Bernard Cousin

Joel Christian Adépo

Michel Babri

Souleymane Oumtanaga

Tree Reconfiguration without Lightpath Interruption in WDM Optical Networks with Limited Resources

Keywords: Path reconfiguration, optical WDM network, multicast tree, reconfiguration sequence, lightpath interruption. I

come

Introduction

Path reconfiguration is used by network operators to improve network performance. It consists of moving from an initial path to a new one. Since networks are disturbed by failures, overloads, and deployments of new network resources or maintenance operations, network reconfiguration becomes very important because it enables the fulfillment of QoS requirements with the available network resources. In our previous work (Cousin et al.), we presented an efficient algorithm which achieves tree reconfiguration in WDM optical networks in which a multicast connection is established. It was the first work on that problem in the literature. The objectives of this work are: first, tree reconfiguration without data flow interruption; second, reduction of the latency between the triggering event and the effective reconfiguration of the nodes on the paths by the tree reconfiguration process; and third, reduction in the resources used during the reconfiguration by the tree reconfiguration process. In our previous work, we proposed a branchby-branch process called BpBAR_2. In that approach, the number of available wavelengths per link was not considered as a constraint. At each step of the reconfiguration process, the proposed algorithm computed a light-forest to span all the destinations. Since the network resources are supposed to be umlimited, the number of trees per light-forest is also unlimited. In this current work, the number of available wavelengths per link is a constraint. So, the number of trees per light-forest produced at each step should be limited. This constraint first allows the tree with the available network resources to be reconfigured, and second, contributes to optimizing the network resources used. The problem addressed in this paper is tree reconfiguration without data flow interruption in a network with a limited number of available wavelengths per network link. The proposed algorithm must maintain the continuity of the data flow toward all the destination nodes and reduce the cost of resources used and the duration of the reconfiguration process.

In Section II, we describe the tree reconfiguration in WDM optical networks. Section III presents the related works. In Section IV, we prove the continuity of data flows during the reconfiguration with the BpBAR_2 process. Section V presents the context of tree reconfiguration with limited resources and the proposed algorithms called TRwRC. Section VI presents the evaluation criteria and the results of the evaluation. This algorithm allows tree reconfiguration in a network which has limited resources and it reduces the resource cost during the reconfiguration. Finally, we conclude this article in the final section.

II. Multicast Connection in WDM Optical Networks

The path of a connection in WDM optical networks [START_REF] Mukherjee | WDM Optical Communication Network: Progress and Challenges[END_REF] consists of optical channels. An optical channel in a WDM optical network is an optical signal transmitted over one wavelength in one fiber. The ends of an optical channel consist of an output port of a switch called the source port and an input port of another switch called the sink port. If the source port belongs to a node, then this node is the source node of the optical channel. If the sink port belongs to a node, then this node is the sink node of the optical channel.

A lightpath is an all-optical path on the same wavelength between two nodes: a lightpath is made of a set of successive optical channels. The set of paths used by a multicast connection [START_REF] Ding | A survey of optical multicast over WDM networks[END_REF][START_REF] Malli | Benefit of Multicasting in All-Optical Networks[END_REF] in a WDM optical network forms a tree called a light-tree. A light-tree is an all-optical structure on the same wavelength between a source node and a set of destinations nodes.

The light-tree is obtained with the use of particular nodes which are capable of duplicating an incoming light signal from one node input port into one or several node output ports. In this work, we assume that all network nodes have this light splitting capability. In Zhou (2009), the reader may find some interesting considerations when this assumption is not fulfilled, and may find some efficient computation heuristics or protocols in [START_REF] Zhou | Cost Bounds and Approximation Ratios of Multicast Light-trees in WDM Networks[END_REF] and [START_REF] Jawhar | Effect of Splitting Factor on the Generated Multicast Trees in Optical Networks[END_REF]. A structure called a light-forest is used when a single light-tree is not sufficient to cover all destinations. A light-forest is a set of light-trees originated at the same source node but established with different wavelengths. For example, and are the two light-trees of the light-forest in Fig. 1 between the source node s and the destinations { , , }. is established with a wavelength between the source node s and the destination { }. is established with a wavelength between the source node s and the destination { , }. A branch , , of the lightforest is a lightpath between the source node s and the destination on the tree T.

