statement of the Lemma, we see from that ¢
must be understood as A, ¢ as A and similarly for the processes labelled with ‘hat’ and
‘check’. Moreover, the remainder (Bg, Fy, X4, G,) in the statement must be understood
as (AB,, AF,, AY,, AG,).

We estimate the remainder terms in (£.18)), recalling for the meaning we give
to the remainder in the stability estimate. By , the remainder can be split into
three pieces according to hy, H; and H,.

(4.30)

First step. Upper bound for the terms involving (by, fe), o¢ and g;. We make use of
the assumption (4.9) and of the conditional Cauchy-Schwarz inequality. Getting rid of
the constant /2 in front of |Gy (T)[? in [@.17), we let

A= B l(o(Xr () = (X ) 1
T B . 3 . _ 2p
+ (L |((bes fo)(05,<00))) — (bé,fe)(9/s7<9£0)/>))?9;‘d3)
([ 002,00 - @, ) as) |

Recalling the Lipschitz property (4.9)), we know that, for a generic function hy, which
may be by, f; or oy,

[(Re(Bs, ) = ha(0, BN D" < C (16, — 0, + @20, 6O 2. (4.31)

Therefore, we get (for a constant C’ possibly depending on p and varying from line to
line)

T _ 5 3 . 3 2p
( [ 101900, - 6 0@ <e§0>'>>)19;1ds)

T _ p . . T p
<C’{<J |95—0;\2ds> +¢§P(9<O>,9<0>’)}<J |q9;|2ds>,
t t

and by conditional Cauchy-Schwarz inequality, we deduce that (with the notation intro-
duced in (4.25))):

EtK ft T| ((bes o) (05, O0Y) = (b, f2)(0, <9§°”>>)5’s|d8> 2p]

< C{M™((0,0),(@,8)} > Mm@, 3}

It is pretty clear that we can get a similar bound when replacing (b, f¢) by o4 (using the
supremum norm to handle the fact that there is already a square inside the integral).

Finally, the term involving g, can be also handled in a similar way, paying attention

that the ‘bar’ process has to be replaced by the ‘non-bar’ process and the ‘check’ process
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by the ‘hat’ process. We thus get
Ar?p
< C{M™((0,0),(6,0)) + M*((8,0),(0,6))} > {M*P () + M (I, 5')} 2.

Using (4.7)), we get another bound for the same quantity, just by taking advantage of
the fact that (b, f¢), o¢ and gy are bounded:

T p
ArZ < c’{EtHX%Q”] + sup Eq[|00 7] + EtKJ 9/5'2(18) H
se(t, T t
so that
ArgP < C'[1 A {MP((0,6), (6/,0)) + M ((0,0), (0. 0))}7]

x AMP (S D) + M (5}

Second step. Upper bound for the terms involving Bg, Fg, ig or é@. We can make use of
the Lipschitz property (4.9) or of the L? bound (4.7). For a generic function Hy, which
may be By, Fy or Xy, we get

B[ (He(Bs, (00) — Ay, BO"))) DO ][

)~ A (4.32)
< CO[1 A (18, — 0.2 + B2 4O ] 50|32,

Therefore, recalling the bound {(1 A h)dv < 1 A { hdv that holds for a general measure
v with mass less than 1 and a general measurable nonnegative function h, we get

T 2p
E[( | m[(m(e‘s,@gm»—m(é;,<é§°>'>>)<ﬂ§°>'>]|ds) ]
T p
<[ ([} (0. @) — @, @) 0] as) | (433)

T p
< sup |q§g0)/|§p{1 A <Et|:<J‘ |§S —92‘2d8> :| +(I)ip(é(0)7é(0)/)>},
se[t,T] 0

which satisfies the same bound as Ar?p . Above the passage from the first to the third
line may be applied with H equal to F' or B and the passage from the second to the third
line may be applied with H equal to X.. We have a similar bound for the term involving
Gy:

BB (Ge(Xr. (X)) — Go(XE (R3]

< C' sup \\ﬁg0>'|\§1’[1 A ( sup By [[60) — 9/ %] 4 @2 (6O §(O))
se(t, T se(t, T

>] (4.34)

Conclusion. In order to complete the proof of the first part, notice that the terms labelled
by a directly give the remainder AR in (4.27). The second part of the statement easily
follows from Lemma E.Gl

Remark 4.11. As the reader may guess, terms of the form M*P (9, 29) and /\;1419(15,19) n
will be handled by means of Corollary , However, we note that, in comparison
with M, the ‘conditional’ norm M™* that is used in C’omllary@ incorporates an addi-
tional pre-factor v'/2, see (.16)). Roughly speaking, M*(9,) and Mg(ﬁ)—i-(/\/l%(l@(o))%
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are ‘equivalent’ provided 7y is not too small. In the sequel, we often choose v exactly equal

to 1/T, so that M*(9,9) and M%’:(ﬁ) + (MEDO)) can be indeed compared.

Corollary 4.12. Consider a family of progressively-measurable random paths ((6¢, é&) :
[t,T] > s (9§, eﬁ))g parametrized by & € L2(Q, F;,P;RY). Assume that, for any p > 1,
there exists a constant Cy such that, for all & and & (with the same notation as in (4.25))
but with ®, defined on [L?*(Q, Fy, P;RY))? instead of [L*(Q2, A, P;RY)]?):
(M6, 69) 7 < Gyl + [¢] + [ele].
(AP (6%, 69), (6. 6))) ™ < Gyl — €] + @a (&,€)) .
Assume also that we can find a Borel subset O of a Euclidean space, a continuous func-
tional U from O x L?(Q, A, P;R?) into L2(Q, A, P;R.) and, for any & € L?(Q, F;, P;RY),
an admissible class J¢ for (05,0%) such that, for any A in J¢, there exists a random
variable \ : (2, A,P) — O satisfying A(w,-) < (w),<&)), where A(w,-) denotes the
random variable Q3@ — Aw,®) on (2, A, P).
With C as in Lemma we then let, for ¢ € O and & € L2(Q, F;, P;RY),

V(6 @) = (P )W) A {C+E@I +[els™) ), wen,  (436)

where V (s, &) is an abuse of notation for denoting the copy of the variable ¥ (s,{&)) on
the space Q instead of (). (We may indeed assume that L2(Q A, P; RY) is a copy of
L%(Q, A, P;RY), in which case we can transfer (canonically) V(s,-) from one space to
another.)

Then, for any p = 1, there exist two constants I, ( 1 and CI’) > 0, such

) =
that, for T <~y < 1/T,, choosing (,9) = (0,9), (9, 19) 0,9), (7/,9") = (0',9) and
@',9") = (é’,ﬁ/) in Lemma with (0,0) = (65,0%) and (0',0') := (6¢,6%), it holds
that:

[ME (9 = 9)] >
<0{[1n (16~ €1+ 2u(e )
x (Il + Inlla + (RE) + B(R2)Y + (MEHO))"?)

+ (R sup sy B[ (0 4 Bs.6)) (v, 00 - 50) 7] .

€0 | Agl2<K

(4.35)

(4.37)

When ¢ =9 and ¥ = ', we have (modifying the value of Iy if necessary):
2 1/2
[Mg, (9 =) ]

< {1 n (1= €1+ ale. )] (] + lnle + (R)'" + B[RE]) + (ar2) "
; c;{sup sup B[ (B0 A B(6.9)[1 A (I — & + Pu(6€))] (4.38)
€0 |Aol2<K
< (il + Il + (R + £(R2)*) |}

+ C;{sup sup E[(AO A \Tl(g,f)) (AR2)1/2] },
€0 [Aof2<K
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the variable Ao in the supremum being in L*(Q, A,P;R ) and the function ®, differ-
ing from the original one in (4.9) and (4.10) but satisfying the same properties on
[L2(Q, Fi, P; RY)]? instead of [L*(Q, A, P; RY)]%.

Remark 4.13. Before we proceed with the proof of Corollary[{.19, we discuss what the
assumptions we made on the structure of J¢ permit to say on the term J\/’éf”c(X, X) in

(4.16). Recall indeed that
P
C - - a+211/2 o - 1/2
BO0r) = sup B[ {4 n [00+ BICOP + 1xig ) JEdknr) |
€

Sin"iplifymg the notations, the term inside the conditional expectation may. bg rewritten
as E[(A A (W)WY, for some random variables (W) and V) in L?(Q2, A,P;R,) and
for A e J¢. Allowing the constant C, in the assumption to increase from line to line, the
following bound is proved right below:

E, [E[(A A <W>)<W>]p] v <sup sup {E[(Ao AY(G, &) A W)W]} (4.39)

ceO HA()H2<K

where, in the above expectation, Ag € L*(Q, A,P;R ), W and W are the copies of (W)
and (W) on the space Q instead of .

We first prove the remark:
Proof. |[Remark [4.13|] By assumption on the structure of J¢, we can find A such that

E| (A A (W)OV| = B[ (A B(A©) 1 W))W

) (4.40)
< sup B[ (A 2 W(5,(0) # (W))W |

Recalling that A is a random variable A : Q x Q 3 (w,®) — A(w,®) on the product space
(2 x QA® A P®P) such that, for almost every w € Q, A(w,-) € L?(2, A,P; R, ) with
E[A%(w,-)] < K2, we can bound the above right-hand side by

B[ (A A ¥(5,(8) A (W))W
< sup{E| (Ao} A T(s,()) A W)W |; Aoy € L2 A PR, E[(Ao)?]* < K .

Transferring the expectation appearing in the supremum into an expectation on €2, we

get (4.39). O

We now turn to:
Proof. [Corollary [£.12]] The strategy is to make use of Lemma and to estimate the
various terms in (4.27). We use two values for the parameter v in the definition (£.16)
of M. As suggested in Remark , we first use v = 1/I',. Since we consider the case

@,0") = (¢/,9') and (¢',0') = (¢',7'), we deduce from ([@.23) in Corollarymthat there
exists a constant C, such that

(ME @)™ < Gyl + Inlls + (R2) > + B(R2)Y? + (ME@O) 2. (a.4)

Recalling again Remark to compare Mfgj and M and using in addition (4.35)), the
last term in (4.27)), when put to the power 1/2p, gives the contribution:

Co [ (16— €1+ @ale. €] (Il + Inle + ()7 + B(RZ)? + (MEGO7)"?)
+ (ARZ)Y 2”].
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We now discuss the other terms in . In this perspective, we use another value
for v, namely v' < 1/T,. Note that there is no conflict with the previous choice for 7,
which just permitted to handle the terms of the form M in . We thus turn to the
two terms Ngf’c in . Taking them to the power 1/2p and making use of the first
line in , this brings us with a term of the same form as in the left-hand side of
[E39), with W = C(L + |22+ + [¢[3°*) and W = [ME, (O — JO)]'/2. By ([@E39),

we get the following contribution:

E[ (Ao 1 © 2 (90 — 5o 2]
sup sup (B (ho 1 0(6.6) (MEO - 91 ]]

We obtain (modifying the constant I'y in (4.27)) in order to take into account the addi-
tional exponent 1/2p):

[M]QE;:W _ ﬁ/)]l/%’
< c;,{[l A€ =€)+ Bal6,6))]

. 4.42
(i Il + (R 4 B(RE) 4 (M3@0) ) + (amiry 7] 44

+ I‘p('/)l/A‘p sup sup {E[(AO AW(s, f)) (M%Et (19(0) — 19(0)’))1/2] },
€O |Apl2<K
which gives (4.37).
We now prove (¢.38) when 9 = and ¢/ = ¢'. We go back to (4.41)). Applying (4.24])
in Corollary with p = 1 and taking expectation, we get, for v small enough,
1/2 1/2 1/2
(M @) < cy lnl + Il + (R + E(R2) 2],

which means that, in (4.42]), we can get rid of the term Méf(ﬁ(o)’) in the right-hand side.

Let now p = 1 in (#.42). Multiply both sides by Ag A ¥(s, &) for an R -valued random
variable Ag such that |Ag|2 < K and take the expectation and then the supremum over
Ap and <. For 4/ small enough, we get that

E| (Ao A U 2 (9O — g0y}
iggm?ﬁz({ [( 0 A W(s, &) (Mg, ( ) ]}

< c’{sup sup E[ (A0 A B O)[1 A (1€~ €] + Pu(6. )]

€0 |Aol2<K

x (Inl + Il + (R + E(Ri)m)]}

+ C/{sup sup E[(Ag A \i’(g,f)) (ARg)l/z]}.

€0 ||Aof2<K
Plugging the above estimate into (4.42)), we complete the proof. O

Here is a very useful condition to check (4.35]):

Lemma 4.14. Consider a family of progressively-measurable random paths ((Hf,ég) :
[t,T] 2 s — (eﬁ,éﬁ))g parametrized by & € L*(Q, Fy,P;RY), with the property that the
paths (05O : [t,T] 5 s — éﬁ’(o))g are continuous, and that (éﬁ’(o))se[tﬂ and (éﬁ”(‘”)se[tﬂ
have the same distribution when & ~ £'.
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Assume that, for any p = 1, there exists a constant C), such that, for all £ and ¢,
105 sp,6 + 105 s0,6 + 0300, < Cp (1 + [&] + [€]12),
65 — 05O oy + 1050 = 05Ol + 65 = 6 | s (4.43)

< Gyl = €1+ Wa([€], [€T)],
then, we can find constants C,, such that, for all & and &' (with the notation ({.23))),

(M2P(65,69) "% < Col1 + [¢] + J€]2],
(M2 ((65,65), (6°,05)))* < C[Je — €] + Dals, €)],
where

D, (¢, &) =E[l€ - ¢P]

Y21 sup o (050,650, ¢ ¢ e LX(Q, F, P;RY).  (4.44)

s€(t, T

The functional Oy is continuous at any point of the diagonal of [L2(Q, Fi, P;RY)]? and
satisfies {4.10) (up to a modification of the constant C' therein).

Proof. The bound for (M?P(6,60¢))"/? is a straightforward consequence of the first
line in (£.43)). The bound for (M?P((6¢, 0%), (6, 68))1/2P follows from the second line in
and from the definition of M in (£.25).

The main issue is to check that @, satisfies the same condition as ®,. By (4.43),
the map L2(Q, A, P;RY) 5 ¢ — (éﬁ’(o))se[t,ﬂ e S2([t, T];RY) (with the appropriate [) is
continuous and, for any ¢ € L%(Q, A, P; R?), the map [t,T] 3 s — é§7(0) e L?(Q, A, P;RY)
is also continuous, proving that, for any sequence (&,),>1 converging to & in L2, the
family of random variables (éﬁ”’(o)) se[t,T],n>1 18 relatively compact. Since, for any compact
subset K Lf(Q,A, P;RY), sup{®a(x, X'); X, X' € K, |x — X'[l2 < &} tends to 0 with d,

continuity of ®, at any point of the diagonal easily follows.
Now, we check that @, satisfies (4.10) when ¢ and ¢ have the same distribution.

Since 69 and éﬁ"“’) have the same distribution, we deduce from (4.43) that
E[(1+ [0SO + 85O + 650 3) 650 — 65O ]2

~ Al ~ N Al 1
<E[E[(1+ 05O 1 85O 1 650 )3) |65 — 65 O] ]

1/2

/2

< CE[(1+ €)% + €% + [€13%) 1€ — €1%]
]

Example 4.15. We illustrate the meaning of ({4.38) in the simplest (but crucial) case
when Ry, = AR, = 0. Clearly, the most challenging term s

sup sup E| (Ao A ¥(, ) [1 A (I = €1+ @al&. )] (11l + Inla) |

€0 | Agl2sK
which is less than
_ 9 971/2 _
swp sup E[ (Ao £ 0(6,€)°[1 1 (1€~ + Rale, )] Inlh < Bl
s€0 |Aol2<K
with

_ _ /
B(&,¢) = Sgg lAsugKIE[(AD A W(g,g))2[1 A€ — 5’|2]]1 ’ + K®,(£,8). (4.45)
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Recalling the bound 0 < (s, &) < C(1 + |£(w)[*FL + €57, there exists a constant C
such that, whenever & and &' have the same distribution,

B(E &) < CE[(L+16P** +1¢P*+)le - €1,

which fits , with o + 1 instead of o, up to another multiplicative constant. The
functional ® is thus a candidate for being a function of the same type as ®n11, according
to the notation used in the assumptions f. Still, in order to guarantee that ®
indeed satisfies the same assumptions as P11, it is necessary to prove that it is contin-
uwous at any point of the diagonal. We claim that it is the case under the two additional
conditions (the proof is given right below):

(i) for each & € L?(Q, F,P;RY), the family (V2(s,€))cco is uniformly integrable,

(i) the mappings (L?(Q, F1,P;R?Y) 3 € — U(s, &) € L*(Q, A, P;RY))co are equicon-
tinuous. X

As an ezample of a family (0%,0%)¢ and a functional ¥ : O x L?(Q, F;,P;RY)
(6,€) — W(s,&) that satisfy the prescription in Corollary together with (i) and
(i1), we can consider (again, the proof is given right below) (05 = 01¢. 9 = ét’5)§ or
(6% := b=l ¢ .= 44); and

. . 1/2
(s = (w,9),€) = sup B[ |[Hy(w, 05O, (4.46)
H=B,%,F,.G
for w e R4 x R™ x R™*? and s € [t,T]. (The definition of V(s,£) for a random variable

& that is not Fi-measurable is useless here, since £ is exclusively thought as an initial
condition of the system (2.3)) at time t.)

Proof. First step. We first check that, under (i) and (i), ® is continuous at any point
of the diagonal. Given two sequences (&,)n=0 and (£,),>0 converging in L2(2, F;, P; R?)
towards some &, we already know that (®y(&,,&),))n>0 converges to 0. Therefore, it
suffices to focus on the first term in the right-hand side of ({.45). We have

sup sup E[(Ao A ‘Il(g,fn))2[1 A& — f;ﬂ]
G€O |Ag|2<K

—sup sup E[(Ao A (6, )) LA e~ é’IQ]H
€0 [Aol2<K

i ) (4.47)
<sup sup E[(Ao A U ) LA le—€P — 16—
€0 ||Agf2<K
+sup sup E”(Ao A \Tl(g,f))Z — (AO A \Tl(g,fn))2H.
s€0 |Aol2<K

Recalling the bound ¥(s, &) < ¥(s, ), the first term in the right-hand side is less than

sup B[ 02, )1 A |6~ €2~ 1 J6n — 612,

seO

which tends to 0 by uniform integrability of the family (¥(s,§))ceo-
Consider now the second term in the right-hand side of (4.47). We have

sup  sup EH(AO A T(5,) = (Ag A \iJ(g,fn))QH
€0 |Aol2<K
_ _ 291/2
< 2Ksup sup EHAO AV, &) — Ao A (s, &) ] .
€0 |Aol2<K
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Recalling from (£36) that ¥(s, &) = (s,8) A p(€), with o(§) = [C(1+ [¢]*+ + g5,
writing [Ag A W(s,§) = Ao A W(S,&n)| < [Ao A W(s,8) A @(§) — Ao A W(s, ) A p(&n)| +
[Ao A U(s, &) A w(&n) — Ao A (s, &) A p(&n)| and using the Lipschitz property of the
map R3x — a A z, for any a € R, we deduce that

sup sup B|(80 n 9(6.9)7 ~ (d0 1 85,6,
€0 ||Aol2<K

2]}1/2'

By uniform continuity of the mappings (¥(s, -))ceo, the first term in the right-hand side
tends to 0. By uniform integrability of the family (U2(s, £)).co, the second one also tends
to 0.

Second step. We now check the example. By Lemmas and is satisfied
with (6%, 68) := (6%€,0%¢) or (65,60%) := (0-=1€] §%€). We prove that U in satisfies
(1) and (i1). We check first the uniform integrability property (i). It suffices to check
it for H equal to B, ¥, F or G (if uniform integrability holds for H equal to B, ¥,
F or G, then the supremum over H equal to B, 3, F or G also satisfies (i)). Given
¢ e L*(Q, F;,P;RY), it suffices to prove that the family (SUpyepm | Hy(w, éf«7£7(0))|2)weRk
(for the appropriate k) is uniformly integrable. Consider a positive constant € > 0. Since

2]1/2 + supEH\If(g,ﬁ) A (&) = T(s, &) A p(&n)

< QK{supIEH\I’(G,f)\I’(g’gn) co

seO

the path [t,T] 2 r — éﬁ’g’(o) is continuous and ®, is continuous at any point of the
diagonal, we can find a constant § > 0 such that

sup o, (éfjg,(o)’ é?g,(o)) <e. (4.48)
(r,8)et,T]2:|s—r|<d
Then, for (r,s) € [t,T]?, Cauchy Schwarz’ inequality yields
N . . . . . . . 1/2
‘E[\Hz(w 055 ] — E[|He(w, 9?5’(0)”2]‘ < 2KE[|H£(U}, 62Oy — Hy(w, 9?5’(0))|2]
< 2Ke'2.

