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Cette note a pour but de donner un aperçu des travaux sur les équations aux dérivées partielles stochastiques singulières, qui ont valu la médaille Fields à Martin Hairer. Nous retraçons plus particulèrement le cheminement suivi par Martin Hairer pour aborder l'équation de Kardar-Parisi-Zhang et élaborer, à partir de là, la théorie plus générale des structures de régularité, qu'il a appliquée par la suite à d'autres modèles.

L'équation de KPZ

De façon imagée, le travail de Martin Hairer présenté lors du congrès de Séoul s'apparente à une boîte à outils, appelée 3 structures de régularité 4, destinée à l'étude d'équations aux dérivées partielles rendues profondément singulières sous l'action d'un aléa. Bien que mise sous une forme aussi systématique que possible, cette boîte à outils trouve en réalité ses motivations dans plusieurs problèmes précis, issus de la physique. Le premier d'entre eux, à l'origine de l'approche développée par Martin Hairer, remonte à un article de 1986, [START_REF] Kardar | Dynamical scaling of growing interfaces[END_REF], dans lequel trois physiciens, Kardar, Parisi et Zhang, ont suggéré un modèle, continu en temps et en espace, pour décrire la croissance de surfaces soumises à un dépôt aléatoire. L'équation associée, restée connue sous le nom de KPZ, a suscité, depuis, une profonde curiosité.

1.1. Un double enjeu. Plusieurs raisons ont participé à cet enthousiasme. D'une part, l'équation est mal posée, au sens où aucune des notions habituellement utilisées pour donner un sens aux solutions ne s'applique. D'autre part, le comportement statistique de la solution, et en particulier les fluctuations qu'elle décrit en temps long autour de son régime moyen, ont donné lieu, pendant de nombreuses années, à plusieurs conjectures. Malgré diverses avancées entre 1990 et 2010, les deux questions n'ont trouvé de réponses assez complètes que très récemment et, de façon remarquable, à moins de trois ans d'intervalle. Les publications entre 2010 et 2013 de plusieurs travaux majeurs, répondant chacun à une partie des interrogations soulevées par l'équation de KPZ, ont suscité un engouement profond. La distinction reçue par Martin Hairer s'inscrit dans ce contexte d'effervescence.

Les premiers travaux de Martin Hairer, [START_REF] Hairer | Solving the kpz equation[END_REF], sur la résolubilité de l'équation de KPZ ont été publiés en 2013 moins de trois ans après ceux d'Amir, Corwin et Quastel, [START_REF] Amir | Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions[END_REF], et de Sasamoto et Spohn, [START_REF] Sasamoto | One-dimensional kardar-parisi-zhang equation : An exact solution and its universality[END_REF][START_REF] Sasamoto | Exact height distributions for the kpz equation with narrow wedge initial condition[END_REF], sur le comportement statistique de la solution. Que le comportement statistique ait été discuté avant la résolubilité a, au moins à première vue, quelque chose d'anachronique, qui pourrait laisser perplexe. En réalité, les articles [START_REF] Amir | Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions[END_REF][START_REF] Sasamoto | One-dimensional kardar-parisi-zhang equation : An exact solution and its universality[END_REF][START_REF] Sasamoto | Exact height distributions for the kpz equation with narrow wedge initial condition[END_REF] s'appuient sur une construction ad hoc de la solution de l'équation de KPZ, proposée par Bertini et Giacomin en 1997, [START_REF] Bertini | Stochastic burgers and kpz equations from particle systems[END_REF], en comparaison de laquelle, l'approche de Hairer revêt un caractère beaucoup plus systématique.

1.2. Forme de l'équation. Formellement, l'équation de KPZ s'écrit :

(1)

f t hpt, xq f 2 xx hpt, xq |f x hpt, xq| 2 9
ζpt, xq, où hpt, xq représente la hauteur d'une surface, regardée à l'instant t et au point x. Ici, x est supposé réel, l'équation n'étant comprise, à l'heure actuelle et malgré les travaux de Hairer, qu'en dimension 1. La dynamique de la hauteur est expliquée par trois facteurs : un terme diffusif, un terme non-linéaire en la pente de la surface et un terme aléatoire, noté 9 ζ. La non-linéarité quadratique se comprend comme le premier terme non-trivial à apparaître dans le développement polynomial d'une non-linéarité en la pente, le terme d'ordre 0 correspondant à une translation verticale et le terme d'ordre 1 à une translation horizontale sous l'effet d'un champ de transport. Le facteur aléatoire 9 ζ peut être interprété comme une distribution aléatoire agissant de façon gaussienne sur une fonction test temps-espace ϕ L 2 pp0, Vq¢R, Rq :

(2)

» V 0 » R ϕpt, xq 9 ζpt, xq dt dx N ¡ 0, » V 0 » R ϕ 2 pt, xq dt dx © ,
où N p0, σ 2 q désigne la loi gaussienne centrée de variance σ 2 . Lorsque ϕ vaut l'indicatrice d'un domaine temps-espace, le terme de gauche se lit comme une variable aléatoire gaussienne de variance égale à l'aire du domaine. Dans le cadre d'une discrétisation de type volume fini de l'équation (1), 9 ζ agirait sur la dynamique de la solution approchée par dépôt, sur chaque maille temps-espace, d'une quantité aléatoire distribuée selon une loi gaussienne centrée de variance égale à l'aire de la maille. Le cas échéant, les depôts seraient indépendants d'une maille à l'autre.

Le terme 9 ζ est appelé 3 bruit blanc espace temps 4 et se lit comme la dérivée espace temps f t f x ζ d'une fonction aléatoire ζ d'exposant de Hölder à peine égal à 1{2, de sorte que, malgré la notation utilisée dans (2), 9 ζ n'est en aucune manière une fonction. Aussi, toute la difficulté, dans l'étude de [START_REF] Amir | Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions[END_REF], tient à la singularité du forçage aléatoire appliqué à la dynamique de h. En comparaison de (1), (4) a l'avantage d'être linéaire. Lorsque x est unidimensionnel et 9 ζ est effectivement choisi comme le bruit blanc, il reste possible, par intégration contre le noyau de la chaleur, de donner une solution à (4). Dans le travail de Bertini et Giacomin, [START_REF] Bertini | Stochastic burgers and kpz equations from particle systems[END_REF], la solution de l'équation de KPZ est définie à travers la relation [START_REF] Borodine | Integrable probability[END_REF], une fois l'équation (4) résolue.

La force du travail de Hairer est de construire directement, et dans un cadre systématisé, une solution à (1), sans passer par (3) ni [START_REF] Daprato | Strong solutions to the stochastic quantization equations[END_REF]. Une première construction, spécifiquement rédigée pour traiter (1), est proposée dans l'article de 2013, [START_REF] Hairer | Solving the kpz equation[END_REF]. Dans un second travail, [START_REF] Hairer | A theory of regularity structures[END_REF], publié en 2014, Martin Hairer propose une théorie générale, appelée 3 théorie des structures de régularité 4, permettant de résoudre une classe assez large d'équations aux dérivées partielles stochastiques singulières, incluant en particulier [START_REF] Amir | Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions[END_REF]. Le but de cette note est d'expliquer le cheminement ayant abouti, depuis [START_REF] Hairer | Solving the kpz equation[END_REF], à [START_REF] Hairer | A theory of regularity structures[END_REF]. Le lecteur pourra aussi consulter la version introductive [START_REF] Hairer | Introduction to regularity structures[END_REF] et la vidéo de l'ICM [START_REF] Hairer | Singular stochastic pdes[END_REF]. 1), la non-linéarité en gradient dans l'équation de KPZ se lit comme le carré d'une distribution, pierre d'achoppement des méthodes usuelles. 1.5. Comportement en temps long. Si la non-linéarité dans (1) soulève des difficultés quant au sens à donner aux solutions, elle en affecte aussi le comportement qualitatif. La formule (6) montre, qu'en l'absence de nonlinéarité, la solution de (1) se réduit à une gaussienne de variance d'ordre t au temps t 2 . Autrement dit, sous l'action d'un changement d'échelle 3 dif- fusif 4 d'ordre λ 4 1, la solution de l'équation linéaire, évaluée au point temps-espace pλ 2 t, λxq, a des fluctuations gaussiennes d'amplitude λ 1{2 . En présence de la non-linéarité, le comportement statistique a été mis en évidence par Amir, Corwin et Quastel, [START_REF] Amir | Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions[END_REF], et Sasamoto et Spohn [START_REF] Sasamoto | One-dimensional kardar-parisi-zhang equation : An exact solution and its universality[END_REF][START_REF] Sasamoto | Exact height distributions for the kpz equation with narrow wedge initial condition[END_REF]. Pour certaines conditions initiales, la distribution de la solution de (1) en un point temps-espace donné est explicitement connue. Les fluctuations en temps long sont d'ordre λ 1{2 au point, d'échelle temps-espace non-diffusive, pλ 3{2 t, λxq, et sont reliées à celles (non gaussiennes) de la plus grande des valeurs propres d'une matrice hermitienne de grande taille à entrées gaussiennes indépendantes. Ce phénomène, observé pour d'autres modèles aléatoires de croissance, met en évidence, à côté du régime gaussien (issu du théorème central limite), un autre régime limite en théorie des probabilités, commun à une certaine classe de modèles, appelée classe d'universalité de KPZ. Le lecteur pourra visionner l'exposé de Borodine à l'ICM, [START_REF] Borodine | Integrable probability[END_REF], ou consulter le cours de Quastel à St-Flour, [START_REF] Quastel | Introduction to kpz[END_REF].

