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Abstract

We prove that a sequence satisfying a certain symmetry property is 2-regular
in the sense of Allouche and Shallit, i.e., the Z-module generated by its 2-kernel
is finitely generated. We apply this theorem to develop a general approach for
studying the `-abelian complexity of 2-automatic sequences. In particular, we prove
that the period-doubling word and the Thue–Morse word have 2-abelian complexity
sequences that are 2-regular. Along the way, we also prove that the 2-block codings
of these two words have 1-abelian complexity sequences that are 2-regular.

1 Introduction

This paper is about some structural properties of integer sequences that occur naturally
in combinatorics on words. Since the fundamental work of Cobham [8], the so-called
automatic sequences have been extensively studied. We refer the reader to [3] for basic

∗This work has been done when this author was an FNRS post-doctoral fellow at the University of
Liege.
†BeIPD-COFUND post-doctoral fellow at the University of Liege.
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definitions and properties. These infinite words over a finite alphabet can be obtained by
iterating a prolongable morphism of constant length to get an infinite word (and then, an
extra letter-to-letter morphism, also called coding, may be applied). As a fundamental
example, the Thue–Morse word t = σω(0) = 0110100110010110 · · · is a fixed point of the
morphism σ over the free monoid {0, 1}∗ defined by σ(0) = 01, σ(1) = 10. Similarly,
the period-doubling word p = ψω(0) = 01000101010001000100 · · · is a fixed point of the
morphism ψ over {0, 1}∗ defined by ψ(0) = 01, ψ(1) = 00. We will discuss again these
two examples of 2-automatic sequences.

Since an infinite word is just a sequence over N taking values in a finite alphabet, we
use the terms ‘infinite word’ and ‘sequence’ interchangeably.

Let k ≥ 2 be an integer. One characterization of k-automatic sequences is that their
k-kernels are finite; see [9] or [3, Section 6.6].

Definition 1. The k-kernel of a sequence s = s(n)n≥0 is the set

Kk(s) = {s(kin+ j)n≥0 : i ≥ 0 and 0 ≤ j < ki}.

For instance, the 2-kernelK2(t) of the Thue–Morse word contains exactly two elements,
namely t and σω(1).

A natural generalization of automatic sequences to sequences on an infinite alphabet is
given by the notion of k-regular sequences. We will restrict ourselves to sequences taking
integer values only.

Definition 2. Let k ≥ 2 be an integer. A sequence s = s(n)n≥0 ∈ ZN is k-regular if
〈Kk(s)〉 is a finitely-generated Z-module, i.e., there exist a finite number of sequences
t1(n)n≥0, . . . , t`(n)n≥0 such that every sequence in the k-kernel Kk(s) is a Z-linear combi-
nation of the tr’s. Otherwise stated, for all i ≥ 0 and for all j ∈ {0, . . . , ki − 1}, there
exist integers c1, . . . , c` such that

∀n ≥ 0, s(kin+ j) =
∑̀
r=1

cr tr(n).

There are many natural examples of k-regular sequences [1, 2]. There is a convenient
matrix representation for k-regular sequences which leads to an efficient algorithm for
computing the values of such a sequence (and many related quantities). See also [4,
Chapter 5] for connections with rational series. In particular, a sequence taking finitely
many values is k-regular if and only if it is k-automatic. The k-regularity of a sequence
provides us with structural information about how the different terms are related to each
other.

A classical measure of complexity of an infinite word x is its factor complexity P(∞)
x :

N → N which maps n to the number of distinct factors of length n occurring in x. It
is well known that a k-automatic sequence x has a k-regular factor complexity function
and the sequence (P(∞)

x (n + 1) − P(∞)
x (n))n≥0 is k-automatic. See [6, 7] for a proof and

relevant extensions. As an example, again for the Thue–Morse word, we have

P(∞)
t (2n+ 1) = 2P(∞)

t (n+ 1) and P(∞)
t (2n) = P(∞)

t (n+ 1) + P(∞)
t (n)

2



for all n ≥ 2. See also [10] where a formula was obtained for the factor complexity of
fixed points of some uniform morphisms.

Recently there has been a renewal of interest in abelian notions arising in combinatorics
on words (e.g., avoiding abelian or `-abelian patterns, abelian bordered words, etc.). For
instance, two finite words u and v are abelian equivalent if one is obtained by permuting
the letters of the other one, i.e., the two words share the same Parikh vector, Ψ(u) = Ψ(v).
Since the Thue–Morse word is an infinite concatenation of factors 01 and 10, this word
is abelian periodic of period 2. The abelian complexity of an infinite word x is a function
P(1)

x : N→ N which maps n to the number of distinct factors of length n occurring in x,
counted up to abelian equivalence. Madill and Rampersad [15] provided the first example
of regularity in this setting: the abelian complexity of the paper-folding word (which is
another typical example of an automatic sequence) is unbounded and 2-regular.

