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Abstract

Heterodyne holography is an extremely versatile and powerful
holographic technique that is able to fully control the amplitude,
phase and frequency of both the illumination and holographic ref-
erence beams. Applied to vibration analysis, this technique is
able to detect the signal of the carrier or the one of any vibration
sideband. A complete analysis of the vibration signal can thus
be made, and 2D map of the vibration amplitude and phase in
all points of the surface of the vibrating object can be obtained.
Since the sensitivity is limited by shot noise, extremely low vibra-
tion amplitude (< 0.01 nm) can be studied.

Citation Verrier, N., Atlan, M. and Gross, M. (2015) Full Field
Holographic Vibrometry at Ultimate Limits, in New Techniques
in Digital Holography (ed P. Picart), John Wiley & Sons, Inc.,
Hoboken, NJ, USA. doi: 10.1002/9781119091745. ch7.

1 Introduction

Digital holography is a fast-growing research field that has drawn
increasing attention. The main advantage of digital holography is
that, contrary to holography with photographic plates, the holo-
grams are recorded by a CCD, and the image of the object is
digitally reconstructed by a computer, avoiding photographic pro-
cessing [1]. To extract two quadratures of the holographic signal
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(i.e. to get the amplitude and the phase of the optical signal)
two main optical configurations have been developed: off-axis and
phase-shifting.

Off-axis holography is the oldest and the simplest configuration
adapted to digital holography. In that configuration, the reference
or local oscillator (LO) beam is angularly tilted with respect to
the object observation axis. It is then possible to record, with a
single hologram, the two quadratures of the object complex field
[1]. However, the object field of view is reduced, since one must
avoid the overlapping of the image with the conjugate image alias.
Phase-shifting digital holography [2] makes possible to get phase
information on the whole camera area by recording several images
with a different phase for the reference (called here local oscillator
or LO) beam. It is then possible to obtain the two quadratures
of the field in an on-axis configuration even though the conjugate
image alias and the true image overlap, because aliases can be
removed by taking image differences. In a typical phase-shifting
holographic setup, the phase of the reference is shifted by moving
a mirror with a PZT.

On the other hand, there is a big demand for full field vibra-
tion measurements, in particular in industry. Different holographic
techniques are able to image and analyze such vibrations. Double
pulse holography [3, 4] records a double-exposure hologram with
time separation in the 1...1000 µs range, and measures the instan-
taneous velocity of a vibrating object from the phase difference.
The method requires a quite costly double pulse ruby laser system,
whose repetition rate is low. Multi pulse holography [5] is able to
analyse transient motions, but the setup is still heavier (4 pulses
laser, three cameras).

The development of fast CMOS camera makes possible to an-
alyze vibration efficiently by triggering the camera on the motion
in order to record a sequence of holograms that allows to track the
vibration of the object as a function of the time [6, 7]. The analysis
of the motion can be done by phase difference or by Fourier anal-
ysis in the time domain. The method requires a CMOS camera,
which can be costly. It is also limited to low frequency vibra-
tions, since a complete analysis of the motion requires a camera
frame rate higher than the vibration frequency, because the band-
width BW of the holographic signal, which is sampled at the cam-
era at angular frequency ωCCD must be lower than corresponding
Nyquist-Shannon limit: BW < 1

2 ωCCD.
For a periodic vibration motion, the bandwidth BW is close

to zero. Measurements can thus be done with much slower cam-
eras. Powell and Stetson [8] have shown for example that an har-
monically vibrating object yields alternate dark and bright fringes,
whose analysis yields informations on the vibration motion. Picard
et al. [9] has simplified the processing of the data by performing
time averaged holography with a digital CCD camera. Time av-
eraged holography has no limit in vibration frequency and do not
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involve costly laser system, nor an expensive CMOS fast camera.
Although the time-averaging method gives a way to determine the
amplitude of vibration [10] quantitative measurement remain quite
difficult for low and high vibration amplitudes.

Heterodyne holography [11, 12] is a variant of phase shifting
holography, in which the frequency, phase and amplitude of both
reference and signal signal beam are controlled by acousto optic
modulators (AOM). Heterodyne holography is thus extremely ver-
satile. By shifting the frequency ωLO of the local oscillator beam
with respect to the frequency ω0 of illumination, it is for example
possible to detect the holographic signal at a frequency ω different
than illumination ω0. This ability will be extremely useful to ana-
lyze vibration, since heterodyne holography can detect selectively
the signal that is scattered by the object on a vibration sideband
of frequency ωm = ω0 +mωA, where ωA is the vibration frequency
and m and integer index.

In this chapter we will first present in section 2 heterodyne
holography and its advantages in section 2.1 and 2.2. Then in
section 3, we will apply heterodyne holography to vibration analy-
sis. We will show in section 3.2, how heterodyne holography can be
used to detect the vibration sidebands, in section 3.4 how this side-
band holography can be combined with stroboscopic techniques to
record instantaneous velocity maps of motion, and in sections 3.3
and 3.5 how it can retrieve both small and large vibration ampli-
tudes.

2 Heterodyne holography

Let us first describe heterodyne holography. A example of setup is
shown on Fig. 1. The object is an U.S. Air Force (USAF) resolu-
tion target whose hologram is recorded in transmission geometry
(the target is back illuminated). The camera records the interfer-
ence of the signal field E(t) of optical angular frequency ω0, with
the reference (or local oscillator field) ELO(t) of optical frequency

ωLO = ω0 − ∆ω (1)

where ∆ω is the frequency shift. Let us introduce the slowly vary-
ing complex fields E and ELO.

E(t) = Eejω0t + E∗e−jω0t (2)

ELO(t) = ELOejωLOt + E∗

LOe−jωLOt

where E∗ and E∗
LO are the complex conjugates of E and ELO, and

j is the imaginary unit. The camera signal I is proportional to the
intensity intensity of the total field |E(t)+ELO(t)|2. We have thus:

I =
∣

∣ELO ejωLOt + E ejω0t
∣

∣

2
(3)

= |ELO|2 + |E|2 + E∗

LOE e+j∆ωt + ELOE∗ e−j∆ωt
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Figure 1: Typical heterodyne holography setup. L: main laser; BS: beam
splitter; AOM1, AOM2: acousto-optic modulators; BE: beam expander;
M, mirror; A1, A2: light attenuators; USAF, transmission USAF 1951
test pattern; CCD: camera; EL, EI , ELO, and E: laser, illumination,
reference (i.e. local oscillator LO) and object fields; ωAOM1/2: driving
frequencies of the acousto optics modulators AOM1 and AOM2; θ: off-
axis angular tilt.

Since the camera signal is slowly varying, we have neglected in Eq.
3 the fast varying terms (which evolve at frequency ≃ 2ω0). More-
over, to simplify the present discussion, we have not considered
the spatial variations of I, E and ELO with x and y, in particular
the spatial variations that are related to the off axis tilt angle θ
of Fig. 1. In equation 3, E∗

LOE e−j∆ωt is the +1 grating order
term, that contains the useful information (since this term is pro-
portional to E). The others terms: |ELO|2 + |E|2 (zero grating
order term), and ELOE∗ e+j∆ωt ( -1 grating order term or twin
image term) are unwanted terms that must be cancelled. To filter
off these terms, and to select the wanted +1 grating order signal,
4-phase detection is made. The AOMs driving angular frequencies
ωAOM1 and ωAOM2 are tuned to have:

∆ω = ωAOM2 − ωAOM1 = ωCCD/4 (4)

where ωCCD is is the angular frequency of the camera frame rate.
Lets us consider 4 successive camera frames: I0, I1 ...I3 that are
recorded at times t = 0, T ... 3T with T = 2π/(ωCCD). For these
frames, the phase factor e+j∆ωt is equal to 1, j, -1 and −j. We
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thus get:

I0 = |ELO|2 + |E|2 + E∗

LOE + ELOE∗ (5)

I1 = |ELO|2 + |E|2 + j E∗

LOE − j ELOE∗

I2 = |ELO|2 + |E|2 − E∗

LOE − ELOE∗

I3 = |ELO|2 + |E|2 − j E∗

LOE + j ELOE∗

By linear combination of 4 frames, we get the 4-phase hologram
H that obeys the demodulation equation:

H = (I0 − I2) + j(I1 − I3) (6)

= 4 E∗

LOE

As wanted, the 4-phase demodulation equation yields a quantity
H that proportional to the signal complex field E. Note that the
coefficient 4ELO is supposed to be known and do not depends on
the object.