2. La nécessité de renormaliser 2.1. Régularisation du bruit blanc. Une démarche naturelle, pour envisager l'équation de KPZ, consiste à régulariser le bruit blanc de façon à faire de 9 ζ une vraie fonction. En désignant, de façon générique, par p 9

ζ ε q ε¡0 une version régularisée de 9 ζ, il s'agit de résoudre, au sens classique,

f t h ε f 2 xx h ε |f x h ε | 2 9 ζ ε , (7) 
sous la condition initiale h ε h 0 , et d'étudier le comportement asymptotique de h ε lorsque ε tend vers 0. Quelle que soit la forme envisagée pour 9 ζ ε , il est, bien entendu, impossible d'espérer établir la convergence de la solution h ε lorsque ε tend vers 0, la non-linéarité quadratique étant en effet appelée à 3 exploser 4 le long de la régularisation. En revanche, l'espoir est de corriger la dynamique dans [START_REF] Gubinelli | Paracontrolled distributions and singular pdes[END_REF] dans le but de compenser l'explosion et d'établir la convergence.

La correction à appliquer a été mise en évidence par Bertini et Giacomin dans [START_REF] Bertini | Stochastic burgers and kpz equations from particle systems[END_REF]. Il s'agit, pour équilibrer la non-linéarité, de soustraire au terme source une constante C ε , dépendant de la procédure de régularisation utilisée et divergeant lorsque ε tend vers 0. Une telle opération porte le nom de 3 renormalisation 4. Dans [START_REF] Bertini | Stochastic burgers and kpz equations from particle systems[END_REF], le calcul du 3 contre-terme 4 C ε repose explicitement sur la transformation de Hopf-Cole rappelée dans la section précédente. Ce résultat est retrouvé par Martin Hairer à l'aide d'une approche plus systématique et plus robuste, dans laquelle la limite des solutions renormalisées est caractérisée de façon intrinsèque.

Dans [START_REF] Bertini | Stochastic burgers and kpz equations from particle systems[END_REF] et dans [START_REF] Hairer | Solving the kpz equation[END_REF], le bruit blanc n'est régularisé qu'a minima, dans la direction x. Intuitivement, ceci est suffisant pour donner un sens à [START_REF] Gubinelli | Paracontrolled distributions and singular pdes[END_REF]. L'approche générale développée par Martin Hairer dans [START_REF] Hairer | A theory of regularity structures[END_REF] 

f t h ¡ Y ¨ f 2 xx h ¡ Y ¨ § § f x h ¡ Y ¨ § § 2 2f x h ¡ Y ¨fx Y § § f x Y | 2 .
En 

f x Y ε pt, xq 1 ε » t 0 » R f x ¢» R p t¡s px ¡ yqρ y ¡ u ε ¨dy 9
ζps, uq ds du.

La formule (2) donne une façon de calculer la variance du membre de droite. L'effet régularisant du noyau de la chaleur suggère de limiter l'intégration à un voisinage de t de l'ordre de ε 2 . Sur cet intervalle, le gradient ajoute un facteur 1{ε, la norme infinie de la convolution est d'ordre 1{ε et la norme L 1 d'ordre 1. De fait, la variance attendue est de l'ordre de ε 2 ¢ ε ¡3 ε ¡1 , qui, comme cela pouvait être anticipé, explose lorsque ε tend vers 0.

Pour contourner cet écueil, l'idée est de 3 renormaliser 4 et de compenser la singularité en soustrayant la partie divergente. Le premier résultat de [START_REF] Hairer | Solving the kpz equation[END_REF] est de calculer explicitement le contre-terme par lequel (8) doit être corrigée : Proposition 1. Pour un certain choix des conditions initiales et du noyau de régularisation, il existe une constante C telle que les solutions de La convergence mise en évidence est appelée 3 convergence en probabi- lités 4 : avec grande probabilité, la distance entre Y ε et Y est petite. La limite Y s'écrit comme la solution de l'équation renormalisée : [START_REF] Hairer | Singular stochastic pdes[END_REF] 

(9) f t Y ε f 2 xx Y ε |f x Y ε | 2 ¡ C{ε,
f t Y f 2 xx Y |f x Y | 2 ¡ V,
la soustraction de l'infini indiquant qu'une opération de renormalisation a été effectuée. La valeur de α dans la Proposition 1 est remarquable : alors que le seuil de régularité Hölder de Y est 1{2, celui de Y est 1. Il s'agit d'une observation fondamentale liée à l'effet régularisant de la chaleur dans [START_REF] Hairer | Introduction to regularity structures[END_REF]. La non-linéarité dans (8) est d'ordre p¡1q ¡ , c-à-d ¡1 ¡ η, pour η ¡ 0 aussi petit que souhaité. Sous l'action du laplacien, deux ordres sont gagnés, et Y est de régularité Hölder 1 ¡ (en espace). 

f t Y rτ 1 ,τ 2 s f 2 xx Y rτ 1 ,τ 2 s f x Y τ 1 f x Y τ 2 , où rτ 1 ,
τ 2 s désigne l'arbre obtenu en reliant les racines de τ 1 et τ 2 à une même racine. Par exemple, r , s.

En réalité, la résolution de (12) conduit, au moins à première vue, aux mêmes difficultés que celles rencontrées pour résoudre [START_REF] Hairer | Introduction to regularity structures[END_REF]. Il se peut que le produit f x Y τ 1 f x Y τ 2 ne soit pas défini, à l'image de la non-linéarité dans [START_REF] Hairer | Introduction to regularity structures[END_REF]. Ceci pose une première difficulté. Une seconde est le sens à donner au développement infini [START_REF] Hairer | A theory of regularity structures[END_REF].