Let ` ≥ 1 be an integer. Based on [12] the notions of abelian equivalence and thus
abelian complexity were recently extended to `-abelian equivalence and `-abelian com-
plexity [13].

Definition 3. Let u, v be two finite words. We let |u|v denote the number of occurrences
of the factor v in u. Two finite words x and y are `-abelian equivalent if |x|v = |y|v for all
words v of length |v| ≤ `.

As an example, the words 011010011 and 001101101 are 2-abelian equivalent but not
3-abelian equivalent (the factor 010 occurs in the first word but not in the second one).

Hence one can define the function P(`)
x : N→ N which maps n to the number of distinct

factors of length n occurring in the infinite word x, counted up to `-abelian equivalence.
That is, we count `-abelian equivalence classes partitioning the set of factors Facx(n) of
length n occurring in x. In particular, for any infinite word x, we have for all n ≥ 0

P(1)
x (n) ≤ · · · ≤ P(`)

x (n) ≤ P(`+1)
x (n) ≤ · · · ≤ P(∞)

x (n).

In this paper, we show that both the period-doubling word and the Thue–Morse
word have 2-abelian complexity sequences which are 2-regular. The computations and
arguments leading to these results permit us to exhibit some similarities between the
two cases and a quite general scheme that we hope can be used again to prove additional
regularity results. Indeed, one conjectures that any k-automatic sequence has an `-abelian
complexity function that is k-regular.

We mention some other papers containing related work. In [14], the authors studied

the asymptotic behavior of P(`)
t (n) and also derived some recurrence relations1 showing

that the abelian complexity P(1)
p (n)n≥0 of the period-doubling word p is 2-regular. In [5],

the abelian complexity of the fixed point v of the non-uniform morphism 0 7→ 012, 1 7→
02, 2 7→ 1 is studied and the authors obtain results similar to those discussed in this
paper. Even though the authors of [5] are not directly interested in the k-regularity of

1It seems that there is some subtle error in the relation for P(1)
p (4n + 2) proposed in [14, Lemma 6].

Correct relations are given by [5, Proposition 2] and could also be obtained by Theorem 4 and Proposi-
tion 47.
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P(1)
v (n)n≥0, they derive recurrence relations. From these relations, following the approach

described in this paper, one can possibly prove some regularity result. In particular, the
result of replacing in v all 2’s by 0’s leads back to the period-doubling word. Hence,
Blanchet-Sadri et al. also proved some other relations about the abelian complexity of p.

Given the first few terms of a sequence, one can easily conjecture the potential k-
regularity of this sequence by exhibiting relations that should be satisfied; see [2, Sec-
tion 6] for such a “predictive” algorithm that recognizes regularity. Of course, in such an
algorithm, a finite examination does not lead to a proof of the k-regularity of a sequence.
The first few terms of the 2-abelian complexity P(2)

t (n)n≥0 of the Thue–Morse word are

1, 2, 4, 6, 8, 6, 8, 10, 8, 6, 8, 8, 10, 10, 10, 8, 8, 6, 8, 10, 10, 8, 10, 12, 12, 10, 12, 12, . . . .

The second and last authors of this paper conjectured the 2-regularity of the sequence
P(2)

t (n)n≥0 (and proved some recurrence relations for this sequence) [17]. Recently, after
hearing a talk given by the last author during the Representing Streams II meeting in
January 2014, Greinecker proved the recurrence relations needed to prove the 2-regularity
of this sequence [11]. Hopefully, the two approaches are complementary: in this paper,
we prove 2-regularity without exhibiting the explicit recurrence relations.

Let us now describe the content and organization of this paper.

In Section 2 we prove Theorem 4, which establishes the 2-regularity of a large family
of sequences satisfying a recurrence relation with a parameter c and 2`0 initial conditions.
The form of the recurrence implies that sequences in this family exhibit a reflection
symmetry in the values taken over each interval [2`, 2`+1) for ` ≥ `0. For the special
case of the Thue–Morse word, a similar property is shown in [11]. Computer experiments
suggest that many 2-abelian complexity functions satisfy such a reflection property.

Theorem 4. Let `0 ≥ 0 and c ∈ Z. Suppose s(n)n≥0 is a sequence such that, for all
` ≥ `0 and for all r such that 0 ≤ r ≤ 2` − 1, we have

s(2` + r) =

{
s(r) + c if r ≤ 2`−1

s(2`+1 − r) if r > 2`−1.
(1)

Then s(n)n≥0 is 2-regular.