Therefore, denoting by (t = sg < s1 < --- < sy = T') a subdivision of [t, T'] with stepsize
less than §, we deduce that, for any event A € A,

sup sup E[|f[g(w,§ﬁ’€’(0))|21A] < sup sup E[|ﬁg(w,é§’f’(0))|21A] + 2KV,

weRk t<r<T weRF i=0,...,N
By the uniform integrability of each of the family (| H(w, éz’f’(o))|2)weRk, fori =0,...,N,
see (H1), we deduce that the left-hand side is indeed less than 4K e'/? for 6 small enough.
We check uniform continuity of the mappings (£ — Hy(w, éz’&(o)»wekk,se[t,j’]i

1/2 <C sup @a(éz’é’(o),éé’gl’(o)),

sup sup E[‘ﬁg(w’é?&(o)) _ﬁe(wé?gq(o))ﬂ
selt, T

weRF se[t,T]
which tends to 0 as & — ¢ tends to 0, by the same argument as in Lemma [4.14] Il
We complete the subsection with a very important observation:
Remark 4.16. Ea:ample ensures that C’omllary may be applied with (65, 95) =
(046, 0€) or (05, 608) == (94=1E] 01€)  in which case holds for a suitable function @,

(defined on [L*(A, F;,P;RY)]?) and the the second term in the right-hand side of ([#.38))
may be bounded by a function of the type ®o11 (also defined on [L?(A, Fi,P;RY)]?).
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It is worth mentioning that, with the construction that is suggested, both &, and P41

may depend on t, which is clear from (4.44) and (4.46).

Below, we want to use versions of both that are independent of t. This requires first to
restrict the domain of definition of both functionals to [L?(A, Fo, P;RY)]?. Second, this

requires a suitable adaptation of (4.44) and (4.46]).

When ¢ € L*(Q, Fo, P; RY), we may extend (eﬁ’f)sem] to the interval [0,T] by letting
X5 = ¢ v = Y and 255 = 0 for s € [0,t]. Then, for &,¢ € L*(Q, Fo,P;RY),
instead of (4.44), we may let

0a(6,8) =E[I€ - E1P]P + sup sup D,(025©) 480,
te[0,T'] s€[0,T]

(that is we also take the supremum in t), and, instead of (4.46)), we may let

" 1/2
V(s = (w,t,s),€) = H:zué)FGEt[\He(m92,5,(0))’2] |

(that is we include t in the variable ).

Then, the resulting new functionals ®, and Pn11 are independent of t, are continuous
at any point of the diagonal of [L?(Q, Fo, P;RY)]? and satisfy with respect to a and
a+ 1. The proof works exactly as in Lemma [/.14] and in FExample noticing that
that the mapping L2(Q, Fo, P;RY) x [0,T] x [0,T] 3 (&, 5,t) — 655 € L2(Q, A,P;R?) is

continuous (which is the main ingredient to make the argument work).

4.2. Analysis of the first-order derivatives.

4.2.1. First-order derivatives of the McKean-Viasov system. As we already explained in
Examples and , the shape of the system has been specifically designed in
order to investigate the derivative of the system of the original FBSDE in the direction
of the measure. Thus, we shall make use of the results from Subsection the constant
L in (HO)(i)-(H1) now playing the role of the constant K in the above statements. In
order to stress the fact that this subsection is devoted to the application of the general
results proved above to the specific question of the differentiability of the flow, we shall
use constants c¢(L) or ¢,(L) instead of 1/I'(K) or 1/T',(K) for quantifying small time
constraints of the type T' < ¢(L) or T < ¢p(L).
To make things clear, we also recall the identification of hy, Hy and H, in (4.4):

he(w, (V) = auh(w, [VO), Hy(w, (VD)) = auh(w, [VOD VD)), Hy=0. (4.49)
The next results state the first order differentiability of the McKean-Vlasov system.

Lemma 4.17. Given a continuously differentiable path of initial conditions R 3 A —
& e L2(Q, F, P;RY), t standing for the initial time in [0,T], we can find a constant
¢ := c(L) > 0 such that, for T < c, the path R 3 X\ — 6* = (XN YA 7)) .= =
S2([t, T]; RY) x S2([t, T],R™) x H2([t, T]; R™*9) is continuously differentiable.

Proof. Under (HO0)(i), existence and uniqueness of a solution to (2.1)) may be proved for
a small time horizon T by a contraction argument. As in [II], for 7" small enough, we can
approximate (X, Y* Z*) as the limit of a Picard sequence ™ := (XA YA ZnA),
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defined by

XSTL+1,/\ — é-)\ +f

O 02O + [ (6RO, g2 O,
t

t

T T
YvSnJrl,)\ _ g(X:?H”\, [X;i-&-l,)\]) + f f(e;L,)\v [Qf’A’(O)])dT _ J Z;L+1,)\dWr’
S S
where we have used the notation 9?’)"(0) = (X;L’A7 st’)‘), with the initialization 6%* = 0.
By the standard theory of It6 processes and backward equations (see in particular
[31]), we can prove by induction that, for any n > 0, the mapping R 3 A — 0* =
(XA YA ZnA) e S2([t, T]; RY) x S2([t, T], R™) x H2([t, T]; R™*?) is continuously dif-
ferentiable. We give just a sketch of proof. For the forward component, this follows
from the fact that given a continuously differentiable path R 3 A — h* € H2([t, T],R),
the paths R 3 X = (7 h}dr)sepr) and R 5 A — (§7 h}dWy)sepr ), with values in
S?([t,T],RY) for a suitable dimension [, are continuously differentiable, which is ob-
viously true. To handle the backward component, it suffices to prove first that the path
RaX— (Es [hr}])se[t’T], with values in S?([t, T],R), is continuously differentiable, which
is straightforward by means of Doob’s inequality. This is enough to handle the terminal
condition and also the driver since we can split the integral from s to T into an integral
from t to s (to which we can apply the result used for the forward component) and an
integral from ¢ to 7' (which can be seen as a new hp). In this way, we can prove that
R 3 A\ — Y"*+LA ig continuously differentiable from R to S?([t, T],R™). This shows that
Rax— (7 Zﬁﬂ’)‘dWr)Se[t’T] is also continuously differentiable from R to S?([t, T], R™).
By Itd’s isometry, this finally proves that R 3 A — (Z;Hl’/\) se[t,r] is continuously differ-
entiable from R to H2([t, T], R™*9), the derivative of Z"*1* writing as the martingale

representation term of the derivative of StT Z A qw,.
The derivatives, denoted by (X™*, YA ZmA) satisfy the system

R f BW (r, 672, (0P O)) (972, 0O ) dr
t

=[S0 O o ) (2O o O,
1A 1 t 1A F1A F1A 1A (4.50)
y;H_ A =Gl )(XT Xy >)(XT M < >)

T T
+ f FO (072 (g0 (92, (oM 0)y) dr —f ZrHAqw,,
S S

where we have used the notations x* = [d/dA]€}, 9% = (XA, YA ZnA) and 9 0) =
(X" Y™A) and where B, ¥, F and G are defined according to and are denoted
by BV, =M FO and GM as in (4.4), the superscript (1) stressing the fact that we
are dealing with first-order derivatives. We thus obtain a system of the form with
h=0=0""1> == 9=19 =9 and I = J = 9™ and x* playing the
role of n. We now apply Lemma [£.7] noticing that the remainder R, therein is zero, see
(14.49).

First, we set p = 1 in and choose v = 1/T1(L) in (#.16)), in agreement with
Remark .11 We then take expectation on both sides. We get that, for 7' small, the
sequence (M%(ﬁ"’)‘))n>1 is at most of arithmetico-geometric type, with a geometric rate
strictly less than 1. By induction, we deduce that there exist two constants ¢ := ¢(L) > 0
and C' = 0 (the values of which are allowed to increase from one line to another), such
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that, for 7 < ¢, sup,sq M2(¥™) < C||x*|3. Inserting this estimate into (#19) (with
~v = 1/T'y(L) therein), we can prove, in the same way, that, for possibly new values of ¢
and C,

1/2
sup M, (7)< CICPE + VB (451)
Exploiting Remark we deduce that [MA[0™*]]*/? and [MA[9"+1A]]Y2 in
are less than C'(|x*? + [x*]3).

We now make use of in Lemma with p = 1, in order to compare 9™ and
Y97 +1A | Clearly, the remainder AR? in is zero since the R, terms are here equal to
zero, recall [L.49). By the above argument, [M*[9"A]]Y/2 and [M*[9"F1A]]Y2 in
are less than C(|x*? + [x*[2). In order to apply Lemma , we also have to estimate
[MA[n+1A, 9™ ]]M2. Since T is small enough, the Picard scheme for solving is
geometrically convergent in L? and in any L”, p > 2, conditional on F;, the geometric rate
being independent of the initial conditions. To be precise, there exist p € (0,1) and C’ = 0
such that, almost surely, [M*["+1A — g7A])V2 < C'(1+ €2 + [€}3)p". By continuity
of the map R 3 A — & € L2(Q, F;, P;R?), this shows that E([MA[e+H1A — gnA]]1/2)
converges to 0, uniformly in A in compact subsets. Now, following the proof of Lemma
and using the fact that the map R 3 A — & € L?(Q, F;, P; R?) is continuous, the

family of random variables (9?’(0)’/\)nzo,se[t,T],Aelc is relatively compact in L?(£2, A, P; R% x
R™) for any compact subset K c R. Therefore, &, (67102 g7(0)2) converges to 0,
uniformly in A in compact subsets. We deduce that E([M*[67+1A, 67A]]V/2) converges
to 0, uniformly in A in compact subsets.

By with v/2I"(L) = 1/4, we deduce that, for T' < ¢ (allowing the value of ¢ to

decrease from line to line),
ME (0" — ™) < GME (0™ — ") + CIE[(|XN2 + HxAHg)@Z)n(A)])] ;o (4.52)

where (¢, (\))n>0 is a sequence of random variables that are bounded by 1 and that
converges in probability to 0 as n tends to oo, uniformly in A in compact subsets. By a
standard uniform integrability argument, we deduce from the bound 1, (\) < 1 and from
the continuity property of the mapping R 3 A — x* € L? that E[(|x*|? + [x*[3)¢¥n(N)]
tends to 0 as n tends to oo, uniformly in A in compact subsets. Therefore, the left-hand
side in (4.52)) converges to 0, the convergence being geometric, uniformly in A in compact
subsets. By a Cauchy argument, the proof is completed. O

We emphasize that the derivative process [d/d\], y=00” given by Lemma satisfies
with 7 := x, with § = 0 := 0° and ¥ = ¥ := [d/d\]]\_of" and with the coefficients
given in @ . In particular, for T small enough, the uniqueness of the solution to
(see Remark@) ensures that the derivative process at A = 0 depends only on the family
(EMer through €° and [d/d)\]uzof’\. Thus, when €0 := ¢ and [d/d)\]p\:oéfA = X, we
may denote by 6X9t’§ = (6XXt’§, (9XYt’5, 6XZt’5) the tangent process at £ in the direction
X- By linearity of , 6X0t7§ is linear in x. By a direct application of Corollary -
recall H, = 0 in the current case —, we have

Lemma 4.18. For any p > 1, there exist two constants ¢, := cp(L) > 0 and Cp, such
that, for T' < ¢, and with v = ¢, in (4.16)),

(M (2,89)]7 < Gy (x| + Ix]2).-
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Choosing p = 1 and taking the expectation, we get that the mapping L?(Q, F;, P; R?) 5
x > 008 € S2([t, T]; RY) x S2([t, T]; R™) x H2([t, T]; R™*?) is continuous, which proves
that L2(Q, F;,P;RY) 3 € s 0% € S2([t, T];RY) x S2([t, T];R™) x H2([t, T]; R™*9) is
Gateaux differentiable. The next lemma shows that the Gateaux derivative is continuous:

Lemma 4.19. For any p > 1, there exist two constants ¢, := cp(L) > 0 and Cp, such
that, for T < ¢, and with v = ¢, in (4.16)),

/
| < (17 {16~ €1+ @ara(t.6.6)}) (1x1 + ),

where ®q11(t,-) : [L2(Q, Fi,P;RY) ]2 — Ry is continuous at any point of the diagonal,
does not depend on p and satisfies (4.10) with « replaced by o + 1. The restriction of
Doy1(t, ) to [LA(Q, Fo, P;RY)|? may be assumed to be independent of t € [0,T].

Proof. The proof is a consequence of Corollary , with R? = AR? = (. Exam-
ple (see in particular (4.46])) guarantees that the conditions of Corollary are
satisfied. We then deduce that (4.38) holds true. Existence of a function ®441(t,-,-)
satisfying the prescription described in the statement then follows from Example {.15]
By Remark we can assume that the restriction to [L2(Q, Fo, P; R%)]? is independent
of t. O

Remark 4.20. It is easy to derive from Lemma that
[0 X5 = 0 X0 51 + [0, Y = 0V 1 + |04 245 — 0524
1/2
< C(E[(1 A J6 =€) + @asia(€€)) Ixle.

By [2 Proposition A.3], the map L?(Q, F;, P;RY) 5 € v (X4, YEE Z88) € SY([t, T]; RY) x
SU[t, T];R™) x H([t, T];R™*9) is continuously Fréchet differentiable.

[ M (2,04 — 0,00)

[0

4.2.2. First-order derivatives of the non McKean-Viasov system with respect to the mea-
sure argument. We reproduce the same analysis as above, but with the process gt-:l€]
instead of §%¢ by taking advantage of the fact that the dependence of the coefficients of
the system upon the law is already known to be smooth. This permits to discuss
the differentiability of #%[¢] in a straightforward manner.

We mimic the strategy of the previous subsection. Considering a continuously differen-
tiable mapping A — &* € L2(Q, F;,P), we are to prove that A — gtele] g continuously
differentiable.  The specific feature is that, for any A, the coefficients of the FBSDE
satisfied by gtz[6%] depend in a smooth way upon the solution 01€* of the FBSDE
. Since we have already established the continuous differentiability of the mapping
A — 0467 it suffices now to prove that the solution of a standard FBSDE depending
on a parameter A in a continuously differentiable way is also continuously differentiable
with respect to A. We shall not perform the proof, as it consists of a simple adaptation
of the proof used to prove the differentiability of the flow of a standard FBSDE, see [11].
When €° = ¢ and [d/dA]y—o&* = X, we shall denote the directional derivative at & along
X by

(0XX§’$’[5], axy';ﬂ%[ﬁ]7 axzz,%[ﬁ])se[t,ﬂ,
seen as an element of the space S%([t, T]; R?) x S2([t, T]; R™) x H2([t, T]; R™*%). By the
same argument as above, it only depends on the family (¢})yer through the values of
¢ and ¥, ((?XXt’x’[f], (}th,w,[ﬁL &XZt””’[ﬁ]) satisfying a ‘differentiated’ system, of the type
([@3), for which uniqueness holds. In ([#3), 7 = 0 (since [d/dA] X" = 0), 6 = ot=[¢],
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6=0tll 9= 0X9t7x’[5] and J = 0, 0%, the tangent process 0,0%¢ being given by Lemma
The coefficients are of the general shape and ({4.6). When h stands for one of
the functions b, f, o or g and V for 94%[81 gt2:[€l.0) op xto[€] and V for 65€, 9160) or
Xb& according to the cases, it holds, as in ,

he(V, (V) = 0:h(V,[VO), H(V,(VD)) = (V. [VODVD)), Hy=0. (4.53)

Lemma 4.21. For any p > 1, there exist two constants ¢, := cp(L) > 0 and Cp, such
that, for T < ¢, and with v = ¢, in (4.16)),

[MZ (2,657 < Cyxos (4.54)
and
[MZ (0,671 — 0,052 EN ]2 < Cpaa (8,6, €)Xz, (4.55)

where ®o41(t,-,-) : [L2(Q, Fi, P;RY)]? — R, is continuous at any point of the diagonal,
does not depend on p and satisfies (4.10), with o replaced by o + 1. The restriction of
Doi1(t, ) to [LA(Q, Fo, P;RY)|? may be assumed to be independent of t € [0,T].

Remark 4.22. Note that there is no conditional expectation on Fy in the above bounds
as the initial condition of 5XXt"”’[5] 1s zero, which means that the filtration that is used
for solving the linear equation can be assumed to be almost-surely trivial at time t. For
that reason, the right hand side reduces to |x|2. We stress the fact that it is not |x|2p
but || x|l2, as the dependence upon x comes through the McKean-Viasov interaction terms,
which is estimated in L? norm.

Proof. Equation is a direct consequence of in Corollary with n = 0,
Ra=0andd = 0,0%¢, combined with Lemm (to control the term 9() = 0,005,

We now turn to . It follows from (4.37) in Corollary with n = 0, Ry =
AR, =0, 68 = 98=lE] & = gtolél ¢ = g€ and ¥€ = 94 (and the same with ¢ instead
of £). By Lemma we can indeed bound the last term in by

sup sup {E[(Ao AY(g,8)) (1 Al =€+ ®a+1(t7§7§’)}) (Ixl + |X2>]}

€0 ||Agl2<sK

with¥ defined in and ¥ given in this definition by (4.46). Following Example
[4.15] (see in particular ([#.45))), we deduce that holds true (modifying ®,11(¢, -, )
if necessary). By Remark we can assume that the restriction of ®441(¢,-,) to
[L2(2, Fo,P; R%)]? is independent of . o

Following Remark to pass from Gateaux to Fréchet, we deduce:
Lemma 4.23. For T < c with ¢ := ¢(L) > 0, t € [0,T] and x € R?, the function
L2(Q, F,P;RY) 5 € > U(t, x,€) = Y;t’x’[g] is Fréchet continuously differentiable. In par-

ticular, the function P2(RY) 3 p v+ U(t,x, u) is differentiable in Lions’ sense. Moreover,
for all x € R, for all £,&" € L2(Q, A, P;R?Y), we have, with p = [£] and ' = [¢'],

10Ut 2, 1))z < C, [0.U(E 2, 1)(&) — 0uU (t, 2, 1) (&) |2 < CPas1(§,€), (4.56)
where ®oy 1 [L2(Q, A,P;RY))? — R, is continuous al any point of the diagonal and
satisfies (4.10), with o replaced by o + 1.

Proof. Fréchet differentiability is a consequence of the continuity Lemma that
permits to pass from Gateaux to Fréchet on the model of Remark We then

have ﬁfo’x’[E] = E[0,U(t,z,[£])(§)x]. Combined with Lemma , this gives (4.56]),
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but with ®,,;1 defined on [L%(Q, Fo,P;R%)]?, which requires that ¢ and & belong to
L?(Q, Fo,P;RY). The main issue is to prove that ®,,; may be defined on the whole
[L2(0, A, P; RY)]?. Tt is then worth mentioning that |3,U (¢, x, 1)(&) — U (t, 2, 1) ()2
only depends on the law of (&,¢). Given (&,¢') € [L?(92, A, P;R?)]?, we can always find
a pair (€,€') € [L2(Q, Fo, P;R%)]? with the same distribution (provided that (Q, Fo,P)
is rich enough). This says that, with the ®,41 given by Lemma [.21] for all £, ¢ €
L2(Q, A, P;RY),

||aUtw)(>—aU<tw &), < Pani(é:€),
with ®11(&, &) == inf{@a1(E, &), <£,5)e L*(Q,Fo, PR, (£,€) ~ (£,€)}.

Clearly, ®n.; is defined on the whole [L?(Q, A, P;R)]%. It satisfies ([#.10). Con-
tinuity at any point of the diagonal may be proved as follows. Given a sequence
(€n, €. )n>1 that converges to some (&, &) in [L2(Q, A, P; RY)]?, we may find a pair (€,€) €
[L2(Q, Fo, P;RY)]? with the same law as (&,¢). Now, for any n > 1, we can con-
struct (€,,€) in [L2(€, Fo, P;R%)]? such that the 4-tuple (£, &, €) has the same law
as (£n,§n,£ €) (it suffices to use the conditional law of (gn,g’) given (£,€)). Then,
(60,€,)uz1 converges to (€,€) in L2, From the inequality ®as1(6n€,) < Pasi(énr &),

Dh11(8n, &) tends to 0. O

We now discuss the Lipschitz property in x of 0,U(t, x, i):

Lemma 4.24. For T < ¢, with ¢ := ¢(L) > 0, we can find a constant C such that, for &
with p as distribution,

Vool € RY, 0.t 1)) — U (L', w)(E)]2 < Cla — o]

Proof. Thanks to the relationship 0XYf’$’[€] = E[0,U(t, z,[£])(€)x], it suffices to dis-
cuss the Lipschitz property (in x) of the tangent process (QXXE’I’g, (EXYSt’x’g7 GXZE’I’é)SG[tT],
seen as an element of S?([t, T]; R?) x S%([t, T]; R™) x H2([t, T]; R™*?), € and y denoting
elements of L?(, F;, P;RY).

Basically, the strategy is the same as in the proofs of Lemmas [.19] and [£.21] It is
based on a tailored-made version of Corollary [£.12] obtained by applying Lemma
and Lemma [1.9) with 6 = § := ¢'@l&l ¢/ = ¢ = 9178l G =¢ =0 =6 = o'¢ and
D=9 =9 =10 = 0,6% Informally, it consists in choosmg n = 0 and in replacing
|€=¢| by |z —2'| and CD a(&,€) by 0 in the statement of Corollary [1.12] We end up with

oy — o7 ) < Claf — al . O

4.2.3. Derivatives with respect to the space argument. We now discuss the derivatives of
U with respect to the variable z. Since the process 948 = (xt®l€l ytolel ztwlel)
may be seen as the solution of a standard FBSDE parametrized by the law of £, we can
apply the results in [II] on the smoothness of the flow of a classical FBSDE in short
time. Given ¢ € [0,T] and ¢ € L2(Q, F;, P;RY), we deduce that the function R? 5 z —
gtulel — (xtolel ytalddl ztwldly e S2([t, T]; RY) x S%([t, T]; R™) x H2([t, T]; R™*9) is
continuously differentiable, the derivative process at point z € R? being denoted by
0,001l = (Gth’x’[ﬂ,ﬁth’x’[ﬂ,0mZt’“’[5]). To be self-contained, notice that the same
result could be obtained by applying the results of Subsection .1, with the following
version of H(r,-):

H(r, VE=Eh Loy = o (vl [yt ypbede, (4.57)
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As a consequence, we easily get, for T < ¢p, ¢p := ¢p(L) and with v = ¢, in (4.16),
[MIQEp(@Ht’w’[g])]lmp < Cp.  Recalling the identity U(t,z, [£]) = 9;’30’[5], we recover the
fact that R? 5 & + U(t,,[£]) is continuously differentiable and that [0,U|s, < C,
see also [II]. On the same model (for instance by adapting Lemmas or to
investigate the difference 0,00%[&l — 0,04%"[¢] for two different x, 2’ € R? or by taking
benefit from the results proved in [1I]]), it can be checked that, for any ¢ € [0,T], any
€ e L2(Q, F,P;RY), the mapping R? 5 x +— 0,U(t,z,[€]) is C-Lipschitz continuous.
Intuitively, such a bound is much simpler to get than the bound for the continuity of
0uU because of the very simple structure of H(r,-) in (4.57)), the function d,h being
Lipschitz-continuous with respect to the first argument.