In a WDM optical network, before transmitting data from a source s to a destination , a connection has to be set up first along the path from s to . This connection is established by allocating a wavelength on each link along the connection's path and each node is instructed to switch the wavelength transparently through its switch fabric. We called this path with the allocated wavelength a pre-established path. A preestablished path between node y and the destination is denoted ,). ,) in yellow in Fig. 1 is a preestablished path between s and .

If there is no confusion, a tree will be noted and a pre-established , will be noted .

Fig. 1 Light-forest between the source node s and the destinations { , , } and the pre-established path (in yellow) between s and d 3 .

The key characteristic of the multicast in optical networks is that an optical channel can be shared to feed multiple output ports and reach many destinations. In Fig. 1, the optical channel between s and B is shared to reach the destinations d 1 and d 2 . B becomes a branching node. An optical channel which has B as a sink node is an upstream optical channel of B. An optical channel which has B as a source node is a downstream optical channel of B.

The number of upstream optical channels of a node x on a tree is noted | |. The number of downstream optical channels of x is noted | |.

A branching node x of a light-tree is such that its number of downstream optical channels is superior or equal to 2 (| | 2). Any node connected to a multicast tree has a single upstream optical channel (except the source, which has none) and any node may have multiple downstream optical channels (except the destinations, which have none). Two optical channels of a light-forest are adjacent if one optical channel is an upstream channel of a node on a tree T and the other is a downstream channel of the same node on the same tree.

III. Tree Reconfiguration Operations

Four reconfiguration operations are applicable on an optical switch. We denote as the configuration (set of lightpaths) obtained at the j th step of the tree reconfiguration process. 1) Addition of a light switching:

s B C A D  ∃ ∈  , , , .
If is the sink port of an optical channel , adds one optical channel with wavelength l in the configuration such that:

is the source port of is adjacent to -The signal coming from feeds

2) Deletion of a light switching:

 ∃ ∈  , , , .
If is the source port of an optical channel , deletes the link u from the configuration .

3) Combined operation:

 ∃ ∈  , , , .
If is the sink port of an optical channel , and the source port of an optical channel , simultaneously deletes the link from the configuration and adds an optical channel with wavelength l such that is the source port of , and is adjacent to .

4) Wavelength conversion:

 ∃ ∈  , , , .
If is the source port of an optical channel , converts the wavelength of to wavelength .

IV. Related Works

In the literature, reconfiguration policy and path computation have been studied by Baldine and Rouskas (1999), [START_REF] Kárász | Optimal Reconfiguration of Provisioning Oriented Optical Networks[END_REF] and [START_REF] Kárász | Consolidation Strategies of Provisioning Oriented Optical Networks[END_REF]. They do not consider the configuration process in itself. The well-known reconfiguration processes MBB (make-before-break) and BBM (break-beforemake) are proposed for path reconfiguration. MBB achieves path reconfiguration without path interruption but not regardless of the paths and the cost of many reconfiguration steps. Cousin and Molnar (2006) studied fast path reconfiguration without data flow interruption as they are interested in unicast connections.

The connections considered in all these previous works are unicast connections. In this paper, since the problem considered is tree reconfiguration without data flow interruption, we first describe an MBB adaptation to the tree reconfiguration problem. This MBB-based algorithm is called MBB_2. Then we present the BpBAR_2 process proposed in our previous work. It was the first time that a tree reconfiguration algorithm which achieves uninterrupted flow was proposed in the literature. We compare our new algorithm to these two algorithms.

MBB_2

MBB is a well-known path reconfiguration process.

The MBB reconfiguration process causes an interruption when the initial and final paths make a cyclic dependency (Cousin and Miklos, 2007). In the adaptation of MBB to tree reconfiguration which uses no additional resource, the no interruption requirement is not fulfilled. In tree reconfiguration without additional resources, since the same link may be shared by several branches of the tree, the probability of having cyclic dependency between the branches of the trees increases. Thus, MBB_2 is an MBB-based algorithm which uses one additional wavelength during the reconfiguration process. MBB_2 consists of two phases. In each phase, it uses the function TRwMBB2 described in Algorithm 1. In the first phase of MBB_2, TRwMBB2 configures each sub-tree of the new tree with the additional wavelength. In the second phase, it configures each sub-tree of the new tree with the final wavelength. The sub-trees of the initial tree (respectively the final tree) considered in this algorithm are rooted at the son nodes of the tree source s in the initial tree (respectively in the final tree). The set of destinations of each sub-tree is denoted Dest.