The recurrence satisfied by s(n) in Theorem 4 reads words from left to right, i.e.,
starting with the most significant digit. Our proof of this theorem will express sequences
in the 2-kernel of s(n)n≥0 as in Definition 2, starting with the least significant digit.

From Equation (1) one can get some information about the asymptotic behavior of
the sequence s(n)n≥0. We have s(n) = O(log n), and moreover

s
(

4`+1−1
3

)
= s(4` + · · ·+ 41 + 40) =

(
`−

⌊
`0−1

2

⌋)
c+ s

(
4b(`0+1)/2c−1

3

)
for ` ≥ b `0−1

2
c. At the same time, there are many subsequences of s(n)n≥0 which are

constant; for example, s(2`) = c for ` ≥ `0.
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Example 5. As an illustration of the reflection property described in Theorem 4, we
consider the abelian complexity of the 2-block coding of the period-doubling word p.
(The recurrence satisfied by this sequence is given in Theorem 21.) Some values of this
sequence are depicted in Figures 1 and 2.
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Figure 1: The abelian complexity of block(p, 2) on the intervals [16, 32] and [32, 64].
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Figure 2: The abelian complexity of block(p, 2) on the interval [64, 128].

In Section 3, we collect some general results and definitions about words and k-regular
sequences (in particular stability properties of the set of k-regular sequences under sum
and product) that are needed in the other parts of this paper.

In Section 4, we study the abelian complexity of the 2-block coding x = block(p, 2) of
the period-doubling word p. In particular, we consider the difference ∆0(n) between the
maximal and minimal numbers of 0’s occurring in factors of length n in block(p, 2). We

prove that the sequences ∆0(n)n≥0 and P(1)
x (n)n≥0 are 2-regular. In Section 5, we study

the 2-abelian complexity of p. We show that the 2-regularity of ∆0(n)n≥0 and P(1)
x (n)n≥0

implies the 2-regularity of P(2)
p (n).

Sections 6 and 7 share some similarities with Sections 4 and 5. The reader will see
that the strategy used to prove the 2-regularity of P(2)

p (n) can also be applied to the
Thue–Morse word. Nevertheless, some differences do not permit us to treat the two cases
within a completely unified framework.
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In Section 6, we study the abelian complexity of the 2-block coding y = block(t, 2) of
the Thue–Morse word t. We define ∆12(n) to be the difference between the maximal total
and minimal total numbers of 1’s and 2’s occurring in factors of length n in block(t, 2).

It turns out that ∆12(n) + 1 = P(1)
p (n) and our results can thus be related to [5] and [14].

We prove that ∆12(n)n≥0 and P(1)
y (n)n≥0 are 2-regular. In Section 7, we show that the

2-regularity of P(2)
t (n) follows from the 2-regularity of ∆12(n)n≥0 and P(1)

y (n)n≥0.
Finally, in Section 8 we suggest a direction for future work.
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2 Sequences satisfying a reflection symmetry

The aim of this section is to prove Theorem 4 stated in the introduction. Before proving
it in generality, we first examine the sequence satisfying the recurrence for `0 = 0 and
c = 1. It will turn out that the general solution can be expressed naturally in terms of
this sequence.

Let A(0) = 0. For each ` ≥ 0 and 0 ≤ r ≤ 2` − 1, let

A(2` + r) =

{
A(r) + 1 if r ≤ 2`−1

A(2`+1 − r) if r > 2`−1.
(2)
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The sequence A(n)n≥0 is

0, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 3, 2, 3, 2, 2, . . .

and appears as [16, A007302]. Allouche and Shallit [2, Example 12] identified this sequence
as an example of a regular sequence. We include a proof here.

Proposition 6. For all n ≥ 0 we have

A(2n) = A(n)

A(8n+ 1) = A(4n+ 1)

A(8n+ 3) = A(2n+ 1) + 1

A(8n+ 5) = A(2n+ 1) + 1

A(8n+ 7) = A(4n+ 3).

In particular, A(n)n≥0 is 2-regular.

Proof. This proof is typical of many of the proofs throughout the paper. We work by
induction on n. The case n = 0 can be checked easily using the first few values of the
sequence A(n)n≥0. Therefore, let n ≥ 1 and assume that the recurrence holds for all
values less than n. Write n = 2` + r with ` ≥ 0 and 0 ≤ r ≤ 2` − 1.

First let us address the equation A(2n) = A(n). If 0 ≤ r ≤ 2`−1, then

A(2n) = A(2`+1 + 2r)

= A(2r) + 1 (by Equation (2))

= A(r) + 1 (by induction hypothesis)

= A(2` + r) (by Equation (2))

= A(n).