To get the smoothness of 0,U in the direction p, we may investigate the difference
0,00%181 — 0,081€T for two different &, &' € L2(2, Fi, P;R?). Reapplying Corollary ,
exactly in the same way as in the proof of Lemma we deduce

Ve eRY, & & e L2(Q, AP RY), |0,U(t 2, [€]) — Ut 2, [€])] < Pas1(&,€).  (4.58)

Actually, the above bound could be improved. Indeed, it also holds with ®,1(&,&’)
replaced by ®,(£,€&). The reason is that, in the analysis of 0,6%%[&] — 0,00%1€T there
are no derivatives in the direction of the measure, whereas these are precisely these terms
that make ®441(&,¢") appear in the proof of Lemma (or equivalently of Lemma
. In order to keep some homogeneity between the various estimates we have on the
derivatives of U, we feel it is more convenient to keep ®,41(&,¢’) in the above right-hand
side.

4.2.4. Final statement. The following is the complete statement about the first-order
differentiability:

Theorem 4.25. For T < ¢, with ¢ := ¢(L) > 0 and t € [0,T], the function R? x
LY2(Q,AP;RY) 5 & — U(t,z,[€]) = U(t,x,€) is continuously differentiable and there
exists a constant C = 0, such that for all x,2' € R?, for all £,&' € L*(Q, A, P;R?),
Ut p) = Ut ', 1) < C(lz — 2| + Walp, 1))
10U (¢, 2, 1) — U (82", 1) + |0,U (¢, 2, 1)(€) — 0,U (¢, 2, 1) (€1)]12 (4.59)
< C(lz — 2| + ®ar1(§,€)),
where ®oy 1 [L2(Q, A,P;RY)])2 — R, is continuous at any point of the diagonal and
satisfies (E.10)), with o replaced by a+1. In particular, for any x € R? and p € Po(R?), we
can find a locally Lipschitz continuous version of the mapping R? 3 v — ouU(t,x, p)(v).
Moreover, the functions [0,T] x R? x L2(Q, A, P;RY) 3 (¢, 2,€) — 0, U(t,z, [£]) € RY
and [0,T] x RY x L2(Q, A, P;RY) > (t,x,£) — ouU(t,z,[€])(§) € L*(Q, A, P;R?Y) are
continuous.
Finally, for any t € [0,T], € € L*(Q, F;,P;R?) and C' > 0,
lim sup sup El0,U(t,z,[§])(§)A14|| =0,  (4.60)
P(A)—=0,4€A (1 1)e[0,T]x R4 AeL2(Q,A,P;Rd):HA”gsC” [ g ]’
which is the analogue of the uniform integrability property described in (H1) for the

original coefficients b, o, f and g.

Proof. The Lipschitz property of U is a direct consequence of the bounds we have
for 0,U and 0,U (or equivalently of Lemma . The joint continuous differentiability
is a consequence of the partial continuous differentiability and of the joint continuity
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properties of the derivatives. The extension of ®,; to the whole [L?(Q, A, P;RY)]?
achieved as in the proof of Lemma [4.23
The local Lipschitz property of R% 3 v — 0,U(t,x, u)(v) follows from Proposition .
We now discuss the continuity of [0,7] 3 t — 9,U(t, z,[€])(€) € L*(2, A P;RY).
Clearly, there is no loss of generality in assuming that ¢ € L%(Q, Fo,P;R%). Given
£,x € L*(Q,F,P;R%) and 0 < t < s < T, it suffices to bound the time increment
E[(0,U(t, z,[€])(€) — 0,U (s, 2, [£])(€))x] by C(t,s)|lx|2, the constant C(¢,s) being in-
dependent of x and converging to 0 as s — t tends to 0. We have
E[(0.U(t, z, [ED() — 0uU (s, 2, [€1)(&))x]
= E[ (U (1,2, [EDKE) — 0,05, [¢ ]><<5>>)<x>]
= EE[(9,U (s, Xo™E, [X]) ((XE0)) = 0uU (s, 2, [€D)((6)))00)]
+EE[(9,U (1,2, [€]) ((©) — U (s, X1, [ XD 5]) ((XE9)) 0]
By the smoothness property of 0,U(s,-), the first term in the right-hand side is
bounded by C(E[|X§’w’[ﬂ — 22]V2 4 D1 (X5, €))|x]l2, the constant C being allowed
to increase from line to line. The coefficients of (2.3) and (2.4) being at most of linear
growth, we deduce from (A1) that E[|X5* — ¢[2]"/2 and E[\Xﬁ’w’[ﬂ — /?]"/? are less than

C(1+[€]2) (s —t)Y? and C(1 + || + |€]2) (s —t)"/? respectively. Therefore, the first term
in the last line of (4.61)) is bounded by

C[(1+ 2] + l2) (s — 1)/ + sup asr(€,6)]Ixle (462)
&:[1¢'—€2<C(A+]€]l2) (s—1)*/
Clearly, the term in brackets goes to 0 with s — .
We now handle the second term in the last line of (4.61)). Differentiating (with respect
to £ in the direction x) the relationships U (¢, z, [€]) = Ytt’m’m and E[U (t, Xﬁ’z’[ﬂ, (X)) =
E[Y;t’m’[g]], we obtain

EE[(auU(ta$a [€1)(¢©)) — %U(S,Xﬁ’x[ [ X 5]) (<Xt£>))<x>]
= E[aXY%t,x,[ﬂ . aXYSt,w,[S]] + E[axU<S,X§’z’[ ]7 [X;g,g])aXng’[ ]]

E|& | 0,0 (s, X419, [Xg»ﬁ]) (XE9) @ Xt =0 |-

The first term is equal to E {* £ (r, gL™ L) <9tf ) (00571 (0, 055DV dr (with the
notations of . By (H1) and Lemmas and [4.21] - (with p = 1), it is bounded by
C(s — t)1/2|x|2. Since 8,U is bounded, the second term is less than CE[|d, xtole ]]] =
C’IE[|8XX§’x’[§] - 8XX:’I’[§]]]. By (H1) and Lemmas {4.18| and 4.21| again, it is less than
C(s — t)2|x|2. For the third term, we first apply Cauchy—Schwarz inequality to get
that it is less than CE[|0, X5 — x|*]"/2, recall (@56). Then, by (H1) and Lemma
it is bounded by C(s — t)V2|x]2. Continuity of [0,T] 3 t — 3,U(t, z, [€])(€) €
L?*(Q, A, P;R?) easily follows. Continuity of [0,T] 3 t — 0, U(t,z,[£]) € R? may be
proved in the same way. Together with the uniform continuity estimates (4.59)), we
deduce that the functions [0,T] x R% x L*(Q, A,P;R?) 5 (¢, z,&) — 0,U(t,z,[€]) € R?
and [0,7] x R? x L2(Q, A, P;RY) 5 (t,2,8) — 0,U(t,z,[€])(€) € LA, A P;RY) are
continuous.

We now prove (£.60). For Ae A and A € L?(Q, A, P;R?) with |A]2 < C’, we have
E[0,U(t, 2, [€])(€)ALa]| = Y™ with x = Al,. (4.63)

(4.61)
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Wenowapply 1nLemmaW1th0—9 —0”5[] V=10 := Oy g€l 6=0 = gL,
V=10 := GRS and n = 0. The coefficients driving (4.3]) are given by (4. 53]) By (4.18),
we get that for T' < v with ~ in (4.16) given by 'yl/QI‘Q( ) = min[(1/8L?),1/2],

1 2.0 (gt&(0) (A2 (0. gh&(0)))1/2
4LQSSE%N (9 (M, (6,044)) ) (4.64)

ERAREE

We use (4.39)) (with ¥ given by (4.46))) to bound the above term. For any £ > 0,

sup N20(0t5 , (ME, (05 g5 0 )))1/2>

zeR? se(t,T]
2
< sup sup {E[(Ao A \IJ((w,S),ﬁ))(M]%t(GXHt’g’(O)))I/Q] } (4.65)
(w,8)eRk x [t,T] [|Aof2<L
< L%

2
+ o sup sup {E[(AO A ‘I’((waS)af))Ql{Mﬁt(axat,&,«n)%}] M?E(axgt’g’(o))},

(w,s)eRF x [t,T] || Aoll2<L

where we denoted R? x R™ x R™*% by R* and we used Cauchy-Schwarz’ inequality in
the last line. Recall that in the above suprema, Ay takes values in R, .

By Lemma [MZ (0,655 ON]1/2 < C|x|2 < CC'. By uniform integrability of the
family (U?((w, 5), €))yerk sefs 7 it thus suffices to prove that

lim P gt6(0)) > ) = 4.
P(flll)qi»o (ME (O )=¢€)=0 (4.66)

in order to prove lb (recall that the above probability depends on A through x
AlA) We reapply (4.18) in Lemma but with 0 =0=0=6:= =0t 9=0= 19
0= Oy 64¢ and n = AlA Following - ) and -, we get

ME, (8,050)) (4.67)

1 1/272
< OAN%14 + sup sup {E|(Ag A U((w,s),&)) (ME (0,655 .
tar (w,5)ERK x[t,T] |A02<L{ [( 0 A ((w,9),) (Mg, (0x ) ] }

Multiplying by 1 4¢ and taking the expectation, we deduce that
E[1 40 M3E, (0,6%4)]

1 2
E|(Ag A T((w,s),€)) (M2 (0,045
T <w,s>§§£[t,ﬂnﬁ“&{ [(A0 A W((,9), ) (MB, (2,005©)) 1 1]}

sup sup {E[(AO A Y ((w,s),€)) (M?Et(axﬂt’f’(o)))l/QlA]z}

2L% (4 5)eRF x [t,7] | Ao |2 <L

5 E[1 Mg, (8X0t’5’(0))] +C sup sup {E[(AO AV ((w, s),f))QlA]},
(w,8)eRIx [t,T] |Aol2<L

,_\

where we used Cauchy-Schwarz’ inequality twice to get the last line. By uniform inte-
grability of the family (¥2((w, s), €))werr seft,1], the second term in the last line tends to
0 with P(A). Therefore, E[lAcM]%t((9X0t’£’(0))] also tends to 0 with P(A).

Going back to (£.67)), taking the root and then the expectation and splitting the
expectation in the right-hand side according to the indicator functions of A® and A, we
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get in the same way

E[(M3, (8,05 ©)) %] < C(P(A))? + CE[1 4e M2, (8,,0"4)] "/

1/2
+C sup sup {E[(Ao A \Il((x,s),g))QlA] }
(z,8)eRIx [t,T] [|[Aof2<L

The right-hand side tends to 0 with P(A), which proves (4.66)). O

4.3. Study of the second-order differentiability. The goal is now to discuss the
second-order differentiability of U.

4.3.1. Path property of Zt®I& in S2([t, T]; R™*%). We start with the following remark.
In the previous subsection, we proved that the function 0,U was Lipschitz continuous
with respect to the variables x and p. Recalling the standard representation formula

788 = 0,U (s, X0 [ XE8]) o (XL yield [ x0E VEC]), se[t,T],  (4.68)

see (2.7), we may derive bounds for zt= €l in the space S2([t, T],R™*9) instead of
H2([t, T],R™*%) (and similarly for Z"¢ by replacing 2 by ¢ in the above formula). Under
assumption (H2), which contains (He), o is known to be bounded, so that Z%*[¢] and
Z461El are indeed bounded (in L), independently of £&. Moreover, for any p > 1, for
T < ¢, with ¢, := ¢,(L), we can find C, > 0 such that, for £, ¢ € L2(Q, F;, P;RY),

Et[ sup |Zﬁ,z7[§] _ Zf:”:"[g'] 2p] 1/2p < Cp(l N {|x — |+ <I>a+1(t,§,§’)}>,

ref¢, T

. (4.69)
17 <G (1A{lE— €1+ Bana(t.6,€)})

Et[ sup |Z8€ — z4¢
ref¢, T

Note that the term ®,41(t,&, &) comes from the fact that, when handling the differ-
ence 8xU(s,X§"”’[5], (X&) - axU(S,Xg’x’[g], [Xé’gl]), we get C |X§’w’[£] - Xﬁ’x’[£]| +
Bi1 (X%, X59)] as bound. We then apply (#.44) in Lemma (with a + 1 instead of

) to handle ®qq(X5°, Xﬁ’fl). The part involving o in the definition of 251 can be
treated by means of Lemma using the fact that o is Lipschitz continuous. Following
Remark and as in the statement of Lemma the restriction of ®,41(t,-,-) to
the space [L?(Q, Fo, P; R)]? may be assumed to be independent of ¢ € [0, T7.

4.3.2. Partial smoothness of 0,U. Overview. By making use of , we first discuss
the existence and the smoothness of the second-order derivatives of U in the measure
argument. The first remark is that we only need to discuss partial C? differentiability
in order to prove the chain rule. This says that, when investigating the second-order
derivatives, there is no need to prove that the function U has a twice Fréchet differentiable
lifted version. Roughly speaking, the only thing we need is the differentiability of the
mapping R? x R? 5 (z,v) — 0,U(t,z, 1) (v) (at least when v is restricted to the support
of u), together with the continuity (in (¢,z,u,v)) of the derivatives (again, at least
when v is restricted to the support of u). In order to differentiate in the direction v
without differentiating in the direction u, we shall make use of Theorem which has
been specifically designed for that purpose. Basically, we are to differentiate the lifted
version of 0,U(t,r, u) along trajectories (£*)yer that are continuously differentiable in
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L*(Q, F;,P;RY), with the constraint that all the (€*))cr have the same distribution and
the assumption that

d
VYA eR, H §>‘H 1, with the additional notation ¢ := d)\lx\ 05)‘. (4.70)

In this framework, we will make use of the following technical lemma:

Lemma 4.26. Consider a function h : R¥ x Py(R) — R as in (H2), a continuously
differentiable mapping R 3 X — x> € L*(Q, A, P;RY) with the property that all the x*
have the same distribution, and a random variable w € L*(Q, A, P;R) such that, for any
bounded interval [a,b] < R, the family

(& o=

>)\e[a,b]
is uniformly square integrable (the tensorial product acting on R'). Then, the function
R* x R 3 (w,A) = E[duh(w, ) 0] = E[0uh(w, K1) (V)]

is continuously differentiable, with
R xR 3 (w, A) — E[&w [5Mh(w, [XO])] (X’\)w]

RF x R 5 (w, \) E[&v [0,0(w, [X°])] (x )‘Z’; ® ]

as respective partial derivatives in w and .
Proof. For w,w’ € R* and A\, )\’ € R, we write (thanks to (H2)):
Ouh(w’, X)) () = Quh(w, XD ()
= 9uh(w’, "D O) = duh(w!, XD M) + (!, XD ) = Bub(w, XD ()

1
= (JO o[ Ouh(w’, XD (sx™ + (1 - S)XA)dS) X —xY) (4.71)
1
+ <J Ow|Ouh(sw' + (1 = s)w, ) w' —w)
0
Thanks to the L? bounds on 0,,[d,h] and ,[d,h] in (H2), we deduce that, as (w',\') —

(w, A),

2
|-
2
B

Notice now from the uniform integrability property in the assumption that, as A’ — A\
(with X £ \),

[U 6 h(w ])] (SXX +(1— s)x’\)ds — Oy [@Lh(w, [XO])] (X/\)

(4.72)
EH fo Bulduh(sw’ + (1= shw, )] () ds — 2u[Buh e, D] (V)

N A A
A R ¢ 2
E[|( X A - esf| -0 (4.73)

Plugging (#.72) and ( into ([4.71)), we easily deduce that the mapping (4.26]) is

dlfferentlable Contlnulty of the partlal derivatives is proved in the same way. O
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4.3.3. Partial smoothness of 0,U. Strategy. Generally speaking, the strategy is the same
as for proving the first-order continuous differentiability and consists in discussing the
continuous differentiability of the derivative processes 6X9t’8 = (0 X 6.8 , 5XYt’5A, 02 t’@)
and 5X9t’x’[5k] = (6XXt’x’[5A],5XYt’x’[§A],6XZt"B’[5A]) with respect to A when the family
(€M) xer satisfies the aforementioned prescriptions and x is in L2(€2, F;, P; R?). Together
with the relationship 6XYtt’w’[£A] = DU(t,z, &) - x, this will permit to apply Theorem
(compare in particular with (3.31])).

Intuitively, one has in mind to consider first the partial second order tangent process
of the McKean-Vlasov FBSDE (2.3 in the direction x and ¢, which we shall denote

by 02,04 = (02, X"€,02 Y€, 02 Z%¢) := [d/dA]}xoodx0"¢". Informally, this process
should satisfy a system of the form (4.3)), with coefficients of the generic form ({.5).
Precisely, the coefficients Hy should have the same decomposition as in the first order
case, see , V and V also standing for 6, 6 or X but V and V now standing for
82X9, 82’)(9(0) or 5?7XX (with the usual convention that the symbol (0) in V©) and V(©)
indicates the restriction to the two first coordinates). Terms By, ¥, F, and G, in
should not be zero anymore and should be defined as follows for a generic coefficient h
that may be b, o, f or g:

H,(r)

O (07, 1075 1]) 0,07 ® 007

+ B[ 0w [uh (055, [05O]) | (014)) (0,084 @ 004

+ B[0,[0,h (625, [05O)) ] ((054©)) (0,640 @ (0,650 (4.74)
= HP (01,015 ©), 007, 0007, (0074, (0c0))

)+ ) + ),

where Hc@ could be expressed (in an obvious way) as a function of general arguments
0, (0, 01, 92, 0Py and (97 instead of 655, (B2, 0,61¢, a.65¢, (0,07
and <649ﬁ’§’(0)>. By analogy with (4.4]), we can let

H (r,0,,09, 9%, 92, (IO, <1§2:<0>>) (9, (D)
= 2uwh (0, [01)9, + E[0,h(6:, [0 () D1)] (4.75)
+ HP (0,00, 0,92, IO (@52 O%)  re[t,T).

Pay attention that there is no ‘second-order derivatives’ in the direction of the measure
(i.e. ‘02,h’) in [@.74). Indeed, the fact that the initial conditions (€M) have the same
distribution forces the solutions (#*)y to be identically distributed as well. For the same
reason, there is no crossed derivative of the form ‘0,[0,,h]’. On the opposite, notice that
(0,07 (resp. (0:67)) are not identically distributed since the coupling between x (resp.
¢) and & may vary. In particular when differentiating with respect to A an expression of
the form B[, (6, [0M(]) ((0M(9))(0,©))] for a function h as above, the input [()]
has a zero derivative as it is constant in A, but the two last inputs, namely (%)) and
(0,0M©)) may give a non-trivial contribution.
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On the model of (4.7)), (4.8) and (4.9), we shall use the following assumptions on the
coefficients (compare also with (H2)):

02, . [V + B [|ou[o,hw. [v<0>]>]<<v<0>>>\2]”2
(4.76)
+ B[l [auhtw. [OD@ O[] < .
and
02w, [VO]) aiwhm’, [

+1E[|aw[auh< DDV O) = duduha, [7OD] O]
L (4.77)

+ B[ |0u[0uh(w, [VON]O)) = &, [aun(w!, [VOD] VO

N

C(jw—uw'|+ ®,(VO O )’)) .