Heterodyne holography exhibits several advantages with re-
spect to other holographic techniques:

1. The phase shift is very accurate;

2. The holographic detection is shot noise limited;

3. Since the holographic detection is made somewhere near ωLO

(depending on the demodulation equation that is chosen), it
is possible to perform the holographic detection with any fre-
quency shift with respect to the object illumination angular
frequency ω0.

The first advantage will be discussed in section 2.1, the second
one in section 2.2, while the third one, which is the heart of the
sideband holographic technique used to analyse vibration, will be
discussed in section 3.2.

2.1 Accurate phase shift and holographic detec-

tion bandwidth

In the typical heterodyne holography setup of Fig.1, the signals
that drive the AOMs are generated by frequency synthesizers,
phase-locked with a common 10 MHz clock.. The phase shift
∆ϕ = ∆ωT (that is equal to π/2 in the 4 phase demodulation
case) can thus be adjusted with quartz accuracy.

To illustrate this accurate phase shift, holograms of a USAF
target have been recorded with the Fig.1 setup, while sweeping the
LO frequency ωLO. Figure 2 shows USAF reconstructed images
that are obtained for different values of the frequency shift ω0−ωLO

[13].

1. For ω0 −ωLO = ωCCD/4 = +2.5 Hz, the image that is recon-
structed is sharp and correspond to the +1 grating order. On
the other hand, the -1 grating order signal is very low; the
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Figure 2: USAF target reconstructed images (a,b) displayed with linear
grey scale for the reconstructed field intensity |E|2 with ω0 − ωLO =
ωCCD/4 = +2.5 Hz (a) and ω0 − ωLO = −ωCCD/4 = −2.5 Hz (b).
Zooms (c,d) of the bright zones of the (a) and (b) images. Images (a,b)
and zoom (c,d) correspond to the m = +1 (a,c) and m = −1 (b,d)
grating orders.

magnitude of the -1 parasitic twin image image is negligible
in front of the +1 contribution. Image and zoom of image
are seen on Fig.2 (a) and (c).

2. For ω0 − ωLO = −ωCCD/4 = −2.5 Hz, the image that is
reconstructed is blurred and corresponds to the -1 grating
order twin image. The magnitude of the +1 grating order
image is negligible in front of its -1 counterpart. Image and
zoom of image are seen on Fig.2 (b) and (d).

We have measured the total field energy U± in both +1 and -1
grating order reconstructed images:

U± =
∑

x,y

|E(x, y)|2 (7)

where
∑

x,y is the sum over the pixels of the reconstructed field
image E(x, y) corresponding to the ±1 grating order zones. As
seen on Fig. 3, the energy of the signal that is measured in the
+1 grating order (i.e. U+) is maximum for ω0 −ωLO = ωCCD/4 =
+2.5 Hz, and null ω0 −ωLO = −2.5 Hz. Similarly, U− is maximum
for ω0 − ωLO = −2.5 Hz, and null for ω0 − ωLO = +2.5 Hz. By
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Figure 3: Field energy of the +1 (a) and -1 (b) grating order. The ver-
tical axis is in logarithmic scale arbitrary units. The points correspond
to the experimental data obtained by sweeping the LO frequency with
(ω0 − ωLO) = −5 to +5 Hz with 0.1 Hz increments. The solid gray
curves are +U+(ω − ωLO) (a) and +U−(ω − ωLO) (b) given by Eq.8 in
the same frequency range: (ω − ωLO) = −5 to +5 Hz.

adjusting ω0 − ωLO, it is then possible to select the grating order
that is detected.

For 4 phase detection with a local oscillator of frequency ωLO,
the total energy U± = |E|2 detected at frequency ω in the ±1
grating order can be easily calculated [14]:

U±(ω − ωLO) =

∣

∣

∣

∣

∣

1
4T ′

n=3
∑

n=0

(±j)n

∫ nT +T ′

t=nT

dt e±j(ω−ωLO)t

∣

∣

∣

∣

∣

2

(8)

=

∣

∣

∣

∣

∣

sinc(π(ω − ωLO)T ′)
4

n=3
∑

n=0

jnejn(ω−ωLO)T

∣

∣

∣

∣

∣

2

where sinc(x) = sin x/x. In equation 8, T is the frame period,
and T ′ the exposure time. The coefficient 1/4T ′ is thus a nor-
malization factor. On the other hand, the factors (±j)n corre-
sponds to the coefficients of the demodulation equation (see Eq.
6), and e±j(ω−ωLO)t is the interference instantaneous phase factor,
which must be integrated over the exposure time from t = nT to
t = nT + T ′.

In the experiment of Fig.3, we have T = T ′ = 2π/ωCCD = 100
ms. We have plotted the field energy U± given by Eq.8 as a func-
tion of ω − ωLO on Fig. 3 (solid grey lines). As seen, experi-
ment agrees with the theoretical curve of Eq. 8. The shape of
the curves represents here the frequency response spectrum of the
holographic device considered as a detector. For the +1 grating
order, detection is centered at frequency ω = ωLO + ωCCD/4. The
measurement bandwidth BW is 2.5 Hz. It is equal to the inverse of
the measurement time of 4 frames i.e. BW = 1/4T . It illustrates
the coherent character (in time) of holographic detection.
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Figure 4: Theoretical field energy U+(ω − ωLO) given by Eq.8 plotted
in linear (a) and logarithmic scale (b) as a function of (ω − ωLO) in Hz
Units for the +1 grating order. The number of frame is nmax = 4 (solid
grey line), nmax = 8 (solid black line) and nmax = 16 (dashed black
line).

It is possible to increase the selectivity of the holographic co-
herent detection by increasing the measurement time, i.e. by in-
creasing the number of frames nmax used for demodulation. In
that case, Eq. 6 and Eq.8 must be replaced by similar equations
involving nmax frames in place of 4. We have:

H =
nmax−1

∑

n=0

jn In (9)

and

U±(ω − ωLO) =

∣

∣

∣

∣

∣

1
nmaxT

nmax−1
∑

n=0

(±j)n

∫ nT +T ′

t=nT

dt e±j(ω−ωLO)t

∣

∣

∣

∣

∣

2

(10)

=

∣

∣

∣

∣

∣

sinc(π(ω − ωLO)T ′)
nmax

nmax−1
∑

n=0

jnejn(ω−ωLO)T

∣

∣

∣

∣

∣

2

Figure 4 plots the detection frequency spectrum U+ for nmax = 4,
8 and 16. As seen, the detection bandwidth BW decreases with
nmax. It is equal to:

BW =
1

nmaxT
(11)

The noise, uniformly distributed in frequency, is expected to de-
crease accordingly. We will show in section 2.2, that very high de-
tection sensitivity can be obtained by holographic detection with
large number of frames nmax.