Algorithm 1: Function used by MBB_2 TRwMBB2 (T 0 , T z) 1. { 2. Configure in one step all the nodes on the new tree T z to build all the pre-established branches with the additional wavelength 3. For each sub-tree of the new tree T z 4. { 5.

Select a sub-tree of the old tree not configured 6.

Interrupt in one step the data flow on branches (on the initial tree T 0) toward all the destinations not configured and such that ∉

7.

Switch wavelength from the sub-tree of the old tree to the sub-tree of the new tree at the tree source s to feed the new tree 8.

Configure in parallel all the ports of the nodes on the old sub-tree to remove its branches 9. } 10. }

Algorithm 2: MBB_2 MBB2 (T 0 , T z) 1. { 2. TRwMBB2 (T 0 , T) 3. TRwMBB2 (T, T z) 4. } 2. BpBAR_2
BpBAR_2 is a BpBAR-based algorithm which consists of two phases. Each phase consists of several stages. Each stage is a series of reconfiguration steps to reconfigure one branch. Figure 3 represents a diagram of operations scheduling in a stage of the BpBAR process to ensure the continuity of the lightpath during the reconfiguration. This diagram can be subdivided into five parts according to the successive operations executed. BpBAR_2, which is a BpBAR-based process, uses parallel execution of operations to reduce the reconfiguration delay. BpBAR_2 executes, in parallel, all the operations belonging to the same part of a BpBAR stage as shown Table II. Figure 4 represents the diagram of a reconfiguration stage with BpBAR_2.

In the first phase of a reconfiguration with BpBAR_2, each branch is established per stage; a new tree, a copy of the final tree which uses wavelengths different from the initial, is obtained. In the second phase, each branch is established per stage; a tree, a copy of the final tree which uses the initial wavelength, is obtained. We describe below a reconfiguration stage with the BpBAR process. Table I describes the different parts of a reconfiguration stage with the BpBAR process. The operations are executed sequentially in this diagram. The length of each part (number of steps) is equal to the number of ports to be configured in this part. After the setup of the pre-established path in part 1 of a stage, the combined operation is executed in part 2 to feed the pre-established path. Comb is executed at the end node of the pre-established path. Since it feeds the pre-established path and interrupts data flow on the other path, the appropriate switching node is the one which maintains the data flow continuity toward all the destinations after its configuration. This appropriate switching node depends on the initial tree T and the destination of the pre-established path . It is denoted _ , . For example, in Fig. 2, C is the node _ ,). Then, in part 3, the wavelength switching is deleted on all nodes of the exclusive part of the old branch on which flow is interrupted. Parts 4 and 5 occur when the switching node is noted as the source node s.

Definition 1: The end part of path p beginning at path node x is denoted , .

Definition 2: _ , is the root node of the sub-tree of the tree T which will be used during the branch configuration between the source node and the destination d. A node x is the node _ , of the branch , , if:

(1) x is a branching node of tree T which uses the initial wavelength (2) For each node ∈ , , , and ∉ , , | | 1. . This part deletes the pre-established path between the node _ , and the source node s. The length is equal to the number of ports to be configured. Table II: Operations executed in parallel in a stage of BpBAR process

Parts of stage

Series of configurations by part in Fig. 3 Configurations produced in Fig. 4 after parallel execution

1 <Add(), Add(),…, Add()> <Add()> 2 <Comb()> <Comb()> 3 <Del(), Del(),…, Del()> <Del()> 4 <Comb()> <Comb()> 5 <Del(), Del(),…, Del()> <Del()>
VI.

Proof of Data Flow Continuity Toward

BpBAR_2 is a BpBAR-based algorithm which uses parallel execution of operations. First, we prove that a reconfiguration stage with BpBAR maintains lightpath continuity. Second, we prove that the parallel execution of all the operations belonging to the same part of a stage with BpBAR maintaining continuity of the lightpath. Let us assume that a stage begins with a configuration and is noted <O(), O(),…, O()> where is the i th configuration which contains a light-forest spanning all the destinations of a multicast connection <s, {d}> and is a tree reconfiguration operation (described in Section III). is represented by where ∑ is a light-forest spanning all the destinations. We will prove that each part of a reconfiguration stage with a BpBAR process maintains the continuity of the lightpath.