On the other hand, if 2`−1 < r < 2`, then

A(2n) = A(2`+1 + 2r)

= A(2`+2 − 2r) (by Equation (2))

= A(2`+1 − r) (by induction hypothesis)

= A(2` + r) (by Equation (2))

= A(n).

Next we consider A(8n+ 1) = A(4n+ 1). If 0 ≤ r ≤ 2`−1 − 1, then

A(8n+ 1) = A(2`+3 + 8r + 1)

= A(8r + 1) + 1 (by Equation (2))

= A(4r + 1) + 1 (by induction hypothesis)

= A(2`+2 + 4r + 1) (by Equation (2))

= A(4n+ 1).

7
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If 2`−1 ≤ r < 2`, then

A(8n+ 1) = A(2`+3 + 8r + 1)

= A(2`+4 − 8r − 1) (by Equation (2))

= A(2`+4 − 8r − 8 + 7)

= A(2`+3 − 4r − 4 + 3) (by induction hypothesis)

= A(2`+3 − (4r + 1))

= A(2`+2 + 4r + 1) (by Equation (2))

= A(4n+ 1).

The equations for A(8n+ 3), A(8n+ 5) and A(8n+ 7) are handled similarly.

Now we prove Theorem 4. We show that for general `0 ≥ 0, a sequence s(n)n≥0

satisfying the recurrence can be written in terms of A(n)n≥0.

Proof of Theorem 4. There are 2`0 initial conditions for the recurrence, namely s(0), . . . ,
s(2`0 − 1). We claim that most of the 2`0+2 subsequences of the form s(2`0+2n + i)n≥0

depend on only one of the initial conditions s(j); each of these subsequences is essentially
A(n)n≥0, A(4n+1)n≥0, A(2n+1)n≥0, or A(4n+3)n≥0. Furthermore, each of the remaining
subsequences is equal to s(2`0n+ j) + c for some j. More precisely, for 0 ≤ i ≤ 2`0+2 − 1
and n ≥ 0 we have the identity

s(2`0+2n+ i) =

cA(n) + s(0) if i = 0

cA(4n+ 1)− c+ s(i) if 1 ≤ i ≤ 2`0 − 1

cA(4n+ 1) + s(0) if i = 2`0

s(2`0n+ i− 2`0) + c if 2`0 + 1 ≤ i ≤ 2`0 + 2`0−1 − 1

cA(2n+ 1) + s(|i− 2`0+1|) if 2`0 + 2`0−1 ≤ i ≤ 2`0+1 + 2`0−1

s(2`0n+ i− 2`0+1) + c if 2`0+1 + 2`0−1 + 1 ≤ i ≤ 2`0+1 + 2`0 − 1

cA(4n+ 3) + s(0) if i = 2`0+1 + 2`0

cA(4n+ 3)− c+ s(2`0+2 − i) if 2`0+1 + 2`0 + 1 ≤ i ≤ 2`0+2 − 1.

(Note the symmetry among the eight cases, which reflects the symmetry s(2` + r) =
s(2`+1 − r) of the recurrence for r > 2`−1.) It will follow from this identity that the Z-
module generated by the 2-kernel of s(n)n≥0 is generated by the sequences s(2`n+ j)n≥0

for 0 ≤ ` ≤ `0 + 1 and 0 ≤ j ≤ 2`−1, A(n)n≥0, A(4n+ 1)n≥0, A(2n+ 1)n≥0, A(4n+ 3)n≥0,
and the constant 1 sequence. In particular, this module is finitely generated.

We prove the identity by induction on n. Recall that for all ` ≥ `0 and for all r such
that 0 ≤ r ≤ 2` − 1, we have Equation (1), i.e.,

s(2` + r) =

{
s(r) + c if r ≤ 2`−1

s(2`+1 − r) if r > 2`−1.
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For n = 0, one uses A(1) = 1 and A(3) = 2 to verify that all eight cases of the identity
hold. Inductively, let n ≥ 1, and assume the identity is true for all n′ < n. Write n = 2`+r
with ` ≥ 0 and 0 ≤ r ≤ 2` − 1.

First we consider the case 0 ≤ r ≤ 2`−1 − 1. For all i ∈ {0, . . . 2`0+2 − 1}, we have
2`0+2r + i ≤ 2(`0+2+`)−1 − 1, so

s(2`0+2n+ i) = s(2`0+2+` + (2`0+2r + i))

= s(2`0+2r + i) + c (by Equation (1)).

