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Abstract

We show how implicit computational complexity can be used in order to in-
crease confidence in game-based security proofs in cryptography. For this pur-
pose we extend CSLR, a probabilistic lambda-calculus with a type system that
guarantees the existence of a probabilistic polynomial-time bound on computa-
tions. This allows us to define cryptographic constructions, feasible adversaries,
security notions, computational assumptions, game transformations, and game-
based security proofs in a unified framework. We also show that the standard
practice of cryptographers, ignoring that polynomial-time Turing machines can-
not generate all uniform distributions, is actually sound. We illustrate our calcu-
lus on cryptographic constructions for public-key encryption and pseudorandom
bit generation.
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1. Introduction

When a new cryptographic scheme is published, it often comes with a secu-
rity proof. It is unfortunately common that such schemes are vulnerable even
though they have been supposedly proved secure — attacks are often found a
few months or a few years after publication of the so-called security proof. This
presents a serious demand for formal, ideally automated verification of security
proofs in cryptography, which is well-known and acknowledged by cryptogra-
phers [19].

It is good practice to structure security proofs as a sequence of game trans-
formations since it makes easier their checking by a third party [7, 34]. In this
game-based approach, a security property is modeled as a probabilistic program

IPreliminary results appeared in the proceedings of the 4th International Conference on
Provable Security (ProvSec 2010) [32].
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implementing a game to be solved by the adversary. The adversary itself is mod-
eled as an external probabilistic procedure interfaced with the game. Proving
security amounts to proving that any adversary has at most a negligible advan-
tage over an adversary playing against a perfectly secure scheme.

If however the adversary were given unlimited computational power, then it
could break most cryptographic schemes without making them insecure in prac-
tice. It is thus necessary to restrict the computational power of the adversary
so that the attacks are feasible. Cobham’s thesis asserts that being feasible is
the same as being computable in polynomial time [11]. Cryptographers follow
Cobham’s thesis in their security proofs by assuming that the adversary is com-
putable in probabilistic polynomial time (for short, PPT), i.e., executable on
a Turing machine extended with a read-only random tape that has been filled
with random bits, and working in (worst-case) polynomial time. One way to
take complexity into account in formal verification would be to formalize a pre-
cise execution model (e.g., Turing machines) and to explicitly count the number
of steps necessary for the execution of the algorithm. Such approach would for
the least be tedious and would give results depending on the particular exe-
cution model in use whereas one is mainly interested in the complexity class
independent of execution models. Implicit computational complexity suggests
a more convenient approach, which relates computations and/or programming
languages with complexity classes without relying on specific execution models
nor explicit counting of execution steps.

Although the languages of CertiCrypt [5], EasyCrypt [4] or CryptoVerif [8]
can be used for writing game-based security proofs, a language that can auto-
matically take into account complexity issues is still missing. In this paper we
show how Computational SLR [36] (for short, CSLR), a probabilistic lambda-
calculus with a type system that guarantees that computations are PPT, can
be extended so as to allow for defining cryptographic constructions, feasible ad-
versaries, security notions, computational assumptions, game transformations,
and game-based security proofs in a unified framework.

In implementations of cryptographic schemes, because computers are based
on binary digits, the cardinal of the support of a uniform distribution has to be a
power of 2. Even at a theoretical level, probabilistic Turing machines used in the
definition of PPT choose random numbers only among sets of cardinal a power
of 2 [17]. In the case of another cardinal, the uniform distribution can only either
be approximated or rely on code that is not guaranteed to terminate, although
it will terminate with a probability arbitrarily close to 1 [23]. With arbitrary
random choices that are used in games, one can define more distributions than
those allowed by the definition of PPT. This raises a fundamental concern that
is usually overlooked by cryptographers.

Related work. Over the last years, apart from the ones already mentioned above,
other frameworks for machine-checking security proofs in cryptography have
been proposed [2, 3, 12, 13, 30, 31]. However, these frameworks either ignore
complexity-theoretic issues or postulate the complexity of the involved functions.
More recently, in [20], Heraud and Nowak present their formalization in the
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proof assistant Coq of Bellantoni and Cook’s characterization of the class of
polytime functions [6]. They show how their formalization can be used to deal
with the complexity bound on the adversary in Nowak’s toolbox [30, 31], and
extend CertiCrypt [5] so as to alleviate the need for postulating the complexity
of functions.

Since Bellantoni and Cook’s characterization, there have been other ones.
For instance, a recent one is given in [25].

Mitchell et al. have proposed a process calculus with bounded replications
and messages to guarantee that processes are computable in polynomial time [28].
Messages can be terms of OSLR — Hofmann’s SLR [21] with a random ora-
cle [27]. Their calculus aim at being general enough to deal with cryptographic
protocols, whereas we aim at a simpler calculus able to deal with cryptographic
constructions.

Impagliazzo and Kapron have proposed two logics for reasoning about cryp-
tographic constructions [24]. The first one is based on a non-standard arithmetic
model, which, they prove, captures probabilistic polynomial-time computations.
The second one is built on top of the first one, with rules justifying computa-
tional indistinguishability.

The above approaches are limited to the verification of cryptographic algo-
rithms, and cannot deal with their implementations. This issue has been tackled
by Affeldt et al. in [1] where it is shown how game-based security proofs can be
conducted directly on implementations in assembly language.

Another probabilistic variant of Hofmann’s SLR is proposed in [14]. In con-
trast to OSLR [27] and CSLR [36], the bound on the reduction time is here
proved by syntactical means and thus makes explicit a notion of evaluation
in polynomial time. However, for our purpose, it is enough to know that an
adversary could be executed in polynomial time: we do not need an explicit re-
duction. Therefore, as it is the case with SLR and OSLR, there is no operational
semantics for CSLR.

Contributions. We demonstrate the usefulness of implicit computational com-
plexity in cryptography by writing game-based security proofs with CSLR, a
lambda calculus whose type system allows for restricting the computational
power of the adversary so that its attacks are feasible. By completeness, any
adversary can be defined as a CSLR term of a certain type. Our approach has
the advantage that it can automatically prove (by type inference [21]) that a
program is PPT.

We show that the standard practice of cryptographers, ignoring that polyno-
mial-time Turing machines cannot generate all uniform distributions, is actually
sound.

With respect to feasible adversaries, we define a notion of game indistin-
guishability. Although, it is not stronger than the notion of computational
indistinguishability of [36], it is simpler to prove and well-suited for formal-
izing game-based security proofs. We indeed show that this notion allows to
easily model security definitions and computational assumptions. Moreover we
show that computational indistinguishability implies game indistinguishability,
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so that we can reuse as it is the equational proof system of [36]. More pre-
cisely, the former allows for any arbitrary use of the compared program by the
adversary, while the latter provides more control over the adversary as it is
usual in game-based security definitions, thus making game indistinguishability
adequate.

CSLR, as initially defined by Zhang [36], does not allow superpolynomial-
time computations (i.e., computations that are not bounded above by any poly-
nomial) nor arbitrary uniform choices. Although this restriction makes sense
for the cryptographic constructions and the adversary, the game-based approach
to cryptographic proofs does not preclude the possibility of introducing games
that perform superpolynomial-time computations or that use arbitrary uniform
distributions. They are just idealized constructions that are used to define se-
curity notions but are not meant to make their way into implementations. We
thus extend CSLR into CSLR$

π that includes CSLR as a sublanguage and that
allows for superpolynomial-time computations and arbitrary uniform choices.

We illustrate the usability of our approach by proving formally in our proof
system that the public-key encryption scheme ElGamal [16] and the pseudoran-
dom bit generator of Blum, Blum and Shub [9] (for short, BBS) are secure in
the appropriate senses stated by cryptographers [18, 9] and formalized here.

Outline. We introduce CSLR in Section 2. In Section 3, we discuss the problem
of approximating uniform sampling from sets of arbitrary size using just fair coin
tosses, and study the relation with perfect uniform sampling. In Section 4, we
add the possibility of introducing superpolynomial-time primitives for defining
security notions and equip the calculus with a notion of game indistinguishabil-
ity. In Section 5, we illustrate the use of our calculus by proving formally with it
the semantic security the ElGamal encryption scheme and the unpredictability
of the Blum-Blum-Shub pseudorandom bit generator. Finally, we conclude in
Section 6.