(1) Part 1 Let us consider a configuration of part 1 which contains a light-forest spanning all the destinations of a multicast connection, where is a preestablished path. Let denote the set of optical channels of such that spans all the destinations of the multicast group.

implies add new optical channel u in such that u is adjacent to the end link of . Thus, the new set of optical channels after is ∪ . The optical channels of are not modified so spans all the destinations. Thus, contains a lightforest spanning all the destinations. In BpBAR, the Add operation (, , ,), is carried out such that the ports and of the switch

x do not belong to the set of ports of . Thus, the new pre-established path is not fed and there is no loop.

((3) Part 3

The condition to execute Del in a configuration with BpBAR, in part 3 is:

- - ⟹ , , ,
, where x is the end node of , does not belong to but belongs to

We know by definition that the pre-established path is not used to transmit data (does not belong to but belongs to). configures the port on to delete the wavelength switching. After , the ports of are not modifying and a light-forest spanning all the destinations of the multicast connection exists. If is the new pre-established path after the Del operation, .

(4) Part 4

Comb is executed on the source node of the multicast connection s in this part. The conditions to execute Comb in a configuration with BpBAR, in this part are:

--The lightpath between the source node s and a destination contains s twice: for example (s, x, …, ,.., s, y,…,d).

-⟹ , , , where belongs to .

This operation is equivalent to , , , , followed by , , , , . The signal coming from any input port of s is interrupted. The lightpath between s and the destination becomes (s, y,…,d). The part of path (,.., s) which is not used to transmit data after the operation becomes the pre-established path . Then contains a lightforest spanning all the destinations of the multicast connection.

(5) Part 5

The condition to execute Del in a configuration with BpBAR in this part is:

- - ⟹ , , ,
, where x is the end node of , does not belong to but belongs to .

is not used to transmit data (does not belong to but belongs to). configures the port on to delete the wavelength switching. After , the ports of are not modifying and a light-forest spanning all the destinations of the multicast connection exists. If is the new preestablished path after the Del operation, . We have proved that all the parts of a reconfiguration stage maintain the lightpath continuity. We conclude that a reconfiguration stage with BpBAR maintains data flow continuity during a branch reconfiguration.

VII. Reconfiguration with Wavelengths Limit Constraint 1. Context and Problem Formulation

We consider a WDM optical network which has a limited number of available wavelengths per link. A multicast connection established in this network on the tree uses wavelength l0. We want to move from the tree to a new tree . The initial tree and the final tree must use the same wavelength l0. We assume that the new tree is known. The reconfiguration must be carried out without data flow interruption. The tree configuration process proposed in our previous work [START_REF] Cousin | Tree Reconfiguration Without Lightpath Interruption in WDM Optical Networks[END_REF] produces a series of light-forests since it must maintain lightpath continuity. The number of trees per light-forest is not increased with the proposed algorithm. This number is proportional to the number of branches to be established. In a network with a multicast connection established, several branches can share the same link which has very limited available resources. In this context, BpBAR_2 may be inapplicable. Some branches which share the same link cannot be established. The problem in this work is to reduce the number of trees per light-forest at each step of the reconfiguration, regardless of the initial and final trees, and the network topology.

Our Proposition: TRwRC

The proposed tree reconfiguration is the TRwRC (tree reconfiguration with resources constraint) algorithm. It has two phases. TRwRC produces a series of lightforests during the tree configuration process. Let us assume that the destinations of the multicast connection is subdivided into two sets during the reconfiguration process: a set of destinations whose lightpaths are reconfigured (uses paths on the new tree) denoted Dest_Config and a set of destinations whose lightpaths are not reconfigured (uses paths on the initial tree) denoted Dest_NConfig. The maximal number of trees per light-forest in a configuration produced with TRwRC is two. Each tree, at each step, spans the destinations of one set described above. TRwRC uses the function ReconfBr described in Algorithm 3 to reconfigure each branch of the initial tree T 0 . The reconfiguration of each branch with ReconfBr consists of two stages. In the first stage, the branch is established with an additional wavelength . In the second stage, the branch is established with the additional wavelength . The tree obtained after the reconfiguration of all the branches of the initial tree T 0 is a copy of the new tree T z using the additional wavelength denoted T'. In the second phase, TRwRC configures simultaneously the ports of the nodes of the tree T' obtained after the first phase to convert the additional wavelength into the initial wavelength. Algorithm 4 represents TRwRC. We described below the function ReconfBr used to reconfigure a branch. Let be the initial configuration and , , a branch we want to establish. contains a light-tree spanning all the destinations. We note . TRwRC uses the Add operation to setup in one step a pre-established path between _ (,) and with an additional wavelength (for example). After this operation, where and is the pre-established path. number of interruptions during the tree configuration process. In addition to the above criteria, also used in our previous work, we define a new criterion which is the number of unsolved tree configuration problems. An unsolved problem is a pair of trees which a certain algorithm cannot reconfigure without data flow interruption. The number of unsolved problems depends on the number of available wavelengths per link. If the number of pairs of trees generated is _ :