If 1 ≤ i ≤ 2`0 − 1, then the induction hypothesis now gives

s(2`0+2n+ i) = s(2`0+2r + i) + c

= cA(4r + 1) + s(i)

= c
(
A(2`+2 + 4r + 1)− 1

)
+ s(i)

= cA(4n+ 1)− c+ s(i),

where we have used A(2`+2 + 4r+ 1) = A(4r+ 1) + 1 from the recurrence for A(n), since
4r + 1 ≤ 2(`+2)−1. The other seven intervals for i are verified similarly; in each case one
applies the induction hypothesis to s(2`0+2r+i)+c and then uses the recurrence for either
A(n) or s(n) to raise an argument in r to an argument in n.

It remains to consider 2`−1 ≤ r ≤ 2` − 1. First we address the case i = 0. If r = 2`−1

then

s(2`0+2n+ i) = s(2`0+2+` + 2`0+2+`−1)

= s(2`0+2+`−1) + c (by Equation (1))

= cA(2`−1) + s(0) + c (by inductive hypothesis)

= c
(
A(2` + 2`−1)− 1

)
+ s(0) + c (by Equation (2))

= cA(n) + s(0)

as desired. Alternatively, if 2`−1 < r ≤ 2` − 1 then 2`0+2r > 2(`0+2+`)−1, so

s(2`0+2n+ i) = s(2`0+2+` + 2`0+2r)

= s(2`0+2+`+1 − 2`0+2r) (by Equation (1))

= s(2`0+2(2`+1 − r) + 0)

= cA(2`+1 − r) + s(0) (by inductive hypothesis)

= cA(2` + r) + s(0) (by Equation (2))

= cA(n) + s(0).

Therefore it remains to consider 2`−1 ≤ r ≤ 2`− 1 for 1 ≤ i ≤ 2`0+2− 1. In this range
we have 2`0+2r + i > 2(`0+2+`)−1, so

s(2`0+2n+ i) = s(2`0+2+` + (2`0+2r + i))

= s(2`0+2+`+1 − 2`0+2r − i) (by Equation (1))

= s(2`0+2n′ + i′),
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where n′ = 2`+1 − r − 1 and i′ = 2`0+2 − i. We prove the identity for the seven intervals
for i using the same steps we have already used several times; we have just applied the
recurrence for s(n), so next we use the induction hypothesis, followed by the recurrence for
A(n) or s(n), depending on which term appears. For the first interval, if 1 ≤ i ≤ 2`0 − 1,
then 2`0+1 + 2`0 + 1 ≤ i′ ≤ 2`0+2 − 1, so

s(2`0+2n+ i) = s(2`0+2n′ + i′)

= cA(4n′ + 3)− c+ s(2`0+2 − i′) (by inductive hypothesis)

= cA(2`+3 − (4r + 1))− c+ s(i)

= cA(2`+2 + 4r + 1)− c+ s(i) (by Equation (2))

= cA(4n+ 1)− c+ s(i).

The proofs for the remaining six intervals are routine at this point, so we omit the steps
here.

Example 7. In Section 4, we will use Theorem 4 with `0 = 2 to conclude that ∆0(n)n≥0

and P(1)
x (n)n≥0 are 2-regular for the period-doubling word. For `0 = 2 the value of

s(16n+ i) is

s(16n+ i) =



cA(n) + s(0) if i = 0

cA(4n+ 1)− c+ s(i) if 1 ≤ i ≤ 3

cA(4n+ 1) + s(0) if i = 4

s(4n+ 1) + c if i = 5

cA(2n+ 1) + s(|i− 8|) if 6 ≤ i ≤ 10

s(4n+ 3) + c if i = 11

cA(4n+ 3) + s(0) if i = 12

cA(4n+ 3)− c+ s(16− i) if 13 ≤ i ≤ 15.

In Section 6, we will use Theorem 4 with `0 = 1 to conclude that ∆12(n)n≥0 is 2-regular
for the Thue–Morse word.

3 About regular sequences and words

We will often make use of the following composition theorem for a function F defined
piecewise on several k-automatic sets.

Lemma 8. Let k ≥ 2. Let P1, . . . , P` : N → {0, 1} be unary predicates that are k-
automatic. Let f1, . . . , f` be k-regular functions. The function F : N→ N defined by

F (n) =
∑̀
i=1

fi(n)Pi(n)

is k-regular.

10



Proof. It is a direct consequence of [1, Theorem 2.5]: if s(n)n≥0 and t(n)n≥0 are k-regular,
then (s(n) + t(n))n≥0 and (s(n)t(n))n≥0 are both k-regular sequences. Recall that k-
automatic sequences are special cases of k-regular sequences.

Note that if, for each n, there is exactly one i such that Pi(n) = 1, then we can write

F (n) =


f1(n) if P1(n) = 1

f2(n) if P2(n) = 1
...

...

f`(n) if P`(n) = 1.

This is the setting in which we will apply Lemma 8.
We will also make use of the following classical results.