Concernant le second point, un raisonnement formel laisse espérer que, pour des arbres contenant suffisamment de noeuds, les solutions associées soient différentiables. Désignons en effet par α 1 et α 2 les ordres de régularité

de Y τ 1 et Y τ 2 dans (11). Alors les ordres de f x Y τ 1 et f x Y τ 2 sont respective- ment égaux à α 1 ¡ 1 et α 2 ¡ 1.
Si jamais les deux sont négatifs, le produit a, intuitivement, α 1 α 2 ¡2 pour ordre de régularité, et, par régularisation, Y rτ 1 ,τ 2 s a pour ordre α 1 α 2 . Si jamais l'un des deux seulement est négatif (par exemple α 1 ), le produit a pour ordre de régularité Dans cette perspective, il serait tentant de vouloir limiter T aux arbres τ pour lesquels la solution Y τ n'est pas différentiable, mais ce serait une erreur, le gain en régularité n'éliminant pas de façon systématique les singularités. Par exemple, lorsque τ 1 et τ 2 dans (12), le produit f x Y f x Y implique une distribution d'ordre p¡1{2q ¡ et une fonction d'ordre p1{2q ¡ et n'est pas, comme nous le verrons ci-dessous, bien défini. Aussi un résultat essentiel dans [START_REF] Hairer | Solving the kpz equation[END_REF] est de montrer que T peut être réduit à t , , , , , , , , u. Le cas échéant, les Y τ sont construits par un procédé analogue à celui de la proposition 1 : Proposition 2. Pour τ T zt u, τ s'écrivant sous la forme rτ 1 , τ 2 s avec τ 1 et τ 2 dans t , , , u, il existe une suite de constantes pC τ ε q ε¡0 telle que les solutions pY τ ε q ε¡0 de l'équation (avec une condition initiale appropriée) 

α 1 ¡ 1 et Y rτ 1 ,τ 2 s a pour ordre 1 α 1 . Le choix α 1 α 2 p1{2q ¡ permet de retrouver que Y est d'ordre de régularité 1 ¡ . Le choix α 1 p1{2q ¡ et α 2 1 ¡ laisse penser
f t Y τ ε f 2 xx Y τ ε f x Y τ 1 ε f x Y τ 2 ε ¡ C τ ε convergent en
f t h ε f 2 xx h ε |f x h ε | 2 9 ζ ε ¡ C{ε ¡ R ε , où R ε °τ1 ,τ 2 T :rτ 1 ,τ 2 sT f x Y τ 1 ε f x Y τ 2
ε correspond au reste issu du développement formel [START_REF] Hairer | A theory of regularity structures[END_REF].

La théorie des trajectoires rugueuses

La résolution de l'équation de KPZ passe maintenant par celle d'un point fixe impliquant le terme u dans [START_REF] Kupiainen | Renormalization group and stochastic pde[END_REF]. Rappelons que u est entendu comme la différence h ¡ h où h est la solution de [START_REF] Amir | Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions[END_REF] 

et h °τT Y τ . Il est également attendu comme la limite de u ε h ε ¡ h ε où h ε est l'équation de KPZ régularisée avec contre-terme f t h ε f 2 xx h ε |f x h ε | 2 9 ζ ε ¡ C{ε.
3.1. Le reste comme la solution d'une équation. En faisant la différence avec ( 14), u ε est solution de

f t u ε f 2 xx u ε |f x u ε | 2 2 f x h ε f x u ε ¨ R ε . (15) 
L'idée est donc de chercher u solution d'une équation de la forme Dans ce contexte, l'objectif de la théorie de Lyons est de proposer une construction systématique d'une large classe d'intégrales croisées une fois déterminée celle de f contre g. L'idée essentielle est la suivante : dès lors qu'une fonction u se comporte, localement, comme la fonction f , l'intégrale de u contre g existe également. Ceci a été mis en forme par Gubinelli [START_REF] Gubinelli | Controlling rough paths[END_REF] :

f t u f 2 xx u |f x u| 2 2 f x h f x u ¨ R , (16) 
où R °τ1 ,τ 2 T :rτ 1 ,τ 2 sT f x Y τ 1 f x Y τ 2 .
f x u ε f x Y ε et f x Y ε f x Y ε . 3.2.
Définition 3. En notant C α les fonctions α-Hölder continues sur un inter- valle I (borné), une fonction v C α est dite contrôlée par f C α s'il existe v I C α et C ¥ 0 telles que § § vpyq ¡ vpxq ¡ v I pxq f pyq ¡ f pxq ¨ § § ¤ C|x ¡ y| 2α , x, y I.
Ici, v I fait office de 3 dérivée 4 de v par rapport à f et le développement vpyq vpxq v I pxqpfpyq¡fpxqq Rpx, yq s'apparente à un développement de Taylor généralisé à l'ordre α, avec reste d'ordre 2α. Maintenant, l'intégrale croisée de v contre g peut être définie dès lors que celle de f contre g existe.

En effet, si f et g sont dans C α , avec α p1{3, 1{2s de sorte que l'intégrale croisée de f contre g existe et que l'3 aire de Lévy 4 dans le terme de gauche ci-dessous vérifie [START_REF] Sasamoto | One-dimensional kardar-parisi-zhang equation : An exact solution and its universality[END_REF] dx, y I,

§ § § § » y x f pzq ¡ f pxq ¨dgpzq § § § § ¤ C|x ¡ y| 2α ,
pour C ¥ 0, alors, pour une fonction v contrôlée par f , l'intégrale de v contre g existe sur tout rx, ys comme la limite des sommes de Riemann ( 19)

N ¡1 i0 ¡ vpz i q gpz i 1 q ¡ gpz i q ¨ v I pz i q » z i 1 z i f ¡ f pz i q ¨dg ©
, le long de partitions pz i q 0¤i¤N de rx, ys de pas convergeant vers 0. De plus, l'intégrale croisée vérifie [START_REF] Sasamoto | One-dimensional kardar-parisi-zhang equation : An exact solution and its universality[END_REF] pour une constante C possiblement différente. L'idée sous-jacente est que la différence entre 

³ z i 1 z i v dg
f t V f 2 xx V 2f x V f x Y .
Ici, la quantité d'intérêt est, non pas V , mais f x V . Par dérivation, nous obtenons, comme structure additive la plus simple à considérer, l'équation : [START_REF] Young | An inequality of the Hölder type, connected with stieltjes integration[END_REF] 

f t Φ f 2 xx Φ f 2 xx Y .
L'idée, dans [START_REF] Hairer | Solving the kpz equation[END_REF], est de choisir f Φpt, ¤q (que v soit, en fait, égal à f x upt, ¤q ou f x Y pt, ¤q). Ceci suggère de chercher u comme une fonction de classe p3{2q ¡ , dont la dérivée soit contrôlée, à chaque instant t ¡ 0, par Φpt, ¤q. Un argument de contraction en temps petit donne :

Théorème 4. Pour up0, ¤q C β , β ¡ 0, il existe un temps T ¡ 0 tel que l'équation (16) admette, sur l'intervalle r0, T s, une unique solution de dérivée f x upt, ¤q contrôlée, à chaque instant t ¡ 0, par Φpt, ¤q.

En fait, la théorie des trajectoires rugueuses garantit la continuité des intégrales croisées dès lors que les 3 briques de base 4 f , g et l'aire de Lévy associée à ³ f dg dans (18) évoluent continûment dans C α , C α et C 2α . A l'aide de ce résultat, il est possible de démontrer que les solutions u ε de (15) convergent vers u : Théorème 5. Lorsque ε tend vers 0, la solution h ε de (14) converge sur r0, T s vers h h u, solution de l'équation de KPZ renormalisée f t hpt, xq f 2 xx hpt, xq |f x hpt, xq| 2 9 ζpt, xq ¡ V.

Cette solution coïncide avec la solution de Hopf-Cole et peut être étendue à r0, Vq tout entier par un argument inductif.

Structures de régularité

Bien que le développement de h sous la forme h u, avec u solution de l'équation auxiliaire [START_REF] Quastel | Introduction to kpz[END_REF], donne une construction intrinsèque de la solution de (1), il ne permet pas de poser proprement l'équation (1) en toute rigueur, même en soustrayant le symbole V comme dans l'énoncé du théorème 5.

La théorie des structures de régularité, introduite par Martin Hairer dans [START_REF] Hairer | A theory of regularity structures[END_REF], permet de contourner cet écueil en interprétant l'équation dans un espace abstrait, sur lequel l'équation peut être effectivement posée de façon rigoureuse.

4 Résoudre (1) revient donc à mettre en évidence une structure, munie de briques élémentaires et d'opérations formelles, et d'une application de 3 re- construction 4 permettant de rapatrier le produit des opérations dans l'es- pace physique. La structure utilisée doit pouvoir être 3 déformée 4 continû- nement pour traduire la convergence de h ε vers h dans le théorème 5.