2. Computational SLR

Bellantoni and Cook have proposed to replace the model of Turing machines
by their safe recursion scheme which defines exactly functions that are com-
putable in polynomial time on a Turing-machine [6]. This is an intrinsic, purely
syntactic mechanism: variables are divided into safe variables and normal vari-
ables, and safe variables must be instantiated by values that are computed using
only safe variables; recursion must take place on normal variables and interme-
diate recursion results are never sent to normal variables. When higher-order
recursors are concerned, it is also required that step functions must be linear,
i.e., intermediate recursive results can be used only once in each step. Thanks
to those syntactic restrictions, exponential-time computations are avoided. This
is an elegant approach in the sense that polynomial-time computation is char-
acterized without explicitly counting the number of computation steps.

Hofmann later developed a functional language called SLR to implement
safe recursion [21, 22]. It provides a complete characterization through typing
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of the complexity class of probabilistic polynomial-time computations. He intro-
duces a type system with modality to distinguish between normal variables and
safe variables, and linearity to distinguish between normal functions and linear
functions. He proves that well-typed functions of a proper type are exactly
polynomial-time computable functions. Moreover there is a type-inference algo-
rithm that can automatically determine the type of any expression [21]. Mitchell
et al. have extended SLR by adding a random bit oracle to simulate the oracle
tape in probabilistic Turing-machines [27].

More recently, Zhang has introduced CSLR, a non-polymorphic version of
SLR extended with probabilistic computations and a primitive notion of bit-
strings [36]. His use of monadic types [29], allows for an explicit distinction in
CSLR between probabilistic and purely deterministic functions. This distinction
was not possible with the extension by Mitchell et al. [27].

2.1. The language CSLR

We recall below the definition of CSLR and its main properties.

Types. Types are defined by:

τ, τ ′, . . . ::= Bits | τ × τ ′ | �τ → τ ′ | τ → τ ′ | τ ( τ ′ | Tτ

Bits is the base type for bitstrings. The monadic types Tτ capture proba-
bilistic computations that produce a result of type τ . All other types are from
Hofmann’s SLR [22]. τ × τ ′ are cartesian product types. There are three kinds
of functions: �τ → τ ′ are types for modal functions with no restriction on the
use of their argument; τ → τ ′ are types for non-modal functions where the
argument must be a safe value; τ ( τ ′ are types for linear functions where the
argument can only be used once. Note that linear types are not necessary when
we do not have higher-order recursors, which are themselves not necessary for
characterizing PTIME computations but can ease and simplify the program-
ming of certain functions (such as defining the Blum-Blum-Shub pseudorandom
bit generator in Section 4.4).

CSLR also has a sub-typing relation <: between types. In particular, the
sub-typing relation between the three kinds of functions is: τ ( τ ′ <: τ →
τ ′ <: �τ → τ ′. We also have Bits→ τ <: Bits( τ , stating that bitstrings can
be duplicated without violating linearity. The subtyping relation is inherited
from SLR, with an additional rule saying that the constructor T preserves sub-
typing [36].

Expressions. Expressions of CSLR are defined by the following grammar:

e1, e2, . . . ::= x | nil | B0 | B1 | caseτ | recτ | λx.e | e1e2

| 〈e1, e2〉 | proj1e | proj2e | rand
| return(e) | bind x← e1 in e2

B0 and B1 are two constants for constructing bitstrings: if u is a bitstring, B0u
(respectively, B1u) is the new bitstring with a bit 0 (respectively, 1) added at
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the left end of u. caseτ is the constant for case distinction: caseτ (n, 〈e, f0, f1〉)
tests the bitstring n and returns e if n is an empty bitstring, f0(n) if the first
bit of n is 0 and f1(n) if the first bit of n is 1. recτ is the constant for recur-
sion on bitstrings: recτ (e, f, n) returns e if n is empty, and f(n, recτ (e, f, n′))
otherwise, where n′ is the part of the bitstring n with its first bit cut off. rand
returns a random bit 0 or 1, each with the probability 1

2 . return(e) is the trivial
computation which returns e with probability 1. We note that CSLR has no
restriction on e in general — it can be a probabilistic computation too (of type
Tτ), in which case return(e) will be of type TTτ . bind x← e1 in e2 is the
sequential computation which first computes the probabilistic computation e1,
binds its result to the variable x, then computes e2. All other expressions are
from Hoffman’s SLR [22].

To ease the reading of CSLR terms, we shall use some syntactic sugar and
abbreviations in the rest of the paper:

• λ . e represents λx . e when x does not occur as a free variable in e;

• x $← e1; e2 represents the probabilistic sequential computation

bind x← e1 in e2

where e1 is a distribution in which a value x is chosen at random;

• x← e1; e2 represents the deterministic sequential (call-by-value) compu-
tation (λx . e2)e1;

• if e then e1 else e2 represents a simple case distinction
case(e, 〈e2, λ .e2, λ .e1〉), which tests the first bit of e: if it is 1 then e1 is
executed, otherwise e2 is executed;

• when a program F is defined recursively by λn . recτ (e1, e2, n), we often
write the definition as:

F
def
= λn . if n

?
= nil then e1 else e2(n, F (tailtailtail(n))),

where
?
= and tailtailtail are respectively the equality test between two bitstrings

and the function that remove the left-most bit from a bitstring. These
functions can be defined in CSLR [36].

Type system. Typing assertions of expressions are of the form Γ ` t : τ , where
Γ is a typing context that assigns types and aspects (inherited from Hofmann’s
system) to variables. Intuitively, an aspect specifies how the variable can be
used in the program. For instance, a linear aspect forces that the variable can
be used only once. A typing context is typically written as a list of bindings
x1 :a1 τ1, . . . , xn :an τn, where a1, . . . an are aspects. The type system for CSLR
can be found in [36].
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Operational semantics. We can define a reduction system for the computational
SLR, and prove that every closed term has a canonical form. In particular, the
canonical form of type Bits is:

b ::= nil | B0b | B1b.

If u is a closed term of type Bits, we write |u| for its length. We define the
length of a bitstring on its canonical form b:

|nil| = 0, |Bib| = |b|+ 1 (i = 0, 1).

If e is a closed program of type TBits and all possible results of e are of the
same length, we write |e| for the length of its result bitstrings.

The language deals with bitstrings, but in many discussions of cryptography,
it will be more convenient to see them as integers. We write b̂ for the integer
value of the bitstring b.

Denotational semantics. The denotational semantics of CSLR is defined based
on a set-theoretic model [36]. We write B for the set of bitstrings. To interpret
the probabilistic computations, we adopt the probabilistic monad defined in [33]:
if A is a set, we write DA : A → [0, 1] for the set of probability mass functions
over A. The original monad in [33] is defined using measures instead of mass
functions, and is of type (2A → [0,∞])→ [0,∞], where 2A denotes the set of all
subsets of A, so that it can also represent computing probabilities over infinite
data structures, not just discrete probabilities. But for the sake of simplicity,
in this paper as well as in [36] we work on mass functions instead of measures.
Note that the monad is not the one defined in [27], which is used to keep track
of the bits read from the oracle tape rather than reasoning about probabilities.

When d is a mass function of DA and a ∈ A, we also write Pr[d a] for the
probability d(a). If there are finitely many elements in d ∈ DA, we can write
d as {(a1, p1), . . . , (an, pn)}, where ai ∈ A and pi = d(ai). When we restrict
ourselves to finite distributions, our monad becomes identical to the one used
in [30, 31].

With this monad, every computation type Tτ in CSLR will be interpreted as
DJτK, where JτK is the interpretation of τ . Expressions are interpreted within an
environment which maps every free variable to an element of the corresponding
type. In particular, the two computational constructions are interpreted as:

Jreturn(e)Kρ = {(JeKρ, 1)}
r
x

$← e1; e2

z

ρ
= λv .

∑
v′∈JτK Je2Kρ[x 7→v′](v)× Je1Kρ(v

′)

where τ is the type of x (or Tτ is the type of e1). Interpretation of other types
and expressions is given in [36].