2.2 Shot noise holographic detection

Because the holographic signal results in the interference of the
object signal complex field E with a reference (LO) complex field
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Figure 5: Heterodyne detection of 1 photon per pixel of signal with N
photon local oscillator.

ELO whose amplitude can be much larger (i.e., ELO ≫ E), the
holographic detection benefits from ”heterodyne” or ”holographic”
gain (i.e., |EE∗

LO| ≫ |E|2), and is thus well suited for detection
of weak signal fields E. Holographic detection can reach the the-
oretical limit of noise which corresponds to a noise equivalent sig-
nal of 1 photo electron per pixel during the total measurement
time [15, 16, 14, 17].

To illustrate this point, let us consider the interference of a
weak signal of about 1 photo-electron per pixel and per camera
frame, with a large local oscillator reference signal of N = 104

photo-electrons: see Fig. 5. In this example, the signal intensity
is |E|2 = 1, while the holographic interference term |EE∗

LO| = 100
is much larger. The detected signal is |ELO + E|2 ≃ 104 photo-
electrons.

Because of the quantum nature of the process involved in dig-
ital holography (laser emission, photodetection...), the detected
signal in photo electron Units is random Gaussian integer number,
whose average value is N = 104, and whose standard deviation is√

N = 100. These fluctuations of the number of photo electrons
are called shot noise. Here, with 1 photo electron of signal, the
heterodyne signal is 100 photo electrons and the noise 100 too.
The noise equivalent signal (for the energy |E|2) is thus 1 photo
electron per pixel and per frame.

Let us now study how shot noise varies with the number of
frames nmax used for detection. As in any detection process, the
noise in energy is proportional to the measurement time and to the
detection bandwidth BW. Since the measurement time is nmaxT ,
and since the detection bandwidth is BW = 1/nmaxT (see Eq. 11
), the shot noise in energy do not depends on nmax. The shot noise
equivalent signal is thus the same than for one frames. It remains
equal to 1 photo electron per pixel whatever the number of frames
nmax and measurement time nmaxT are.

Let us now discuss the ability to reach this shot noise optimal
sensitivity in real life holographic experiments. Since we consider
implicitly a very weak signal, the noises that must be considered
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Figure 6: Fourier space hologram intensity (i.e. |H̃(kx, ky)2) displayed
in arbitrary log scale for one phase (H = I0) and 4 phases (H = (I0 −
I2) + j(I1 − I3) detection.

are

1. the read noise and dark current of the camera,

2. the quantization noise of the camera A/D converter,

3. the technical noise of the LO beam,

4. and the LO beam shot noise, which yield the theoretical noise
limit.

For a typical camera, the full well capacity is 2 104 photo electrons,
and a good practice is to work with N = 104 photo electrons for
the local oscillator. Shot noise on the camera signal (100 photo
electrons) is thus much larger than the camera read noise (1 to 20
photo electrons) and the camera dark current (a few photo elec-
trons per second). If the camera is 12 bit, the full well capacity
corresponds ∼ 212 digital count (DC). As a results, the quantiza-
tion noise (∼ 7 photo electrons) can be neglected too.

Let us discuss on the technical noise of the LO beam, and on
the way to filter it off.

1. We have displayed, on Fig. 6, examples of Fourier space holo-
gram H̃(kx, ky) = FFT( H(x, y)) (where FFT is the Fourier
transform operator). The signal fields yields the interfer-
ence term EE∗

LO that is located in the left hand side of the
Fourier space images of Fig. 6 (a) and (b). It corresponds
to the grating order +1. The local oscillator signal |ELO|2
is located in the center of the Fourier space. It is visible on
Fig. 6 (a) that is obtained with 1 phase hologram. As seen,
the LO signal are separated in the Fourier space because of
the off axis configuration. It is then possible to filter off the
parasitic LO signal by a proper spatial filtering in the Fourier
space as shown by [18]. As noticed, this operation filters-off
both the LO signal and the LO technical noise.

2. On the other hand, because of phase shifting, the signal and
LO fields E and ELO evolve at two different time frequencies
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Figure 7: Reconstructed image of a USAF target in dim light. Hologram
are recorded by 4 phases heterodyne holography with T = 100 ms, and
nmax = 600 (a,b) and nmax = 6000 (c). The coherent measurement
time nmaxT is thus 1 minute (a,b) and 10 minutes (c). Illumination is
adjusted so that the USAF signal integrated is 1 photon per pixel over
the whole measurement time nmaxT in (a). Holograms (b) and (c) are
recorded by adding a neutral density filter D=1.0 on illumination. The
USAF signal is thus 0.1 photon per pixel in (b) and 1 photon per pixel
in (c). Display is made with arbitrary linear scale for intensity.

ω and ωLO with ω = ωLO + ωCCD/4. It is then possible to
filter off the LO signal in time. This is done by the 4 phases
demodulation process since the LO term |ELO|2 vanish in
Eq. 6 and 10. This filtering in time is illustrated by Fig. 6,
since the 0 grating order signal that is large for single phase
off-axis holography (Fig. 6 (a)), roughly vanishes in the four
phase case (Fig. 6 (b)). Time filtering is also illustrated by
Fig.3 and Fig.4 and Eq. 6 and 10, since the detected energy
U+/− vanishes for ω − ωLO = 0 i.e. for detection at local
oscillator frequency ωLO. Here again, one filters off both the
LO signal and the LO technical noise.

By combining off axis and phase shifting, it is then possible apply
to a double filtering (in space and time) that filter off the LO
technical noise very effectively. One can gets then the shot noise
ultimate sensitivity that corresponds to a noise equivalent signal
of 1 photon per pixel whatever the measurement times is.

Figure 7 illustrates heterodyne holography ability of imaging an
object (here an USAF target) in dim light with shot noise limited
sensitivity. In figure 7 (a), the measurement time is 1 minute and
the illumination power is adjusted such a way the USAF signal is
about 1 photon per pixel in 1 minute. The visual quality of USAF
image is quite good. We can say that SNR is about 1. In figure 7
(b), the measurement time is the same, but illumination is divided
by 10 by using a neutral filter of density D = 1.0. SNR is low,
and one cannot see the grooves of the USAF target. Figure 7 (c)
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Figure 8: Heterodyne holography setup applied to analyse vibration of a
clarinet reed. L: main laser; AOM1, AOM2: acousto-optic modulators;
M: mirror; BS: beam splitter; BE: beam expander; CCD: camera; LS:
loud-speaker exiting the vibrating clarinet reed at frequency ωA/2π.

is obtained with the same illumination level that Fig. 7 (b) (i.e.
with neutral density filter) but the measurement time is multiplied
by 10 (i.e. 10 minutes in place of 1 minute). The visual quality
of reconstructed image is the same than for Fig. 7 (a) with SNR
about 1. This experiment shows that the reconstructed image
quality depends on the total amount of signal, and do not depends
on the time needed to get that amount of signal: to get SNR ∼ 1
one needs about 1 photon per pixel, for any measurement time.

3 Holographic vibrometry

Lets us now apply heterodyne holography to vibration analysis.