4.2.

Lien avec les trajectoires rugueuses. La théorie des structures de régularité consiste en une extension, très large, de la théorie des trajectoires rugueuses de Lyons. Le point de départ de la théorie de Lyons consiste en effet en un couple de fonctions pf, gq pour lequel l'intégrale croisée de f contre g a un sens. Ceci suggère de considérer une structure munie de trois briques de base, en l'occurence f , g et ³ f dg, auxquelles il est raisonnable d'ajouter la fonction constante 1. Ici ³ f dg pourrait être entendu comme l'intégrale croisée de f contre g, mais, par abus de notation, nous allons en fait le comprendre comme 3 l'aire de Lévy de f contre g 4 introduite dans [START_REF] Sasamoto | One-dimensional kardar-parisi-zhang equation : An exact solution and its universality[END_REF] , c-à-d :

¡ » f dg © px, yq » y x f pzq ¡ f pxq ¨dgpzq.
En réalité, nous sommes plus intéressés par la dérivée g I (comprise si besoin au sens des distributions) que par g elle-même. Ceci suggère de remplacer la brique g par g I . De même, il est préférable de se focaliser sur la dérivée (en y) de l'aire de Lévy plutôt que sur l'aire de Lévy elle-même. Pour distinguer les fonctions ou distributions des briques abstraites qui les modélisent, nous introduisons quatre objets abstraits, respectivement notés f, dg, d auquel cas Γ x,y n'est rien d'autre que Γ f pxq¡fpyq . Suivant [11], nous dirons : Définition 7. Le couple M ppΠ x q xR , pΓ x,y q x,yR q est un modèle sur R associé à la structure pA, T, Gq. M . En cela, nous comprenons en quoi la théorie des structures de régularité englobe la notion de fonction contrôlée utilisée dans les trajectoires rugueuses.

Le théorème fondamental de [START_REF] Hairer | A theory of regularity structures[END_REF], dont la preuve utilise la théorie des ondelettes, est appelé 3 théorème de reconstruction 4 et réalise le programme envisagé ci-dessus : pour une fonction h de régularité γ ¡ 0 (ce qui n'empêche pas h d'être d'homogénéité négative), il est possible de relever les développements en une distribution (ou une fonction si l'homogénéité est positive) : Théorème 9. Etant donnés un modèle M sur R d , associé à une structure pA, T, Gq, et un réel γ ¡ 0, il existe une unique application linéaire R de

D γ M dans l'espace des distributions sur R d telle que, pour tout h D γ M , toute fonction régulière à support compact ϕ, et tout compact κ R d , hC ¥ 0 : dx κ, λ p0, 1s, § § Rh ¡ Π x hpxq ¨ λ ¡d ϕpp¤ ¡ xq{λq ¨ § § ¤ Cλ γ ,
Naturellement, l'idée est que Rh se comporte comme Π x hpxq le long des fonctions tests concentrées autour de x. En particulier, si Π x hpxq est une fonction continue, il vient nécessairement Rhpxq Π x rhpxqspxq. Opérations au sein de la structure. L'étape suivante est de traduire, au sein de la structure, les 3 opérations 4 impliquées dans la formu- lation du problème physique. Dans le cas de KPZ, ces opérations sont la différentiation (pour passer de la solution à son gradient), la multiplication (associée à la non-linéarité quadratique) et l'intégration contre le noyau de la chaleur. La définition du produit est la suivante :

Définition 10. Etant donnés deux 3 secteurs 4 V et V inclus dans T , c- à-d deux sommes directes de certains des T α , chacune étant stable par les éléments de G, un produit sur pV, V q est une application bilinéaire : V ¢ V Ñ T telle que, pour τ V α et τ Vα , τ τ T α β et, pour tout élément Γ G, Γpτ τ q pΓτq pΓτq.

Le gain d'homogénéité par multiplication est à rapprocher de la discussion sur la régularité des différents produits dans le §2.3. La compatibilité du produit avec Γ est une hypothèse naturelle, qui traduit l'idée que l'ordre dans lequel les produits et les translations sont effectués n'a pas d'importance.

Il est remarquable que le produit soit ici défini de façon aussi abstraite. Là encore, ceci est à rapprocher de la théorie de Lyons, dans laquelle l'existence d'une intégrale croisée, possédant un minimum de propriétés, est présupposée. Comme dans l'approche de Lyons, la véritable question est de déterminer les fonctions h 1 et h 2 à valeurs dans T pour lesquelles le produit h 1 h 2 peut être effectivement reconstruit en une distribution (ou une fonction) sur l'espace physique. La réponse est donnée dans [START_REF] Hairer | A theory of regularity structures[END_REF] : Théorème 11. Etant donnés un secteur V T , γ R et α ¡ 0, D γ α pV q désigne les éléments h de D γ tels que, pour tout x R, hpxq V β¥α T β . Alors, pour h 1 D γ 1 α 1 pV q et h 2 D γ 2 α 2 p V q, le produit h 1 h 2 : R x Þ Ñ h 1 pxqh 2 pxq appartient à D γ α pTq, où α α 1 α 2 et γ minpγ 1 α 2 , γ 2 α 1 q.

Combiné au théorème de reconstruction, le théorème ci-dessus assure que le produit h 1 h 2 peut être reconstruit si γ 1 α 2 ¡ 0 et γ 2 α 1 ¡ 0. Pour retrouver la théorie de Lyons, il suffit maintenant de choisir V x1, fy et V xdgy et de poser 1 g g et f dg d ³ f dg. Si cette définition ne présuppose pas l'existence de l'intégrale croisée, la définition du modèle associé (nécessaire pour la reconstruction) repose dessus. Pour une fonction v satisfaisant la définition 3, nous considérons la fonction vpxq vpxq1 v I pxqf. Définir l'intégrale croisée de v contre les incréments de g revient à reconstruire une distribution à partir de v dg. Il est clair que γ 1 2α et α 1 0. Par ailleurs, α 2 α ¡ 1 et γ 2 peut être choisi aussi grand que souhaité (le coefficient de dg est constant donc régulier). De fait, le produit peut être reconstruit si 3α ¡ 1 ¡ 0, ce qui coïncide avec la théorie de Lyons.

5.

Revisiter KPZ à l'aide des structures de régularité 5.1. Formulation abstraite. L'idée est maintenant de chercher h dans (1) comme la solution, via le théorème de reconstruction, d'une équation fonctionnelle définie sur une structure pA, T, Gq munie d'un modèle M. Ceci nécessite, en plus de l'opération de multiplication discutée dans la section précédente, des opérations de dérivation et de convolution contre le noyau de la chaleur, l'objectif étant de mettre (1) sous la forme abstraite :

(22) h K pfhq 2 Ξ ¨ Gh 0 .
Ici, h est une fonction temps-espace, à valeurs dans T , et h 0 est sa valeur au temps 0 ; G désigne un opérateur, abstrait, d'3 extension harmonique 4 (dont la reconstruction est à penser comme la solution de l'équation de la chaleur de condition initiale la reconstruite de h 0 ) ; et K est un opérateur, abstrait, de convolution temps-espace contre le noyau de la chaleur (pour une fonction temps-espace f, la reconstruite de Kf est à comprendre comme la solution de l'équation de la chaleur de terme source la reconstruite de f).

Par ailleurs, le symbole f renvoie à un opérateur, abstrait, de différentiation, et, enfin, Ξ désigne un élément de T modélisant une réalisation du bruit 9 ζ dans (1). (2), après substitution de ϕ par ϕ λ , est d'ordre λ ¡3 , suggérant, après pas- sage à la racine carrée, que l'indice d'homogénéité est effectivement ¡3{2, ou plutôt p¡3{2q ¡ , c-à-d ¡3{2 ¡ η pour η ¡ 0 arbitrairement petit. L'exposant 3 ¡ 4 dans p¡3{2q ¡ tient au prix à payer pour passer de l'estimation de la variance à une estimation valable aléa par aléa, le symbole Ξ dans (22) étant associé à une réalisation du bruit blanc.