Lemma 9. [1, Theorem 2.3] Let k ≥ 2 be an integer. A sequence taking finitely many
values is k-regular if and only if it is k-automatic.

Lemma 10. [1, Corollary 2.4] Let k,m ≥ 2 be integers. If a sequence s(n)n≥0 is k-regular,
then (s(n) mod m)n≥0 is k-automatic.

Lemma 11. Let k ≥ 2 be an integer. Let s(n)n≥0 be a sequence. The sequence s(n)n≥0

is k-regular if and only if s(n+ 1)n≥0 is k-regular.

Proof. It is a direct consequence of two results stated in [1], namely Theorem 2.6 and its
following remark.

Let us now give some definitions about combinatorics on words.

Definition 12. If a word w starts with the letter a, then a−1w denotes the word obtained
from w by deleting its first letter. Similarly, if a word w ends with the letter a, then wa−1

denotes the word obtained from w by deleting its last letter. As usual, we let |w| denote
the length of the finite word w. If a is a letter, we let |w|a denote the number of occurrences
of a in w. If w = w0 · · ·w`−1, then we let wR = w`−1 · · ·w0 denote the reversal of w. Our
convention is that we index letters in an infinite word beginning with 0.

Since we are interested in `-abelian complexity, it is natural to consider the following
operation that permits us to compare factors of length ` occurring in an infinite word.
Indeed, if two finite words are `-abelian equivalent, then their `-block codings are abelian
equivalent (but the converse does not hold).

Definition 13. Let ` ≥ 1. The `-block coding of the word w = w0w1w2 · · · over the
alphabet A is the word

block(w, `) = (w0 · · ·w`−1) (w1 · · ·w`) (w2 · · ·w`+1) · · · (wj · · ·wj+`−1) · · ·
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over the alphabet A`. If A = {0, . . . , r − 1}, then it is convenient to identify A` with the
set {0, . . . , r` − 1} and each word w0 · · ·w`−1 of length ` is thus replaced with the integer
obtained by reading the word in base r, i.e.,

`−1∑
i=0

wi r
`−1−i.

One can also define accordingly the `-block coding of a finite word u of length at least `.
The resulting word block(u, `) has length |u| − `+ 1.

Example 14. The 2-block codings of 011010011 and 001101101 are respectively 13212013
and 01321321, which are abelian equivalent.

Lemma 15. [13, Lemma 2.3] Let ` ≥ 1. Two finite words u and v of length at least `− 1
are `-abelian equivalent if and only if they share the same prefix (resp. suffix) of length
`− 1 and the words block(u, `) and block(v, `) are abelian equivalent.

It is well known that the `-block coding of a k-automatic sequence is again a k-
automatic sequence [8]. (Note that the operation of `-block compression that one also
encounters in the literature is not the same as the `-block coding given in Definition 13.)

Example 16. For the period-doubling word p, the 2-block coding is given by

block(p, 2) = φω(1) = 12001212120012001200121212001212 · · ·

where φ is the morphism over {0, 1, 2}∗ defined by φ : 0 7→ 12, 1 7→ 12, 2 7→ 00.

Example 17. For the Thue–Morse word t, the 2-block coding is given by

block(t, 2) = νω(1) = 132120132012132120121320 · · ·

where ν is the morphism over {0, 1, 2, 3}∗ defined by ν : 0 7→ 12, 1 7→ 13, 2 7→ 20, 3 7→ 21.

4 Abelian complexity of block(p, 2)

We let x denote block(p, 2) = 12001212120012001200121212001212 · · · , the 2-block cod-
ing of p, introduced in Example 16. We consider in this section the abelian complexity
of x and then, in Section 5, we compare P(1)

x (n) with P(2)
p (n).

Definition 18. We will make use of functions related to the number of 0’s in the factors
of x of a given length. Let n ∈ N. We let max0(n) (resp. min0(n)) denote the maximum
(resp. minimum) number of 0’s in a factor of x of length n. Let ∆0(n) = max0(n)−min0(n)
be the difference between these two values.

Each of the ∆0(n) + 1 integers in the interval [min0(n),max0(n)] is attained as the
number of 0’s in some factor of x of length n, since when we slide a window of length n
along x from a factor with min0(n) zeros to a factor with max0(n) zeros, the number of
0’s changes by at most 1 per step.

12



Lemma 19. If n is even, then max0(n), min0(n) and ∆0(n) are even.

Proof. Suppose a factor w = w1 · · ·w2n of x of even length 2n has an odd number n0 of
zeros. Since φ(0) = φ(1) = 12 and φ(2) = 00, the factor w starts or ends with 0. Without
loss of generality, assume it starts with w1 = 0. Then its last letter must be w2n = 1.
The words 0w1 · · ·w2n−1 and w2 · · ·w2n2 are two factors of length 2n with respectively
n0 + 1 and n0 − 1 zeros. Hence, these two factors have even numbers of zeros which are
respectively greater than and less than n0. The conclusion follows.