3.1 Optical signal scattered by a vibrating ob-

ject

Consider a point of the objet (for example a clarinet reed) that
is studied by heterodyne holography (see Fig. 8), vibrating at
frequency ωA with amplitude zmax. The displacement z along the
out of plane direction is

z(t) = zmax sin ωAt (12)

In backscattering geometry, this corresponds to a phase modula-
tion ϕ(t) of the signal:

ϕ(t) = 4πz(t)/λ (13)

= Φ sin ωAt
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Figure 9: Relative amplitude |Em|2/|E|2 = |Jm(Φ)|2 of the sideband
component m for an amplitude modulation of the phase equal to Φ = 0.3
(a) and Φ = 3.0 (b) rad.

where λ is the optical wavelength and Φ the amplitude of the phase
modulation of the signal at angular frequency ωA:

Φ = 4πzmax/λ (14)

Let us define the slowly varying complex amplitude E(t) of the
field E(t) scattered by the vibrating object. We have:

E(t) = E(t)ejω0t + c.c. (15)

Because of the Jacobi-Anger expansion, we get:

E(t) = E ejϕ(t) = E ejΦ sin ωAt

= E
∑

m

Jm(Φ) ejnωAt

where E is the complex amplitude without vibration, and Jm

the mth-order Bessel function of the first kind, with J−m(z) =
−1mJm(z) for integer m and real z. The scattered field E(t) is
then the sum of the carrier and sideband field components Em(t)
of frequency ωm, where m is the sideband index with:

E(t) =
+∞
∑

m=−∞

Em(t) (16)

Em(t) = Emejωmt + E∗

me−jωmt

ωm = ω0 + mωA

where Em is the complex amplitude of the field component Em(t).
Equation 16 yields:

Em = Jm(Φ) E (17)

Figure 9 presents the distribution of the field energy on the
sidebands components |Em|2. If the amplitude of modulation Φ
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Figure 10: Reconstructed holographic images of a clarinet reed vibrating
at frequency ωA/2π = 2143 Hz perpendicularly to the plane of the figure.
Figure (a) shows the carrier image obtained for m = 0. Fig. (b)-(d)
show the frequency sideband images respectively for m = 1, m = 10,
and m = 100. A logarithmic grey scale has been used

is low, most of the energy is on the carrier |E0|/|E|2 ≃ 1, and
energy |Em|2 decreases rapidly with the sideband index m. If the
amplitude Φ is large, the energy of the carrier is low |E0|/|E|2 ≪ 1,
while energy is distributed over many sidebands |Em|2 .

3.2 Selective detection of the sideband compo-

nents Em: sideband holography

Heterodyne holography that is able to perform the holographic de-
tection with any frequency shift ω − ω0 with respect to the object
illumination angular frequency ω0 is well suited to detect the vi-
bration sideband components Em. To selectively detect by 4 phase
demodulation the sideband m of frequency ωm, the frequency ωLO

must be adjusted to fulfil the condition :

ωLO = ωm − ωCCD/4 (18)

= ω0 + mωA − ωCCD/4

Figure 10 shows images obtained by detecting different side-
band m of a clarinet reed [19]. The clarinet reed is attached to a
clarinet mouthpiece and its vibration is driven by a sound wave
propagating inside the mouthpiece, as in playing conditions, but
the sound wave is created by a loudspeaker excited at frequency
ωA and has a lower intensity than inside a clarinet. The excitation
frequency is adjusted to be resonant with the first flexion mode
(2143 Hz) of the reed.

Figure 10 (a) is obtained at the unshifted carrier frequency ω0.
It corresponds to an image obtained by time averaging holography
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[9]. The left side of the reed is attached to the mouthpiece, and the
amplitude of vibration is larger at the tip of the reed on the right
side; in this region the fringes become closer and closer and difficult
to count. The mouthpiece is also visible, but without fringes since
it does not vibrate. Similar images of clarinet reeds have been
obtained in [20, 21], with more conventional techniques and lower
image quality. Figures 10 (b) to (d) show images obtained for the
sidebands m = 1, 10 and 100. As expected, the non-vibrating
mouthpiece is no longer visible. Figure 10 (b) shows the m =
1 sideband image, with J1 fringes that are slightly shifted with
respect to those of J0. Figure 10 (c) shows the image of sideband
m = 10 and Fig. 10 (d) the m = 100 one. The left side region
of the image remains dark because, in that region, the vibration
amplitude is not sufficient to generate these sidebands, Jm(z) being
evanescent for z < m.

To quantitatively visualize the vibration amplitude Φ, cuts of
the reconstructed images signal |Em(x, y)|2 are made for differ-
ent sideband orders m along the horizontal line y = 174. This
value has been chosen because it corresponds to a region where
the fringes are orthogonal to the y axis. To build the central part
of Fig. 11, the position of the antinodes of |Em(x, 174)|2 are put in
correspondence with the antinodes of |Jm(Φ)|2. Correspondence
is made for m = 0, 1, 5, 10, . . . 100. Note that this method is
insensitive to inhomogeneities in the illumination zone. Therefore,
no normalization is required. The curve seen in the central zone of
Fig. 11 represents the amplitude of phase oscillation Φ in radian
as a function of pixel index along x for y = 174.

Remark: In a typical heterodyne holography setup, digital
synthesizers drive the acousto optic modulator at ωAOM1 and
ωAOM2, the camera at ωCCD, and the vibration frequency at ωA.
These synthesizers use a common 10 MHz reference frequency, and
are driven by the computer. It is then possible to automatically
sweep ωA, and ωAOM1 (or ωAOM2) in order to fulfil Eq. 18 so
that detection remains ever tuned on a given sideband. Figure 12
shows an example [22]. A series of 26 × 7 images of a clarinet reed
are obtained on sideband m = 1 by sweeping the frequency ωA

from 1.4 kHz up to 20 kHz by steps of 25 cents. The amplitude
of the excitation signal is exponentially increased in the range 1.4
to 4 kHz, from 0.5 to 16 V, then kept constant at 16 V up to 20
kHz. This crescendo limits the amplitude of vibration of the first
two resonances of the reed. The different vibration modes of the
reed can be easily recognized on the reconstructed reed images of
Fig. 12.

3.3 Sideband holography for large amplitude of

vibration

In the previous section (section 3.2 and Fig. 11) we have shown
how the comparison of dark fringes for different sideband leads to
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Figure 11: A slice of the data along the y = 174 line is used in this
figure; the x horizontal axis gives the pixel index (100 pixels correspond
to 3.68 mm.), the vertical axis the vibration amplitude Φ. The lower
part of the figure shows the normalized signal |Em(x)|2/|E(x)|2 (where
E(x) is obtained loud-speaker off) for m = 5, with a downwards axis.
The left part shows the corresponding square of the Bessel function
|J5(Φ)|2 with a leftward axis. The zeroes of the two curves are put in
correspondence, which provides the points in the central figure. Similar
correspondences are made harmonic order m = 0, 1, 5, 10...100. Different
gray densities are used for different m. The crosses correspond to m = 5.
The juxtaposition of the points for all values of m gives an accurate
representation of the amplitude of vibration Φ as a function of x.
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Figure 12: Clarinet reed reconstructed images obtained on sideband
m = 1. Frequency ωA is swept from 1.4 KHz up to 20 KHz, and images
are displayed from left to right and top to bottom (26 × 7 images). The
display is made with arbitrary grey scale for the intensity |E0(x, y)|2.

a determination of the vibration amplitude Φ(x, y) at each point
of the object. This determination is non-local, since it involves
counting fringes from one reference point of the image to the point
of interest, so that large amplitudes are not accessible. The vi-
bration amplitude Φ(x, y) can be determined by another approach
that completely eliminates the necessity of counting fringes, giv-
ing a local measurement of the amplitude of vibration Φ, even for
large Φ [23].