Reprenons maintenant la stratégie de la section 2. Partant de Ξ, nous considérons KpΞq, associé, dans l'esprit, à la solution de l'équation de la chaleur stochastique Y . Puis, en prenant sa dérivée et le carré, nous obtenons pfKpΞqq 2 . Alors, KppfKpΞqq 2 q 3 correspond 4 à Y . De fait, KpΞq, fKpΞq, pfKpΞqq 2 et KppfKpΞqq 2 q sont également à ajouter à la structure. En partant du principe que K conduit à un gain d'homogénéité de 2 et f à une perte de 1, leurs indices d'homogénéité respectifs sont p1{2q ¡ , p¡1{2q ¡ , p¡1q ¡ et 1 ¡ . Avec ce procédé, Ξ et pfKpΞqq 2 sont certainement les termes dont les homogénéités sont les plus basses, en l'occurrence p¡3{2q ¡ et p¡1q ¡ . L'argument peut être itéré : appliquer K, prendre f, faire le produit avec les autres termes en fK et ajouter les symboles obtenus. Par exemple, les termes d'homogénéité p¡1{2q ¡ sont fKpΞq (associé à f

x Y ) et fKrpfKpΞqq 2 sfKpΞq (associé à f x Y f x Y ).
Dans [START_REF] Hairer | A theory of regularity structures[END_REF] 

Conclusion

Cette note avait pour but de présenter une partie du cheminement suivi par Martin Hairer depuis son travail sur l'équation de KPZ et les trajectoires rugueuses jusqu'à la formulation de la théorie plus générale des structures de régularité. Dans un souci de simplification, un certain nombre d'éléments ont néanmoins été passés sous silence. A titre d'exemple, nous n'avons pas abordé la partie technique de la renormalisation, à savoir les démonstrations des propositions 1 et 2, qui exploitent de façon essentielle le caractère gaussien du bruit blanc. De même, dans l'étude de l'équation de KPZ à l'aide de la théorie des structures de régularité, nous n'avons pas explicité la construction du groupe de translations, noté G dans la définition 6. Dans [START_REF] Hairer | A theory of regularity structures[END_REF]Section 8], G est associé à un groupe de formes linéaires, agissant sur une algèbre de Hopf construite à partir de symboles τ T d'homogénéité positive. Enfin, il faut souligner que la décomposition (22) n'est pas celle utilisée par Martin Hairer. Comme il y a été fait allusion dans la section §5.3, il convient en réalité de dissocier, dans la convolution contre la solution fondamentale de la chaleur, la partie singulière, localisée en temps et en espace au voisinage de l'origine, de la partie régulière, assimilée à une convolution contre un noyau régulier. Ce découpage ajoute, de facto, des éléments polynomiaux à la structure T .

Il faut par ailleurs noter que les arguments de la section 5 ne fonctionnent pas en dimension d ¥ 2 : le cas échéant, Ξ a pour homogénéité r¡pd{2 1qs ¡ et, donc, a pour homogénéité p¡dq ¡ , de sorte que l'homogénéité ne croît pas sous l'action du noyau de la chaleur. Dans [START_REF] Hairer | A theory of regularity structures[END_REF], d'autres équations singulières sont traitées. Tel est le cas de l'équation Φ 4 en dimension 3, issue de la théorie quantique des champs : ζ est un bruit blanc temps-espace de dimension spatiale 3. Une simple répétition des calculs de la section §1.4, ou de façon équivalente des calculs d'homogénéité ci-dessus, montre, qu'en dimension d ¥ 2, la solution de l'équation de la chaleur stochastique est une distribution. Lorsque d 3, l'ordre de régularité est comparable à celui de la dérivée de la solution de la chaleur stochastique en dimension 1. En particulier, la définition de la nonlinéarité cubique présente des difficultés comparables à celles rencontrées dans la résolution de KPZ. Le lecteur pourra aussi consulter le travail précurseur de DaPrato et Debussche [START_REF] Daprato | Strong solutions to the stochastic quantization equations[END_REF] sur le cas intermédiaire d 2.

Enfin, il est à souligner que Gubinelli, Imkeller et Petrowski ont, de façon à peu près parallèle, proposé une approche alternative pour résoudre KPZ et Φ 4 . L'idée consiste également à régulariser le bruit et à étudier la convergence des solutions des équations régularisées après correction par addition de contre-termes. En revanche, l'équation vérifiée à la limite n'est pas formulée dans un espace abstrait, mais est interprétée à l'aide de l'analyse de Fourier, utilisée pour étendre la théorie de Lyons, et plus particulièrement la notion de fonctions contrôlées, à des distributions. Nous renvoyons à [START_REF] Gubinelli | Paracontrolled distributions and singular pdes[END_REF] pour une comparaison avec le travail de Martin Hairer. Très récemment, Kupiainen, [START_REF] Kupiainen | Renormalization group and stochastic pde[END_REF], a montré qu'il était possible de procéder autrement que par régularisation du bruit : dans son travail, la stratégie utilisée vise à expurger, à des échelles de plus en plus fines, le noyau de la chaleur de sa singularité et à envisager, via une nouvelle procédure de renormalisation -inspirée de l'approche 3 à la Wilson 4 de la renormalisation, [START_REF] Wilson | The renormalization group and critical phenomena[END_REF]-, le passage à la limite.

1. 3 .

 3 Résoudre l'équation. Lorsque 9 ζ ne désigne plus le bruit blanc mais une fonction, (1) s'écrit comme une équation de Hamilton-Jacobi-Bellman, dont la solution admet une factorisation explicite, dite de Hopf-Cole : (3) hpt, xq lnpupt, xq ¨, où u est à valeurs strictement positives et vérifie (4) f t upt, xq f 2 xx upt, xq upt, xq 9 ζpt, xq.

  convergent vers une fonction aléatoire Y lorsque ε tend vers 0, au sens où, pour tout T ¡ 0 et α p0, 1q dδ ¡ 0, lim εÑ0 P sup tr0,T s }Y ε pt, ¤q ¡ Y pt, ¤q} α ¥ δ ¨ 0, la norme } ¤ } α désignant la norme α-Hölder sur le tore S 1 . La limite est indépendante du noyau choisi (dans une classe de noyaux admissibles).

2. 3 .

 3 Termes supérieurs dans le développement. Le terme Y est de fait compris comme le deuxième terme dans le développement de la solution de l'équation (1). L'idée est naturellement d'itérer le procédé et d'écrire, ou moins formellement, h sous la forme (11) hpt, xq τT Y τ pt, xq, où T désigne l'ensemble des arbres binaires finis (enracinés). La structure d'arbre binaire permet ici de coder l'action de la non-linéarité quadratique. Pour deux arbres τ 1 et τ 2 , Y rτ 1 ,τ 2 s est lié à Y τ 1 et Y τ 2 à travers l'équation (sans en préciser la condition initiale) (12)

  que les termes suivants, obtenus par concaténation de et , c'est-à-dire Y et Y (par ailleurs égaux par symétrie), sont d'ordre p3{2q ¡ . En fait, ce sont là les pires des scénarios et les autres termes ne peuvent pas être de régularité inférieure à p3{2q ¡ . Le programme de Martin Hairer peut être compris comme suit. Au lieu de chercher une solution de (1) sous la forme d'un développement infini de type (11), la solution est recherchée sous la forme (13) hpt, xq τ T Y τ pt, xq upt, xq, où T est un sous-ensemble fini de T et upt, xq est posée comme la so- lution d'une équation auxiliaire. Dit autrement, les premiers termes du développement, dont les contributions dans (1) sont trop singulières, sont traités séparément, et le reste, plus régulier (c-à-d d'ordre p3{2q ¡ ), est cherché comme la solution d'une équation expurgée (autant que possible) des singularités originellement présentes dans (1).

  f rgpbq¡ gpaqs lorsque f est constante. Elle peut être la limite des intégrales croisées associées à une régularisation du couple pf, gq (tel est le cas lorsque f g et ³ x f pyq df pyq p1{2qf 2 pxq, tel est aussi le cas de l'intégrale de Stratonovich) ou pas (l'intégrale d'Itô, avec f donnée par la réalisation d'un mouvement brownien, viole la condition ³ b a f pyq df pyq p1{2qrf 2 pbq ¡ f 2 paqs).