4.3.4. Preliminary estimates. We start with the following bound of the remainder term
2P in [@75):

Lemma 4.27. Given generic processes 6, é, 9L, 92, 9 and 192, denote by H(gQ)(r) the
term Hé2)(9r,<é§ Y, 0L 92 <1§i’(0)>,<1§z’(0)>) in , H matching B, ¥, F or G. For

s Yps Ups

any p = 1, we can find a constant C, (independent of the processes) such that (using the
notation M from (4.25)))

Et[|G((12)(T)’2p + <£T(\B(g2)(s)\ + ]Fy)(s)y)ds) v + <£T yzg)(s)ﬁds)p]l/zp (4.78)

_ R 4 _ R 4 ~ ~
< Cp[(M4p (191’ 191))1/ p(M4p(292’ 192))1/ P i E[|‘191’(0)H‘2§4’t”192’(0)‘|?g4’t] 1/2:| ‘

Proof. We start with the case H = B (resp. F'), or equivalently h = b (resp. f). We use

a decomposition of the same type as (4.74) (with the same notations). By conditional
Cauchy-Schwartz inequality and (4.76), we can find a constant C), such that

T 2p
Eq |: <J; ‘H;Uw(S”dS) :| ¢ H’ﬂlHq.ﬁp t”’l92H7.l4p t (479)

We now aim to obtain similar upper bound for the other terms in (4.74). We therefore
observe, using (@.76), [HY"(s)| < C95” |2]92], so that

T 2p
Et[(»[ﬁ |H£U“(s)|ds> ] ¢ ”192H’H2P tHﬂL(O)”‘Qg];- (4.80)

We now handle H,". By conditional Holder inequality, we observe that, under condition
[.76), |Ha"(s)| < CE[||§1’(O)\\§4 t||ﬂ2’(0)\\§4 t]l/z, from which we get

T 2p R R »
EtKJ IHZZ“(S)Ids) ] < cpE[HWO)|\§47t||1927<0>|\§47t] . (4.81)
t
By (4.79), (4.80) and (4.81]) and with the notation (4.25), we get (4.78]). The cases when

H =Y or G may be handled in the same way. O
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Lemma 4. 28 Gwen processes 0,0,0,0, 9", 9V, 92, 9% 9 IV, 92 and 9%, denote

the terms H.’ (97«,<9 >,19$,19%,<1§%’(0)>,<1§%’(0)>) in (4.75) by a? (r) and use a similar
definition for a? (r). For any p > 1, we can find a constant C), (independent of the
processes) such that, for any random variable ¢ with values in Ry (with the notation M

from (4.25)),

Et[|G((12)(T)—G,(12 (T + (f(us <2>'(s>|+|F§2><s>—F;2>’(s)|)ds>2p

T 1/2p
+ <J 123 (s) — 2ds) ]
t

<G (1A [Ee(e?) + <M4p(6 0.0 - é))l/ Yy @, (60,607)])
y [(MBp(sl,sl)) /p(/\?ﬁp(s?,ﬁ?))l/sp +E[H@L(O)\\§4¢|\z92’(0>\@4741/2]}
+ Cp{ (M4p (0" — 0¥, 9" — 191’))1/4” <M4p (92, 192))1/410
b (o)) (e 92 o 92 gy ) U

. . . 1/2 R R . 1/2
+ C{B[ 19O 3 |92 — G212, 17 4 E[|91O) — gLz, a2, ]

T 2pq1/2p
+Et[<f 1{95—0;|>5}W§H79§\d3) ] :
t

Proof. We start with the case when H = B, F. As in the proof of Lemma we
make use of the decomposition (4.74). Denoting by HY"™ and HY" the related terms in

(4.74]), we compute:

(4.82)

= [ <£T |H™(s) — H;vwf(s)‘d5> 21’} 1/2p

T A R 2pq1/2p
o (|| {000 - 2un(e 50 } ot 2] as) |
t
T R 2p~1/2p (4.83)
+Et[U (0, 101)) {9} — 0¥} @ o ds) }
t

) ) 2p1/2p
t[(f 22.uh (0, [0 0Y @ {92 — 97 d8> }
t

= A1 + Ag + As.

A
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Bounding the difference of the terms in 02,k by a constant or by the increment of the
underlying variables, we thus obtain, for any random variable ¢ with values in R,

o T 2p11/2p
A < CEt[{l A (E + sup D, (9£0),9£0)’))2p} (f |01 ]19§|ds> ]
t

se(t,T]

T 2pq1/2p
+Et[<f L(jg.—0;|>c} 193] |19§|d8> ]
t

< (1A [Bu(=®) P + sup @0 (09,00 | )19 oo o193
se(t,T]

T 2p
+Et[<f 1{05—9;|>e}\19§||19§|d8> ]
t
We also have

As + Ag < Gy (9" = 9"l |

P agin ¢ + 10" [ggsm 197 = 9% lgso ).

Next, using a similar decomposition to (4.83)), we compute

. { <£T |HYH(s) — HYM (s) |ds> QP] 1/2p

< G (1 10 = Ol + sup 20O, 80Ol
set,

IO = GO 52 g + [0 2|92 — 0¥ .

We also get
T 2p11/2p
([ 1) - molas) |
t

FUA R . 1/2
< Cp{ (1 A {H9 - 9/”%2” + S[Ltu:)F] @a(9§0)7 Qgﬂ)/)})E[HﬁL(O) ||‘2S4’t‘|192,(0) ”?S‘l,t]
seft,

R R R R R R 1/2
FE[[9HO | F 52O — OV, |7+ B[ 19O — GO, 922, |

Collecting the various inequalities, we get (4.82)).

The proof is quite similar when H = X or GG, but there are two main differences. The
first one is that, in the analysis of ESIQ) and Gg), processes are estimated with S instead of
‘H norms. Obviously, this does not affect (4.82]) since Z[(f) and G[(f) only involve the two

first coordinates of 8, ¥ and ¥?. The second main difference comes from A;. Since neither

1/2

o nor g depend on the component Z, we can replace |0s—6.| by |9§0) —9§0”| in the analysis
of the term corresponding to A;. Choosing € = supye(;,7) |0£0) - 9§0)/|, we get rid of the

remaining term containing the indicator function of the event {|0£0) - 9§°V| > ¢}. Then,
E,[e*P]/4P is exactly equal to [|0(®) — 0| g4, , which is less than (M (9 —¢',6—0"))1/4P.
[J

4.3.5. Proof of the differentiability of the McKean-Viasov system. We claim:

Lemma 4.29. There exists ¢ := c(L) > 0 such that, for T < ¢, for x and (£*)y as in
the mapping
R 3\ 0,05 = (0,X5, 0,V 0, 247),
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with values in S2([t, T];RY) x S2([t, T];R™) x H2([t, T];R™*?), is continuously differ-
entiable. The derivative at X = 0 only depends upon the family (€M) er through the value
of € := &% and ¢ := [d/d\]a=0&> (see foolnote |10 on page for a precise meaning). It
is denoted by 02%9%.

Proof. We adapt the proof of Lemma [.17] To do so, we use the Picard se-
quence ((0™*,0,0™)),>1 solving ({50)), with th’A = ¢ and x* = x for any A € R.
The sequence converges in [S?([t, T];R?) x S%([t, T],R™) x H2([t, T];R™*9)]? towards
(9*”8,@(9@8), uniformly in A in compact subsets. Pay attention that, in , the
choice x* = x, for all X € R, fits the framework of Theorem in which y is kept frozen,
independently of A.

Similarly, we denote by ((0™*,0.6™)),>1 the Picard sequence solving (L.50)), with
Xf)‘ = ¢* and x* = [d/dA]€* for any A € R. The sequence converges in [S?([t, T]; R%) x
S2([t, T],R™) x H2([t, T];R™*%)]? towards (Ot’@,ﬁgﬁt’fk), uniformly in A in compact
subsets. In (£.50), the choice x* = [d/dA]¢?, for any A € R, fits the framework of
Theorem in which ¢ = [d/d)\]M:OX’\, with X* therein playing the role of &*.

Notice that (§™),,1, which appears in each of the two Picard sequences, denotes the
same process. The difference between (0,0™),>1 and (0,0™*),>1 is that [d/dA]0™* =
0c0™* but [d/dN]0™* £ 0,0™*. The motivation for considering 0,0™* is that 5XY;”’)‘
converges to E[0,U (t, &, [€*])x], which is precisely the quantity that we aim at differ-
entiating with respect to A.

First step. The first point is to prove that, for any n > 0, the map \ — (8X9?’)‘)56[LT]
is continuously differentiable from R to S2([t, T]; R?) x S2([t, T]; R™) x H2([t, T]; R™*%).
To do so, we recall the system ([(£.50):

S

O XN =y + f BW (r, 072 (gm0 (0,012, (0,670 dr
t

N J 50 (7, 42O (grAO) (20720 (6, 62O dW,
' (4.84)
aX}/Sn+1,)\ _ G(l) (X;+17)\7 <X;+1,)\>) (aXX;+17)\, <6XX;+1,)\>)

T T
+ f F<1>(r,ew,<9;w<0>>)(axeﬁuk,wxefv*’(ob)dr—f O ZrTAW,,

S

with 0,09 = (0,0,0) as initialization, with a similar system for 849"7’\, replacing x by
[d/dN] XA

Generally speaking, the proof is the same as that of Lemma[f.17} We argue by induc-
tion, assuming at each step n > 1 that A\ — ((9X6??’/\) se[t,7] i continuously differentiable

(the derivative being denoted by (52%9?’)‘) se[t,r]); we prove first the differentiability of
the forward component and then the differentiability of the backward one in (4.84)).

In comparison with the proof of Lemma we must pay attention to the two
following points. The first question is to justify the differentiability under the various
expectation symbols that appear in the definitions of BW O M and GO, Thanks
to and from the fact that the sequence [d/d\](£*) is bounded in L® (see , we
know that

4 n,\ 1/4 2 n,\ 1/4
sup[MEt (00 )] < ClIx| + Ixl], ig;;[MEf(ace : )] <, (4.85)

n=1
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so that Lemma applies with [d/dA\]x* = 6<9"’)‘ and w = 8X0”7>‘ and permits to
guarantee the differentiability of the terms driven by an expectation.

Another problem is that the coefficients now involve the product of two terms that are
differentiable in H2([t, T]; R*) (or S?([t, T]; R¥) in some cases), for a suitable k& > 1, so
that the product is differentiable in H*([t, T]; R¥) (or S'([t, T]; R¥)) only (for another k).
We make this clear for ({7 BM(r, o, <0f’/\’(0)>)(5xﬁf’/\,<6X9;1’)"(0)>)d7")t<5<;p, the other
terms being handled in a similar fashion. Repeating the analysis of Lemma [{.17] it is
differentiable from R to S*([t, T];R?), the derivative process writing

f BO)(r, 07 (22, 67, (22, 0O dr,
t

with O = (enwﬁ)M 1), 008, 007, (x,0mMOy (0:07M(0))

with s € [¢,T]. As explained in and on the model of Lemma .26 we here used
the crucial assumption that all the (5)‘) » are identically distributed to get the shape of
B2,

In order to prove differentiability in S?([t, T]; R?), a uniform integrability argument
is needed. Assume indeed that a path R 3 X\ — 9 = (19?)36[,&7T] e SY([t,T],R¥), for
some k > 1, is continuously differentiable and that, for any finite interval I, the family
(SUPseft, 1] \[d/dz\]i?’\\ )aer is uniformly integrable. Then, R 3 X\ — 9* € S%([t, T];R¥) is
contlnuously differentiable.

In our framework, the form of ([d/dA]¢ )se[t 7] is explicitly given by ([4.86). The
coefficient B(?) may be expanded by means of ([L.75). Clearly, it involves a linear term in

(8§7X9;1’A, <82,X977}7>\’(0)>) and the remainder B{? (©7*). By (H1) and (H2), we get that

T 1/2 T
SE% |~ m\ K L [|62X9:f”\2+|6§7X0;"’\||§]dr> +EL |B£2)(@ff’)‘)|dr} (4.87)
se

By continuity of R 3 A\ — ﬁéxen’)‘ € H2([t, T];R¥), the first term in the right-hand side

is uniformly square integrable. We thus discuss the term in B Recalling Lemma m
and the similar version (4.51)) for the Picard scheme in Lemma (which is given for
p = 1 only but which could be generalized), we have the more general version of (4.85)):

(4.86)

1/2p 1/2p
sup | M (6,0") | < Gyl + o). sup[Mfgj(aCaW)] <C,  (488)

so that, by Lemma (with 0 = 6 := "> 9! = ! = 0,0 and 9% = 0?2 = 00",
and, as usual, for 7' < ¢)

T 2p11/2p
EtKJ |B‘(‘2)(@¢’A)dr> ] < Cp(Ix] + [Ixll2)- (4.89)
t

Now, choosing p = 2, we get that, for any event A € A,

e[1 (fT B0 )ar ) ]

< CE[Ei1]? (1] + Ixl2)*] = CE[E[1a(x] + Ix12)°]* (I + Ixl2)]

< Clxl2E[1a(x] + Ix]2)?]7,

where we have used the fact that y is F; measurable. The above bound permits to
establish the required uniform integrability argument, a similar argument holding true
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for the terms driven by Fy), E((f) and Ggf). Inductively, this permits to prove that the
map A — 0,0™* is continuously differentiable from R to S%([t, T],RY) x S2([t, T],R™) x
H2([t, T],R™*4). With the same notation as in (4.86)), we have, for any n > 0,

32 XA f BO)(r, 07) (32,07, (02, 07 O dr

' (4.90)

+ f 2@ (r, 000 (22 om0 (02 g0y W,
t

and
—n+1,A 1, 1,
ac Xyn-‘rl A G(2) (‘:;-i- ) (ag’XX;H— ’ <02,XX;1+ >)

T T (4.91)
+J F@ (r,05%) (02,00, ¢02 00 0)) dr —f 3z ZrtAaw,,

where we have let:
@n)\ 0) _ (971 A,(0) <0n A ( 0)> a Hn)\ (0) acgn A ( <a Hn A ( 0)> <a 9n A, (0)>)
E?}\ = (X7 ,<X€,ﬁ”\>, Ox X7 75<X§L“’/\v <5><X?A>’ <6<X§5”\>).

Second step. Convergence of the sequence ((92»(9”’)‘),1;0 in the space S%([t, T],R%) x
S%([t, T],R™) x H2([t, T], R™*?) is then shown as in the proof of Lemmal4.17| Generally
speaking, the point is to compare approximations at steps n and n + 1 and then to prove
that the norm of the difference decays geometrically fast as n tends to co. As in the first
step, some precaution is needed as the system differs from the one involved in the proof of
Lemma the difference coming from the remainder term HC(LQ) in . Precisely, the
proof of Lemma relies on Lemmas [4.7] and with 0 as remainder term R,, but, in
the current framework, the remainder term is equal to (H(SQ)(@?’”\))SE[LT] when H = B, &

or F' and G( )(""+1 )‘) when H = @, and is thus non-zero. The analysis thus imitates the
proof of Lemma4.17] “, but with a non-zero remainder term AR, in that corresponds
to the difference of the remainders R, at steps n and n+ 1. In short, it is enough to prove
that E[ARZ] tends to 0 as n tends to o (to simplify, we omit to specify the index n in
AR2). By convergence of (67, Oy oA (949" )sefe,r] to (0s 23 , Oy o5 849§’€A)S€[tﬂ, we can
deduce from Lemma [£.28] (with § = § := g™, 91 = §1 := 0,0, 9? = 92 := 0™ and
0 =0 ="t 9V = gU = 0, 07T 92 = 9 = 549”“ ) that ATR?2 tends to 0 in
probability as n tends to oo, the convergence being uniform with respect to A in compact
subsets: In , we can check that all the terms not containing the variable € tend 0;
choosing ¢ as a small deterministic real, it is standard to prove that the expectation of
the last term in tends to 0. The latter property follows from the following fact: For
any compact I = R, the sequence (0,0™),>1 and (0:0™*),>1 are convergent in the L?
sense on  x [t,T], so that the families (0,0™)n>1er and (8:0™*),>1 21 are uniformly
square integrable on Q x [¢,T1.

The convergence of AR2 to 0 actually holds in the L' sense on €, since the bound
(4.89) (with similar bounds for F', ¥ and G) allows to apply another argument of uniform
integrability. The convergence is uniform with respect to A in compact sets. This proves
the continuous differentiability of R 3 A — 6X9t’8 e S([t, T];RY) x S2([t, T];R™) x
H2([t, T];R™*4). The derivative at A = 0 satisfies a system of the form (#.3) (obtained
by an obvious adaptation of (4.90) and (4.91))), which is uniquely solvable in short time.
This proves that the derivative at A = 0 only depends on the family (X*)\cg through
XY and ¢.
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We complete the analysis as in the proof of Lemma [4.17 U
4.3.6. Estimates of the directional derivatives of the McKean-Viasov system. We claim:

Lemma 4.30. Recall the notations (4.16)). For any p = 1, there exist two constants
c:=cy(L) >0 and Cp, such that, for T < ¢, (and with v = ¢, in (4.16))),

[MZ(22,67)]7 P < Gy (x| + Ix]2)-

Proof. The result follows from Corollarywith n=00=0:=0%9=19:= 62X9t75,

H given by (4.74)), and, in particular, with remainders R2P and R2 coming from H,SQ)

in (4.74). Recalling Lemma and the assumption |([, < 1, the remainders may

be estimated by means of Lemma with 0 = 0 := 04¢, 91 = 9 = 8X9t’5 and

92 = 92 1= o.0"%. u
We now discuss the continuity with respect to £&. We claim:

Lemma 4.31. For any p > 1, there exist two constants ¢, := c,(L) > 0 and C), such
that, for T < ¢, (and with v = ¢, in (4.16))),

, 71/2
(M2 (02,00 = 32,0%) |7 < Cp(1 A {JE = €1+ @asra(,6:6)}) (I + Ilz), (492)

where ®q11(t,-) : [L2(Q, F, P;RY)]? — R, is continuous at any point of the diagonal,
does not depend on p and satisfies ({4.10) with « replaced by o + 1. The restriction of
Doi1(t,-, ) to [L2(Q, Fo, P;RY)]? may be assumed to be independent of t € [0, T].

Proof. Generally speaking, the strategy is to apply Corollary with n = 0, ¢ =
0¢ =048 9 =9 = 82%0’&’5 (and the same for £'), H given by (4.74) and, in particular,

with remainders R2 and R2 coming from H,SQ) in (4.74) (and the same for the remainders
labelled with ‘prime’). As in the proof of the previous Lemma we can bound the
remainders (RZF)Y/2 by Co(Ix| + lxl2)-

In order to estimate (ARgp)lﬂp, we apply Lemma A crucial fact is that we
have (£69). This says that, instead of working in conditional norm [M?P[-]]V/?P for
estimating the distance between #%¢ and 1€’ we can directly work with the conditional
norm || - [s2p; + | - [ls2. As a byproduct, we can choose € = supep, 1 oL — 02’5/| in
[52). By ([:69), we thus get Cp(1 A {J¢ — €] + Baer (£, €, END(IX] + |x]2) as a bound
for the terms containing the symbol ¢ in (4.82)) (®,4+1 being independent of ¢ when &
and & are Fp-measurable). By Lemmas and , all the terms involving an M
may be bounded in the same way. By in Lemma the same is true for the
term involving ®,. By Cauchy-Schwarz inequality and once again by Lemmas and
the same bound holds for the terms integrated under E. In the end, the whole
right-hand side in (4.82)) may be bounded by Cp(1 A {|§ —&'| + Pa+1(t. &)} (x| + [x]2)
(without the t when &, ¢ € L(, Fo, P;R?)). In ({:38), this brings us to the case when
the remainders are zero, but ®,, is replaced by ®,,1. Applying in Example [£.15]
we complete the proof of . The last part of the statement (choice of a version of
®,,+1 which is independent of t) follows from Remark . O

4.3.7. Study of the Non McKean-Viasov system. We now repeat the same analysis but
for the process (#5®[€] 0, 05®18l) (instead of (6%€,0,60%¢)). Considering a continuously
differentiable path A — &* from R into L?(£2, F;,P; R?) such that |[d/dA]€}] < 1, we are
first to prove that the mapping R 3 A — 6X0t"”’[5x] e S2([t, T];RY) x S%([t, T];R™) x
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H2([t, T];R™*4) is continuously differentiable. Before we discuss the proof, we must say
a word about the notation itself, which is slightly ambiguous. Since the law of £ is inde-
pendent of A, we could be indeed tempted to say that (9X0t’x*[5k] is independent of A, which
is obviously false. The reason is that, in the coefficients driving the system satisfied by
é’xet’x’[@], there are terms of the form E[@MH(G':”C’W], [9'57@7(0)])(<9t75A7(0)>)<8X9t7fk7(0)>],
see (4.53)), which explicitly depend upon the joint law of x and €. Clearly, there is no
reason for the joint law to be independent of .

Recalling (4.53), we know that ('3X6t’m’[£k] satisfies a standard linear FBSDE with
E[@,LH(Gt’x’[@], [Ht’@’(o)])(<9t’5A’(0)>)<8X9t’5k’(0)>] as affine part. The coefficients of the
FBSDE read as coefficients parametrized by A through the values of (Ht’z’[e] , 9"/’8, 8X9t’5x).
Now that the continuous differentiability of R 3 A — (9’5’9”’[8],9’&’8,6X9t’§k) has been
proved, we can repeat the arguments used in the proof of Lemma to show that
R 5 A — 0,007 e S2([t, T]; RY) x S([t, T]; R™) x H2([t, T]; R™*4) is also continu-
ously differentiable. (The complete proof is left to the reader.)

With the notation ¢ := [d/d)\]M:Oé/\, we denote the second-order tangent process by
82%9““’57[5] = [d/d)\]p\zo(?XHm’[{A]. It satisfies a system of the form with 6 = g-®1¢],
6 = 05, 9 = 03%0'5@’[5] and J = 83%9“5 and with generic coefficients H given by
(compare if needed with ([#.53)):

he(V,(VO)) = 0,0V, [VO)), Hy(V,(V ) = a,h(V, [VON VD)), H, = HP,
where lfLEQ) (r) is a variant of Hg) in and reads:

H? () := H? (9?%[5]’ <9£,£7(0)>7 (9Xg$7:v7[£]7 0<9ff”7[5], <5X9?§7(0)>7 <5C9f3§7(0)>). (4.93)

On the model of Lemmas and we claim (compare with Lemma [1.21)):

Lemma 4.32. For any p > 1, there exist two constants ¢, := c¢,(L) > 0 and Cp such
that, for T < ¢, and with v = ¢, in (4.16)),

[MEF (22,652 < G2,

and
W2 ptafe] A2 atal e ]YP , /
w2 (a2 001 — 22 0= )" < (12— 2/| + @ (1,6, €) I,

where ®o11(L,-) : [L2(Q, Fi,P;RY) ]2 — Ry is continuous at any point of the diagonal,
does not depend on p and satisfies (4.10) with « replaced by o + 1. The restriction of
Dos1(t, ) to [LA(Q, Fo, P;RY)|? may be assumed to be independent of t € [0,T].