The main property of CSLR [27, 36] is:

Theorem 1. The set-theoretic interpretations of closed terms of type �Bits→
TBits in CSLR are exactly the functions that can be computed by a probabilistic
Turing machine in polynomial time.
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This theorem implies that CSLR is expressive enough to model an adversary
and to implement cryptographic constructions, as they both are probabilistic
polynomial-time functions. We remark that adversaries can return values of
types other than Bits (e.g., tuples of bitstrings), but we can always define ad-
versaries as a PPT function of type �Bits→ TBits by adopting some encoding
of different types of values into bitstrings, so the theorem still applies. The same
is true in case of functions with multiple arguments: we can uncurrify them and
then adopt some encoding so that the theorem still applies.

The development of our system is based on CSLR. We often need to state
that some functions are deterministic, however it is not sufficient to say the
such functions are of non-monadic type (types with no constructor T), e.g.,
�Bits→ Bits. Because the language is functional, it is easy to define functions
of non-monadic functions that involve probabilistic computations, for instance,
λx . ((λy . 1)rand). To specify a deterministic function in our system, we explic-
itly state that it is definable (and/or typable) in SLR.

An example of PPT function. The random bitstring generation is defined as
follows:

rsrsrs
def
= λn . if (n

?
= nil) then return(nil)

else b
$← rand; u

$← rsrsrs(tailtailtail(n)); return(b•u)

where • denotes the concatenation operation of bitstrings, which can be pro-
grammed and typed in CSLR [36]. rsrsrs receives a bitstring and returns a uni-
formly random bitstring of the same length. It can be checked that ` rsrsrs :
�Bits→ TBits.

Computational indistinguishability. A notion of computational indistinguisha-
bility in cryptography has been defined in the CSLR system [36].

Definition 1 (Computational indistinguishability). Two CSLR terms f1

and f2, both of type �Bits→ τ , are computationally indistinguishable (written
as f1 ' f2) if for every closed CSLR term A of type �Bits → τ → TBits and
every positive polynomial P , there exists some N ∈ N such that for all bitstrings
η with |η| ≥ N

|Pr[JA(η, f1(η))K 1]−Pr[JA(η, f2(η))K 1]| < 1
P (|η|)

This definition is a reformulation of Definition 3.2.2 of [17] in CSLR. In particu-
lar, a CSLR term of type �Bits→ Tτ defines a so-called probabilistic ensemble.

An equational proof system that can demonstrate computational indistin-
guishability between CSLR programs is also defined in [36]. The proof system
consists of rules justifying semantic equivalence, and rules justifying computa-
tional indistinguishability. Program equivalence is written as e1 ≡ e2, indicating
that e1 and e2 have the same denotation. In Figure 1, we list the proof rules
that will be used in this paper. Please refer to [36] for the full proof system.
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Rules justifying semantic equivalence:

AX-BIND-1
x

$← return(e1); e2 ≡ e2[e1/x]
AX-BIND-2

x
$← e; return(x) ≡ e

AX-BIND-3
x

$← (y
$← e1; e2); e3 ≡ y

$← e1; x
$← e2; e3

e ≡ e′

VAL
return(e) ≡ return(e

′
)

e1 ≡ e′1 e2 ≡ e′2
BIND

x
$← e1; e2 ≡ x

$← e
′
1; e
′
2

Rules justifying computational indistinguishability:

` ei : �Bits→ τ (i = 1, 2) e1 ≡ e2
EQUIV

e1 ' e2
` ei : �Bits→ τ (i = 1, 2, 3) e1 ' e2 e2 ' e3

TRANS-INDIST
e1 ' e3

x :
n Bits, y :

n
τ ` e : τ

′ ` ei : �Bits→ τ (i = 1, 2) e1 ' e2
SUB

λx . e[e1(x)/y] ' λx . e[e2(x)/y]

x :n Bits, n :n Bits ` e : τ λn.e[u/x] is numerical for all bitstring u
λx . e[i(x)/n] ' λx . e[B1i(x)/n] for all canonical polynomial i such that |i| < |p|

H-IND
λx . e[nil/n] ' λx . e[p(x)/n]

Figure 1: Some rules from the CSLR proof system

3. Uniform sampling

As it is the case for computers, CSLR has binary digits as its fundamental
representation of data. While uniform distributions are ubiquitous in cryptog-
raphy, binary representation does not support an exact implementation of an
arbitrary uniform distribution, particularly when the cardinal of its support is
not a power of 2. This section discusses the approximation of uniform sampling
in the setting of CSLR, and introduces an extension CSLR$ that includes a
uniform sampling primitive.

3.1. Modeling uniform sampling in CSLR

In modern computers based on binary digits, implementing uniform distribu-
tions requires that the cardinal of the support of a uniform distribution should
be a power of 2. In case of a different cardinal, such a distribution can be
approximated by repeatedly selecting a random value in a larger distribution
whose cardinal is a power of 2, until one obtain a value in the desired range or
reach the maximal number of allowed attempts (timeout, which determines the
precision of the approximation). In the latter case a default value is returned.1

1Another possible approach is to select a random value in a very large distribution, and
then take the remainder modulo the cardinal of the desired distribution.
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We implement this pseudo-uniform sampling in CSLR as follows:

zrandzrandzrand
def
= λn . λt . if t

?
= nil then return(0|n|)

else v
$← rsrsrs(n); if v ≥ n then zrandzrandzrand(n, tailtailtail(t))

else return(v)

The program takes two arguments: the sampling range (represented by the
value n̂) and the timeout (represented by |t|). The test ≥ can be programmed
in CSLR. The timeout is represented by the length of the bitstring t for the sake
of simplicity and readability of the program, but an alternative representation
of using t̂ as the timeout is certainly acceptable.

The program zrandzrandzrand uses u = 2dlog2 n̂e as the cardinal of the larger distribu-
tion and makes samplings in this distribution. The probability that one sam-
pling falls outside the desired range is u−n̂

u , thus probability that |t| consecutive

attempts fail is
(
u−n̂
u

)|t|
. zrandzrandzrand will return 0|n| as the default value after |t|

consecutive failures, so the probability that a value smaller than n̂ but other

than 0|n| is returned is
1−(u−n̂u )

|t|

n̂ , and the probability that 0|n| is returned is
1+(n̂−1)·(u−n̂u )

|t|

n̂ .
Similarly, a finite group can be encoded in CSLR and multiplication and

group exponentiation can be programmed (as implied by Theorem 1). In the
sequel, we shall write Zq (q a bitstring) for the set of bitstrings (of the same
length than q) of {0, 1, . . . , q̂ − 1}, and Z$

q for the truly uniform distribution
from Zq.

3.2. CSLR$

CSLR$ extends CSLR with a uniform sampling primitive sample of type
Bits( TBits. sample receives a bitstring as argument and returns uniformly a
random bitstring of the same length whose integer value is strictly smaller than
that of the argument, i.e., Jsample(q)K = Z$

q for every bitstring q. For instance,
the distribution produced by sample(101) is

Jsample(101)K = {(000,
1

5
), . . . , (100,

1

5
)}.

We can program a sampling from an arbitrary finite set (of CSLR definable
elements, usually just bitstrings in cryptography) using sample, assuming that
there is an index function over the set.

The type system of CSLR$ is extended with only the proper rules for sample
and constants. Note that the type of sample is Bits( TBits so that it can accept
arguments that are defined using linear resources.

The following lemma justifies the use of zrandzrandzrand to approximate the uniform
sampling from Zq:

Lemma 1. Let q be a closed CSLR term of type �Bits→ Bits. The probabilistic
ensembles Jλη .zrandzrandzrand(q(η), η)K and Jλη . sample(q(η))K are computationally in-
distinguishable, i.e., for every closed CSLR term A of type �Bits→ τ → TBits
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and every positive polynomial P , there exists some N ∈ N such that for all
bitstrings η with |η| ≥ N

|Pr[JA(η,zrandzrandzrand(q(η), η))K 1]−Pr[JA(η, sample(q(η)))K 1]| < 1

P (|η|)
.