³ f dg et 1 ,Définition 6 .

 16 associés dans l'esprit à f , g I , p ³ f dgq I et 1. En supposant que f et g sont deux fonctions C α , avec α p1{3, 1{2s, comme dans[START_REF] Sasamoto | One-dimensional kardar-parisi-zhang equation : An exact solution and its universality[END_REF] et[START_REF] Wilson | The renormalization group and critical phenomena[END_REF], nous attribuons à f, dg, d ³ f dg et 1, quatre indices (abstraits) de régularité (nous dirons 3 indices d'homogénéité 4) : α, α¡1, 2α¡1 et 0. Le 2α¡1 se comprend comme suit. D'après[START_REF] Sasamoto | One-dimensional kardar-parisi-zhang equation : An exact solution and its universality[END_REF], l'intégrale (en y) de p ³ yx pfpzq ¡ f pxqq dgpzqq I contre la fonction test λ ¡1 ϕppy ¡xq{λq, pour λ petit et ϕ régulière à support compact, est d'ordre λ 2α¡1 . Ici, la fonction test est dite 3 piquée 4 au voisinage de x.Les quatre briques de base abstraites engendrent un espace T , appelé3 espace modèle 4, donné par (les indices α ¡ 1, 2α ¡ 1, 0 et α étant rangés par ordre croissant) T T α¡1 T 2α¡1 T 0 T α , où T α¡1 est l'espace vectoriel xdgy R dg, T 2α¡1 est l'espace vectoriel xd ³ f dgy R d ³ f dg et ainsi de suite... de sorte que T est isomorphe à R 4 .De fait, une fonction h : R Ñ T peut être identifiée avec une fonction ph α¡1 , h 2α¡1 , h 0 , h α q à valeurs dans R 4 . Si h α¡1 et h 2α¡1 sont identiquement nuls, h est à 3 indice d'homogénéité 4 positif. En un point x R, les valeurs de h 0 pxq et h α pxq sont alors à interpréter comme des coefficients, permettant d'approcher, au voisinage de x, une 3 certaine 4 fonction h : R Ñ R à l'aide d'un développement impliquant les fonctions 1 et f . Lorsque h α¡1 et h 2α¡1 prennent des valeurs non-triviales, l'idée reste la même, mais, les indices d'homogénéité étant négatifs, h est une distribution.Ce principe est à rapprocher de la définition 3 d'une fonction v contrôlée par f . Avec les notations de la définition, nous avons le développement vpyq vpxq v I pxq f pyq ¡ f pxq ¨ Rpx, yq, où v I est C α et R est 2α-Hölder continue. En négligeant le reste, ceci suggère d'associer à v la fonction v : R Ñ T , donnée par (21) vpxq vpxq1 v I pxqf, cette décomposition montrant que f devrait, dans l'esprit, être davantage associée aux incréments de f qu'à f elle-même. Voici maintenant la définition donnée dans [11] : Une structure de régularité est un triplet pA, T, Gq consistué d'un ensemble d'indices d'homogénéité A contenant 0, minoré et localement fini, d'un espace modèle T , de la forme À αA T α , chaque T α étant un espace de Banach, avec T 0 x1y ! R, et d'un groupe G d'opérateurs linéaires (continus) agissant sur T , de sorte que, pour tout Γ G, Γ1 1 et, pour tout α A et τ α T α , Γτ α ¡ τ α T α : À β α T β . Pour τ T , }τ} α est la norme de la composante de τ dans T α . Nous verrons ci-dessous que les éléments de G sont pensés pour 3 pas- ser 4 d'un développement au point x à un développement à un autre point y dans une écriture du même type que (21).

4. 3 .f

 3 Modèle associé aux trajectoires rugueuses. Pour rendre la notion pertinente, il est nécessaire de pouvoir revenir à l'espace physique en associant, à une combinaison d'éléments de T , une fonction ou une distribution (selon le signe des indices d'homogénéité). Dans le cas des trajectoires rugueuses, il convient d'associer, au développement (21), le développement : R y Þ Ñ vpxq v I pxq f pyq ¡ f pxq ¨ R, qui se lit comme une approximation au premier ordre de v au voisinage de x (x est ici gelé et y vit au voisinage de x). Aussi, pour tout x R, nous définissons une application Π x qui à un élément de T associe une fonction ou une distribution. Nous posons Π x p1q comme étant la fonction constante 1, Π x pfq comme la fonction f p¤q¡fpxq, Π x pdgq comme la distribution g I (indépendante de x) et Π x pd ³ f dgq comme la distribution p ³ ¤ x rfpzq ¡ f pxqs dgpzqq I . Par exemple, pour y R, Π x pfqpyq f pyq ¡ f pxq. Et, pour une fonction test ϕ, l'action de Π x pd ³ f dgq sur ϕ est donnée par Π x pd ³ pzq ¡ f pxq ¨dgpzq dy, l'aire de Lévy dans l'intégrale de droite étant donnée par hypothèse. Nous cherchons maintenant une application linéaire Γ x,y : T Ñ T telle que Π y Π x ¥ Γ x,y , de façon à obtenir le développement au voisinage de y en développant au voisinage de x une écriture 3 translatée 4 au sein de T . Comme Π x p1q et Π x pdgq sont indépendants de x, il est raisonnable de poser Γ x,y p1q 1 et Γ x,y pdgq dg. Par ailleurs, nous posons Γ x,y pfq rfpxq ¡ f pyqs1 f, qui vérifie bien Π x Γ x,y pfq ¨pzq rfpxq ¡ f pyqs rfpzq ¡ f pxqs Π y f ¨pzq, et, de façon similaire, Γ x,y pd ³ f dgq rfpxq ¡ f pyqs dg d ³ f dg. Les applications Γ x,y ainsi construites nous renseignent sur le choix de la structure de groupe G dans la définition 6. Nous pouvons par exemple choisir G tΓ , Ru, où Γ p1q 1, Γ pdgq dg, Γ pfq 1 f, Γ pd ³ f dgq dg d ³ f dg,

4 . 4 .Définition 8 .

 448 Le théorème de reconstruction. A chaque fonction h : R x Þ Ñ hpxq T , le modèle M, introduit dans la définition 7, permet d'associer, en chaque point x de l'espace physique (en l'occurrence R dans l'exemple discuté ci-dessus), une approximation locale, notée Π x phpxqq. Lorsque hpxq a un indice d'homogénéité positif (c-à-d le plus petit indice β, tel que la composante de hpxq dans T β soit non nulle, est positif), Π x phpxqq est à penser comme un développement local R y Þ Ñ Π x phpxqqpyq R au voisinage de x. Lorsque hpxq est à un indice d'homogénéité négatif, Π x phpxqq s'interprète comme une distribution. Le cas échéant, le caractère local du développement incite à considérer des fonctions tests 3 piquées 4 au voisinage de x, de la forme y Þ Ñ ϕpx ¡ yq pour une fonction ϕ 3 concentrée 4 au voisinage de 0. Une question naturelle est de savoir si la collection des développements locaux pΠ x phpxqqq xR , obtenus en faisant varier x, peut être relevée en une seule et même distribution (ou fonction selon l'homogénéité), dont le comportement local, au voisinage de x, serait justement donné par Π x phpxqq. Un exemple de ce principe est la formule de Taylor. Les développements de Taylor d'une fonction régulière ϕ peuvent être relevés en une seule et même fonction, en l'espèce ϕ elle-même. Ce parallèle suggère de limiter l'analyse à des fonctions h régulières, avec la définition suivante : Etant donnés un modèle M sur R d , associé à une structure pA, T, Gq, et un réel γ, on désigne par D γ M l'ensemble des fonctions h : R d Ñ T γ telles que, pour tout compact κ R d et pour tout α γ, hC ¥ 0 : dx, y κ, hpyq ¡ Γ y,x hpxq ¨ α ¤ C|x ¡ y| γ¡α . Considérons, à titre d'exemple, la fonction v dans (21). Pour x, y R, nous savons que Γ y,x pvpxqq rvpxq v I pxqpfpyq ¡ f pxqqs1 v I pxqf. De fait, vpyq ¡ Γ y,x pvpxqq rvpyq ¡ vpxq ¡ v I pxqpfpyq ¡ f pxqqs1 pv I pyq ¡ v I pxqqf. La définition 3 garantit que le coefficient d'homogénéité 0 est d'ordre |y ¡ x| 2α et celui d'homogénéité α d'ordre |y ¡ x| α . De fait, v est dans D 2α