Proof. Loosely speaking, the result is similar to Lemmas and [£.31] but with the
realizations of £ and & therein replaced by z and 2’. Actually, the main difference
with the computations made for the McKean-Vlasov system comes from the shape of
the remainder R, that is implemented in the stability Corollary In the proofs of
Lemmas and , the definition of the remainder R, is based on the formula .
In the current framework, it is based on the formula (4.93)), which is slightly different. It
can be estimated by means of Lemma The proof is then completed as that one of
Lemma [4.21] OJ
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4.3.8. Final statement. We finally claim:

Theorem 4.33. There exists a constant ¢ := c¢(L) > 0 such that, for T < c:

o for any t € [0,T] and pu € P2(RY), the function RY 3 x> U(t,x, ) is C* and the
functions [0, T] x R% x Po(R?) 3 (¢, 2, ) > U(t,x, 1), [0,T] x RE x Po(RY) 3 (¢, 2, u) —
O.U(t,x, 1) and [0,T] x R% x Py(RY) = (t, 2, p) = 02, U(t,z, 1) are continuous,

o for any (t,z) € [0,T] x RY, the function P?(R) 3 > U(t,x, i) is partially C?; for
any (t,p) € [0,T] x R? x Po(RY), there exists a version of R? 3 v — 0,U(t,z, u)(v) € RY
such that R x RY 5 (z,v) — 0,U(t,x, u)(v) € R? is differentiable at any (z,v) such
that v € Supp(u), the partial derivative R x R? 5 (z,v) — 0,[0,U(t, z, u)](v) being
continuous at any (w,v) such that v € Supp(u) and the partial derivative R x Supp(u) 2
(x,v) = 05[0,U(t,z,, )] (v) being continuous in (x,v).

Moreover, we can find a constant C such that, for all x € R?, for all ¢ € L?(Q, A, P;RY),

|02,U(t, . [€])] + E[|0:[0,U (¢, 2, [EN] (O] + E[|0u[0uU (£, 2, [ED](€)]]
and, for all x,x' e RY, for all £, € L*(Q, A,P;RY),
+E[0.[0,U (2, [ED](©) - a:[a,U ¢ 2", [€D](€)]*]”
+ E[|2u[0,U (8,2, [ED](€) — au[aU (¢, 2, [€D] (€[]
< O{|$ - Z‘,| + q)a+1(£>£/)}a
where ®oy1 @ [L2(Q, A, P;RY)? — Ry satisfies [@.10), with o replaced by o + 1. In
particular, for any x € R? and p € Po(RY), we can find a locally Lipschitz continuous
version of the mappings R 3 v — 0,[0,U (¢, , 1)](v) and R 3 v 8,[0,U(t, x, u)](v).
The functions [0,T] x R? x L2(Q, A, P;R?) 5 (t,,&) — 02, U(t, z,[€]) e RE, [0,T] x

R x L2(Q, A, P;RY) 3 (t,2,€) = 0:[0,U (¢, 2, [€])](€) € L*(Q, A, P;R?) and [0, T] x R?
L2(Q, A,P;RY) 5 (t, 2, &) — 0,[0,U(t, 7, [€])](€) € L2(Q, A, P;RY) are continuous.

1/2 1/2

<C,

Proof. We first apply Theorem in order to prove the C?-partial property of p +—
U(t,z,u). By Theorem we already know that the lifted version L?(Q, A,P;R%) 3
E-U(t,x, &) = U(t, z,[£]) is continuously differentiable in the sense of Fréchet. Recall-
ing the identity

oY — E[Du(t, 2, [€])(€)x].

we deduce from Lemmas and that the gradient DU(t,x, ) satisfies (i) and (71)
in the statement of Theorem [3.6] Now, using the same sequence (£})ycr as in §4.3.2) we

notice that

d

dA =0
which satisfies (i) and (%) in the statement of Theorem [3.6 thanks to Lemmas and
m (with €} playing the role of X* in the statement of Theorem . We deduce that,
for any (t,z) € [0, T] xR%, the map P2(RY) 3 pu — U(t,z, p) is partially C2. In particular,
for any (¢,z,p) € [0,T] x R? x Py(R?), we can find a version of R? 5 v +— 0,U (¢, z, u)(v)
that is continuously differentiable, such a version being uniquely defined on the support
of u. Moreover, by , we have the relationship

aSzig;n(Z’)e,sign(Z/)XY;ft’%[E] = E[TI"{ (aU [aHU(ta Ly ,LL)] (5)) (X ® 6) }]7

E[DU(t,z,6Y)x] = 62, v, "1,
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which holds true for any e € R? and any &, x € L*(Q, 5, P;RY), with € ~ p, and for a
prescribed random variable Z’ independent of (£, x). From Lemma [4.32 we deduce that

E[|0,[0.U (¢, 2, [EDI(O)F]* < C,
E[00[0.U (8, 2, [ED](€) — 2u[0,U (¢, ', [ETE P12 < Cllz — 2| + Para(€,€)],

the extension of ®,41 to the whole [L?(Q, A, P;RY)]? being achieved as in the proof of
Lemma .23

By means of Proposition we deduce that, for given t € [0,T] and p € P2(R?), we
can choose, for any = € R?, a version of R? 5 v — 0,U (¢, x, 1) (v) such that the derivative
mapping R? 5 v — 0,[0,U(t, z, u)](v) is continuous on compact subsets of R%, uniformly
in z € R%. Using the same trick as in , we deduce that the family (R? 3 v —
Ou[0,U(t, x, 1t)](v)) sera 1s relatively compact for the topology of uniform convergence on
compact subsets. Considering a sequence (zy),>1 that converges to z, we already know
that the sequence of functions (R? 3 v — 0,[0,U(t, xp, )] (v) € R¥*?),~; converges
in L2(RY, i3 R*) to RY 5 v > 0,[0,U(t, z, )] (v) € R Since 0,[0,U(t, x,p)] is
uniquely defined on the support of u, the limit of any converging subsequence (for the
topology of uniform convergence on compact subsets of R?) of (0,[0,U (¢, Zn, 11)](+))nz1
coincides with 0,[0,U(t,x,1t)](-) on the support of p. We deduce that the function
R? x R 5 (z,v) — 0,[0,U(t,z, )] (v) € R¥? is continuous at any (z,v) such that
v € Supp ().

Proving a similar version of Lemma but for 62,04% we can show in the same
way that U is twice differentiable in x and satisfies

02U (8,2, [€D], (02U (¢, 2, [€]) — 05U (t. 2", [€D)] < Cfle — 2/ + Para(€,€)],

We notice indeed that, for £ ~ p, é’mett’z’[&] coincides with 02, U (¢, , u1).

Similarly, we can investigate ax[axet@»[ﬂ]. By means of Lemma in Appendix,
we can prove that, once a continuous version of 0,U(t,x,u) has be chosen for any
(t,z,p) € [0,T] x RY x Py(R?), the function R? 5 2 +— 0,U(t, x, u)(v) is differentiable at
any point (z,v) such that v € Supp(u), the derivative function R? x Supp(u) 3 (x,v)
02[0,U (t, z, )] (v) being continuous. Combining with the continuous differentiability
property in v, we deduce that the mapping R x R? 5 (x,v) — 0,U(t,z, p)(v) is differ-
entiable at any point (z,v) such that v € Supp(u), with the aforementioned prescribed
continuity properties of the partial derivatives.

Then 6x[(9tht’$’[£]] identifies with E[0,[0,U (¢, z, 1)](€)x]. Moreover,

E[|o.[0,U ¢z, [ENE)P]* < ¢,
E[|0.[0,U (¢, z, [E])](€) — au[.U (1,2, [EDIEN] < Ol — 2| + Basr (£,€)]-

Generally speaking, time continuity of the derivatives can be proved as in Theorem
Anyhow, some precaution is needed since the drivers of the backward equations that
represent all the second-order derivatives involve quadratic terms in 8XZt’5 and (9XZt’z’[5],
see for instance (4.74)). The a priori difficulty is that, so far, we have exhibited bounds
for 0, Z%¢ and (3XZM’[5] in ‘H norm only, which might not suffice for investigating the
time regularity. The key point is then to notice that all these terms may be estimated
in S instead of H norm. The trick is to invoke the representation formula for the
process Zt%l€l 4o differentiate it and then to make use of the bounds we just proved for
02,U and 0,[0,U]. O
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We now turn to

Proof. [Proof of Theorem We first prove that U is a classical solution of the PDE
(2.12). The main argument follows from (2.10]), the idea being to apply the chain rule to
U(t + h,x,-), which is licit thanks to Theorem Following (2.9)), we get

U(t+h,z,[X5]) = Ut + h,z,[€])
- g [0 (¢ -+ o, [XE€) (CXEE))b(CO1S), [025O) | e

o 2[R [T Q010+ B [XEED) (KE9) (707) (0550, 050

Assumption (HO0) and Theorems and provide estimates on the smoothness of
b, oof, 0,U and 0,[0,U]. We deduce that we can find a non-negative functional ® on

[L2(Q, A, P;R? x R™ x R™*%)]2 continuous at any point of the diagonal, matching 0 on
the diagonal, such that

@@+mx¢Q§D—U@+m%KD
— WB(0,U (¢ + by, [€1) (©)(<61), [0 ) |
— 5B [Trace[u[,07] (¢ + by, [€D) (©0) (o) (015, [0?5"0)])]”

<h sup ®(6L5,6%).
relt,t+h]
Recalling that oLE — (Xﬁ’g, Y}t’g, o U(r, Xﬁ’g, [Xﬁ’f])a(Xﬁ’g, Yf’g)), we deduce from Theo-
rem (smoothness of 0,U both in time and in space) that it converges (in L?) to 9;’5
as r tends to t, proving that the supremum above tends to 0 as h tends to 0. Now, using

the time continuity of the derivatives 0,U and 0,[0,U] (see Theorem 4.33)), we deduce
that there exists a function € : R 3 u — ¢, € Ry, with lim,_,¢ &, = 0, such that

pa+mx¢Q§D—U@+m&gD

- H[E [0 (e 16D (O 16D (191

~ R [Trace[a,[3,0] (6,2, [€]) (€©) (07) (¢85, [ei’“”m]] \ < hen

Now, we can plug (4.94) into (2.10). Following (2.11), we get that the time increment
[U(t+h,z,[£])—U(t, z, [£])]/h has a limit as h tends to 0. As in Subsection [2.3] the right
derivative in time satisfies (2.12)) and is thus continuous in time. Since U is obviously

continuous in time, we deduce that the mapping [0,T] 3t — U(¢, z, [£]) is differentiable
and that the PDE (2.12) holds true. O

5. LARGE POPULATION STOCHASTIC CONTROL — PROOF OF THEOREM [2.9]

In this section, we discuss two applications of our previous results to large population
stochastic control. The first application is related to mean-field games, whilst the second
one is related to the optimal control of McKean-Vlasov equations.
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5.1. The global smoothness of the decoupling field. So far, smoothness of the
decoupling field U has been discussed for small time intervals [0, T']; namely for T' < dg
where §p > 0 only depends upon the Lipschitz constants of the coefficients b, f, o
and g, denoted by the common letter L in condition (HO)(i). A natural, though quite
challenging, question concerns the possible extension of such a result to the case when T'
is arbitrarily large.

The principle for extending the result to an arbitrarily large time horizon is discussed
in the earlier paper [II]. It consists of a backward recursion starting from the terminal
time T. Thanks to the short time result proved in the previous section, the mapping
[T — 60, T] x R x Po(R?) 3 (t, 2, ) — Ul(t,x, u) € R™ is rigorously defined as the initial
value Ytt’x’“ of the backward component of the system , existence and uniqueness
of the solution of the forward-backward system following from the condition T'— ¢ < dg.
By Lemma [§.1} U is Lipschitz continuous in (z,p), uniformly in ¢ € [T — 6, T]. Up
to a modification of the choice of the constant &g, dg still depending on the Lipschitz
constants of the coefficients only, the results established in Section [d]show that, under the
assumptions detailed in Subsection U belongs to the class | Jz-q Dg([T — do, 7). As
in [I1]], we proceed by reapplying the short time existence, uniqueness and differentiability
result to a new interval of the form [T'— (9 +01), T — o], with the new terminal condition
U(T —éo, -, ) at time T'— §p replacing the terminal condition g at time 7". A preliminary
condition for iterating the short time solvability property is that U(T — do,-,-) is an
admissible boundary condition. Under (H2), Theorems and say that it is
indeed the case, up to a deterioration of a into o + 1, the exponent « driving the local
Lipschitz regularity of the derivatives of the coefficients in (H1) and (H2). This makes
possible to reapply the existence and uniqueness result for short time horizons with «
be replaced by a + 1. Fortunately, the length 0; of the new interval of existence and
uniqueness only depends on the Lipschitz constant of b, f, o and U(T — dp,-,-). In
particular, it does not suffer from the deterioration of the exponent « into oo+ 1, which is
a crucial fact. As a result we are able to extend the definition of U to [T'— (dp + 1), T —
0] x R% x Py (RY). Since the new terminal condition U (T —dy, -, -) has the same properties
as g (but possibly with a different Lipschitz constant and a different «), the extended
version of U is in the class Do+1([T — (0o + 01),T1) = Upso Ps([T — (0 + 61),T]).
The argument can be applied recursively on a sequence of small intervals of the form
[T— 0o+ +0nt1), T — (dp+---+0,)], n = 0. Of course, the issue is that the lengths
(6n)n=0 may be smaller and smaller so that the sum »; _,d, may not exceed 7. This
happens if the Lipschitz constant of U at times (T'— (dp + - - - + 0p))n>1 blows up before
that the sequence (69 + -+ + dn)n>1 exceeds T'. Put it differently, the construction of
the smooth decoupling field U on [0,T] x R% x Py(R?) can be achieved by means of a
backward recursion provided that the Lipschitz constant of U(t, -, -) remain bounded as
t runs backward along the induction.

The crux of the matter is thus to get such a Lipschitz estimate. In the following, we
present two examples, derived from large population stochastic control, for which the
following assumption holds true:

Assumption((H3)). For anyt € [0,T] and any square integrable F;-measurable random
variable &, the system (2.3) has a unique solution (X(f’g,Y;t’f, Zﬁ’s)se[tﬂ and it satisfies,
for all €,€' € L2(Q, i, P; RY),

B[|v) - v¥12]"% < AR[Je - €/7]'2, (5.1)

with A a positive constant that does not depend on &, £ nor on t.
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We will show below that, under (H3), the decoupling field U constructed along the
induction must satisfy at any time ¢ at which it has been defined

VEE e D ARRY, E[UWEE) -UWE D] < AB[lc- €27, (5.2)

Although it is a first step in the control of the Lipschitz constant for U, it remains
insufficient for our purposes. The reason is that the control is here stated along the
diagonal only. Fortunately, the next Lemma permits to fill the gap and to bound the
Lipschitz constant of U, in z and p, on the entire domain:

1/2

Lemma 5.1. Under (H2), assume that U has been constructed on some interval [Ty, T,
for Ty € [0,T]. Assume moreover that it satisfies for any t € [Ty, T] and that it
is continuously differentiable in the directions x and p at any time t € [Ty, T]. Then,
we can find a constant A, independent of Ty, such that for t € [To,T], z,2' € R? and
s 1t € Po(RY):

|U(t7xvu) - U(tvx/nu/” < A(‘x - J"/‘ + WQ(,U'vM/))'

Proof.

Step 1. Applying Proposition[3.8](with o = 0) we get that U is A-Lipschitz continuous
in z, or equivalently that |0;U(t,-,-)|ls < A for t € [Tp, T].

Step 2a. Now, for t € [Ty, T], z € R? and &,¢" € L2(Q, A, P;RY), we have

|U(t, z, [£]) = U(t,x, [£])]
1
j E[0,U(t, 2, [(1 — NE + AD) ((1— NE + A) (€ — &)]dA

0
1
<E[¢ - €|2]1/2L E[|0,U(t, 2, [(1 — A + A (1 — A€ + A€/)|2]1/2d)\.

In particular, in order to complete the proof, it suffices to find a constant C', independent
of Ty, such that, for all (t,z, u) € [Tp, T] x RY x Py(RY),

E[l0,U (1,2, 1) ()] < C. (5.3)
Step 2b. Combining Step 1 and (5.2)), we obtain
1/2

E[|U(t,[€]) - U & [€D1P]Y < 20E[Je — €],

which at the level of the gradient says (choosing & — & = hy, letting h tend to 0 and
applying Fatou’s lemma)

¥x € L*(Q, A, P;RY), E[E[aMU(t,& [5])(<€>)<><>]2]1/2 <2AE[XP]Y2 (5.4)

This control is weaker than (5.3). In order to get (5.3), the strategy is to apply, on some
small interval [¢,S], the results proved in Section {| on the first-order differentiability

of U with respect to the measure. Assuming that £ is F; measurable, we make use of
Lemma but on the interval [t, S] and with g replaced by U(S,-,-), the value of S
being specified next. In the backward component of the system of the type (4.3)) satisfied

by the derivative process (aXXéﬁ, 6XY;’§, (?XZ?E)SG[LS], the boundary condition reads as
LS = 0.0 (8 X LX) + Bl (5. X5 1) (KED) 0 X5
Now, by the a priori bound (5.4 and Step 1, we get that
1/2 1/2
E[|0, Vi)Y < CE[|o, X5¢12]° . (5.5)
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Above and in the computations below, the constant C' may change from line to line,
it depends on the parameters in assumptions and, importantly, is uniform with respect
to 0 < Tp <t < S <T. The bound reads as a Lipschitz bound (in L?), with a
constant C.

We can make use of in Corollary , with p = 1, v < 1/T'1, g, = 0, Gy =
0, Go(S) = ang’f (which is to say, in rough terms, that we put the whole terminal
condition in the remainder) and [0, T] replaced by [t, S]. The remainder term E[R?] is
thus equal to 71/2E[\(3XY§’§|2], which is less than C’yl/QE[\axXg’ﬁP]. Therefore, choosing
[ Cy/2 = 1/2, we have, for S —t < ¢ := ¢(L),

1/2
el s (Xt o) + [Clozisa] <o 6o
s€(t,S]

Now, consider the derivative process of the non McKean-Vlasov system (2.4). It
satisfies a forward-backward system of the type (4.3). The boundary condition in the
backward component may be expressed as
o ver = a,U (s, qu’w’[g], (X5 D)o X57¢ + B[0,U (S, X571 [XE]) (X5 o X5
Under the notations and . the above writing reads as the decomposition of
the terminal condition in the form gg(X wlel [ng]) = 0, U(S, Xg’x’[g], [Xg’f]), Gi=0
and G4 (S) = [é’ U(S, Xt @ [e] , [X tg])<é’ Xt g>] We can apply once again Corollary

with p = 1, ¥ = 0, eth § = 0,0 and B, ¥ and F given by (£53). Recalling that
0, U is bounded by A, we get for S —t<é:=¢(Av L),

0] < C(B[R[0,U (8. X5™, [XEN (XX
+E[ sup (|oy

2\11/2
sel¢,S] )] >,

the second part coming from the remainder term H, in (4.53) when H = B, X, F.

Therefore, from the relationship 6XYtt’m’[§] = E[@uU(t,x, [£])({&))x] and from (5.6)),
we get

B[, (2, [EDCEP) < € (1 + EE[1,U (S, X5, X5 (<x§) ).
We deduce

sup E[l0,U (¢, [€]) ()]

zeR4 £eL2(Q,F¢,P;RY)
N 1/2
<c(i+ s B[aU(S E)@)H).
zeR e L2(Q,A,P;RY)

Since the terms in the suprema only depend on the law of £, we can assume that the
supremum in the left-hand side is taken over ¢ € L?(Q, A, P; R?). Assuming without any
loss of generality that C' > 1 and iterating the inequality, we get

1+ sup E[|0,U (t, 2, [€) ()]

zeR? ¢eL2(Q,A,P;RD)

<20(1+ s BaU(Sa ) OF])

zeR? e L2(Q,A,P;R4)

<o (1+ sup E[|0u (. [ (©)IP]?).

xeR? e L2(Q,A,P;R4)
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with n = [(T —t)/¢]. Recalling the notation L in (HO0)(i), we deduce that

sup  B[l0U(t,a, [EN(IP]* < Lo,
meRd;£€L2(Q,_A’P;Rd)

which proves (5.3) and thus completes the proof. O

Proposition 5.2. Assume that b, f, o and g satisfy (H2) and that the statement (H3)
holds true. Then there exists a mapping U : [0, T] x R x Po(RY) 3 (t, 2, p) > U(t,z, 1) €
R™, Lipschitz continuous in (z, ), uniformly in t € [0,T], such that, for all t € [0,T]
and & € L?(Q, F;, P;RY),

Yst,£ — U(s,Xﬁ’f, [X?ﬁ])'
Moreover, U belongs to U620 Dy and satisfies the master equation (2.12)).

Proof. The proposition is proved by induction. Given a large integer N > 1 (the value of
which is fixed below), let § = T/N. The induction hypothesis reads, for n € {1,..., N}:

(Z,) : There exists a mapping U : [T —nd,T] x R? x Py(RY) 3 (t, 2, 1) = U(t,z, 1) €
R™ that belongs to (Jg-o Ds([T" — nd, T']) such that

(i) for any t € [T — no, T], the function U(t,-, ) satisfies the same assumption as g in
(HO0)(i), (H1) (H2), but with the constant L replaced by A coming from Lemma
(L and « being replaced by some Ly, and dy,);

(11) U satisfies the master PDE on [T —né, T] x R? x Py(RY)

(iii) for all t € [T —nd, T] and & € L2(Q, F, P;RY), Y° = U(t, &, [€]).