For large amplitude of vibration ( Φ ≫ 1), the distribution
of the sideband energy |Em|2 over m exhibits a sharp variation
from maximum to zero near m ≃ Φ, as seen on Fig. 13 that
plot |Em|2/|E|2 for Φ = 30.3. This property can be understood
if one consider the limits zmax ≫ λ. In that case, one can define
an instantaneous Doppler angular frequency shift ωD(t), and an
instantaneous sideband index m(t) that are continuous variables :

ωD(t) = ωAΦ cos(ωAt) (19)

m(t) =
ωD(t)

ωA
= Φ cos(ωAt)

Because of its sinusoidal variation, m(t) spend more time near the
extreme points m = ±Φ. The Doppler continuous distribution
spectrum of m(t) that is displayed in light grey shade on Fig. 13
are thus maximum near the extreme points m = ±Φ.

The vibration amplitude Φ(x, y) can be determined for each
location x, y, by measuring |Em(x, y)|2 for all sidebands m, and
by determining for each location x, y the sideband index m that
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Figure 13: Relative intensity |Em|2/|E|2 = |Jm(Φ)|2 of the sideband
component m for an amplitude modulation of the phase equal to Φ =
30.3 radiant. The light grey shade shows the Doppler spectrum obtained
from the vibration velocity distribution, with a continuous variable m.
Both spectra fall abruptly beyond m = 30.3, which corresponds to the
Doppler shift ±ωAΦ associated with the maximum velocity.
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Figure 14: Cube of data obtained from the reconstructed holographic
images of a vibrating clarinet reed. The sideband images with m = 0,
20, 40 ...120 are shown in arbitrary linear scale. The white dashed lines
correspond to x = 249 and y = 750, i.e. to the point chosen for Fig. 15.

correspond to a fast drop of the signal |Em(x, y)|2. The method
is robust and can easily be used even when the fringes become so
narrow that they cannot be resolved, which gives immediate access
to large amplitudes of vibration.

By successively adjusting the frequency ωLO of the local os-
cillator to appropriate values, one records the intensity images
|Em(x, y)|2 of the sidebands as a function of x y and m. One then
obtains a cube of data with three axes x, y and m. Figure 14 shows
the images obtained for for m = 0, 20 ...120 that correspond to
cuts of the cube along x, y planes. The images illustrate how, when
m increases, the fringes move towards regions with larger ampli-
tudes of vibrations. Since the right part of the reed (x > 800) is
clamped on the mouthpiece, no signal is obtained in regions near
the clamp where Φ = 4πzmax/λ ≤ m (right part of the images).

Figure 15 (a) displays a 2D cut (coordinates x, m) of the cube of
data along the horizontal plane y = 750 (horizontal white dashed
line in Fig. 14). The envelope of the non-zero (non black) part of
the image provides a measurement of the amplitude of vibration
in units of λ/4π. One actually obtains a direct visualization of
the shape of the reed at maximal elongation, from the right part
clamped on the mouthpiece to the tip on the left. The maximum
amplitude correspond to Φ = 120 rad.

Figure 16 shows images obtained at higher excitation ampli-
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Figure 15: Images corresponding to cuts of 3D data of the reconstructed
images along the planes y = 750 (a) and x = 249 (b). Fig (a) shows
the deformation of the object along its axis and Fig (b) a transverse cut
with a slight vibration asymmetry. A logarithmic intensity scale is used.

Figure 16: (a): image reconstructed with sideband n = 330, with a large
amplitude of vibration. (b) is the equivalent of Fig. 15(a), but with
positive and negative m values. One measures a maximum vibration
amplitude of zmax ≃ 60 µm. A logarithmic intensity scale is used.
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tudes, about 10 times larger that for Fig.15. Figure 16 (a) shows
the images obtained for m = 330: the fringes are now com-
pletely unresolved, but the transition from zero to non-zero in-
tensity remains very clear. With a single hologram, and with-
out fringe counting, one obtains a clear marker of the line where
Φ(x, y) = 330 rad. Figure 16(b) shows the equivalent of Fig. 15(a),
but with a higher excitation level, and this time for positive and
negative values of m. Data range up to about |m| ≃ 1140, cor-
responding to zmax ≃ 58.4 µm. Since the vibration amplitude is
much larger than λ, the continuous approximation for m is valid,
and the images of Fig. 16 can be reinterpreted in term of classical
Doppler effet.

Taking advantage of the sideband order m of the light scattered
by a vibrating object adds a new dimension to digital holography.
Each pixel x, y of the image then provides an information that is
completely independent from others, which results in redundancy
and robustness of the measurements. Looking at the edges of the
spectrum provides an accurate determination of the vibration am-
plitude and avoids a cumbersome analysis of the whole cube of data
cube, giving easy access to a measurements of large amplitudes of
vibration.

3.4 Sideband holography with strobe illumina-

tion

Both time averaged [9] and sideband digital holography [19] record
the holographic signal over a large number a vibration periods.
These two techniques are not sensitive to the phase of the vibra-
tion, and are thus unable to measure the instantaneous velocities
of the object. To respond this problem, Leval et al. [24] com-
bine time averaged holography with stroboscopic illumination, but,
since Leval uses a mechanical stroboscopic device, the Leval tech-
nique suffer of a quite low duty cycle (1/144), and is limited in low
vibration frequencies (ωA/2π < 5 kHz).

To overcome these two limitations, it is possible to combine
sideband digital holography with stroboscopic illumination and de-
tection synchronized with the vibration [25]. This can be achieved
without changing the experimental sideband holography setup of
Fig.8 by switching electronically on and off the Radio Frequency
signals that drive the AOMs at ωAOM1 and ωAOM2 ≃ 80 MHz.
Figure 17 shows a typical chronogram of stroboscopic illumination
and detection.

Without stroboscopic illumination (and detection), the Doppler
velocity spectrum is similar to the ones observed in Fig.13 section
3.3. It covers the entire range of speeds that can be reached during
the sinusoidal motion, that is Φ < m < +φ, with two maxima near
m ≃ ±Φ. With stroboscopic illumination, the Doppler spectrum is
modified, since it corresponds to the narrower velocities range that
is reached during gated illumination. On the other hand, the finite
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Figure 17: Chronogram of the signals. Sinusoidal signal of period TA =
2π/ωA exciting the reed (a). Rectangular gate that is applied to both
illumination and reference beams (b) .Gate delay is td with respect to the
origin of reed sinusoidal motion. Gate duration is δt. Gated AOM1 and
AOM2 signals at ≃ 80 MHz (c). These signals drive the acousto optic
modulator AOM1 and AOM2 and switch on and off the illumination
and reference beams.

gate duration δt (that is much shorter than the vibration period
TA = 2π/ωA) yields a broadening of the spectrum of about TA/δt
for m. In order to take quantitatively these effects into account,
we have calculated the spectrum. The slowly varying complex field
E(t) must be multiplied by a gate function H(t, td, δt) of period
TA. Within the interval [0, TA] we have:

H(t, td, δt) = 0 for 0 < t < td − δt/2 (20)

= 1 for td − δt/2 < t < td + δt/2

= 0 for td + δt/2 < t < TA

The slowly varying complex field signal E(t) becomes thus:

E(t) = E H(t, td, δt) ej(Φ sin ωAt) (21)

= E
∑

m

A(m, td, δt, Φ) ejmωAt

Em = E A(m, td, δt, Φ)

where A(m, td, δt) is the mth Fourier component of the periodic
function E(t)/E. We have calculated A(m, td, δt, Φ) by Fourier
transformation of E(t)/E, and we have plotted on Fig. 18 the
Doppler spectrum |Em|2/|E|2 = |A(m, td, δt)|2 for different gate
times tc and for δt/TA = 0.1. In Fig. 18 (a), the gate coincides
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Figure 18: Doppler spectrum |Em|2/|E|2 = |A(m, td, δt)|2 calculated for
a vibration amplitude Φ = 0.50, a gate width δt = 0.1 TA and a gate
time tc = 0.25 (a), 0.35 (b) , 0.45 (c) and 0.50 TA (d).

with the maximum velocity (td = 0.5 TA). The Doppler spectrum
is narrow and centered near m ≃ −Φ = −50 rad. In figure 18
(b) and (c) i.e. for gate time tc = 0.25 (a), 0.35 (b), the absolute
velocity decreases, and the center of the Doppler spectrum moves
towards m = 0. On the other hand, the Doppler spectrum broad-
ens. In figure 18 (c) the gate coincides with the minimum velocity
(td = 0.5 TA). The center of the spectrum is m = 0, and the
broadening is maximum.