  De fait, dans le cadre de (21), Rv n'est rien d'autre que v elle-même ! Comme nous le verrons dans la section suivante, lorsque la fonction h dépend d'une variable temps-espace pt, xq, il est souhaitable de tenir compte d'éventuelles propriétés d'échelle entre les variables de temps et d'espace dans la façon de piquer la fonction test au voisinage de pt, xq. Par exemple, si le temps et l'espace sont liés par un changement d'échelle diffusif, il convient d'utiliser λ ¡pd 2q ϕpp¤¡tq{λ 2 , p¤¡xq{λq au lieu de λ ¡pd 1q ϕpp¤¡tq{λ, p¤¡xq{λq.

4. 5 .

 5 

5. 2 .

 2 Eléments de la structure. Il s'agit maintenant de définir pA, T, Gq. Nous demandons d'abord que T contienne Ξ, avec p¡3{2q ¡ pour indice d'homogénéité. En effet, pour une fonction test temps-espace ϕ, la formule (2) permet de quantifier la variance de ³ ³ ϕpt, xq 9 ζpt, xq dt dx. En supposant que le support de ϕ est compact et contient l'origine, il est possible de construire une autre fonction test, 3 piquée 4 au voisinage d'un point pt, xq arbitraire, en considérant ϕ λ ps, yq λ ¡3 ϕpλ ¡2 pt ¡ sq, λ ¡1 px ¡ yqq, pour λ petit. Le 3 scaling 4 entre les variables de temps et d'espace correspond ici au chan- gement d'échelle diffusif classique. Le cas échéant, la variance associée dans

f

  t φpt, xq f 2 xx φpt, xq ¡ φ 3 pt, xq 9 ζpt, xq, t ¡ 0, x R 3 , où9

  Hölder continu en espace, pour η ¡ 0 aussi petit que souhaité. Le même comportement étant attendu pour h dans (

			» t	»	
			0		
	dont la variance, comparable	à ³ t	³ t 0	³	R f x p t¡s px ¡ yq 9 ζps, yq ds dy,

1.4. Le carré d'une distribution. La version additive de (4) s'écrit : (5) f t Y pt, xq f 2 xx Y pt, xq 9 ζpt, xq. dont la solution, en dimension 1, est donnée par (6) Y pt, xq » t 0 p t¡s px ¡ yqY p0, yq dy R p t¡s px ¡ yq 9 ζps, yq ds dy, où p t pxq p4πtq ¡1{2 expr¡x 2 {p4tqs est la solution fondamentale de la chaleur. Pour donner un sens au membre de droite, la règle (2) suggère de calculer ³ t 0 ³ R p 2 t¡s px ¡ yq ds dy, qui est comparable à ³ t 0 pt ¡ sq ¡1{2 ds et est donc fini. En revanche, f x Y pt, xq contient 0 pt ¡ sq ¡3{2 ds, diverge. La valeur critique pour la convergence de ³ t 0 pt ¡ sq ¡β ds étant β 1, un argument d'interpolation suggère que Y est au mieux 1{2 ¡ η

  partant du principe que Y est le terme de plus basse régularité dans le développement de h, ou encore que h ¡ Y est de régularité supérieure à Y ,

	il est légitime de se focaliser, dans un premier temps, sur la version réduite
	(8)	f t Y f 2 xx Y	|f x Y | 2 ,
	la notation arborescente dans Y indiquant que l'équation ci-dessus est dirigée par la répétition du terme racine , c'est-à-dire f x Y ¢f x Y . Volontai-
	rement, nous resterons flous sur les conditions initiales de Y et Y , celles-ci
	étant choisies de façon à rendre la distribution statistique des solutions aussi
	stationnaire que possible. Naturellement, Y n'étant pas différentiable, le terme |f x Y | 2 n'est pas
	mieux défini que la non-linéarité dans (1). Néanmoins, (8) présente, en com-paraison, l'avantage de distinguer la solution Y du terme singulier |f x Y | 2 .
	Une possibilité, pour donner un sens à l'équation ci-dessus, est de rempla-
	cer Y par une version régularisée en espace, notée Y ε , et de considérer,
	de façon équivalente, Y ε . Le cas échéant, la question est de comprendre le comportement asymptotique de |f x Y ε | 2 lorsque ε tend vers 0.
	Pour constuire Y ε , une façon simple est de substituer 9 ζ ε à 9 ζ dans (5).
	Par exemple, lorsque 9 ζ ε est obtenu par convolution de 9 ζ à l'aide d'un noyau ε ¡1 ρpε ¡1 ¤q, il vient (en oubliant la condition initiale)

  probabilité sur tout r0, T s (au même sens que dans la proposition (1)) vers un processus Y τ , indépendant du choix du noyau de convolution. Les constantes C ε et C ε sont nulles, les constantes C ε , C ε , C ε et C ε sont égales à ¡p1{4qC ε et divergent de façon logarithmique avec ε. En particulier, la somme de toutes les constantes de renormalisation est égale à C ε C{ε dans la proposition 1, c-à-d °τT C τ ε C{ε. En réalité, la proposition 2 reste vraie pour τ T zT , mais avec le choix

	montre que h ε est solution de l'équation de KPZ régularisée avec reste et
	contre-terme :
	(14)
	trivial C τ ε 0, suggérant ainsi que la décomposition (13) soit effectivement pertinente. Il est alors légitime de poser h ε °τT Y τ ε . Un calcul simple

  ¡ , p3{2q ¡ , p3{2q ¡ et 2 ¡ , il est facile de voir que, dans le terme f p1{2q ¡ ). De fait, pour construire une solution à[START_REF] Quastel | Introduction to kpz[END_REF], il est nécessaire de donner un sens aux distributions f x uf x Y et f x Y f x Y , compatible avec le passage à la limite le long des termes indexés par ε :

	τT ,τ	Y τ pt, xq Y	¡	Y	2Y	4Y	Y	©	,
	et en rappelant que les termes dans la somme entre parenthèses sont de
	régularité respective 1								

Dans

[START_REF] Hairer | Solving the kpz equation[END_REF]

, Martin Hairer fait d'une pierre deux coups en montrant que, non seulement, l'équation peut être résolue de façon intrinsèque, mais aussi que la solution varie continûment lorsque les données sources varient continûment pour une topologie appropriée, garantissant ainsi que le u construit est bien la limite des u ε .

En comparaison de (1), dont la solution attendue n'est pas différentiable, la solution de

[START_REF] Quastel | Introduction to kpz[END_REF] 

est cherchée parmi un espace de fonctions d'ordre p3{2q ¡ en espace, auquel cas la non-linéarité |f x u| 2 est bien définie.