Step 1. In this step, we first specify the value of N and we prove that (Z;) is satisfied.

First, notice that A in Lemma [5.1| may be assumed to be larger than L in (HO)(i),
(H1) and (H2). We then choose N as the smallest integer such that & := T/N < ¢(A),
where c is given by Theorems and (or more precisely by the minimum of the ¢’s
in these two statements). For T —t < &, we know that, for any z € R? and u € Po(R?),
the system has a unique solution (Xé’x’”,}@t’x’“,Zﬁ’x’“)se[tﬂ and, by Theorems
and U belongs to (JgsoDs([T' — 6,T]) and satisfies the master equation on
[T —6,T] x R? x Py(RY).

Now, by Corollary 1.5 in [II] (which holds true for small time horizons), we can
replace x by a square-integrable F;-measurable random initial condition £ in (2.4). With
obvious notations, it must satisfy Ytt’g’” = U(t,&, n). Choosing & with distribution p, we

deduce from uniqueness in small time to the system (2.3 that (X;’E’“, Yst’g’“, Zﬁ’g’“)se[tﬂ

coincides with (X2¢, Y54, 204 +,7]- Indeed, (X;’E,Yst’g,Zﬁ’E)se[t,T] solves (2.4) with z
replaced by € and the system (2.4) has a unique solution. Therefore, we deduce that,
with probability 1,

Y = U €,[€]), forall te [T —6,T).
By (H3), U satisfies (5.2) so that, by Lemma[5.1] (Z1) is indeed satisfied.

Step 2 Assume that, for some n € {1,..., N — 1}, (Z,,) holds true.

For any t € [T — (n+ 1)8,T] and & € L?(2, F;,P; R?), we consider again the forward-
backward system . By (H3), it admits a unique solution. In particular, by the
uniqueness property guaranteed by (H3), it must hold that

t, T—né,Xt‘fn
YTEn(S = YTfné e (57)
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By the induction hypothesis, Y:,{fn s must have the form
t,€ t,€ ,§
YT—n5 = U(T - né’ XT—n(S’ [XT—n(S]) '

Therefore, we now consider but on [T — (n + 1)0,T — nd], with U(T — nd, -, -) as
terminal boundary condition. By the induction hypothesis, we know that U(T — nd, -, )
is A-Lipschitz continuous, so that existence and uniqueness to with U(T — nd,-, )
as terminal boundary condition hold true. This permits to extend the definition of U
to [T — (n +1)6,T — nd]. By Theorems and [£.33] the extension of U belongs to
Up=0 Ds([T — (n + 1)0,T — nd]) and thus to (Jzso Ds([T — (n + 1)4,T]). Moreover, it
satisfies the master equation on [T — (n + 1)8,T] x RY x Py(R9).

Consider now the restriction of the global solution (Xﬁ’g, Yst’5, Zﬁ’g)se[tﬂ to the small
interval [T — (n + 1)6,T — nd]. By (5.7), it must coincide with the short time solution
constructed on [¢,T — nd] with U(T — nd, -, -) as terminal boundary conditions. By the
same arguments as in Step 1, we thus get that

Y = Ut € [€])

with probability one. This shows that U satisfies (5.2 and applying Lemma , we get
that (Z,+1) is satisfied. O

5.2. Mean-field games.

5.2.1. General set-up. Mean-field games were introduced simultaneously by Lasry and
Lions [23| 24, 25] and by Huang, Caines and Malhamé [20]. Their purpose is to describe
asymptotic Nash equilibria within large population of controlled agents interacting with
one another through the empirical distribution of the system. When players are driven
by similar dynamics and subject to similar cost functionals, asymptotic equilibria are
expected to obey some propagation of chaos, limiting the analysis of the whole population
to the analysis of one single player and thus reducing the complexity in a drastic way.
The dynamics of one single player read as

dXt = b(Xt, M, th>dt + O'()(t7 Mt)thv te [O, T], (58)

for some possibly random initial condition Xo, where (W})e[o,7 is an RZ-valued Brownian
motion and b : R? x Py(R%) x R¥F — R? and o : R? x Py(RY) are Lipschitz-continuous on
the model of (HO)(i). Above, (at)se[o,r) denotes the control process. It takes values in
R* and is assumed to be progressively-measurable and to satisfy:

T
EJ ‘Oét|2dt < +00.
0

The family (p1¢)se[o,r] denotes an arbitrary flow of probability measures in Po(RY). Tt is
intended to describe the statistical equilibrium of the game, the notion of equilibrium
being defined according to some cost functional

T
J((00)reoy) = E[G(XT,m ol F(Xt,ut,at)dt],

and being actually given by the solution of a fixed point problem, the description of
which is taken from [7]:
(i) Given the family (p)se[o,7], solve the optimization problem
inf J((at)tE[O,T]) .

(Oét)ze[ogr]
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Agsume that the optimal path is uniquely defined and denote it by (XEMS)SE[O’T])te[()’T].

(ii) Find (41s)sefo,r) such that [XE“S)SE[O’T]] = for all ¢t € [0, T7].

Generally speaking, there are two ways to characterize the optimal paths in (i) by
means of an FBSDE. The first one is to represent the value function of the optimization
problem (i) as the decoupling field of a forward-backward system, in which case equilibria
solving (ii) may be described through a McKean-Vlasov FBSDE along the lines of [10].
Another way is to make use of the stochastic Pontryagin principle to represent directly
the optimal path in (i) as the forward component of the solution of a forward-backward
system, in which case equilibria solving (ii) may be described through a McKean-Vlasov
FBSDE along the lines of [7]. When using the stochastic Pontryagin principle, the
decoupling field of the underlying forward-backward system is then understood as the
gradient of the value function of the optimization problem (i).

Here we are willing to show that, in both cases, the decoupling field of the McKean-
Vlasov FBSDE used to characterize equilibria of the game is indeed a classical solution
of a master PDE of the type and, then, to make the connection with the so-called
master equation presented in Lions’ lectures at the Collége de France. In each case, we
exhibit sufficient conditions under which the master PDE is solvable for an arbitrary
time horizon T'. In short, the two types of representation apply under slightly different
assumptions. The direct representation of the value function is well-fitted to cases when
o is uniformly non-degenerate, since standard theory for uniformly parabolic semilinear
PDEs then applies. The stochastic Pontryagin principle is more adapted to cases when
the underlying Hamiltonian is convex in both the space and control variables, ¢ being
possible degenerate. In both cases, we shall implement the Lasry-Lions monotonicity
condition, see (H4)(iii) below, in order to investigate the Lipschitz property of the
solution of the corresponding master PDE in the direction of the measure.

5.2.2. Use of the Stochastic Pontryagin Principle. We first explain how things work when
using the stochastic Pontryagin principle in order to characterize the optimal paths in (i).
Then, following [7], the matching problem (ii) is solved by forcing the forward component
of the FBSDE derived from the Pontryagin principle to have (u)e[o,r] as marginal laws.
The resulting system becomes ((Ys)qe[t, 7 being seen as a row vector process)

dX; = b(Xy, [Xe], a(Xy, [Xe], V2))dE + o (X, [Xe])dW, 59)
dY; = =0, H (X¢, [X1], Y2, &( Xy, [Xi], V2))dt + Z,dW, '

with the boundary condition Yr = 0,G(Xrp,[X7]), where H denotes the so-called ez-
tended Hamiltonian of the system:

H($7N7y7a) :yTb(x,M,a) +F(:L’,,U,,Oé), [L‘,yERd, QERkv MEPQ(Rd)7 (510)
and &(z, p,y) denotes the minimizer:
&(z, p,y) = argmin, H(z, 1, y, o). (5.11)

We shall specify below assumptions under which the minimizer is indeed well-defined.
For the moment, we concentrate on the regularity properties we need on the coefficients.
As we aim at applying Proposition we let:

Assumption ((H4)(i)). The running cost F may be decomposed as
F(x,pu,0) = Fo(z,p) + Fi(z,a), zeRY pePy(RY), aeRF, (5.12)
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the function Iy being three times differentiable, with bounded and Lipschitz-continuous
derivatives of order 2 and 3. The functions Fy and G are locally Lipschitz continu-
ous in x and p, the Lipschitz constant being at most of linear growth in |x| and in
(Spa |2’ |2du(2")) /2. Moreover, Fy and G are differentiable with respect to x and the coef-
ficients fo = 0, Fy and g = 0,G are Lipschitz in (x,pn) and satisfy (H1) and (H2) with
h = fo,g and w = .

In particular, there exists a constant C' such that, for all z e RY, e Pg(Rd), aeRF,

Glal < C[Lt ] + | laPauta)],

Re (5.13)

Folasi)| + [P )] < C[L+[a + | 1o/ Pduta) +[af].
R4

Actually, the decomposition is motivated by the uniqueness criterion we use
below. We introduce it now and not later since it makes the exposition of the regularity
assumption much simpler. The growth conditions on the Lipschitz constant of the deriva-
tives are motivated by the typical example when F' and G have a quadratic structure in
x and « (see [9]).

The reader may notice that nothing is said about the smoothness of b and o. The
reason is the following. Generally speaking, the uniqueness of the minimizer in (5.11]
is ensured under strict convexity of the Hamiltonian in the direction «, but, for our
purpose, we will use more. We indeed require the full extended Hamiltonian

H'(z, 1, y,z,a) = H(z, gy, ) + Trace(za(a:, u)),
for z € RY, p e Po(R?), y e R, 2z € R4 o e R¥, to be convex in (z, ), namely
H' (2, p,y,2,0") — H' (z, 4, y, 2, ) — (&’ — 2,0, H'(z, 1, y, 2, ) )
—{a — 0, 0o H (z, 11,9, z,0)) = Ao’ — af?, (5.14)

for some A\ > 0. In order to guarantee the convexity of H, we must assume that b(z, u, o)
is a linear function in (z, ) of the form by(u) + byx + bacy, for some matrices by € R4*?
and by € RP* and by : Po(R?) — RY. Moreover, because of the uniqueness criterion we
use below, we shall restrict ourselves to the case by = 0 so that the drift reduces to the
linear combination b(x, &) = byx + bacr. Similarly, we must assume that o(x, ) is a linear
function in x, which implies that o is independent of x as we need it to be bounded (see
(Ho)). Again, because of the uniqueness criterion we use below, we restrict ourselves to
the case when o is also independent of u, namely o(z, 1) = o for some constant matrix
o of dimension d x d. Then, the convexity property holds provided F satisfies it.
In particular, H' (2, pu,y, z,/) — H'(z, p,y, z, ) = H(2', p,y, ) — H(z, p,y, ) so that
the analysis of the full extended Hamiltonian H' may be reduced to the analysis of the
extended Hamiltonian H. We thus require

Assumption ((H4)(ii)). There exist by € R by € R>*F and o € R such that
bz, p,0) = bix + bea and o(z,p) = o, for any v € RY, p e Po(RY) and o € RF.
Moreover, F satisfies and the mapping R? 3 x — G(z,1) € R is convex in the
z-variable for any p € Pao(RY).

We then notice that &(x,y, 1) solves the equation:
yiby + 8aF(957,u, d(a:,,u,y)) = 0. (5.15)

Since 0o F' = 0, F1 does not depend upon p, we deduce that &(x, p, y) reduces to &(x,y).
It is then straightforward to prove from the implicit function theorem that the mapping
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(x,y) — &(z,y) is twice differentiable with respect to (z,y) with bounded and Lipschitz-
continuous derivatives. This says in particular that, in , there is no McKean-Vlasov
interaction in the forward equation. Moreover, we deduce, by composition, that Assump-
tion (H2) is satisfied (and thus (HO0) and (H1) as well).

Existence, uniqueness and differentiability of the solution. In [T], it is proved that (5.9
admits a unique solution provided the following assumption is in force (in addition to
(H4)(i) and (H4)(ii)):
Assumption ((H4)(iii)). There exists ¢ > 0 such that

(1) For all z € RY, |0,F)(z,0)| <c,

(2) For all x € R, (x,0,Fp(0,0,)) = —c(1 + |z|), {x,0.G(0,0,)) = —c(1 + |z|),

where d; is the Dirac mass at point x. Moreover, the following Lasry-Lions monotonicity
condition is in force:

fRd (Fo(z, p) = Fo(z, 1)) d(p — ') (x) = 0, fRd (G(z,p) = Gz, p))d(p — 1) (2) = 0.

Actually, not only existence and uniqueness hold, but also the key Lipschitz estimate
is true, justifying (H3). The argument is the same as the one given in [7, Propo-
sition 3.7| for proving uniqueness. The only difference is that initial conditions may be
different. More precisely, given ¢ € [0,7] and two square-integrable F;-measurable ran-
dom variables € and £, the same argument as in [7], combined with (3.6) therein to take
into account the fact that the initial conditions are different, shows that

T
20E [ a(X0 Y1) - 6K VIO Ps < B - €)=Y 6o
t

(Here (X6, Y€, Z86) and (X1, Y1, Z6€) satisfy (5.9) with XO¢ = € and X2 = &)
Now, it is quite straightforward to see that

E[[; - ¥,

, T , , 5.17
<C( sup E[IX!¢ — X1 +Ef (X5 YEE) = (X0, V) ds ). >0
se(t, T t
and,
sup E[| X4 — X047
selt, T (5 18)

T
<C(B[l - €] +E | a(XH 119 - a(xX€, v Ps).
t
Therefore, from (5.17) and (5.18]),
T
< O(Bll— €] + B | 1a(Xi€,vi9) - a(xi€, i) Ps),
t

Plugging (5.16|) into the above equation, we get (5.1)).
Master equation. The fact that (H3) holds permits us to apply Proposition It
follows that the decoupling field U of the forward-backward equation (5.9) satisfies the

corresponding master PDE ([2.12]).
We emphasize that the master PDE that we derive is not the standard master equation

in mean-field games theory. Loosely speaking, the master equation in mean-field games

E[D/tt,f _ Y;tvf/
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is the equation satisfied by V, such that U is the gradient of V, which stands for the
value function of the game, namely

V(t,x,pn)

T 5.19
=E[G(X§4$’“,[X%f])+ f F(XW,[Xé’ﬁ],@(sz,lﬁv“v“))ds], £~ 1, (5.19)
t

in other words V' (¢, z, 1) is the optimal cost when the private player is initialized at x and
the equilibrium strategy for the population is initialized at p. (Here (X4&# YTk ZLEH)
solves with the coefficients of (5.9).)

Now that U is known to belong to U,BZO Dg, we can see X5 and XH%# as solutions of
autonomous forward SDEs driven by smooth Lipschitz-continuous coefficients (the drift
being just obtained by a composition of b with a(-,U(,-,-))). In particular, X*¢ and
X 5%+ must have the same smoothness properties as in the various results of Section ,
but for arbitrary time since the backward constraint has been removed. Another way to
understand that claim is to prove regularity inductively, by means of a forward induction,
applying successively the results obtained in Sectionon [¢, T—nd], [T —nd, T —(n—1)é],
ey [T — 0,T], for the same ¢ as in the proof of Proposition and for n such that
te [T —(n+1)6,T —nd). The induction is then based on the flow property, which says
that, for s € [T — ko, T — (k — 1)4],

23 t,z,[€] [yt
T—k6,X 7> s T—kd, X270 [ X7 5]
s s

X=X and XxbolEl — x : (5.20)

and, thus, permits the transfer from one interval to another.

Basically, this permits us to prove that V is smooth in x and p by differentiating
under the expectation, provided that G and Fj are smooth enough in the direction of the
measure. Motivated by the fact that the coefficients are required to satisfy the convexity
assumption (H4)(ii), assume for instance that

Assumption ((H4)(iv)). The functions
Fo(z, 1)

U+ (22 + fu [o2da(o)
Gz, 1)

U+ 22+ fg [o2da(o)

satisfy (HO)(i)-(H1)-(H?2) (for some values of the parameters therein). In particular,
Fy and G satisfy the same differentiability property as in (HO)(i)—(H1)-(H2) but the
derivatives are locally (instead of globally) controlled.

R? x Py(RY) 3 (z, ) —

(5.21)
R? x Po(R?) 3 (z, 1) =

Then, we can differentiate the representation formula for V as we differentiated the
backward components of and in Section [l up to the slight difference that
the derivatives of G and F(-,-,&(-,)) in x, y and p may be of linear growth in all the
arguments. The key point to circumvent it is to notice from (H4)(iv) that the random
variable

GXE™, [XF])

VIR £

2
2

satisfies the same first-order and second-order differentiability properties as 0%‘”6 in Lem-

mas and Since all the estimates in Lemmas and hold in L2, it is then
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pretty clear that the mapping

B

G(XFH [X59) ]
WL+ [XE2 4+ | X513
= E[G(Xz™" [Xp D], with &~ p,

R x Po(RY) 3 (2, ) > E[ /1 + | X502 4 | x5

satisfies the same assumption as Fy and G in (H4)(ii).

We then may proceed in the same way with F'(-,-, &(-,-)) instead of G(-,-) (recalling
that F} has bounded derivatives of order 2 and 3, that & has bounded derivatives of order
1 and 2 and that U(t,,-) satisfies (HO)(i)-(H1)-(H2), the values of the parameters
therein being uniform in ¢ € [0, 7).

In the spirit of Theorems and [4.33] this permits to show that, for any ¢ € [0, 7],
V(t,-,-) satisfies the same assumption as F and G in (H4)(ii), the parameters that
appear in (HO)(i)-(H1)—-(H2) being uniform in ¢ € [0, 7.

It thus remains to identify the shape of the master PDE and, in the same time, to
prove the continuity of V' and of its derivatives with respect to t. From the same flow
property as in (5.20), we notice that, for any (¢,z,u) € [0,T] x RY x Py(RY) and any
se[t,T],

t,x, t,€ t,e
V(t, z, ) =E[G(X;Xs " s )

! f C (R, [ 6 (X, W’Xﬁ“’“’[xﬁ’&]))d’“}

s

S
+ E |:J‘ F (Xﬁ:xnu’ [X£7£]7 a(Xﬁ:x#‘L’ z‘t7xzﬂ)) dT:|
t
S
— [V (st i)+ [ (e (xS et v |
t

from which we may repeat the arguments from Theorems [4.25] and (see also
Subsection . We finally obtain

Theorem 5.3. Under (H4)(i-iv), the function V(t,-,-) satisfies the same assump-
tion as Fy and G in (H4)(iv), the parameters that appear in (HO)(i)—(H1)-(H2)
being uniform in t € [0,T]. Moreover, for any x € R? and u € Po(R?), the func-
tion [0,T] 3 t — V(t,x,pu) is continuously differentiable, the derivative being con-
tinuous in (t,x,n). For any v € R? and & € L?(Q, A P;RY), the functions [0,T] x
R x L2(0, A BiRY) 5 (t,2,6) o 2,V (1,2, [E))(E) € L2 A B:RY) and [0,T] x B? x
L2(Q, A, P;RY) 5 (¢, 2,8) > 0,[0,V (t, z, [ED](€) € L*(Q2, A, P;RY) are continuous.
Finally, V satisfies the master equation

OV (t,x,u) + 0, V(t,z, ,u)b(:c, a(z,U(t, z, ,u))) + F(z, w, &z, Ul(t, x, ,u)))

+ fRd OuV (t,, 1) (0)b(v, &(v, U (¢, v, 1)) dps(v) (5.22)

wyn] (A + [ a@rnmoam o] <o

with V (T, x, p) = G(z, u) as terminal condition and with U denoting the decoupling field

of .



CLASSICAL SOLUTIONS TO THE MASTER EQUATION 85
Remark 5.4. The identification U(t,x,p) = 05V (t,x, 1) can be checked directly as:

0V (t,x,pn) = E[(?:EG(X;LM’ [X%g])azX}’x’”
T
t

T
[ (X0 DXL, A Y0, (X Y ds €~
t
Now, (5.15) says that 0, F(XLH, [XE4], a( XL+ vE©H)) = —ngst’x’“, so that

T
axV(t, z, M) =F {lezm,uaxX%x,u + f axF(X;,x,u’ [Xﬁ,f]’ d(X;,x,u’ Y;t,z,u)) axXﬁ’JC’HdS
t

T
— b} J VIO, (G(XE5H Y:’””’“))ds].
t

Using (5.9) and Ito’s formula to expand (Yst’m’“(?xXﬁ’x’“)tgng, we get that the right-hand
side is equal to Ytt’x’“. We omit the details of the computation here.