Proof. We show that the two ensembles are statistically close:

1

2
· Σv∈Z

q̂(η)
|Pr[Jzrandzrandzrand(q(η), η)K v]−Pr[Jsample(q(η))K v]|

=
1

2
· Σv∈Z

q̂(η)

∣∣∣Pr[Jzrandzrandzrand(q(η), η)K v]−Pr[Z$

q̂(η)
 v]

∣∣∣
=

1

2
·

(∣∣∣∣∣1 + (q̂(η)− 1) · ε
q̂(η)

− 1

q̂(η)

∣∣∣∣∣+ (q̂(η)− 1) ·

∣∣∣∣∣1− εq̂(η)
− 1

q̂(η)

∣∣∣∣∣
)

=
q̂(η)− 1

q̂(η)
· ε

is negligible with respect to |η|, where

ε =

(
2dlog2 q̂(η)e − q̂(η)

2dlog2 q̂(η)e

)|η|
≤ (1/2)|η|.

We can then conclude because statistical closeness implies computational indis-
tinguishability (cf. Section 3.2.2 of [17]).

In Lemma 1, the security parameter η is used directly as the timeout of
zrandzrandzrand . A more general implementation would instantiate the timeout by a
polynomial of |η|, i.e., zrandzrandzrand(q(η), p(η)) where p is a well-typed SLR function
of type �Bits → Bits. The choice of p will affect the final distribution of the
program and consequently the advantage of adversaries in security experiments,
but that remains negligible. It is possible to use CSLR to deal with exact
security and the exact timeout with p is necessary in that case.

We say a CSLR program P with a free variable s of type �Bits → TBits
is a s-sampling-based program if every occurence of the free variable s is in
an application s(t), with t an arbitrary CSLR term of type Bits. We call s
the sampling function variable. The purpose of this definition is to be able to
exclude higher-order arguments such as zrandzrandzrand or sample in the next proposition.

If a CSLR$ program P can be obtained from a s-sampling-based CSLR
program P ′ by replacing all s with sample, i.e., P = P ′[sample/s], we say that
P is a well-formed sampling program.

Consider the computational indistinguishability as defined in Definition 1,
but now programs (except for adversaries) can be defined in CSLR$, i.e., their
definitions can include the primitive sample. Lemma 1 implies that we can freely
replace the approximate uniform sampling zrandzrandzrand by the truly uniform sampling
sample or vice versa in sampling-based CSLR programs, without affecting the
computational indistinguishability.
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Proposition 1. For any arbitrary s-sampling-based CSLR program P of type
�Bits→ τ , with the sampling function variable s as the only free variable,

λη . P (η)[λx .zrandzrandzrand(x, η)/s] ' λη . P (η)[sample/s].

Proof. First, it is easy to show that for n pairs of computationally indistinguish-
able CSLR programs (f1

1 , f
1
2 ), . . . , (fn1 , f

n
2 ) (n an arbitrary number), it holds that

λη . (f1
1 (η), . . . , fn1 (η)) ' λη . (f1

2 (η), . . . , fn2 (η)).
Next we define

• P ′ by renaming each occurence of s by a distinct fresh variables s1, . . . , sn
in P so that we have P ′[s/s1, . . . , s/sn] = P ;

• Q′ by replacing each subterm si(ti) in P ′ by a distinct fresh variable vi,
i.e., Q′[s1(t1)/v1, . . . , sn(tn)/vn] = P ′ (it is clear that each ti has either
no free variable or only η as a free variable);

• Q by replacing each subterm vi in Q′ by a projection proji(v) with v a
fresh variable, i.e., Q = Q′[proj1(v)/v1, . . . , projn(v)/vn].

Clearly, Q is still a CSLR program and

P (η)[sample/s] ≡ Q(η)[(sample(t1), . . . , sample(tn))/v]

P (η)[λx .zrandzrandzrand(x, η)/s] ≡ Q(η)[(zrandzrandzrand(t1, η), . . . ,zrandzrandzrand(tn, η))/v]

where ≡ denotes program equivalence as defined in the proof system of CSLR
in [36]. For an arbitrary CSLR adversary A,

A(η, P (η)[sample/s]) ≡ A(η,Q(η)[(sample(t1), . . . , sample(tn))/v]

≡ A′(η, (sample(t1), . . . , sample(tn)))

A(η, P (η)[λx .zrandzrandzrand(x, η)/s]) ≡ A(η,Q(η)[(zrandzrandzrand(t1), . . . ,zrandzrandzrand(tn))/v]

≡ A′(η, (zrandzrandzrand(t1), . . . ,zrandzrandzrand(tn)))

whereA′ = λη . λf .A(η,Q(η)[f(η)/v]). Because λη .zrandzrandzrand(ti, η) ' λη . sample(ti)
(i = 1, . . . n) by Lemma 1,

λη . (zrandzrandzrand(t1, η), . . . ,zrandzrandzrand(tn, η)) ' λη . (sample(ti), . . . , sample(tn)),

therefore

|Pr[JA(η, P (η)[λx .zrandzrandzrand(x, η)/s])K 1]−Pr[JA(η, P (η)[sample/s])K 1]|
= |Pr[JA′(η, (zrandzrandzrand(t1, η), . . . ,zrandzrandzrand(tn, η)))K 1]

−Pr[JA′(η, (sample(t1), . . . , sample(tn)))K 1]|

is negligible since A′ is also a valid CSLR adversary.
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3.3. Uniform computational indistinguishability

The definition of computational indistinguishability (as in Definition 1 or
its original form in cryptography, e.g., Definition 3.2.2 in [17]) enforces that
adversaries must be in the complexity class PPT. In our setting, it means that
an adversary must be definable in the original CSLR without using the prim-
itive sample. However it is a standard practice of cryptographers to ignore
that polynomial-time Turing machines cannot generate all distributions. We
formally show in this section that this practice is actually sound. Indeed, we
can allow adversaries to use uniform sampling primitive sample and such ad-
versaries gain no significantly larger capability than PPT adversaries in terms
of computational indistinguishability.

Let A be a closed CSLR$ program of type �Bits → τ → TBits with τ an
arbitrary type. We call A a uniform adversary if every occurence of sample is
in an application sample(t) for some subterm t.

Definition 2 (Uniform comp. ind.). Two CSLR$ terms f1 and f2, both of
type �Bits→ τ , are uniform computationally indistinguishable (written as f1 '$

f2) if for every uniform adversary A of type �Bits → τ → TBits and every
positive polynomial P , there exists some N ∈ N such that for all bitstrings η
with |η| ≥ N

|Pr[JA(η, f1(η))K 1]−Pr[JA(η, f2(η))K 1]| < 1

P (|η|)
.

For the sake of clarity, we shall sometimes refer to the original definition
of computational indistinguishability where adversaries are not allowed to use
sample as PPT-computational indistinguishability. The following proposition
states that uniform computational indistinguishability is equivalent to PPT-
computational indistinguishability.

Proposition 2. For every pair of well-formed sampling CSLR$ programs P1, P2

of type �Bits→ τ , P1 ' P2 if and only if P1 '$ P2.

Proof. Clearly every PPT adversary is also a uniform adversary whose defini-
tion does not include sample, hence uniform computational indistinguishability
implies PPT-computational indistinguishability.

In the proof, we write

Pr[JQ1K 1]
.
= Pr[JQ2K 1]

if |Pr[JQ1K 1]−Pr[JQ2K 1]| is negligible w.r.t. parameter |η|, where η
appears as a bitstring in Q1 and Q2.

For the reverse direction, with an arbitrary uniform adversary A, we define

A′ = λη .A[λx .zrandzrandzrand(x, η)/sample],

P ′i = λη . Pi(η)[λx .zrandzrandzrand(x, η)/sample].

Clearly, A′ is a PPT adversary and we have

A′(η, P ′i (η)) ≡ A(η, Pi(η))[λx .zrandzrandzrand(x, η)/sample].

13



We can prove that

Pr[JA(η, P1(η))K 1]
.
= Pr[JA′(η, P ′1(η))K 1]

(by Proposition 1, A(η, P1(η)) ' A′(η, P ′1(η)))
.
= Pr[JA′(η, P1(η))K 1]

(by Proposition 1, P1 ' P ′1 and A′ being the PPT adversary)
.
= Pr[JA′(η, P2(η))K 1]

(by hypothesis P1 ' P2 and A′ being the PPT adversary)
.
= Pr[JA′(η, P ′2(η))K 1]

(by Proposition 1, P2 ' P ′2 and A′ being the PPT adversary)
.
= Pr[JA(η, P2(η))K 1]

(by Proposition 1, A(η, P2(η)) ' A′(η, P ′2(η))),

therefore P1 '$ P2.