To measure the instantaneous velocities of the object at time
t = td, the gate is adjusted at td, and the holograms of all side-
bands m are recorded. This can be done automatically by the
computer, by adjusting the frequency ωLO to fulfil Eq.18. The
sideband images Em(x, y) are then reconstructed for all m, and a
3D cube of data (coordinate x, y and m) is obtained as illustrated
by Fig. 14. One can get velocity images by making cuts along
x or y. Figure 19 shows an examples of velocity images obtained
at different times td of the vibration period. Here, the reed is
oriented in the same direction than in Fig.14, and the velocity im-
ages of coordinates x, m are obtained with horizontal cuts in plane
y = 256.
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Figure 19: Successive velocities of the reed on a period TA. These images
are obtained by making a cut in the y = 256 plane of the 3D stack of
reconstructed images, whose coordinates are x, y and m with m = -100
to +100. Gate duration is δt = 0.1 TA. From (a) to (j), the gate time
td is swept from td = 0.25 TA to td = 1.15 TA by 0.1 TA step. The
images are displayed in logarithmic scale for the sideband complex field
intensity: |Em(x, y = 256)|2.
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3.5 Sideband holography for small amplitude of

vibration

When the vibration amplitude Φ becomes small, the energy within
sidebands decrease very rapidly with the sideband indexes m, and
one has only to consider the carrier m = 0, and the two first
sideband m = ±1. Time averaged holography [9] that detects
the carrier field E0 is not efficient in detecting small amplitude
vibration Φ, because E0 varies quadratically with Φ:

E0(Φ) = E J0(Φ) (22)

≃ E (1 − Φ2)/6

On the other hand, sideband holography that is able to detect the
two first sidebands fields E±1 is much more sensitive, because E±1

varies linearly with Φ:

E±1(Φ) = E J±1(Φ) (23)

≃ ±E Φ/2

This point has been noticed about 40 years ago by Ueda et al. [26],
who has made a comprehensive study of the signal-to-noise ratio
(SNR) observed for classical (photographic film) sideband holog-
raphy. The authors managed to observe vibration amplitudes of a
few Angtroms, and linked the smallest detectable amplitude to the
SNR in the absence of spurious effects. Later on, sub nanometric
vibration amplitude measurements were achieved with sideband
digital holography [27, 28, 29, 30, 31], and comparison with single
point laser interferometry has been made [32, 30].

One must notice that the complex field amplitude E scattered
by the sample without vibration depends strongly on the x y posi-
tion. In a typical experiment, the sample rugosity is such that E is
a speckle that is fully developed. The field E(x, y) is thus random
in amplitude and phase from one speckle to the next. One cannot
thus extract the phase of the vibration motion from a measure-
ment made on single a sideband, for instance the sideband m = 1.
To get the phase, one needs to measure the field components on
several sidebands, for example the carrier field E0 and the first
sideband E1. For small amplitude Φ, the carrier field E0(Φ) is
very close to the field E = E0(Φ = 0) measured without vibration.
By measuring both E0(Φ) and E1(Φ) by sideband digital hologra-
phy, one can then eliminate E in Eq. 22 and Eq. 23 getting by the
way J0(Φ), J1(Φ) and Φ. This can be made by calculating either
the ratio E1/E0 [28]:

∣

∣

∣

∣

E1

E0

∣

∣

∣

∣

=
J1(Φ)
J0(Φ)

(24)

≃ Φ/2
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Figure 20: Sideband holography setup able to acquire the carrier and
sideband signal simultaneously

or the correlation E1 E∗
0 :

|E1 E∗

0 | = |E|2 J1(Φ) J0(Φ) (25)

≃ |E|2Φ/2

Both methods yield a signal (Φ/2 or |E|2Φ/2) that is proportional
to Φ.

From a practical point of view, E0 and E1 are measured succes-
sively in a standard sideband holography setup like the one of Fig.8
[19, 27]. A sequence of nmax frames with ωLO = ω0 − ωCCD/4
is first recorded yielding E0. A second sequence with ωLO =
ω0 + ωA − ωCCD/4 is then recorded yielding E1.

It is also possible to record E0 and E1 simultaneously [28, 29,
30, 31]. In that case, the RF signal that drives the second acousto
optic modulator AOM2 is made of two frequency components (Fig.
20) at ωa

AOM2 and ωb
AOM2:

ωa
AOM2 = ωAOM1 + ωCCD/4 (26)

ωb
AOM2 = ωAOM1 + ωA − ωCCD/4

• The first component at ωa
AOM2, whose weight is α, yields the

carrier signal E0, if the hologram H is calculated with demod-
ulation on the -1 grating order i.e. with H =

∑nmax

n=0 (−j)nIn.

• The second component at ωa
AOM2, whose weight is β, yields

the sideband E1 with demodulation on the +1 grating order
i.e. with H =

∑nmax

n=0 (+j)nIn.
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Figure 21: Vibration amplitude zmax (a) and phase ϕ (b) of a lamel-
lophone, averaged over the first upper cantilever, versus excitation fre-
quency ωA/(2π) (Hz). Insets: retrieved vibration amplitude and phase
maps in the neighborhood of the resonance. The theoretical resonance
line is in gray.
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Figure 22: Amplitude maps of the out-of-plane vibration of a thin metal
plate versus excitation frequency ωA/(2π). Holographic images at 40.1
kHz (a), 61.7 kHz (b). Scalebar: 5 mm.

Simultaneous detection of E0 and E1, and calculation of Φ by
the ratio method of Eq. 24 has been used to study various vibrat-
ing samples. Figure 21 shows example of signals obtained with a
lamellophone of a musical box [29]. In that experiment, all the
frequencies ωA, ωCCD, ωAOM1, ωa

AOM2 and ωb
AOM2 are driven by

numerical synthesizers. In this particular case, harmonics are ex-
tracted by a temporal Fourier transform of a sequence of 8 raw
interferograms. Here, optical sidebands of interest are downcon-
verted to demodulated frequencies in the camera bandwidth. In
order to avoid signal phase drifts from the measurement of one
sequence to the next, AOM2 is driven using a phase ramp. As a
consequence, the phases of E0 and E1 are well defined, and yield
the phase ϕ of the mechanical motion. We have:

ϕ = Arg(E1/E0) + C (27)

where C is a additive constant that depends of the relative phase
of the synthesizers. Figure 21 shows the averaged amplitude zmax

and phase ϕ of the upper cantilever of the lamellophone, which is
driven though its resonance frequency ≃ 541.5 Hz. As expected,
the phase ϕ makes a jump of about π when excitation frequency
ωA crosses the resonance frequency.