_ _ ∑ , _ (1)
where , 1 if for the k th pair of trees, w available wavelengths per link is not enough to reconfigure all the tree branches without flow interruption and , 0 otherwise. In the evaluation, _ is chosen experimentally and is equal to 5000.

Results and Analysis

The results of the different evaluations are noted in Tables III to VII. Tables III to V show the performance results when the initial tree is SPT and the final tree MST. Tables VI andVII show the results obtained when we swap the algorithms used to compute the trees. The initial tree is now MST and the final tree SPT. The results of the performance evaluations noted in Table III show that the number of steps produced by TRwRC is approximately equal to the number of steps produced by BpBAR_2 (Fig. 6), but is greater than those produced by MBB_2. This is due to the fact that TRwRC is a back and forth tree reconfiguration process. Table IV shows that tree reconfiguration with TRwRC uses more resources than reconfiguration with the MBB_2 process. This is due to the fact that MBB_2 uses the same initial wavelength during all the process. So, it requires no additional wavelength while TRwRC uses additional resources to establish new branches. Table V shows that MBB_2 causes data flow interruption while TRwRC maintains continuity of data flow. The continuity of data flow is due to the properties of the BpBAR process used by the TRwRC algorithm. A good tree reconfiguration algorithm is one which does not interrupt the flow toward any destination during the reconfiguration. Thus, the TRwRC algorithm is much better than the MBB_2 algorithm.

BpBAR_2 and TRwRC maintain the continuity of data flow and produce approximately the same number of steps (see Fig. 6). The important improvement is shown in Figs. 7, 8, and 9. Figs. 8 and9 show the evolution of the percentage of unsolved problems with the BpBAR_2 TRwRC algorithms as a function of the number of available wavelengths per link. They show that when the number of available wavelengths per link is under or equal to two, generally the BpBARbased algorithms produce tree reconfiguration with data flow interruption. But the performance produced by TRwRC is better than the performance produced by BpBAR_2. These figures show also that when the number of available wavelengths per link is equal to three, TRwRC allows reconfiguration of any tree without data flow interruption regardless of the topology, while BpBAR_2 requires more available resources. Moreover, Fig. 7 shows that the cost of additional resources produced by TRwRC is less than the cost of additional resources produced by BpBAR_2. So TRwRC does not use more additional resources than BpBAR_2 during its process. This is due in the fact that each configuration produced by TRwRC contains at most two light-trees and one pre-established path, while with BpBAR_2 the number of trees increases with the number of branches.

When we swap the trees used to compute the tree configuration, Figs. 10 to 12 show that the same performance gains are kept: TRwRC reconfigures any pair of trees when the number of available wavelengths per link is equal to or higher than three and does not use more additional resources compared to BpBAR_2.

IX. Conclusion

Tree reconfiguration in WDM optical networks is studied in this paper. In the literature, the well-known path reconfiguration process MBB is proved to induce flow interruption. Similarly, adaptation of MBB to tree reconfiguration with no additional wavelengths may induce interruption. Even more, the tree branches may increase the probability of cycle outbreak and thus interruption.