Proposition 2 suggests that we can replace the notion of computational in-
distinguishability with the more general notion of uniform computational indis-
tinguishability and use the CSLR proof system as it is.

4. A game-based proof system

CSLR by itself only considers computations based on binary digits and does
not allow superpolynomial-time computations. Section 3 shows that we can in-
troduce uniform sampling into CSLR and the proof system for computational
indistinguishability remains valid. The complexity restriction makes sense for
the cryptographic constructions and the adversary, however the game-based ap-
proach to cryptographic proofs does not preclude the possibility of introducing
games that perform superpolynomial-time computations — they are just ideal-
ized constructions that are used to define security notions but are not meant to
make their way into implementations.

In this section, we extend CSLR both with superpolynomial-time computa-
tions and arbitrary uniform choices.

4.1. CSLR$
π

CSLR$
π extends CSLR with the uniform sampling primitive sample and a

set π of superpolynomial-time primitives.
The type system of CSLR$

π is extended with only the proper rules for sample
and superpolynomial-time constants in π. Note that in CSLR$

π we do not care
any more about the complexity class that can be characterized using the type
system2 — the language and type system of CSLR$

π are there for defining and
describing security notions, not adversaries.

2Nevertheless, one might expect that the complexity class characterized by CSLR$
π is

PPTX , where X is the smallest complexity class in which additional constants can be defined,
but the exact relation between CSLR$

π and the complexity classes remains to be clarified —
the addition of the primitive sample alone allows for defining more distributions than in PPT.
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We adopt the notion of uniform computational indistinguishability in Sec-
tion 3.3, except that in CSLR$

π we are considering indistinguishability between
CSLR$

π programs. Adversaries remains uniform adversaries that are definable
in CSLR$.

Definition 3 (Comp. ind. in CSLR$
π). Two CSLR$

π terms f1 and f2, both
of type �Bits → τ , are computationally indistinguishable (written as f1 '$

π f2)
if for every uniform adversary A of type �Bits→ τ → TBits that is definable in
CSLR$ , and every positive polynomial P , there exists some N ∈ N such that
for all bitstrings η with |η| ≥ N

|Pr[JA(η, f1(η))K 1]−Pr[JA(η, f2(η))K 1]| < 1

P (|η|)
.

We call a probability distribution D over bitstrings a CSLR$
π distribution, if

it can be realized by a CSLR$
π program (normally with sample), i.e., a closed

CSLR$
π term e of type TBits such that JeK = D, and we write dDe for the CSLR$

π

program that realizes the distribution.
For every closed CSLR$

π program e of type Tτ , we write samp (e) for the
sample space of JeK, i.e., the set of all values of JτK which e returns with nonzero
probability.

Lemma 2. For every pair of uniform CSLR$
π distributions C and D, if f is a

CSLR$
π function of type �Bits→ Bits such that JfK is a n-to-1 surjection from

samp (C) to samp (D), then x
$← dCe; return(f(x)) ≡ dDe.

Proof. The distribution of the lefthand side is

r
x

$← dCe; return(f(x))
z

= {(JfK(v), n× 1

| samp (C)|
) | v ∈ samp (C)}.

Because JfK is a n-to-1 surjection from samp (C) to samp (D), we have

| samp (C)| = n · | samp (D)|,

and it is clear that the above distribution equals D.

4.2. Game indistinguishability

The notion of computational indistinguishability already allows us to per-
form some cryptographic proofs as shown in [36], but many cryptographers
advocate the so-called game-based approach which structures security proofs as
a sequence of game transformations [7, 34] and computational indistinguishabil-
ity is not a practical notion for game-based proofs. CSLR$

π can help to formalize
game transformations and makes it feasible to automate the proof checking pro-
cedure.

In game-based proofs, an adversary involved in a game can be an arbitrary
probabilistic polynomial-time program, hence it can be encoded as a well-formed
CSLR$ sampling program of type�Bits→ Tτ , where the security parameter will
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bound its running time, and τ is the type of messages returned by the adversary.
A game is encoded as a closed, well-formed CSLR$

π sampling function of type
�Bits → (�Bits → Tτ) → TBits that takes the security parameter and the
adversary as arguments and returns one bit denoting whether the adversary
wins the game. We say two games are indistinguishable if no adversary can win
one of the games with significantly larger probability than in the other.

Definition 4 (Game indistinguishability). Two CSLR$
π games g1 and g2

are game indistinguishable (written as g1 ≈ g2) if for every uniform CSLR$

adversary A of type �Bits→ Tτ , and every positive polynomial P , there exists
some N ∈ N such that for all bitstrings η with |η| ≥ N ,

|Pr[Jg1(η,A)K 1]−Pr[Jg2(η,A)K 1]| < 1

P (|η|)

The above definition formalizes the idea that the change between the two
games g1 and g2 cannot be noticed by an adversary.

Intuitively, the difference between computational indistinguishability and
game indistinguishability is that, the former allows for any arbitrary use of the
compared program by the adversary, while the latter provides more control over
the adversary as it is usual in game-based security definitions, thus making game
indistinguishability adequate. Hence, game indistinguishability is no stronger
than computational indistinguishability as proved in the following proposition.
This is why we can sometimes use the CSLR$

π proof system, which is designed
for proving computational indistinguishability, for proving game indistinguisha-
bility.

Proposition 3. Computational indistinguishability in CSLR$
π implies game in-

distinguishability.

Proof. Let g1 and g2 be two arbitrary games of type �Bits→ (�Bits→ Tτ)→
TBits. For every uniform CSLR$ adversary A of type �Bits → Tτ , construct
the following adversary A′:

λη . λg . b
$← g(η,A);

if b
?
= 1 then return(1) else return(0),

and it can be checked that A′ is still a uniform CSLR$ adversary and
Pr[JA′(η, gi(η))K  1] = Pr[Jgi(η,A)K  1]. Because g1 and g2 are compu-
tationally indistinguishable, |Pr[JA′(η, g1(η))K 1]−Pr[JA′(η, g2(η))K 1]| is
negligible.

4.3. CSLR$
π proof system

CSLR$
π inherits most of the equational proof system of CSLR: All the rules

for program equivalence in CSLR can be used directly in CSLR$
π . No extra

rules are needed for the primitive sample, but we can add rules for constants
in π if necessary. The four rules for proving computational indistinguishability
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` ei : �Bits→ τ (i = 1, 2) e1 ≡+ e2
EQUIV

e1 '$
π e2

` ei : �Bits→ τ (i = 1, 2, 3) e1 '$
π e2 e2 '$

π e3
TRANS-INDIST

e1 '$
π e3

x :n Bits, y :n τ ` e : τ ′ ` ei : �Bits→ τ (i = 1, 2) e1 '$
π e2

e is well-formed sampling program in CSLR$

SUB
λx . e[e1(x)/y] '$

π λx . e[e2(x)/y]
x :n Bits, n :n Bits ` e : τ λn.e[u/x] is numerical for all bitstrings u

λx . e[i(x)/n] '$
π λx . e[B1i(x)/n] for all canonical polynomials i such that |i| < |p|

H-IND
λx . e[nil/n] '$

π λx . e[p(x)/n]

Figure 2: Rules for computational indistinguishability in CSLR$
π

remain the same as in CSLR (Figure 2) except that in the rule SUB, a new
premise enforces that the substitution context (the term e) must be a well-
formed sampling program in CSLR$, i.e., a program that uses sample properly
and does not contain any superpolynomial-time constant.

The soundness of the system still holds and the proof just goes as for
CSLR [36]. In particular, the proof for the rule SUB contains a construction of
a new adversary with the context, which remains a uniform CSLR$ adversary
thanks to the new premise.

We will also use the program equivalence defined in [36]. Roughly speaking,
two terms e1 and e2 are equivalent (written e1 ≡ e2) if they have the same
denotational semantics in any environment. Game transformation will consist
in rewriting modulo the relation of game indistinguishability or computational
indistinguishability or program equivalence. In particular, we will reuse as it is
the equational proof system of [36] for game transformations.