La résolution de

[START_REF] Quastel | Introduction to kpz[END_REF] 

est donc liée à la définition des restes, qui s'interpètent comme des produits de la forme f x f f x g. Lorsque f et g sont des fonctions régulières, la distribution f x f f x g est trivialement définie. D'après la théorie de Young

[START_REF] Young | An inequality of the Hölder type, connected with stieltjes integration[END_REF]

, cette définition s'étend par continuité au cas où f x f et g sont respectivement α et β Hölder, avec α β ¡ 1, mais cette extension n'est plus possible lorsque α β ¤ 1. En décomposant h sous la forme (en prenant en compte les symétries Y Y et Y Y Y Y ) : (17) h pt, xq Y pt, xq x uf x h , seul le produit f x uf x Y échappe à la théorie de Young (auquel cas α p1{2q ¡ et β p1{2q ¡ ). De même, dans le reste R , seul le produit f x Y f x Y est, a priori, mal défini (avec, là encore, α p1{2q ¡ et β

  Principe des trajectoires rugueuses. L'idée de Martin Hairer est d'utiliser la théorie des trajectoires rugueuses initiée par Lyons,[START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths[END_REF][START_REF] Lyons | Differential equations driven by rough paths[END_REF][START_REF] Lyons | System control and rough[END_REF]. Dans chacun des cas ci-dessus, nous sommes en effet confrontés à la nécessité de définir la distribution f f x g pour deux fonctions f et g de régularité Hölder p1{2q ¡ . Essentiellement, ceci revient à définir l'intégrale 3 croisée 4 ³ x f pyqf x gpyq dy, encore notée ³ x f pyq dgpyq, de f contre les incréments de g. Un exemple particulièrement simple est f g, auquel cas ³ x f pyq df pyq peut être posée égale à p1{2qf 2 pxq. La théorie de l'intégrale stochastique en probabilités offre également une large classe d'exemples de telles intégrales, obtenues, selon les cas, par convergence dans L 2 de la méthode des rectangles au point gauche (intégrale d'Itô) ou de celle des trapèzes (intégrale de Stratonovich). De façon générale, l'intégrale croisée doit vérifier la relation de Chasles et satisfaire l'égalité

  et le terme élémentaire associé dans la somme de Riemann est d'ordre |z i 1 ¡z i | 3α , expliquant ainsi la condition α ¡ 1{3. 3.3. Retour à KPZ. La discussion menée à la fin du §3.1 suggère de choisir g Y pt, ¤q (de sorte que g dépend du temps, en plus de la variable d'espace). Les candidats pour être v sont respectivement f x upt, ¤q et f x Y pt, ¤q,

la difficulté principale étant liée au choix de f et à l'existence d'une intégrale croisée entre f et g, pour chaque t ¡ 0. Dans cette perspective, il est possible de voir l'équation

[START_REF] Quastel | Introduction to kpz[END_REF] 

satisfaite par u comme une perturbation de :

  .1. Principe général. L'idée fondamentale est d'associer à la solution de (1) une fonction à valeurs dans une structure abstraite, munie d'un certain

nombre d'opérations formelles (multiplication, intégration, dérivation), et d'effectuer, sur cette structure, les opérations impliquées dans

[START_REF] Amir | Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions[END_REF]

. Il s'agit, ensuite, de 3 ramener 4 les résultats de ces opérations dans l'espace phy- sique. Schématiquement, la structure abstraite est construite à partir de 3 briques élémentaires 4, modélisant des fonctions ou des distributions de régularités différentes. Voir la solution de (1) comme une fonction à valeurs dans la structure revient à la développer, localement, sous la forme d'une combinaison des briques élémentaires sous-jacentes.

  , les éléments de T sont représentés sous forme d'arbres. Par exemple, fKpΞq est noté : la branche représente fK et le disque terminal représente Ξ. De même, désigne fKpfKpΞqq et est associé à la dérivée de la solution de la chaleur de terme source f x Y . En rappelant[START_REF] Young | An inequality of the Hölder type, connected with stieltjes integration[END_REF] (sous réserve du choix de la condition initiale), cette dérivée est égale à Φ, de sorte que est associé, dans l'esprit, à Φ. Une autre exemple est . Ici, le branchement s'interprète comme un produit, de sorte que est à associer au produit de f x Y par Φ. En reprenant la discussion du §3.3, ce produit est en fait à comprendre comme la dérivée de l'aire de Lévy associée à l'intégrale croisée de Φpt, ¤q contre Y pt, ¤q. De fait, le quadruplet p , , 1, q est à rapprocher des 3 briques de base 4 du chemin rugueux utilisé dans le théorème 4.5.3.Point fixe et renormalisation. La résolution de (22) repose sur un argument de point fixe fonctionnel, démontré en temps petit comme dans le théorème 4. L'espace fonctionnel sous-jacent dépend du choix du modèle M associé à la structure pA, T, Gq, de sorte que la solution dépend également de M. Intuitivement, il s'agit de choisir pΠ pt,xq q t¥0,xR tels que la solution h du point fixe vérifie hpt, xq Rhpt, xq Π t,x rhpt, xqspt, xq, avec h solution donnée par le théorème 5 et R l'opérateur de reconstruction. Pour définir pΠ t,x q t¥0,xR , il serait naturel d'identifier Π t,x pΞq à la distribution9 ζ, Π t,x p q Dire que f x u dans (16) est contrôlé par Φ, c'est certainement dire que les composantes non nulles de fu d'homogénéité inférieure à 1{2 sont 1 et .Pour compléter le parallèle avec le théorème 5, il reste à interpréter la renormalisation. De façon schématique, l'objectif est d'associer, à chaque valeur du paramètre ε impliqué dans la régularisation9 ζ ε de 9 ζ, un modèle M ε (associé à pA, T, Gq) convergeant vers M lorsque ε tend 0, la convergence étant comprise comme la convergence (dans un sens ad-hoc) des applications d'3 évaluation 4 pΠ ε t,x q t,x et des opérateurs de 3 translation 4 pΓ ε q pt,xq,ps,yq sous-jacents. Lorsque 9 ζ ε est une fonction régulière, donnée par exemple par convolution contre un noyau temps-espace de la forme ε ¡3 ρpε ¡2 t, ε ¡1 xq, il existe un choix simple de M ε permettant de reconstruire la solution du point fixe (22) comme la solution de l'équation non-normalisée (7). Nous n'en détaillons pas la construction, mais nous acceptons qu'il puisse être simple car les symboles ne modélisent, le cas échéant, que des fonctions régulières. Avec un tel choix, nous pouvons légitimement attendre que la reconstruite d'un produit soit le produit des reconstruites, par exemple Π ε t,x p qpt, xq rf x Y ε pt, xqs 2 . Vu la nécessité de renormaliser dans la proposition 1, nous comprenons que, dans ce contexte, M ε ne peut pas converger vers M. Clairement, renormaliser implique de déformer M ε . La proposition 1 suggère de changer M ε en Mε de sorte que Πε t,x p qpt, xq rf x Y ε pt, xqs 2 ¡ C ε , pour une certaine constante C ε , auquel cas Πε t,x p qpt, xq se lit comme Π ε t,x p ¡ C ε 1qpt, xq. Renormaliser revient donc à appliquer, en amont, une transformation linéaire aux symboles de la structure et à utiliser, ensuite, le modèle simple. Dans le cas de KPZ, cette transformation envoie sur ¡ C ε 1, sur ¡ C ε 1 et sur ¡ C ε 1, pour des constantes C ε , C ε et C ε dépendant de ρ, C ε divergeant comme 1{ε, et C ε et C ε divergeant logarithmiquement. Le lecteur pourra comparer avec les propositions 1 et 2.

	du point fixe s'écrive, dans les composantes d'homogénéité inférieure à 1{2, sous la forme 2 fu, où u est à rapprocher de la solution de (16)
	(les derniers termes dans (17) contribuent à des homogénéités supérieures	à
	1{2).	

à la distribution f x Y , Π t,x p q à la distribution f x Y , Π t,x p q aux variations, à l'ordre p1{2q ¡ , de la fonction f x Y au voisinage de pt, xq, et ainsi de suite...

Nous nous tiendrons à cette vision des choses

, relativement simple, mais en réalité inexacte (en isolant la singularité dans le noyau de la chaleur, nous comprenons que f x Y , f x Y et f x Y contiennent une partie très régulière, qu'il conviendrait d'associer à d'autres symboles, en l'occurrence polynomiaux). Sous cet angle, le développement (17) suggère que la 3 dérivée 4 fh
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