A probabilistic approach to classical solutions of the master equation for large population equilibria - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year :

A probabilistic approach to classical solutions of the master equation for large population equilibria

(1) , (1) , (2)
1
2

Abstract

We analyze a class of nonlinear partial dierential equations (PDEs) defined on the Euclidean space of dimension d times the Wasserstein space of d-dimensional probability measures with a finite second-order moment. We show that such equations admit a classical solutions for sufficiently small time intervals. Under additional constraints, we prove that their solution can be extended to arbitrary large intervals. These nonlinear PDEs arise in the recent developments in the theory of large population stochastic control. More precisely they are the so-called master equations corresponding to asymptotic equilibria for a large population of controlled players with mean-field interaction and subject to minimization constraints. The results in the paper are deduced by exploiting this connection. In particular, we study the differentiability with respect to the initial condition of the flow generated by a forward-backward stochastic system of McKean-Vlasov type. As a byproduct, we prove that the decoupling field generated by the forward-backward system is a classical solution of the corresponding master equation. Finally, we give several applications to mean-field games and to the control of McKean-Vlasov diffusion processes.
Fichier principal
Vignette du fichier
CCD15.pdf (904.05 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01144845 , version 1 (23-04-2015)

Identifiers

  • HAL Id : hal-01144845 , version 1

Cite

Jean-François Chassagneux, Dan Crisan, François Delarue. A probabilistic approach to classical solutions of the master equation for large population equilibria. 2015. ⟨hal-01144845⟩
308 View
303 Download

Share

Gmail Facebook Twitter LinkedIn More