The method has been also applied to get full field images of
surface acoustic waves as shown on Fig. 22 [30]. Comparison
with single point Doppler vibrometry is reported in Fig. 23. If the
carrier and sideband components of the RF signal at ωa

AOM2 and
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Figure 23: Comparison of quantitative out-of-plane vibration ampli-
tudes zmax retrieved with the single-point laser vibrometer (� symbols)
and holographic vibrometer with β = α (◦ symbols) and β ≃ 50α (+
symbols).
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Figure 24: (a,b) Reconstructed images of the correlation E1E∗

0 obtained
with a cube of wood; (a) amplitude: |E1E∗

0 | , and (b) phase: arg E1E∗

0 .
The correlation E1(x, y)E∗

0(x, y) is averaged with a 2D gaussian blur
filter of radius 4 pixels. The display is made in arbitrary linear scale.
(c) 3D display of the phase: x, y, arg E1E∗

0

ωb
AOM2 have the same amplitude (i.e. if α = β), some spurious

detection of the carrier field E0 (which is much bigger) is observed
when the detection is tuned on the grating order -1 (used to detect
E0). This spurious effect limits the detection sensitivity to zmax ∼
1 nm, as seen on Fig. 22 (◦ symbols). Much better results are
obtained by reducing the weight of the carrier component (i.e.
with β ≫ α). The detection sensitivity becomes zmax ∼ 0.01 nm
with β ≃ 50α as seen on Fig. 22 (+ symbols).

The ratio method of Eq. 24 used above is simple, since it gives
directly Φ. Nevertheless, the method is unstable for the points
x, y of the object where E is close to zero. Since Φ varies slowly
with the location x, y, one can improve the accuracy by averaging
Φ over neighbor points. In that case, the ratio method is not
optimal for noise, since all points x, y are weighted equally in the
average, while the accuracy on the ratio depends strongly on the
location x, y, since the accuracy is low when |E(x, y)| is low.

For this issue, the correlation method of Eq.25 is less simple,
since it gives |E|2Φ, and not Φ. It is nevertheless better for noise,
since spatial averaging over neighbor points x, y is weighted by the
scattered energy |E(x, y)|2.

Figure 24 shows reconstructed images of the correlation E1E∗
0

obtained with a cube of wood (2 cm × 2 cm) vibrating at its res-
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Figure 25: (a) Clarinet reed with illumination beam focused in x0, y0.
(b) Sideband m = 1 reconstructed image of the vibrating reed. The
display is made in arbitrary log scale for the field intensity |E1(x, y)|2.

onance frequency ωA = 21.43 kHz. Here, the fields E0 and E1

are measured sucessively. In order to get better SNR, the complex
correlation signal E1(x, y)E∗

0 (x, y) is averaged over neighbor x, y
points by using a 2D gaussian blur filter of radius 4 pixels. Fig-
ure 24 shows the amplitude (a) and phase (b) of the the filtered
correlation E1(x, y)E∗

0 (x, y). Figure 24 (c) displays the phase of
the correlation in 3D. As seen, the opposite corners (upper left
and bottom right for example) vibrate in phase, while the neigh-
bor corners (upper left and upper right for example) vibrate in
phase opposition. Note that the cube is excited in one of its cor-
ner by a needle. This may explain why the opposite corners are
not perfectly in phase in Fig. 24 (b,c).

In order to increase the ability to analyze vibration of small
amplitude, one can increase the illumination on the zone where
the correlation averaging is performed. This is done by using a
collimated illumination beam. Figure 25 shows an example. The
illumination laser has been focused on point x0, y0 of the clarinet
read to be studied (see Fig. 25 (a) ). Most of the energy in
the reconstructed image is thus located near x0, y0 (see Fig. 25
(b) ). To measure the vibration amplitude at location x0, y0, we
have calculated the averaged correlation 〈E1E∗

0 〉 and the averaged
energy 〈|E0|2〉:

〈E1E∗

0 〉 = (1/Npix)
∑

x,y

E1(x, y)E∗

0 (x, y) (28)

= J1(Φ)J0(Φ) (1/Npix)
∑

x,y

|E(x, y)|2
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Figure 26: Ratio 〈E1E∗

0〉/〈|E0|2〉 (vertical axis) as function of the reed
excitation voltage Vpp in volt Units. The light grey curve is J1(Φ)/J0(Φ)
with Φ = zmax/(4πλ).

〈|E0|2〉 = (1/Npix)
∑

x,y

|E0(x, y)|2 (29)

= J2
0 (Φ) (1/Npix)

∑

x,y

|E(x, y)|2

where
∑

x,y is the summation over the Npix pixels of the illumi-
nated region located near x0, y0. In that region, the vibration
amplitude Φ is supposed to not depend on x and y. We get then:

〈E1E∗
0 〉

〈|E0|2〉 =
J1(Φ)
J0(Φ)

≃ Φ/2 (30)

To verify the ability of measuring small vibration, the reed
has been excited with lower and lower loudspeaker levels, the il-
lumination laser being focused on the point x0, y0 of Fig. 25 (b),
we want to study. A Sequence of nmax = 128 frames have been
recorded for both carrier (E0) and sideband (E1). Four phase de-
tection has been then made by calculating H with nnmax = 128 in
Eq. 9. We have then calculated the reconstructed fields E0(x, y)
and E1(x, y), the averaged correlation 〈E1E∗

0 〉 and averaged car-
rier intensity 〈|E0|2〉 and the ratio 〈E1E∗

0 〉/〈|E0|2〉. This ratio is
plotted on Fig.26 (y axis) as a function of the peak to peak volt-
age Vpp of the sinusoidal signal that excites the loudspeaker (x
axis). The measured ratio varies linearly with Vpp. For low volt-
age Vpp ≤ 5 mV, the ratio reached a noise floor corresponding
to 〈E1E∗

0 〉/〈|E0|2〉 ≃ 10−4. Since this voltage Vpp is proportional
to the vibration amplitude zmax and thus to Φ, we have convert
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the voltage Vpp in vibration amplitude zmax. The conversion fac-
tor (zmax = 0.02 nm for Vpp = 10 mV) is obtained by assuming
that J1(Φ)/J0(Φ) fits the ratio 〈E1E∗

0 〉/〈|E0|2〉 that is measured,
as predicted by Eq. 30 (see solid grey curve of Fig.26). We get
here a noise floor noise corresponding to zmax ≃ 0.01 nm. It is
about ×10 lower than the limit λ/3500 = 0.22 nm predicted by
Ueda [26], and ×10 lower than in previous experiments at similar
frequency [27, 28] in the kHz range. Similar noise floor 0.01 nm
has been obtained by the ratio method on Fig. 23, but at higher
vibration frequency ω ≃ 40 kHz [30].

We have tried to make the experiment with more frames i.e.
with nmax > 128, but this does not lower the noise floor. The
remaining noise floor can be related to a spurious detection of the
carrier field E0 when detection is tuned to detect E1, or to some
technical noise on the carrier signal that is not totally filter off.
Since the carrier and sideband fields E0 and E1 are within the
same spatial mode, no space filtering can be applied to filter off
E0. Here, the spurious carrier field E0 is filtered off in the time
domain, while the local oscillator field ELO is filtered off both in
time and frequency domain.