Adaptation of MBB to tree reconfiguration with an additional wavelength is also inefficient because it produces flow interruption. In our previous work, we proposed a branch-by-branch algorithm (BpBAR_2) which aims to reconfigure trees without data flow interruption, and reduces the reconfiguration setup duration and the network resources used during the reconfiguration process. The availability of network resources was not considered in this previous work. In this paper, we consider tree reconfiguration problems in a network wherein the number of available wavelengths is limited. In this context, the algorithm BpBAR_2 becomes inefficient. In this paper, we propose TRwRC which allows reconfiguration of trees when each optical link has a limited number of available wavelengths. TRwRC maintains the continuity of the flow since it uses the appropriate switching node _ , and the combined switching operation to feed the new branches. The reconfiguration setup duration produced is also good compared to the previous algorithm. TRwRC uses, at most, two trees per light-forest to span all the destinations during the different configurations produced. Thus, it allows tree reconfiguration in alloptical networks with limited resources. It also reduces the cost of used resources during the reconfiguration process. When the number of available wavelengths per link is three (at least), any tree reconfiguration without data flow interruption is possible with TRwRC.

Fig. 2

 2 Fig.2Example of tree reconfiguration problem. The old tree is in red and the new tree is in blue.

 Fig. 3 Diagram of operations scheduling during a branch reconfiguration in a stage with BpBAR

Fig. 6 :Fig. 7 :Fig. 8 :Fig. 9 :

 6789 Fig.6: Setup duration of each algorithm in COST 239 and NSF Network

Fig. 10 :Fig. 11 :Fig. 12 :

 101112 Fig.10: Setup duration of each algorithm in COST 239 and NSF Network

Table I :

 I Distinct parts of a stage in BpBAR process

	Parts			Description
	1	From to	: This part consists of setting up
		the pre-established path between the destination
		and the node	_	, . The operation
		used is	:		. The length is
		equal to the number of ports to be configured.
	2	From	to		: This part feeds the pre-
		established path by executing the combined
		operation at	_		, :	.
		It consists of one step.
	3	From	to		: This part deletes the pre-
		established path between the destination and
		the node	_		, . The operation used is
		:		. The length is equal to the
		number of ports to be configured.
	4	From	to		: This part consists of
		executing the combined operation Comb at
		_	,	to interrupt the flow between
		_	,	and the source node. It consists
		of one step.		
	5	From	to	:

orithm 3: Fun onfBr (T 0 , T z

	inter rrupt the flow w on the old d path. The p pre-establish hed
	path h now ensure es the continu uity of the lig ghtpath towa ard
	the d destination		. Before the e execute Co omb operatio on,	A Algorithm 4: T TRwRC algor rithm
	the	, , lightpath to oward . A , _ After the sw , is shared only b by witching,	TR RwRC (T 0 , T z) z) 1. { 2. For each dest tination
							where	spans t the	3.	{
	dest inations o	f Dest_NC Config,	spans t the	4.	Recon nfBr (T 0 , T z , d d, T')
	dest inations of , , f Dest_Con , _ nfig () , .	and, is deleted	is in	5. 6. 7.	Recon nfBr (T', T z , d d, T) } Configure si imultaneously y the ports of f the nodes o of the
	one	step and				w where	tree T to c onvert the w wavelength us sed into the i initial
	and sour rce node s, s . If f the node s is reconfig gured to inte _ (,) is not t errupt the da ata the	8.	}	wavelength .
	flow the b is es w between branch is de stablished w eleted. After _ (, with the addit ,) and s, th this stage, th tional wavel hen this part he new bran length . T nch of The	VIII. Pe erformance E Evaluation 1. Criter ria and Metho od
	sam e process is	repeated in a a new stage t to establish t the	W We use COST T 239 (see Fi ig. 4) and N SF networks s (see
	bran nch with the e additional	wavelength h . The tw wo	Fi ig. 5) to	evaluate o our algorith m. Well-kn nown
	stag es for each b branch are r epeated. In t the first phas se,	to opologies ar re used in n many sim milar papers s as
	we o obtain a tree		T', a copy o of the new tre ee T z, using t the	pe erformance e evaluation to opologies.
	addi itional wavel length .	
	In th he second ph hase, the por rts of the no des of the tr ree
	T',	obtained		after the	first phas se, configu ure
	simu ultaneously t to convert th he additional	wavelength
	into	the initial w wavelength.
	Algo	nction used to o established	a new branc ch
	Reco				
	1. {					
	2. If	(, ,		is different fro om	, ,)
	3. 4.	{ Determin ne node	_	nd configure 0 , an	Fi ig. 4: Topolo ogy of COST T 239 networ rk
	5.	in paralle destinatio Configur el the ports of on node and re the node f the nodes bet d the node _ tween each _ 0 , 0 , to feed the
		new bran nches and in nterrupt the f flow of the o old
		branches		
	6.	Remove,	in parallel, th he part of the o old branches i in
		Which fl	ow is interrup pted
	7.	If and d have diffe erent topologie es
	8.				{	
	9.				Configure s to and _ o interrupt the e part between n s 0 , whic ch is different t to
	s s					
	10.				Configure, sim multaneously, , the ports of t the
					nodes _	0 0 , to remov between e this part s	a and	Fi ig.5: Topolog gy of NSF N Network
	11.				}	
	12.	}					Th he initial and d final trees	are selected d arbitrarily ((they
	13. } }						ar re called pai rs of trees, a above). One	is the minim mum
							sp panning tree	(MST) com mputed with	Prim's heur ristic
							(P Prim, 1957)). This alg gorithm cal culates a	good
							ap pproximation n of the Stein ner tree for a a multicast gr roup.
							Th he other is t the shortest	paths tree (S SPT) which	uses
							D Dijkstra's alg orithm (Dijk kstra, 1959)	for the mult ticast
							The C to hm TRwRC _ our algorith combined operation is executed on gr roup. We compare o , to Bp pBAR_2 and d MBB_2. Th he criteria are e: the duratio on of
							simultaneously feed the pre-established path and th he process, the addition nal resource es used and d the