5.2.3. Direct approach. Theorem is specifically designed to handle the case when
the coefficients may be quadratic in z, provided that the extended Hamiltonian has a
convex structure in (z, ). When the coefficients are bounded in x and p and ¢ is non-
degenerate, we can give a direct proof of the solvability of the master equation (5.22))
under the weaker assumption that the extended Hamiltonian is convex in «. The key
point is to represent directly the value function V' in by means of a McKean-Vlasov
FBSDE, and thus to avoid any further reference to the stochastic Pontryagin principle.
In particular, contrary to the last paragraph, we shall prove existence and uniqueness to
without relying on results in [7]. Of course, as previously, we shall need to check
that the processes that enter the representation of the value function satisfy (H3), or
equivalently, that the key estimate holds true. We shall assume:

Assumption ((H5)). The coefficient o has the form o : R 3 2+ o(x) € R4, 4s

bounded, twice differentiable, with bounded and Lipschitz-continuous derivatives of order

1 and 2, and, for any x € RY, the matriz o(z) is invertible with sup,cpa |0~ (z)| < 0.
The parameter k is equal to d and b may decomposed as

b(z,a) = by(z) + o, zeR? aeR?,

the function by being bounded and twice continuously differentiable with bounded and
Lipschitz-continuous derivatives of order 1 and 2.
The running cost F' may be decomposed as

F(z,p,0) = Folz, p) + Fi(z,a), zeRY pePy(RY), aeR?,
where
e the functions Fy and G are bounded and satisfy (HO)(i), (H1), (H2);
e the function Fy is bounded in x and at most of quadratic growth in o, uniformly
in x; it is is three times differentiable in (x,«), the derivatives of order 2 and
3 being bounded and Lipschitz-continuous, the deriwative of order 1 in x being

bounded and the derivative of order 1 in « being at most of linear growth in «,
uniformly in x; there exists A > 0 such that it satisfies the convexity assumption

Fi(z, ) — Fi(z,0) — &' — a, 0 F1(x,0)) = N — af?,
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And, the Lasry-Lions monotonicity condition in the last line of (H4)(iii) holds true.
We here prove that

Theorem 5.5. For a given T > 0 and under (H5), the master PDE (5.22)) has a unique
classical solution in the space U5 Dg=o

Proof. In comparison with the proof of Theorem [5.3] the difficulty here is that we do not
have an a prior: existence and uniqueness result for the McKean-Vlasov FBSDE system
representing the master PDE . In order to proceed, we thus revisit the proof of
Proposition [5.2]and show, by induction, that there exist an integer N > 1 and a constant
A > 0 such that, with § = T/N, the following holds true for any n € {1,..., N}:

(Z,) : There exists a mapping V : [T —nd, T] x REx Py(RY) > (t,x, u) — V(t,z,u) € R
that belongs to | Jz- Dg([T" — nd, T]) such that

(1) for any t € [T —nd, T], the function V (¢, -, ) satisfies the same assumption as g in
(HO)(i), (H1) (H2), but with the constant L replaced by A and L and a being replaced
by some f)n and au,;

(11) V satisfies the master PDE on [T —nd, T] x R% x Py(RY).

First step. We start with the following observation. Equation is of the type
@12), with m = 1, b(x,y, z,v) = bo(z) + &(z, 20~ 1 (2)) [} o(z,v) = o(z), f(z,y,2,v) =
Fo(z,pu) + Fi(z,é(z, 2071 (2))) and g(x, n) = G(x, ) (recall that the product zo~!(x)
makes sense since z reads as an element of R'*™ that is a row vector). Since b does not
rely on y and v, we shall write b(x, z) for b(x,y, z,v). Similarly, since f is independent
of the variable y and depends on the variable v € Po(R% x R) through its first marginal
p € Po(R?) only (recall that, formally, v is understood as the joint marginal law of the
process (X,Y)), we shall write f(z, z,u) for f(z,y, z,v). Now, recalling (5.15)), we know
that (z,2) — a(z,2) is twice differentiable with respect to (z,z) with bounded and
Lipschitz-continuous derivatives of order 1 and 2. In particular, we can find a constant
C such that, for all ,z € R? and u € Py(RY),

102 (2,2, p)| < C(1 + |z]), (5.23)

which plays an important role below.

Of course, the assumption (HO)(i) is not satisfied because of the quadratic growth of
f in the variable z. In order to apply Theorem we shall make use of a truncation
argument. Considering a smooth function pg : R — R? that matches the identity on
the ball of center 0 and of radius R, that is zero outside the ball of center 0 and of radius
2R and that satisfies |[Vypgr| < C with C independent of R, we let br(z, z) = b(x, or(2))
and fr(z, 2, 1) = f(2, or(2), 1)

In particular, for any (t,2) € [0,7] x R? and any flow of probability measures
(bw)uefe,r) with values in Py(R?), we know from [I1] that the FBSDE system

( Xtvxv(/‘LT‘)'re[t,T]

S
=z 4+ S: bR (Xiﬂfa(“u)ue[t,T] ’ Z£7I7(Nu)ue[t,T])dr + S: O’(Xf.7$7('uu)ue[t’T])dWT’
< Y;tvmv(.u"f‘)re[t,T] (524)
_ g(X;:E,(#7L)uE[t,T]7MT) + Sj fR(Xﬁyxy(#U)ue[t,T]’Zf.,fﬂy(,ufu,)ue[t,T]’lulr)dr
_ S? Z”fyaj’(/”“J«)’U,E[t,T](iVI/*T7 se [t7T]7

12pay attention that the letter b is used both to denote the first-order coefficient in (2.12) and the
drift in (5.8). We feel that the reader can easily make the distinction between the two of them.
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admits a unique solution. It satisfies |Z§’x’(uu)“e[t’ﬂ| < CRr ds ® dP almost everywhere,
for a constant Cr that may depend upon R (but not on (pw)yefs,1])-
We now prove that C'r may be chosen independently of R. The proof is as follows.

We write

1

By a standard Girsanov argument, the above decomposition of fr says that the FB-
SDE (5.24) may be written, under a new probability, as a new FBSDE system with

f(Xz’x’(“u)“e[t’T] ,0, ) as driver in the backward component and with

t7 ’ U ) u t) 9 U Ju B
bR(er(# ) e[t,T]’Zrm(lL ) e[t,T])

+ ! a t7$7(/‘tu)u€[t7T] tvx:(#u)ue[t,T] t:x’(l‘u)ue[t,T] f
zf(Xr s 9R(AZy ) ) Vor(AZy )dA
0

as drift in the forward component: The driver in the backward component is bounded
and, by (5.23)), the drift in the forward component is bounded in the variable z and at
most of linear growth in the variable z. In particular, by [12], there exists a constant T,

independent of R and (fu)ye[s,7], Such that, we indeed have \Zﬁ’x’(uu)“e[t’ﬂ\ <T.

The coefficients G and Fp being bounded, we also have |Yst’$’(“")“e[t’T]| < C, for C
independent of R and of (pu)uef,r]-

Second step. We now construct § > 0 such that the master PDE admits a
solution in (Jgoo Ds([T —6,T1) on [T — 0] x R? x Py(RY). With the same T as in the
previous step, we indeed apply Theorem with (bg, o, fr,g) instead of (b,0, f,g), for
some R > I'|oc~!|,. This says that, for some & € (0,77, there exists a function

V[T —6T] xRx P(RY) - R

in (Ugso Ds([T — 6, T1]) that solves (5.22) with b replaced by br and f replaced by fg.
Now, for any (¢,z, 1) € [T — 6,T] x R? x Py(R?), for any s € [t, T],

0aV (5, X", [X€]) = Zg™Ho™H (X ™0,

where & ~ p and (X5 Y48 Z6€) and (Xbo#k, YEhor Z631Y solve and with
(b, f) replaced by (bg, fr). In particular, [0,V (t,2, )] < oY < R. Therefore, V
also solves (5.22). It also satisfies |V| < C, for some C' independent of R. Basically, this
proves (i) in (Zy).

Third step. In order to prove (i) in (Z;) and more generally in (Z,,) for any n =
2,..., N, we must identify the constant A first. We thus proceed as follows. We assume
that there exists a time ¢ € [0, 7] such that, on [¢t,T] x R? x Py(R?), the master PDE
has a solution V' in (Jz- Dp([t, T]). We are then willing to provide a bound for
SUDPperd cer2(0,4,PiR4) |0V (2, [€])(€) ]2, independently of ¢ € [0,T].

Since V € (Ugso Dp([t, T1), we can find some R > 0 such that [|0:V (s, -, p)lcolloflc <
R for any s € [t,T] and pu € P2(R?). In particular, V also solves the master PDE
associated with (bg, o, fr, g) instead of (b, 0, f,g). Since (br, o, fr, g) satisfies (H0)(i)—
(H1)-(H?2), we can imitate the proof of Theorem and build a solution to for
any ¢ € L*(Q, F;,P; R?). The forward process is defined as a solution of (3-44). We shall

prove right below that it is uniquely defined, so that we can denote it by (Xé’g) se[t,T]-
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Uniqueness is a consequence of a more general result of stability, the proof of which
is as follows. Given &,& € L?(Q, F;,P;RY), we consider two solutions (Xﬁ’g)se[th] and

(Xé’g)se[t’T] to the SDE (3.44), with ¢ and £ as respective initial solutions. We then

expand, by means of It&’s formula (V (s, X2¢, [X54]) — V (s, x4 [Xﬁ’f]))se[t,T] (observe
that, in both terms, the measure argument is driven by £). By Proposition (either
by generalizing to the case when the process plugged in the spatial argument is not the
same as the one plugged in the measure argument or by extending the dimension in order
to see (Xﬁ’g,Xé’g/)se[t,T] as a single process), we get for s € [t,T] (using the fact that
R>[0:V]w]oo)

d[V (s, X048, (X)) ] = —F(XE8, [XE4), a(XE5, 0,V (s, XE5, [XE4])) ) ds

5.25
+ 0,V (s, X8 [ X))o (X L4 AW, (5.25)
and
d[V (s, X [XED) ] = | = F(XEE (X0, G (X0, 0,V (5, X2 [XE))))
+ 0,V (s, XU [ XEE)) (a(XEE, 0,V (s, XUE | [ XBE
(s, X1 [X1€]) (a( (s, X0, [XE€))) 526

— a(XLE, 0,V (s, X0E [XEE))) ) |as
+ 0,V (s, XL [XE)) o (X4 ) AW,

Taking the difference between (5.25) and (5.26) and using the same notation H for
the Hamiltonian as in (5.10)), we obtain

d[V (s, X5 [ng]) -V (s, Xbe [ng])]
— _[f(Xﬁ,f, [XE€), a(XEE, 0,V (s, XB5, [XE4))))

— F(XEE XU, G (X0, 0,V (5, X0E [XEE]))) |ds
— [H (X5 XL 0V (s, XL [XEED), a(XEE 0,V (5, XE€', [XE€T))

— H (X5 X0, 0,V (s, X0 [XEED), a(XEE, 0, (s, X, [X240) ) |ls
[0V (s, XEE [XEE) o (XE6) = 0,V (s, XE€', [ X))o (X2€') |,

Therefore, taking the expectation and integrating in s from ¢t to T, we get from the
convexity of H in « (that follows from the convexity of F} and the linear structure of
the drift in « in (5.8))) that

E[V(t,&,[€) = V(5:¢, [€])]
T
—EJ |71 (X556 (XEE 0,V (5, XE4,[XE4))))

— (X0 A (XL 0,V (s, X0E L [XEET)) ) |as

T
= E[G(X’?gv [X%SD - G(X%glv [X%S])] + EJ (FO(Xg&? [X;’g]) - FO(X?g/v [X?s]))ds

t
T
+ AEJ a(XEE, 0,V (s, X0 [XEE)) — G (XL, 0,V (s, XBE, [ XEE])) | 2ds.
t
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By exchanging the roles of £ and ¢ and then by summing up, we deduce that
E[V(t,&[€]) - V(€ [€) — (V& [€D - V(L€ [€])]
> B[G(X7S [X7]) - QX7 [X5°]) — (G [X5]) - G, [X2°))]

T
+ 2 [ (00 X - Ry [x)

— (Fo(X58, [XE]) — Fo(XE¥, [X14T)) ]ds

T
+ )\EJ G(XEE 0,V (s, XEE [XEET)) — a (XL, 0,V (s, X1, [XE€))) [Pds
t

T
8
t

Finally, rearranging the terms, we deduce from the Lasry-Lions condition that

E[V(tv 53 [g]) - V(t7 gla [E]) - (V(t7 57 [gl]) - V(tv 5/7 [gl]))]

T
>
t

T
+28
t

When ¢ = ¢, the left-hand side is zero. Denoting by X and X’ two solutions to
the SDE with the same initial condition &, the above inequality (with the for-
mal identification X = X% and X’ = X'¢) says that &(X’,0.V (s, X, [X]]) =
&(X7, 0,V (s, XL, [Xs])). Then, uniqueness to follows from the fact that, by as-
sumption, 0,V is Lipschitz continuous in x.

G (XS0, V (s, XES, [XEE))) — @ (XEE, 0,V (s, XEE, [XEET)) [Pds.

B(XEE 0,V s, X [XEED) = (XL 0V (5, X0 [XED)Ps 5 o

& S0,V (s ' ' —a S0V (s, X2 3 s.
(X0, 0V (5, X%, [X00])) — (X0, 0V (s, X025, [X 09 ))) [Pd

Fourth step. Given the flow of probability measures ([Xﬁg]) se[t,] We just constructed,
we know from [IT] that, for any = € R? the FBSDE (2.4), when driven by (bg, o, fr,9)
and by p = [£], is uniquely solvable. By the first step, the solution must solve (2.4),
when driven by (b, o, f,g). Moreover, it satisfies | Z-™"| < T ds ® dP almost everywhere.
Applying Ito’s formula to (V (s, X2™*, [Xﬁ’ﬁ]))se[t,r_p], we can check, in the spirit of The-
orem that YOO = V(s,Xﬁ’I’“, [Xﬁf]) and ZL9H = 6xV(s,X§’m’“, [Xﬁ’g])a(Xﬁ’m’“),
s € [t,T], so that, on [t,T] x R? x Py(RY),

102V oo < TJo™" oo

Another way to make the connection with (2.4)) is to see expansions (5.25)) and (5.26)
as standard verification arguments, as often used in stochastic control theory. Indeed,
we are just using the fact that the mapping (s,z) — V (s, 2, [X5%]) is a solution of a
standard HJB equation, corresponding to the optimization problem (i) in the description
of a mean-field game on page [80] We can indeed differentiate in time V (s, z, ,ui for

3

a given x € R?, where p, = [Xﬁ’g]. Applying the chain rule proved in Section
combining with the master PDE (j5.22)), we then recover the HJB equation:

05|V (s, @, ps)| + 0V (5,2, ps) (bo(2) + &(, 0.V (5,2, 1s)))

+ %Tr[UJT(x)&‘ng(s,x,ﬂs)] + F(ZL‘, fs, &z, O,V (s, x,,us))) =0,

and

(5.28)

for s € [t,T] and z € RY, with V(T,z, ur) = G(x, ur). We know that d,V is bounded by
[0~ w. Therefore, (5.28) reads as a standard semilinear uniformly parabolic equation
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driven by smooth coefficients in x. Since f is Lipschitz-continuous in the direction of
the measure and [t,7] 3 s — p, is 1/2-Holder continuous (the drift of the diffusion X*¢
being bounded), the coefficients are 1/2-Hélder continuous in time. By Schauder’s theory
for semilinear parabolic equation (see [15, Chapter 7]), we can find a bound I" for 02,V
that is independent of ¢ € [0, T].

Now, going back to , we may use the bound for 02,V as a Lipschitz bound for
0,V in the direction z. It is then pretty standard to deduce, from Gronwall’s lemma,
that, for any &, ¢ € L*(Q, Fi, P; RY),

B[ sup [x2€ - x!€P] < O(E[l - €]
se[t,T]

T

for a constant C' that is independent of ¢, £ and ¢ and the value of which is allowed to
increase from line to line. In particular, using the Lipschitz property of & and once again
the bound for 02,V we deduce that

(5.29)
a(X55, 0,V (s, XI5, [XE4])) — a(X05, 0,V (s, XE5, [XET)) |2d3>,

f |G (XEE, 0,V (5, XU [XEE])) — (XL, 0,V (s, XBE [ XE4T)) [Pds

c(E[le - ¢'P]

T
+E
t

< C(E[lc - €]
E[V(L,€ [€]) = V(€. [€]) - (VL& [€]) - VIEe [€D)]).
the last line following from (5.27)) (paying attention that the last term in the right-hand
side is non-negative).
We now make use of Remark By differentiating (YZ™*) selt, T] with respect to
x (which is licit as it reads (Y& = V (s, Xe™H, [Xz’g]))se[tﬂ and (X% “H) seqer) solves

a standard SDE with smooth coefficients) and then, by applying It6’s formula, we can
indeed check that (ax}gt’x’“(axXé’x’“)—l)Se[m, solves the backward SDE in (5.9)), so that

G(XLS, 2, (5, X04, [XEE])) — 6 (XS, 0,V (s, XES, [XET)) [2ds) - (5-30)

OV (@, 1) = B|0,G(Xp, [XF4))

T
| Bu (X0 (XL 0V (s, X (XD, G, 0,1 (s, X0, (X)) s |
t
and thus
&V (1,6 [€]) = B|0,G (X7, [X5°])
Tl AT
f 0. H (XU, [XE4), 0,V (s, XUE,[XES)), G(X0E, 2, (5, X15, [X2]))) sl 7

Therefore, thanks to and (5.30)), and by the Lipschitz property of 0, F and 0,G in
the variables z, u and o, we get that, for any &, ¢ € L2(Q, Fi, P; RY),

E[|0.V(t& [€]) - .V (t. €, (€D
C(E[l€ ~ €17 + B[Vt &, [€) — V(L€ [D) - (VL& D) - V€L 1ED)]).
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Since V is smooth in z and 0,V is I'-Lipschitz in x, we can write

EUaJJV(t’ fv [5]) - axv(ta 5’ [él])P]
< C(E[l¢-¢P]

+ J E[(2:V (1A + (1= NE, [€]) = .V (1,26 + (1= VgL [€1)) (€ = €) A

0
< C(B[ls — 1] + E[(2:V (1€ [€]) - 2V (1.6, [€)) (€~ €)])-
We finally get that

E[‘axv(t7 67 [5]) - axv(t) 57 [gl])|2] < CHfl - 6”%7

the constant C' being independent of ¢, £ and &’. Plugging into (3.44), we can deduce
that

sup E[|X;¢ - X;¢17] < Cle’ — ¢l (5.31)
selt, T
We now look at the backward equation in (driven by (bgr, o, fr,g)). Now that we
have proven a Lipschitz estimate for the forward component, it is standard to prove a
similar estimate for the backward one. We deduce that and thus hold true.
Applying Lemma, we get the required A in (i) of the induction property (Z,).

Last step. From the second and fourth steps, it is clear that (i) in (Z;) holds true,
which completes the proof of (7).

We then apply Theorem [2.7]iteratively along the lines of the proof of Proposition [5.2]
Notice that here there is no need of the assumption (i) in the induction scheme used in
the proof of Proposition Indeed, by the fourth step above, we have a direct way to
establish , whereas, in the proof of Proposition the bound is obtained by
means of the induction assumption (7).

Uniqueness follows from Theorem observing that the quadratic term in the equa-
tion may be truncated (as any solution in the class | Jz-, Dg has a bounded gradient).

]
5.3. Control of McKean-Vlasov equations.

5.3.1. General set-up. Another example taken from large population stochastic control
is the optimal control of McKean-Vlasov equations. We refer to [5, 9] for a complete
review. The idea here is to minimize the cost functional

T
J((at)te[O,T]) = E[G(XT, [XT]) + f F(Xt, [Xt], at)dt},

0
over controlled McKean-Vlasov diffusion processes of the form
dXt = b(Xt, [Xt], Oét)dt + O'th, te [0, T], (532)

for some possibly random initial condition Xo. As in (5.8, (W)e[o,r] is an Re-valued
Brownian motion, b : RYx Py (R?) x R* — R? is Lipschitz-continuous on the same model as
in (HO)(i) and (¢ )se0,7) denotes the progressively-measurable square-integrable control
process. Note that we shall only consider the case o constant.

Unlike the mean-field games example, in which the McKean-Vlasov constraint is im-
posed in step (ii) only, see page , the McKean-Vlasov prescription is here given first.
In particular, the problem now consists of a true optimization problem.
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Below, we make use of the stochastic Pontryagin principle in order to characterize
the optimal paths. Although the form of the Pontryagin principle is different from what
it is in mean-field games, it imposes, in a rather similar way, restrictive conditions on
the structure of the SDE , among which the fact that o has to be constant. The
Hamiltonian is defined in the same way as before, see , but the FBSDE derived
from the stochastic Pontryagin principle has a more complicated form (see [5]):

dX; = b(Xy, [Xe], &(Xy, [Xe], V2))dt + odW,
dY; = —0.H (X, [X:], Ve, a( Xy, [Xi], V7)) dt (5.33)
— B[0,H (X0, [X4], (Y, &((X0), [ X4], (Y))) (X)) + Zed W,

with the boundary condition Yo = 8,G(Xr, [Xr]) + E[0,G((X1),[X7])(X7)]. The
reason is that the state space over which the optimization is performed is the enlarged
space R? x Py(R%). This means that, in the extended Hamiltonian, the state variable is
the pair (x, 1) and not x itself. The additional terms in the driver and in the boundary
condition deriving from the stochastic Pontryagin principle thus express the sensitivity
of the Hamiltonian with respect to the measure argument. We notice that these two
terms may be reformulated as

E[auH(<Xt>7 [X0], (Vo) a((Xe), [Xe], (YD) (X4) | = B(Xm [ X, Yi]),
E[%G«XT% (X7])(X7)] = 3(Xr, [X7]),

where

h(z,v) = fRd o ﬁﬂH(v, 1y, w, &(v, Wlﬁy,w))(az)dy(v, w),

) = | A @)duto).

with € R% v e Po(R? x RY), p e Po(RY) and 71 : R? x RY 5 (2, y) — x € RY
Existence and uniqueness of a solution to have been established under the
following assumption (see [3]):
Assumption((H6)(i)). The drift b is of the linear form b(x, i, o) = box+by §pq vdp(v)+
boa. The cost functions F and G are locally Lipschitz continuous in (x, u, «), the local
Lipschilz constant being at most of linear growth in |x|, (§z lv|2dp(v))Y? and |a|. More-
over, F and G are also C' in (z, u, @), the derivative in (z, ) being Lipschitz continuous
in (z,p, ) and the functions 0, F and 0,G satisfying (with h = F and w = (x,) or
h=gandw=uz)

E[|0uh(w, [£1)(€) — duh(w’, [EDE]" < Lfjw —w'| + B[j — €2}
Finally, there exists A > 0 such that
F(l‘/’ﬂ/,a/) - F(%M, Oé) - <.%'/ - 35,5#’(%/% a)>
- <O/ -G, 6aF(x,u, a)> - E[<§, - 67 auF(ZC,,u, a)(£)>] > )"O/ - a|27

for any pair (€,€) with p and ' as marginal distributions, where z,z' € RY, p, ' €
Po(R?) and o, o/ € RE,
In a similar way, the function (z,u) — G(x,p) is convex in the joint variable (z, ).