Note that the rule H-IND is not used throughout this paper, but it is an
important rule representing the hybrid proof technique that is frequently used
in cryptography. Interested readers can find more detailed explanations and
examples in [36].

Our further development in CSLR$
π also relies on a few intermediate lemmas

that are frequently used in game-based proofs. The first one states that an
expression e which does not depend on a random bit b cannot guess this bit b.

Lemma 3. If Γ ` e : TBits and, for all definable ρ ∈ JΓK, the domain of the
distribution JeKρ is {0, 1}, then

b
$← rand; x

$← e; return(x
?
= b) ≡ rand

where b 6∈ dom(Γ).

Proof. We denote by e′ the program on the left-hand side. For every definable
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ρ ∈ Γ, Je′Kρ = {(0, p0), (1, p1)}, where

p0 = Pr[JrandKρ 6= JeKρ] =
1

2
·Pr[JeKρ 6= 0] +

1

2
·Pr[JeKρ 6= 1] =

1

2

p1 = Pr[JrandKρ = JeKρ] =
1

2
·Pr[JeKρ = 0] +

1

2
·Pr[JeKρ = 1] =

1

2

hence e′ ≡ rand.

The second lemma allows for a simplification when the semantics of a subex-
pression is a permutation. Remember that Zq is the set of bitstrings defined at
the end of Section 3.1.

Lemma 4. Let f, f ′ be two closed CSLR$
π terms of type �Bits→ Bits such that

JfK is a permutation over B, and, for every bitstring q, Jf ′K is a permutation
over {JfK(v) | v ∈ Zq}. It holds that

λη . x
$← sample(q); return(fx) ≡ λη . x

$← sample(q); return(f ′(fx))

Proof. Let e1, e2 denote the two programs on the left-hand and right-hand side
respectively. Then for a given bitstring η, Jei(η)K are two distributions over
bitstrings, and dom(Je2(η)K) = {JfK(v) | v ∈ Zq} = dom(Je1(η)K) since Jf ′K is
a permutation over dom(Je1(η)K). Let e′i be the program obtained from ei by
replacing sample(q) with a fresh variable w, i.e., e′i[sample(q)/w] = ei, then
Jei(η)K = Jλw . e′i(η)K(Z$

q). By Lemma 3.1 of [31], Je1(η)K = Jλw . e′1(η)K(Z$
q) =

Jλw . e′2(η)K(Z$
q) = Je2(η)K as Jf ′K is a permutation.

4.4. Cryptographic constructions in CSLR$
π

This section presents examples of cryptographic constructions written in
CSLR$

π . Note that they do not use any of the constants in π that are only to
be used in the definitions of security notions.

The public-key encryption scheme ElGamal. Let G be a finite cyclic group of
order q (depending on the security parameter η) and γ ∈ G be a generator. The
ElGamal encryption scheme [16] can be implemented in CSLR$

π by the following
programs:

• Key generation:

KGKGKG
def
= λη . x

$← sample(q); return(γx, x)

KGKGKG is of type �Bits→ T(Bits× Bits).

• Encryption:

EncEncEnc
def
= λη . λpk . λm . y

$← sample(q); return(γy, pky ∗m)

EncEncEnc is of type �Bits→ �Bits→ �Bits→ T(Bits× Bits).
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• Decryption:

DecDecDec
def
= λη . λsk . λc . proj2(c) ∗ (proj1(c)sk)−1

DecDecDec is of type �Bits → �Bits → �Bits → Bits, which does not involve
monadic type because decryption is deterministic.

Note that when encoding cryptographic constructions in CSLR$
π, we put the

security parameter η explicitly as the argument of the programs. However, as we
work on bitstrings in CSLR$

π, the security parameter in traditional cryptographic
contexts actually corresponds to |η| here. In the case of ElGamal encryption,
the group order q will be determined by η. Particularly, for the encryption
scheme to be semantically secure, we must choose a suitable group such that
the DDH assumption holds, and its order will be necessarily exponential w.r.t.
|η|. There are efficient algorithms that compute a suitable DDH group given η,
hence can be programmed in CSLR$

π without using any constant from π [10].
When sample is replaced by λx .zrandzrandzrand(x, η) in the functions KGKGKG ,EncEncEnc,DecDecDec,

they are all computable in polynomial time w.r.t. η, even though EncEncEnc and DecDecDec
allow recursion on arguments other than η — these arguments (if valid) are
all polynomially bound by η. Validity check of arguments are omitted in the
implementation, but they can also be programmed in CSLR$

π without using any
constant from π.

The Blum-Blum-Shub pseudorandom bit generator. The BBS generator defined
in [9] is a deterministic function and can be programmed in CSLR$

π as follows:

BBSBBSBBS
def
= λη . λl . λs .bbsrecbbsrecbbsrec(η, l, s2mod n)

where bbsrecbbsrecbbsrec is defined recursively as

bbsrecbbsrecbbsrec
def
=

λη . λl . λx . if l
?
= nil then nil else parityparityparity(x)•bbsrecbbsrecbbsrec(η, tailtailtail(l), x2mod n)

where n is determined by the security parameter η. BBSBBSBBS is a well-typed SLR-
function of type �Bits → �Bits → �Bits → Bits, with the second argument
being the length of the resulted pseudorandom bitstring and the third argument
being the seed, which is polynomially bound w.r.t. η.

4.5. Security notions in CSLR$
π

Security notions can be defined in term of game indistinguishability. We
show how to use it to define some common security notions in cryptography.
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Semantic security. A public-key encryption scheme (KGKGKG ,EncEncEnc,DecDecDec) is said to
be semantically secure [18] if:

λη . λA . (pk, sk)
$← KGKGKG(η);

(m0,m1,A′)
$← A(η, pk);

b
$← rand;

c
$← EncEncEnc(η,mb, pk);

b′
$← A′(c);

return(b′
?
= b)

≈ λη . λA . rand

where A and A′ are of types, respectively, �Bits→ �τk → T(τm×τm× (�τe →
TBits)) and �τe → TBits. Note that τk, τe and τm are the respective types
of public keys, cipher-texts and plain-texts, which can be tuples of bitstrings
that are distinguished in the language. Roughly speaking, it means that any
adversary A playing the semantic security game (left-side game) cannot do sig-
nificantly better than a random player (right-side game). The semantic security
game is to be read as follows: A pair (pk, sk) of public and secret keys is gener-
ated; the public key pk is passed to the adversary A which returns two messages
m1,m2 and a function A′, which can be seen as the continuation of the adver-
sary A and contains necessary information that A has already obtained; one of
the messages mb, is selected at random and encrypted with the public key pk;
the obtained cipher-text c is then passed to the function A′, which returns its
guess b′ for the selected message; the result of the game indicates whether the
adversary’s guess is correct.

Left-bit unpredictability. An SLR-function F is left-bit unpredictable if:

λη . λA . s $← sample(q); u← F (η, s);

b
$← A(η, tailtailtail(u)); return(b

?
= headheadhead(u))

≈ λη . λA . rand (1)

where A is of type �Bits → �Bits → Bits. Roughly speaking, it means that
any adversary A playing the unpredictability game (left-side game) cannot do
significantly better than an adversary playing against a perfectly secure scheme
(right-side game). The left-bit unpredictability game is to be read as follows:
a seed s is selected at random in a set of cardinal q; the function F is then
used to compute a pseudorandom bit sequence u of size l(|q|) > |q| where l
is a polynomial; the sequence u minus its first bit is passed to the adversary
A which returns its guess b for the first bit; the result of the game indicates
whether the adversary’s answer is correct. It was proved by Yao in [35] that
left-bit unpredictability is equivalent to passing all polynomial-time statistical
tests.