z , ,T')

Table III :

 III Average and standard deviation of the number of steps for each reconfiguration

		COST 239		NSF NETWORK	
	CONF.	AVG	SD	MIN/MAX	AVG	SD	MIN/MAX
	PROCESS	(STEP)	(STEP)	(STEP)	(STEP)	(STEP)	(STEP)
	BpBAR_2	18.07	12.09	6/51	22.62 17.35 6/74
	TRwRC	18.31	11.61	7/54	22.68 16.15 7/79
	MBB2	8.32	2.42	6/17	8.58	2.04	6/17

Table IV :

 IV Average and standard devisation of additional cost for each reconfiguration process

		COST 239		NSF NETWORK	
	CONF.	AVG	SD	MIN/MAX	AVG	SD	MIN/MAX
	PROCESS	(WL)	(WL)	(WL)	(WL)	(WL)	(WL)
	BpBAR_2	166.84	195.57	10/861	370.14 448.16 9/2273
	TRwRC	107.52 96.45	13/430	227.85 220.44 13/1104
	MBB2	85.95	30.13	18/177	122.72 40.34 18/229
	Table V: Average and standard deviation of
	interruption duration for each reconfiguration
		COST 239		NSF NETWORK	
	CONF.	AVG	SD	MIN/MAX	AVG	SD	MIN/MAX
	PROCESS	(STEP)	(STEP)	(STEP)	(STEP)	(STEP)	(STEP)
	BpBAR_2	0	0	0/0	0	0	0/0
	TRwRC	0	0	0/0	0	0	0/0
	MBB2	2.85	1.47	0/6	3.42	1.86	0/6

Table VI :

 VI Average and standard deviation of reconfiguration duration for each reconfiguration process

		COST 239		NSF NETWORK	
	CONF.	AVG	SD	MIN/MAX	AVG	SD	MIN/MAX
	PROCESS	(STEP)	(STEP)	(STEP)	(STEP)	(STEP)	(STEP)
	BpBAR_2	19.02	12.81	6/61	22.59 16.43 6/80
	BpBAR_4	20.33	12.80	7/62	22.21 12.92 7/62
	MBB2	10.90	3.20	6/17	8.77	2.4	6/17

Table VII :

 VII Average and standard deviation of additional cost for each reconfiguration process

		COST 239		NSF NETWORK	
	CONF.	AVG	SD	MIN/MAX	AVG	SD	MIN/MAX
	PROCESS	(STEP)	(STEP)	(STEP)	(STEP)	(STEP)	(STEP)
	BpBAR_2	92.75	100.65	5/542	183.88 219.63 5/1088
	BpBAR_4	93.15	89.67	8/427	116.42 127.78 9/701
	MBB2	62.98	32.24	9/149	10.51 40,01 18/229