We give two related proofs of the 2-regularity of the sequence P(1)
x (n)n≥0. The first

uses the following proposition, which we prove in Section 4.1, together with the fact that
∆0(n)n≥0 is 2-regular and the two sequences (∆0(n) mod 2)n≥0 and (min0(n) mod 2)n≥0

are 2-automatic (see Section 4.2, Corollary 26). Then the 2-regularity of the sequence

P(1)
x (n)n≥0 will follow from Lemma 8.

Proposition 20. For n ∈ N,

P(1)
x (n) =


3
2
∆0(n) + 3

2
if ∆0(n) is odd

3
2
∆0(n) + 1 if ∆0(n) and n−min0(n) are even

3
2
∆0(n) + 2 if ∆0(n) and n−min0(n) + 1 are even.

In the second proof, we prove in Section 4.3 the following theorem, which allows us to
apply our general result expressed by Theorem 4.

Theorem 21. Let ` ≥ 2 and r such that 0 ≤ r < 2` − 1. We have

P(1)
x (2` + r) =

{
P(1)

x (r) + 3 if r ≤ 2`−1

P(1)
x (2`+1 − r) if r > 2`−1.

In particular, the sequence P(1)
x (n)n≥0 is 2-regular.

From Theorem 21 we see that P(1)
x (2`) = P(1)

x (0) + 3 = 4 for all ` ≥ 2. Additionally,

one can check that P(1)
x (21) = 4.

4.1 Proof of Proposition 20

First we mention some properties of factors of the word x.

Lemma 22. The set of factors of x of length 2 is Facx(2) = {00, 01, 12, 20, 21}.

Proof. It is easy to check that these five words are factors. To prove that they are the
only ones, it is enough to check that for any element u in {00, 01, 12, 20, 21} the three
factors of length 2 of φ(u) are in {00, 01, 12, 20, 21}.

Lemma 23. If w is a factor of x then
∣∣|w|1 − |w|2∣∣ ≤ 1. In particular, the letters 1 and

2 alternate in the sequence obtained from x after erasing the 0’s.
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Proof. Let w be a factor of x. There are two cases to consider.
If w can be de-substituted (that is, w = φ(v) for some v), then |w|1 = |w|2 since

|φ(i)|1 = |φ(i)|2 for all i ∈ {0, 1, 2}.
If w cannot be de-substituted, then either w has even length and occurs at an odd

index in x, or w has odd length. If w has odd length, then deleting either the first or
last letter results in a word that can be de-substituted, so

∣∣|w|1 − |w|2∣∣ ≤ 1. If w has
even length and occurs at an odd index, then its first letter is 0 or 2 and its last letter is
0 or 1; deleting the first and last letters results in a word that can be de-substituted, so∣∣|w|1 − |w|2∣∣ ≤ 1.

Finally, observe that if for all factors of a word u, the numbers of two letters x and y
differ by at most 1, then x and y alternate in u.

Lemma 24. Let τ be the morphism defined by τ : 0 7→ 0, 1 7→ 2, 2 7→ 1. If w is a factor
of x, then τ(w)R is also a factor of x.

Proof. We first prove by induction that

τ(φ(2u1))R = φ(τ(12u)R)

for every factor of the form 2u1 of x.
One checks that this is true for 21 and 2001. If 2u1 is a factor not equal to 21 nor

2001, then u must contain a 2 and we can write 2u1 = 2u′12u′′1 where 2u′1 and 2u′′1 are
factors of x. By the induction hypothesis we have

τ(φ(2u1))R = τ(φ(2u′12u′′1))R

= τ(φ(2u′′1))Rτ(φ(2u′1))R

= φ(τ(12u′′)R)φ(τ(12u′)R)

= φ(τ(12u′12u′′)R)

= φ(τ(12u)R).

We now prove the lemma by induction on the length of w. One can check by hand
that the lemma is true for w of length at most 15. Assume the lemma is true for every
factor of length at most n ≥ 15, and let w be a factor of length n+ 1. Then w is a factor
of φ(v) for some factor v of x with n+1

2
≤ |v| ≤ n+3

2
.

Since all factors of length 4 contain a 1 and a 2, there exists a factor u such that v is
a factor of 2u1 and |2u1| ≤ n+3

2
+ 6. In particular, w is a factor of φ(2u1) and τ(w)R is a

factor of τ(φ(2u1))R. To obtain the conclusion, we just need to show that τ(φ(2u1))R is
a factor of x.