(5.34)

Of course, the Hamiltonian is convex in o under (H6)(i) so that the minimizer (5.11)
is well-defined. By (5.15)) and by a suitable version of the implicit function theorem, the
function & inherits the smoothness of 0,H. For instance, assume that
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Assumption ((H6)(ii)). The function R? x Py(R?) x RF 3 (z,p, ) — 0. F(x, u, )
satisfy (H2) (and thus (HO) and (H1) as well) (with w = (x,«) in the notations used
n (H1) and (H2)).

Then,

Lemma 5.6. Under (H6)(i) and (H6)(ii), the function R% x Py(R?) x R¥ 5 (z, u, @) >
a(x, p,y) satisfies (HO), (H1) and (H2) (with w = (z,y) in the notations used in (H1)
and (H?2)).

Proof. The starting point is (5.15). By and by the Lipschitz property of 0o F,
we can reproduce the argument used in [5] to prove that & is also Lipschitz continuous.
More generally, the smoothness in z, y follows from a standard application of the implicit
function theorem.

We now discuss the regularity of & in the direction p. Given &, x € L%(Q, A, P), we
deduce from that, for any ¢ € R,

y'by + 0uF (2, [€ + tx], 6, [ + tx],y)) = 0.

By the standard implicit function theorem, we deduce that the function R 3 ¢t — &(z, [+
tx],y) € R* is differentiable and that

E{0u[0aF (2, [£], (=, [€] 1)) (€
+ 02, F (2, [€], 6(2, [€],))

~—

x|}
[a(x, [€ + tx],y)] = 0.

E:\Q

|t=0

By strict convexity, the matrix 02, F(x, [¢], &(w, [£],v)) is invertible. We easily deduce
that the mapping L?(Q, A,P;RY) 3 ¢ — a(x, [£],y) € RF is Fréchet differentiable. In
particular, the mapping P2(R%) 3 pu — é(x, p, y) is differentiable in Lions’ sense and

au@(l‘,u,y)(v) = [aia ('T w, @ ($ L, y))] a [a F(x M, @ (m w,y ))]( )

The corresponding bounds in (H1) together with the uniform integrability property are
easily checked. Now, the smoothness in v follows from that one of 0,[0oF] and the
related bounds in (H2) hold true. The smoothness of J,& in x,y is satisfied once we
have the smoothness of & in x,y. O

5.3.2. Master equation. The point is now to apply Proposition with b as above, o
constant and

f(ﬂ’j7y,l/) = aazH(l‘aﬂ-lﬁV7d(‘T7ﬂ-1ﬁV7y)) + ];,(J,”l/), T,y € Rda Ve PQ(Rd x Rd)v
9z, p) = G, 1) + glz, p), w € R, pe Po(RY).

Notice also that (H3) is satisfied, see again [5]. It thus remains to check that (H2) is
satisfied.
We thus assume that

Assumption ((H6)(iii)). The functions R? x Po(R?) x R¥ 3 (2, u, @) = 0. F(x, i, )
and R x Po(RY) 3 (x, ) — 0,G(x, i) satisfy (HO)(i), (H1) and (H2) (with w = (z, )
and w = x respectively).

For any (z,p,a) € R? x Po(RY) x RE, there exist versions of 0,F(z,u,)(-) and
of 0,G(z,1)(-) such that R? x Py(R?) x R¥ x RY 5 (2, p, o, v) — 0, F (z, 1,)(v) and
R x Py(RY) x R 3 (, p,v) = 0,G(x, 1) (v) that satisfy (H0)(i), (H1) and (H2) (with
w = (z,a,v) and w = (x,v) respectively).
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Under (H6)(i-ii-iii), by Lemma [5.6] the function R? x Py(R?) x R? 5 (z,p1,y) —
Oz H (z, 1, &(z, u,y)) satisfies (HO)(i), (H1) and (H2). We now discuss h. By linearity
of b, we first observe that (recalling that ,[§zq h(v")du(v)](v) = Vh(v), see [5])

iL(JE, V)= f waldI/(U, w) —I—J (?HF(v,mij/, a(v, mjjl/,w))(a:)du(v, w),
R4 xR4 R4 xR4

The smoothness of the first term is easily handled, the smoothness of the second one in
x as well. The difficulty is to differentiate the second one with respect to v. We get

Oy [J OuF (v, mity, a(v', mfr,w')) (z)dv (v, w')] (v, w)
Rex R4
= Ow,u) [ OuF (v, mity, (v, mifr, w)) (z)]

+ < JRded Q0w F (v, mfty, (v, mtv, w')) ()] (v)dw (v, w'), 0)

+ (J]Rded [ﬁa [0, F (v, mify, a(v', mbv,w')) (z)]du[a(v', mtv, w’)]](v)dz/(v’,w’)7 O),

where the ‘0’ indicates that the derivative in the direction w is zero. We let the reader
check the required conditions for the derivative in the direction v in (H1) and (H2) are
indeed satisfied. Derivatives in the direction x are easily handled.

We deduce that Proposition applies. As for mean-field games, the master PDE
satisfied by U is not the ‘natural’ equation associated with the optimization problem.
Following the previous subsection, we thus define

T
V(t,z,p) = E[G(X%"T’“, [X5°]) +f F(X™H [X08], G(X o™, [X?&]Jét’x’“))dt?],
t

where & ~ pu, (X;’g)se[t;p] denotes the forward component in (5.33), under the initial

condition Xtt’)S =¢, and (Xﬁ’x’”)se[tj] denotes the corresponding solution of (2.4)).
As in the proof of Theorem we are willing to apply the results from Section
in order to investigate the smoothness of V. Again, this requires some precaution as

the coefficients may be of quadratic growth in the space variable and in the measure
argument. Proceeding as in the proof of Theorem [5.3] we have ¥

Theorem 5.7. Under (H6)(i-iii), the function V satisfies the statement of Theorem
with the same master equation expect that U inside is the decoupling field of (5.33)).

On the model of Remark the identification of U (¢, z, u) in terms of V (¢, z, u) now
reads

Ut,z,p) = 0,V (t,x,pu) + fRd OV (t, 2, p)(z)dp(z"), (5.35)

which can be proved by differentiating the map L?(Q, F;, P;RY) 5 € — E[V (t,£,[€])] € R
in the direction y € L?(Q, F;,P; R%). By the same kind of expansion as in Remark ,
we get

E[ 0.V (1€ [€Dx + E[0,V (4, [ED()00] | = E[Y*x] = E[U (& [€)],

13pay attention that there is no need for an analogue of (H4)(iv), since (H4)(iv) is necessarily true
under (H6)(i-iii), with Fo(z, u) in (5.21) replaced by Fo(x, p, &(z, 1, U(t, x, p))), the constants appearing
in (HO)(i)-(H1)-(H2) being uniform in ¢ € [0, T].
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where V"¢ and U(t, €, [€]) are seen as row vectors. By Fubini’s theorem, this identifies
U(t,€,[€]) with &,V (8,€,[€]) + E[0,V (£, <€), [€])(€)]. This proves when the law
of ¢ has R? as support. In the general case, we can approximate ¢ by random variables
with R? as support. Passing to the limit in , this completes the proof of the
identification.

We refer to [§] for additional comments about the differences between the shapes of
the master equation in mean-field games and in the control of McKean-Vlasov equations.

6. APPENDIX

6.1. Proof of Proposition The proof is a straightforward adaptation of Lemma
3.3 in [5]. Basically, it suffices to prove the result when p has a smooth positive den-
sity denoted by p, and p and its derivatives being at most of exponential decay at the
infinity. Tt is then possible to construct a quantile function U : (0,1)? 3 (21,...,2q) —
U(z1,...,2q) € R? (this is the notation used in [5], but this has nothing to do with
the generic notation U used in the paper for denoting a function of the measure) such
that U(n1,...,nq) has law p when ny,...,n4 are i.i.d. random variables with uniform
distribution on (0,1). Moreover, 0U;/0z; + 0 and 0U;/0z; = 0if i < j.

Going to (69) therein, we see from the assumption imposed on V that the bound
becomes

JI ‘<h|Vn[U(zO + 7 —2rqeq)| — Vn(U(z0 + r))‘er

2a
< C’gf [1 + U (2" + 17— 2rqeq) P + U +7)[** + (f |x]2du(x)) ]
[r|<h R4

x |U (2% + 7 = 2rgeq) — (U(2° + )| dr,
where V,, is a mollification of V' that satisfies (3.32]) with respect to a constant C,, that
converges to C' as n tends to the infinity. Dividing by h% and following the lines of the
original argument, we get, for a given z° € R?,

%(U(zo>)%(20)f < 05[1 +2U(20) 2 + (fRd |x|2du(a:)>2a} ?jj(wz%)f.

Dividing by |[0Uz/024](U(2"))| and letting n tend to the infinity, we complete the proof.
U

6.2. Differentiability lemma.

Lemma 6.1. Consider a function V : R x Py(RY) x R? — R? such that, for any
&, x e L2(Q, A, P;RY), the mapping RY 5 x — E[(V (, [€],€), x)] is differentiable (where
(-,-) denotes the inner product in R?). Assume moreover that there exist a constant C' = 0

and a function ®, as in (H1) such that, for all x,2' € R and £,€&',x € L?(Q, A, P;RY):
d
| HEV (@ [€],9, 0] < Clix2,

SB[V, [6,9,0] - B[V, [€1.€), 0] < Ol — /| + Ba(&,€) [l

Then, for any x € R and any p € Po(R?), we can find a continuous version of V(x, i, -),
uniquely defined on Supp(u), such that the mapping R% x Supp(p) 3 (z,v) — V(z, u,v)
is differentiable with respect to x. Moreover, we can find a mapping R% x R 3 (x,v) —
oV (z, i, v), continuous in v for any gwen x € R?, jointly continuous at any point (x,v)
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with v € Supp(u), such that 0V (x, p, v) identifies with 0,V (x, i, v) whenever v € Supp(pu).
In particular, 0,V (-, i, -) is continuous on R? x Supp(u).

Proof. By Riesz’ theorem, for any i € {1,...,d}, for any 2 € R? and any ¢ €
L?(Q, A, P;RY), we can find an element iné e L*(Q, A, P; R?) such that

di B[V (18], 0] = B[V 0]

Now, for h £ 0, denoting by e; the ith vector of the canonical basis,
E[(h (V@ + hes, [€].€) = V(. [€].€): %) = Vi) |

|G :
= | (G BV (@ + shei,[€1,.€). 0] = 7BV (@, [6].6).0] )ds.

0
By assumption, we thus get that h=5(V (z + he;, [€],€) — V(z,[£],€)) — V:f{ tends to 0
in L2(Q, A,P; R%). Therefore V;é is a random variable in L?(Q, o(¢),P; R?) and we can

express it as 0;V (z, [£], €) where 0;V (x, [£],-) is a function in L2(R?, [£];RY).
We have

E[|0V (. [€].€) — oV (a',[€'].€) "] < C(Jlz —2'|* + @4 (£,€))).

Choosing # = 2/, we deduce from Proposition that, for any = € R¢ and any
€ e L?(Q, A P;R?), there exists a version of the mapping R? 3 v — 0V(x, [£],v) =
(1 V (x,[€],0), ..., 04V (z,[€],v)) € R?*? that is continuous on compact subsets of RY,
uniformly in 2 € R, such a version being uniquely defined on the support of [¢]. By the
same method as in (3.33), we deduce that the family (R? 5 v — 0V (z, [£],v) € R¥*Y), pa
is relatively compact for the topology of uniform convergence on compact subsets. Con-
sidering a sequence (z,)n>1 that converges to = € R? we already know that the se-
quence of functions (R? 3 v s 0V (x,, [£],v) € R¥*?),~1 converges in L?(R?, [¢]; RY*?)
to RY 3 v — 9V (, [€],v) € R™*?. Since 0V (w, [¢],-) is uniquely defined on the support of
[¢], the limit of any converging subsequence (for the topology of uniform convergence on
compact subsets of RY) of (0V (xy,, [€],-))n=1 coincides with 0V (z,[£],-) on the support
of [¢€]. We easily deduce that the function R? x R? 5 (z,v) — 0V (z, [£],v) € R*? is
continuous at any point (z,v) such that v € Supp([£]).
Similarly, we deduce from the identity

EK% (V@ + hei, [€1,€) = Vi, [€].€) = (V@ + hei, [€1,€) = V', [€1,€)) ), x|
_ f E{<(&Z~V(m + sh, [€],€) — &,V (' + sh, [€], 5/)),x>}ds,

0
that “hil[(v(x + he;, [5]75) - V(ZL‘, [{],{)) - (V(.I', + he;, [51]’5/) - V(xlv [5,]78))]”2 <
C(lx — 2| + @4 (€, ")), from which we get that, for any z € R%, any h + 0 and any p €
Py (RY), there exists a version of the mapping RY 3 v — A=V (z + he;, p,v) — V (2, g, v)]
that is continuous on compact subsets of R? uniformly in z € R? and in h + 0. As
above, we deduce that the family (R? 3 v — h™ [V (z + he;, 1, v) = V(@ 11, 0)]) yepd pao 1
relatively compact, for the topology of uniform convergence on compact subsets. Once
again, following the same argument as above, this says that, for any = € R%, the func-
tions (Supp(p) 3 v — A7V (2 + hei, pu,v) — V(z,p1,v)] € R%)p40 converge uniformly
on compact subsets as h tends to 0 to some derivative function, which identifies with
Supp(p) 3 v — 6V (x, p,v) € R4 ]




CLASSICAL SOLUTIONS TO THE MASTER EQUATION 97

Acknowledgement. The authors would like to thank Pierre Cardaliaguet for fruitful
discussions. The financial support of a CNRS-Royal Society International exchange grant
is also acknowledged.

1
2]
13l
[4]
(5]
16]
(7]
(8]
19]
[10]
[11]
[12]
[13]
[14]

[15]
[16]

[17]
[18]

[19]

[20]

[21]
22]
23]
[24]

[25]
[26]

REFERENCES

A. Bensoussan, J. Frehse, P. Yam. The Master Equation in Mean Field Theory.
http://arxiv.org/abs/1404.4150, 2014.

B. Andrews, C. Hopper. The Ricci Flow in Riemannian Geometry. Lecture Notes in Mathematics,
Vol. 2011, Springer, 2011.

R. Buckdahn, J. Li, S. Peng, C. Rainer. Mean-field stochastic differential equations and associated
PDEs. http://arxiv.org/abs/1407.1215, 2014.

P. Cardaliaguet. Notes on mean field games. Notes from P.L. Lions’ lectures at the Collége de
France, https://wwu.ceremade.dauphine.fr/ cardalia/MFG100629.pdf, 2012.

R. Carmona and F. Delarue. Forward-Backward Stochastic Differential Equations and Controlled
McKean Vlasov Dynamics. Annals of Probability, 2014.

R. Carmona and F. Delarue. Mean-field forward-backward stochastic differential equations. Elec-
tron. Commun. Probab., 18(68):1-15, 2013.

R. Carmona and F. Delarue. Probabilistic analysis of mean field games. SIAM J. Control Optim.
51:2705-2734., 2013

R. Carmona and F. Delarue. The master equation for large population equilibriums.
http://arxiv.org/abs/1404.4694, 2014.

R. Carmona, F. Delarue, and A. Lachapelle. Control of McKean-Vlasov versus Mean Field Games.
Mathematical Financial Economics, 7:131-166, 2013.

R. Carmona, D. Lacker. A probabilistic weak formulation of mean field games and applications.
Annals of Applied Probability, (appeared on line), 2013.

F. Delarue. On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case.
Stochastic Processes and their Applications, 99:209-286, 2002.

F. Delarue. Estimates of the Solutions of a System of Quasi-Linear PDEs. A probabilistic Scheme.
In: Séminaire de Probabilités, XXXVII1:290-332, 2003.

M. Fischer. On the connection between symmetric N-player games and mean field games.
http://arxiv.org/abs/1405.1345, 2014.

W.H. Fleming and H.M. Soner Controlled Markov Processes and Viscosity Solutions. Springer-
Verlag, 1993.

A. Friedman. Partial differential equations of parabolic type. Publisher, Prentice-Hall, 1964.

W. Gangbo and A. Swiech. Existence of a solution to an equation arising from the theory of Mean
Field Games. Preprint, 2014.

D.A. Gomes and J. Saude. Mean field games models - a brief survey. Technical report, 2013.
D.A. Gomes and V.K. Voskanyan. Extended mean field games - formulation, existence, uniqueness
and examples. http://arxiv.org/abs/1305.2600, 2013.

O. Guéant, J.M. Lasry, and P.L. Lions. Mean field games and applications. In R. Carmona et al.,
editor, Paris Princeton Lectures in Mathematical Finance IV, volume 2003 of Lecture Notes in
Mathematics. Springer Verlag, 2010.

M. Huang, P.E. Caines, and R.P. Malhamé, Large population stochastic dynamic games: closed-
loop McKean-Vlasov systems and the Nash certainty equivalence principle. Communications in
Information and Systems, 6:221-252, 2006.

T. Kurtz, Weak and strong solutions of general stochastic models. Electronic Communications in
Probability, 19(58):1-16 , 2014.

D. Lacker. A general characterization of the mean field limit for stochastic differential games.
http://arxiv.org/abs/1408.2708, 2014.

J.M. Lasry and P.L. Lions, Jeux a champ moyen I. Le cas stationnaire. Comptes Rendus de
I’Académie des Sciences de Paris, ser. A, 343(9), 2006.

J.M. Lasry and P.L. Lions, Jeux a champ moyen II. Horizon fini et controle optimal. Comptes
Rendus de I’Académie des Sciences de Paris, ser. A, 343(10), 2006.

J.M. Lasry and P.L. Lions. Mean field games. Japanese Journal of Mathematics, 2(1), Mar. 2007.
P.L. Lions. Théorie des jeux & champs moyen et applications. Technical report, 2007-2008.



98

[27]
[28]
29]
[30]

31]

32]
[33]

[34]
[35]

JEAN-FRANGOIS CHASSAGNEUX, DAN CRISAN AND FRANCOIS DELARUE

P.L. Lions. Cours au collége de France. http://www.college-de-france.fr/site/pierre-louis
-lions/seminar-2014-11-14-11h15.htm

J. Ma, P. Protter and J. Yong. Solving forward-backward stochastic differential equations explic-
itly — a four step scheme, Probab. theory and related fields, 98:339—-359, 1994.

J. Ma, Z. Wu, D. Zhang and J. Zhang. On wellposedness of forward-backward SDEs. Annals of
Applied Probability, to appear.

J. Ma, H. Yin and J. Zhang. On non-Markovian forward-backward SDEs and backward stochastic
PDEs. Stochastic Processes and Their Applications 122:3980-4004, 2012.

E. Pardoux and S. Peng. Backward stochastic differential equations and quasilinear parabolic par-
tial differential equations. In Stochastic partial differential equations and their applications (Char-
lotte, NC, 1991), 200-217, volume 176 of Lecture Notes in Control and Inform. Sci., Springer,
Berlin, 1992.

S.T. Rachev and L. Ruschendorf. Mass Transportation Problems II: Applications. Springer Verlag,
1998.

A.S. Sznitman. Topics in propagation of chaos. In D. L. Burkholder et al. , Ecole de Probabilités
de Saint Flour, XIX-1989, volume 1464 of Lecture Notes in Mathematics, pages 165—251, 1989.
C. Villani. Optimal Transport. Old and New. Springer-Verlag, 2009.

J. Yong and Z.Y. Zhou Stochastic Controls. Hamiltonian Systems and HJB Equations. Springer-
Verlag, 1999.



	1. Introduction
	2. General step-up and overview of the results
	2.1. Definition of U
	2.2. Smoothness of U
	2.3. Solution of a Master PDE
	2.4. Assumptions
	2.5. Main results: from short to long time horizons and application to control
	2.6. Frequently used notations.

	3. Chain rule – application to the proof of Theorem 2.8
	3.1. Full C2 regularity
	3.2. The chain rule for U fully C2
	3.3. The chain rule for U partially C2
	3.4. A sufficient condition for partial C2 regularity
	3.5. Proof of Theorem 2.8

	4. Smoothness for small time horizons – proof of Theorem 2.7
	4.1. Stability estimate for McKean-Vlasov linear FBSDEs
	4.2. Analysis of the first-order derivatives
	4.3. Study of the second-order differentiability.

	5. Large population stochastic control – proof of Theorem 2.9 
	5.1. The global smoothness of the decoupling field 
	5.2. Mean-field games
	5.3. Control of McKean-Vlasov equations

	6. Appendix
	6.1. Proof of Proposition 3.8
	6.2. Differentiability lemma

	References