4 Conclusion

In this chapter we have presented the digital heterodyne hologra-
phy technique that is able to fully control the amplitude, phase
and frequency of both illumination and reference beams. Full au-
tomatic data acquisition of the holographic signal can be made,
and ultimate shot noise sensitivity can be reached. Heterodyne
holography is an extremely versatile and powerful tool, in partic-
ular when applied to vibration analysis. In that case, heterodyne
holography is able to detect in wide field (i.e. in all points of the
object 2D surface at the same time) the vibrating object signal at
any optical sideband of rank m. Since the control of the inten-
sity of the illumination and reference beams is fast, instantaneous
measurements of the vibration signal, sensitive to the mechanical
phase, can be made. For the measurement of large vibration am-
plitudes, the possible ambiguity of measurements can be removed
by making measurements at different sideband indexes m. For
small vibration amplitudes, the mechanical phase can be obtained
from measurements made on the carrier (m = 0) and on the first
sideband (m = 1). Moreover, extremely low vibration amplitudes,
below 10 picometers, can be measured.

References

[1] Ulf Schnars and Werner Juptner. Direct recording of holo-
grams by a ccd target and numerical reconstruction. Applied
optics, 33(2):179–181, 1994.

33



[2] Ichirou Yamaguchi and Tong Zhang. Phase-shifting digital
holography. Optics letters, 22(16):1268–1270, 1997.

[3] G Pedrini, YL Zou, and HJ Tiziani. Digital double-pulsed
holographic interferometry for vibration analysis. Journal of
Modern Optics, 42(2):367–374, 1995.

[4] Giancarlo Pedrini, Hans J Tiziani, and Yunlu Zou. Digital
double pulse-tv-holography. Optics and lasers in Engineering,
26(2):199–219, 1997.

[5] G Pedrini, Ph Froening, H Fessler, and HJ Tiziani. Transient
vibration measurements using multi-pulse digital holography.
Optics & Laser Technology, 29(8):505–511, 1998.

[6] Giancarlo Pedrini, Wolfgang Osten, and Mikhail E Gusev.
High-speed digital holographic interferometry for vibration
measurement. Applied optics, 45(15):3456–3462, 2006.

[7] Yu Fu, Giancarlo Pedrini, and Wolfgang Osten. Vibration
measurement by temporal fourier analyses of a digital holo-
gram sequence. Applied optics, 46(23):5719–5727, 2007.

[8] Robert L Powell and Karl A Stetson. Interferometric
vibration analysis by wavefront reconstruction. JOSA,
55(12):1593–1597, 1965.

[9] Pascal Picart, Julien Leval, Denis Mounier, and Samuel
Gougeon. Time-averaged digital holography. Optics letters,
28(20):1900–1902, 2003.

[10] Pascal Picart, Julien Leval, Denis Mounier, and Samuel
Gougeon. Some opportunities for vibration analysis with
time averaging in digital fresnel holography. Applied optics,
44(3):337–343, 2005.

[11] Frédérique Le Clerc, Laurent Collot, and Michel Gross. Nu-
merical heterodyne holography with two-dimensional pho-
todetector arrays. Optics letters, 25(10):716–718, 2000.

[12] Frédérique Le Clerc, Michel Gross, and Laurent Collot.
Synthetic-aperture experiment in the visible with on-axis dig-
ital heterodyne holography. Optics Letters, 26(20):1550–1552,
2001.

[13] Michael Atlan, Michel Gross, and Emilie Absil. Accu-
rate phase-shifting digital interferometry. Optics letters,
32(11):1456–1458, 2007.

[14] Frédéric Verpillat, Fadwa Joud, Michael Atlan, and Michel
Gross. Digital holography at shot noise level. Journal of
Display Technology, 6(10):455–464, 2010.

[15] Michel Gross and Michael Atlan. Digital holography with
ultimate sensitivity. Optics letters, 32(8):909–911, 2007.

[16] Michel Gross, Michael Atlan, and Emilie Absil. Noise and
aliases in off-axis and phase-shifting holography. Applied op-
tics, 47(11):1757–1766, 2008.

34



[17] Max Lesaffre, Nicolas Verrier, and Michel Gross. Noise and
signal scaling factors in digital holography in week illumina-
tion: relationship with shot noise. Appl. Opt., 52:A81–A91,
2013.

[18] Etienne Cuche, Pierre Marquet, and Christian Depeursinge.
Spatial filtering for zero-order and twin-image elimination in
digital off-axis holography. Applied Optics, 39(23):4070–4075,
2000.

[19] Fadwa Joud, F LaloŰ, Michael Atlan, Jean Hare, and Michel
Gross. Imaging a vibrating object by sideband digital holog-
raphy. Optics express, 17(4):2774–2779, 2009.

[20] Nazif Demoli and Dalibor Vukicevic. Detection of hidden
stationary deformations of vibrating surfaces by use of time-
averaged digital holographic interferometry. Optics letters,
29(20):2423–2425, 2004.

[21] Pascal Picart, Julien Leval, Jean Claude Pascal, Jean Pierre
Boileau, Michel Grill, Jean Marc Breteau, Benjamin Gautier,
and Stéphane Gillet. 2d full field vibration analysis with mul-
tiplexed digital holograms. Optics express, 13(22):8882–8892,
2005.

[22] Pierre-André Taillard, Franck Laloë, Michel Gross, Jean-
Pierre Dalmont, and Jean Kergomard. Statistical estimation
of mechanical parameters of clarinet reeds using experimental
and numerical approaches. Acta Acustica united with Acus-
tica, 100(3):555–573, 2014.

[23] Fadwa Joud, Frédéric Verpillat, Franck Laloë, M Atlan,
Jean Hare, and Michel Gross. Fringe-free holographic mea-
surements of large-amplitude vibrations. Optics letters,
34(23):3698–3700, 2009.

[24] Julien Leval, Pascal Picart, Jean Pierre Boileau, and
Jean Claude Pascal. Full-field vibrometry with digital fresnel
holography. Applied optics, 44(27):5763–5772, 2005.

[25] Frédéric Verpillat, Fadwa Joud, Michael Atlan, and Michel
Gross. Imaging velocities of a vibrating object by strobo-
scopic sideband holography. Optics express, 20(20):22860–
22871, 2012.

[26] Mitsuhiro Ueda, Sumio Miida, and Takuso Sato. Signal-to-
noise ratio and smallest detectable vibration amplitude in
frequency-translated holography: an analysis. Applied optics,
15(11):2690–2694, 1976.

[27] Pavel Psota, Vit Ledl, Roman Dolecek, Jiri Erhart, and Va-
clav Kopecky. Measurement of piezoelectric transformer vi-
brations by digital holography. Ultrasonics, Ferroelectrics and
Frequency Control, IEEE Transactions on, 59(9):1962–1968,
2012.

35



[28] Nicolas Verrier and Michael Atlan. Absolute measurement
of small-amplitude vibrations by time-averaged heterodyne
holography with a dual local oscillator. Optics letters,
38(5):739–741, 2013.

[29] Francois Bruno, Jean-Baptiste Laudereau, Max Lesaffre,
Nicolas Verrier, and Michael Atlan. Phase-sensitive nar-
rowband heterodyne holography. Applied optics, 53(7):1252–
1257, 2014.

[30] Francois Bruno, Jérôme Laurent, Daniel Royer, and Michael
Atlan. Holographic imaging of surface acoustic waves. Applied
Physics Letters, 104(8):083504, 2014.

[31] Francois Bruno, Jérôme Laurent, Claire Prada, Benjamin
Lamboul, Bruno Passilly, and Michael Atlan. Non-destructive
testing of composite plates by holographic vibrometry. Jour-
nal of Applied Physics, 115(15):154503, 2014.

[32] Pavel Psota, Vít Lédl, Roman Doleček, Jan Václavík, and
Miroslav Šulc. Comparison of digital holographic method for
very small amplitudes measurement with single point laser in-
terferometer and laser doppler vibrometer. In Digital Holog-
raphy and Three-Dimensional Imaging, pages DSu5B–3. Op-
tical Society of America, 2012.

36