A notion of next-bit unpredictability was defined in [36], but it is based on
the sampling from bitstrings of a given length. We can generalize this notion
and obtain another notion of left-bit unpredictability, which we shall refer to as
strong left-bit unpredictability because it implies the game-based notion of left-
bit unpredictability (1). An SLR-function F is strongly left-bit unpredictable
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λη . λA . s
$← sample(q); u← F (η, s); b

$← A(η, tailtailtail(u)); return(b
?
= headheadhead(u))

≡ λη . λA . u
$←
(

s
$← sample(q);

return(F (η, s))

)
; b

$← A(η, tailtailtail(u)); return(b
?
= headheadhead(u))

(By rules AX-BIND-3 and AX-BIND-1 of [36])

≈ λη . λA . u
$←

 s
$← sample(q);

b′
$← rand;

return(b′•tailtailtail(F (η, s)))

; b
$← A(η, tailtailtail(u)); return(b

?
= headheadhead(u))

(By strong left-bit unpredictability)

≡ λη . λA . s
$← sample(q); b′

$← rand; u← b′•tailtailtail(F (η, s)); b
$← A(η, tailtailtail(u));

return(b
?
= headheadhead(u))

(By rules AX-BIND-3 and AX-BIND-1 of [36])

≡ λη . λA . b′
$← rand; s

$← sample(q); u← b′•tailtailtail(F (η, s)); b
$← A(η, tailtailtail(u));

return(b
?
= b′)

(By rules AX-BIND-3 of [36])

≡ λη . λA . rand
(By Lemma 3)

Figure 3: Proof of Proposition 4

if

λη . s
$← sample(q);

return(F (η, s))
'$
π

λη . s
$← sample(q);

b
$← rand;

return(b•tailtailtail(F (η, s)))

Proposition 4. Strong left-bit unpredictability implies left-bit unpredictability.

Proof. The proof can be done using the CSLR$
π proof system. See Figure 3 for

details.

5. Applications

5.1. Semantic security of the ElGamal encryption scheme

In this section, we illustrate our proof system by proving the semantic se-
curity of the ElGamal encryption scheme. The security of ElGamal is based
on the the Decisional Diffie-Hellman (DDH) assumption [15], which can also be
defined in CSLR$

π.

Decisional Diffie-Hellman assumption. Let q be a bitstring depending on the
security parameter η, G be a finite cyclic group of order q̂ and γ ∈ G be a
generator. The Decisional Diffie-Hellman (DDH) assumption [15] states that,
roughly speaking, no efficient algorithm can distinguish between triples of the
form (γx, γy, γxy) and (γx, γy, γz) where x, y and z are random numbers such
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that 0 ≤ x, y, z < q̂.3 It can be formalized in CSLR$
π as computational indistin-

guishability between two CSLR$
π programs: DDHLDDHLDDHL ' DDHRDDHRDDHR, where

DDHLDDHLDDHL = λη . x
$← sample(q); y

$← sample(q);
return(γx, γy, γxy)

DDHRDDHRDDHR = λη . x
$← sample(q); y

$← sample(q); z
$← sample(q);

return(γx, γy, γz)

Figure 4 shows the detailed proof of semantic security of the ElGamal en-
cryption scheme, which follows the same structure as the one in [30], but here the
type system of CSLR guarantees that the adversary is probabilistic polynomial-
time. This was not dealt with in [30]. Moreover here all transformations are
purely syntactic (thus allowing the immediate prospect of being implemented
in an automated tool), while in [30] they were done at the semantics level.

Note that by using Lemma 4, we assume that the adversary A will not send
any junk messages, i.e., bitstrings that are not elements of the group Gη. This
is considered as a trivial case in cryptography proofs because the ElGamal en-
cryption procedure will automatically reject the junk messages. But in practice,
in more complex crypto-systems, this may not be trivial at all. In our proof
system, we can also consider the case where adversaries may send junk mes-
sages. It suffices to provide the corresponding code in the program EncEncEnc which
tests the validity of incoming messages, and we can still prove semantic security
in the CSLR$

π proof system. Another possibility would be to use a richer type
system to reject adversaries returning junk.

We also note that by replacing all occurence of sample(q) in the proof with
zrandzrandzrand(q, η), we immediately obtain a proof for the semantic security of an im-
plementation of the ElGamal scheme. The validity of the new proof is justified
by Propositions 1 and 2.

5.2. Unpredictability of the BBS pseudorandom bit generator

CLSR+ also allows us to formalize directly the proof of unpredictability
given in [31] for the pseudorandom bit generator BBS. The proof requires a test
for quadratic residuosity which is a superpolynomial-time computation — it can
be introduced into CSLR$

π as a constant (in π). Moreover this proof is based on
the Quadratic Residuosity Assumption stated below that uses arbitrary uniform
choices.

Let n be a positive number and Zn be the set of integers modulo n. The
multiplicative group of Zn is written Z∗n and consists of the subset of integers
modulo n which are coprime with n. An integer x ∈ Z∗n is a quadratic residue
modulo n iff there exists a y ∈ Z∗n such that y2 = x (mod n). Such a y is called
a square root of x modulo n. We write Z∗n(+1) for the subset of integers in Z∗n
with Jacobi symbol equal to 1.

3We do not assume that q̂ is prime. However most groups in which DDH is believed to be
true have prime order [10].
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λη . λA . 〈pk, sk〉 $← KGKGKG(η); 〈m0,m1,A′〉
$← A(η, pk);

b
$← rand; c

$← EncEncEnc(η, pk,mb); b
′ $← A′(c);

return(b
?
= b′)

≡ λη . λA . 〈pk, sk〉 $←
(

x
$← sample(q);

return(γx, x)

)
; 〈m0,m1,A′〉

$← A(η, pk);

b
$← rand; c

$←
(

y
$← sample(q);

return(γy, pky ∗mb)

)
; b′

$← A′(c);

return(b
?
= b′)

(Inline of definition of KGKGKG and EncEncEnc)

≡ λη . λA . x $← sample(q); y
$← sample(q); b

$← rand;

〈m0,m1,A′〉
$← A(η, γx); b′

$← A′(γy, (γx)y ∗mb);
return(b

?
= b′)

(By the equivalence rules AX-BIND-3 and AX-BIND-1 in [36])

≡ λη . λA . v $← DDHLDDHLDDHL(η); b
$← rand; 〈m0,m1,A′〉

$← A(η, proj1(v));

b′
$← A′(proj2(v), proj3(v) ∗mb);

return(b
?
= b′)

(Inline of DDHLDDHLDDHL)

≈ λη . λA . v $← DDHRDDHRDDHR(η); b
$← rand; 〈m0,m1,A′〉

$← A(η, proj1(v));

b′
$← A′(proj2(v), proj3(v) ∗mb);

return(b
?
= b′)

(By DDH assumption and SUB)

≡ λη . λA . x $← sample(q); y
$← sample(q); z

$← sample(q); b
$← rand;

〈m0,m1,A′〉
$← A(η, γx); b′

$← A′(γy, γz ∗mb);
return(b

?
= b′)

(Inline of DDHRDDHRDDHR)

≡ λη . λA . x $← sample(q); y
$← sample(q); b

$← rand; 〈m0,m1,A′〉
$← A(η, γx);

v′
$←
(

z
$← sample(q);

return(γz ∗mb)

)
; b′

$← A′(γy, v′);

return(b
?
= b′)

(By the equivalence rules AX-BIND-3 and AX-BIND-1 in [36])

≈ λη . λA . x $← sample(q); y
$← sample(q); b

$← rand; 〈m0,m1,A′〉
$← A(η, γx);

v′
$←
(

z
$← sample(q);

return(γz)

)
; b′

$← A′(γy, v′);

return(b
?
= b′)

(By Lemma 4 as ( ∗mb) is a permutation over the group when mb is also from the group)

≡ λη . λA . b $← rand; x
$← sample(q); y

$← sample(q); z
$← sample(q);

〈m0,m1,A′〉
$← A(η, γx); b′

$← A′(γy, γz);

return(b
?
= b′)

(By the equivalence rules AX-BIND-3 and AX-BIND-1 in [36])

≡ λη . λA . rand
(By Lemma 3)

Figure 4: Proof of semantic security of ElGamal
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Quadratic Residuosity Assumption. The quadratic residuosity problem is the
following: given an odd composite integer n, decide whether or not an x ∈
Z∗n(+1) is a quadratic residue modulo n. The quadratic residuosity assumption
(QRA) states that the above problem is intractable when n is the product of
two distinct odd primes [26]. We reformulate the assumption in CSLR$

π:

λη . λA . x $← dZ∗n(+1)e; b $← A(η, n, x); return(b
?
= qrqrqr(x)) ≈ λη . λA . rand

where A is of type �Bits → �Bits → �Bits → TBits, qrqrqr(x) is the quadratic
residuosity test of the element x of Z∗n in our encoding, and n is a bitstring
expression that depends on the security parameter η. dZ∗n(+1)e is the CSLR$

implementation of the uniform distribution Z∗n(+1), which can be defined using
the uniform sampling primitive sample. The function qrqrqr is not definable in
CSLR$ and is considered here as a native constant of type4 Bits ( Bits in
CSLR$

π.
Also notice that the integer n, as well as elements in Z∗n, are polynomially

bounded by the security parameter η, so the adversary can safely make recursion
over n and elements of Z∗n without exceeding the complexity bound. This is often
made implicit, sometimes unclear in traditional cryptographic proofs, and can
lead to errors in proofs. CSLR$ makes it explicit by forcing the users to write
well-typed terms that can be automatically type-checked.

The proof of left-bit unpredictability of BBS also relies on a set of number-
theoretic facts about Z∗n and QRn (the set of quadratic residues modulo n).
We list some of the facts that are necessary for building the proof, and their
implications in terms of CSLR$

π programs. These facts (except the first one)
assume that n is a Blum integer, which is the product of two distinct primes,
both congruent to 3 modulo 4. In this case, each x ∈ QRn has a unique square
root in QRn, which is called the principal square root and denoted by

√
x. Note

that in the sequel, we simply write x2 (omitting the modn part) for the group
square operations in Z∗n.

Fact 1. The function which maps an x ∈ Z∗n to x2 ∈ QRn is a surjective
4-to-1 function. By Lemma 2, this implies that

x
$← dZ∗ne; return(x2) ≡ dQRne.

Fact 2. The function which maps an x ∈ QRn to x2 ∈ QRn is a permutation.
By Lemma 2, this implies that

x
$← dQRne; return(x2) ≡ dQRne.

Fact 3. The function which maps an x ∈ Z∗n(+1) to x2 ∈ QRn is a surjective
(2-to-1) function. By Lemma 2, this implies that

x
$← dZ∗n(+1)e; return(x2) ≡ dQRne.

4The type of qrqrqr is defined as a linear function type so that it can take linear arguments.
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Fact 4. For all x ∈ QRn,
√
x2 = x.

Fact 5. For all x ∈ Z∗n(+1), x ∈ QRn ⇔ parityparityparity(x) = parityparityparity(
√
x2).

CSLR$
π is expressive enough to encode the proof of [31] that BBS is left-bit

unpredictable.

Theorem 2 (Left-bit unpredictability of Blum-Blum-Shub PRG). For every
positive integer l,

λη . λA . s $← dZ∗ne; u← BBSBBSBBS (η, l + 1, s);

b
$← A(η, n, tailtailtail(u)); return(b

?
= headheadhead(u))

≈ λη . λA . rand

where n is a Blum integer polynomially bound by the security parameter η and
A is assumed to be a CSLR term of type �Bits→ �Bits→ �Bits→ TBits.

Proof. The proof is done in the proof system of CSLR$
π (cf. Figure 5).

6. Conclusions

We have extended Zhang’s CSLR into CSLR$
π that provides a uniform frame-

work to define cryptographic constructions, feasible adversaries, security no-
tions, computational assumptions, game transformations, and game-based secu-
rity proofs. CSLR$

π keeps the feature of characterizing PPT adversaries through
typing in CSLR but allows users to write security games using a richer language,
which is closer to the mathematical language and reduces the programming over-
head.

As a future work, it might be interesting to allow arbitrary types in CSLR$
π

because intermediate games might be easier to write without having to encode
everything into bitstrings.

The most immediate direction for future work is to consider more complex
examples. We could also consider an implementation of ElGamal that would
use BBS as a source for pseudorandom bits. Another possible direction would
be to implement CSLR$

π (possibly in a proof assistant) and develop a library
of reusable security definitions, assumptions and game transformations. This
would help dealing with complex examples.

The notion of oracle is frequently used in cryptography and it is sometimes
necessary for defining security notions. For instance, with symmetric keys, an
encryption oracle allows the adversary to encrypt messages without knowing
the key. The higher-order nature of CSLR$

π makes it easy to define such oracles
and it would be interesting to explore this direction.
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λη . λA . s $← dZ∗ne; u← BBSBBSBBS(η, l + 1, s); b
$← A(η, n, tailtailtail(u)); return(b

?
= headheadhead(u))

≡ λη . λA . s $← dZ∗ne; x← s2; u← parityparityparity(x)•bbsrecbbsrecbbsrec(η, l, x2);

b
$← A(η, n, tailtailtail(u)); return(b

?
= headheadhead(u))

(Inline of the definition of BBSBBSBBS)

≡ λη . λA . x $←
(

s
$← dZ∗ne;

return(s2)

)
; b0 ← parityparityparity(x); v ← bbsrecbbsrecbbsrec(η, l, x2);

b
$← A(η, n, v); return(b

?
= b0)

(By the equivalence rules AX-BIND-3 and AX-BIND-1 in [36])

≡ λη . λA . x $← dQRen; b0 ← parityparityparity(x); v ← bbsrecbbsrecbbsrec(η, l, x2);

b
$← A(η, n, v); return(b

?
= b0)

(By Fact 1)

≡ λη . λA . x $← dQRen; b0 ← parityparityparity(
√
x2); v ← bbsrecbbsrecbbsrec(η, l, x2);

b
$← A(η, n, v); return(b

?
= b0)

(By Fact 4)

≡ λη . λA . y $←
(

x
$← dQRne;

return(x2)

)
; b0 ← parityparityparity(

√
y); v ← bbsrecbbsrecbbsrec(η, l, y);

b
$← A(η, n, v); return(b

?
= b0)

(By the equivalence rules AX-BIND-3 and AX-BIND-1 in [36])

≡ λη . λA . y $← dQRne; b0 ← parityparityparity(
√
y); v ← bbsrecbbsrecbbsrec(η, l, y);

b
$← A(η, n, v); return(b

?
= b0)

(By Fact 2)

≡ λη . λA . y $←
(

z
$← dZ∗n(+1)e;

return(z2)

)
; b0 ← parityparityparity(

√
y); v ← bbsrecbbsrecbbsrec(η, l, y);

b
$← A(η, n, v); return(b

?
= b0)

(By Fact 3.)

≡ λη . λA . z $← dZ∗n(+1)e; b0 ← parityparityparity(
√
z2); v ← bbsrecbbsrecbbsrec(η, l, z2);

b
$← A(η, n, v); return(b

?
= b0)

(By the equivalence rules AX-BIND-3 and AX-BIND-1 in [36].)

≡ λη . λA . z $← dZ∗n(+1)e; v ← bbsrecbbsrecbbsrec(η, l, z2); b
$← A(η, n, v);

return(b⊕ parityparityparity(z)⊕ 1
?
= parityparityparity(

√
z2)⊕ parityparityparity(z)⊕ 1)

(By the equivalence rule AX-BIND-1 in [36], and apply function λx . x⊕ parityparityparity(z)⊕ 1 to
both sides of equality test.)

≡ λη . λA . z $← dZ∗n(+1)e; v ← bbsrecbbsrecbbsrec(η, l, z2); b
$← A(η, n, v);

return(b⊕ parityparityparity(z)⊕ 1
?
= qrqrqr(z))

(By Fact 5, where ⊕ is the notation of exclusive-or.)

≡ λη . λA . z $← dZ∗n(+1)e; b′ $←

 v ← bbsrecbbsrecbbsrec(η, l, z2);

b
$← A(η, n, v);

return(b⊕ parityparityparity(z)⊕ 1)

; return(b′
?
= qrqrqr(z))

(By the equivalence rules AX-BIND-3 and AX-BIND-1 in [36].)

≈ λη . λA . rand

(By QRA, considering the adversary λη . λn . λx .

 v ← bbsrecbbsrecbbsrec(η, l, x2);

b
$← A(η, n, v);

return(b⊕ parityparityparity(x)⊕ 1)

, which

is PPT by CSLR typing!)

Figure 5: Proof of left-unpredictability of BBS
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