As by Lemma 22, a 2 is always preceded by a 1 in x, the word 12u is a factor of x and it
has length |12u| ≤ n+3

2
+ 6 ≤ n. By induction hypothesis, τ(12u)R is a factor of x. Hence

φ(τ(12u)R) is also a factor. Finally, using the previous result, τ(φ(2u1))R = φ(τ(12u)R)
is a factor of x.

We can now express P(1)
x in terms of ∆0.
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Proof of Proposition 20. Let w be a factor of x of length |w| = n.
If |w|−|w|0 = |w|1 +|w|2 is even, it follows from Lemma 23 that |w|1 = |w|2. Therefore

every factor of length n containing exactly |w|0 zeros is abelian-equivalent to w, so the
pair (n, |w|0) determines a unique abelian equivalence class of factors.

If |w| − |w|0 is odd, then by Lemma 23 either |w|1 = |w|2 + 1 or |w|2 = |w|1 + 1.
By Lemma 24, there is another factor, v = τ(w)R, of length n, with |v|0 = |w|0 and
|v|1 − |v|2 = |w|2 − |w|1. Therefore both possibilities occur, so the number of abelian
equivalence classes corresponding to a pair (n, |w|0) is 2.

There are ∆0(n)+1 possible values for the number of 0’s in a factor of length n. Since
each value occurs for some factor, we have

P(1)
x (n) =

max0(n)∑
i=min0(n)

{
1 if n− i is even

2 if n− i is odd

=

n−min0(n)∑
j=n−max0(n)

{
1 if j is even

2 if j is odd.

Therefore P(1)
x (n) = 3

2
∆0(n) + c(n), where c(n) depends only on the parities of ∆0(n) and

n − min0(n); computing four explicit values allows one to determine the values of c(n)

and obtain the equation claimed for P(1)
x (n).

4.2 ∆0(n)n≥0 is 2-regular, (min0(n) mod 2)n≥0 is 2-automatic

In this section, we prove the following result.

Proposition 25. Let ` ≥ 2 and r such that 0 ≤ r < 2`. We have

∆0(2` + r) =

{
∆0(r) + 2 if r ≤ 2`−1

∆0(2`+1 − r) if r > 2`−1.

Moreover,

min0(2` + r) ≡

{
min0(r) (mod 2) if r ≤ 2`−1

min0(2`+1 − r) + ∆0(2`+1 − r) (mod 2) if r > 2`−1.

Before giving the proof, we prove a corollary. The 2-regularity of P(1)
x (n)n≥0 follows

from Proposition 20 and Corollary 26.

Corollary 26. The following statements are true.

• The sequence ∆0(n)n≥0 is 2-regular.

• The sequence (∆0(n) mod 2)n≥0 is 2-automatic.

• The sequence (min0(n) mod 2)n≥0 is 2-automatic.
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Proof. The first assertion is a direct consequence of Proposition 25 and Theorem 4. Note
that one can obtain explicit relations satisfied by ∆0(n)n≥0 from Example 7. The second
assertion follows from Lemma 10.

For the last assertion, for i ∈ {0, . . . , 31} we prove that, modulo 2,

min0(32n+ i) ≡



min0(8n+ 1) if i ∈ {1, 5, 9, 17, 25}
min0(8n+ 3) if i = 11

min0(8n+ 5) if i = 21

min0(8n+ 7) if i ∈ {7, 15, 23, 27, 31}
0 otherwise

and

∆0(32n+ i) ≡



∆0(8n+ 1) if i ∈ {1, 5, 9, 17, 25}
∆0(8n+ 3) if i = 11

∆0(8n+ 5) if i = 21

∆0(8n+ 7) if i ∈ {7, 15, 23, 27, 31}
0 otherwise.

By Lemma 19, we already know that min0(2n) ≡ ∆0(2n) ≡ 0 (mod 2) for any n ∈ N.
Hence the relations above are true for i even. We prove the other relations by induction
on n. They are true for n = 0. Let n > 0 and assume the relations are satisfied for all
n′ such that 0 ≤ n′ < n. We can write n = 2` + r with ` ≥ 0 and 0 ≤ r < 2`. Let
i ∈ {1, . . . , 31} be odd.

Assume first that r < 2`−1. We have 32n+ i = 2`+5 + 32r + i and 32r + i < 2`+4.

min0(32n+ i) ≡ min0(32r + i) (Proposition 25)

≡ min0(8r + j) (induction)

≡ min0(2`+3 + 8r + j) (Proposition 25)

≡ min0(8n+ j) (mod 2)

for some j ∈ {0, . . . , 7} according to the relations. A similar reasoning holds for the ∆0

relations.
Assume now that r ≥ 2`−1. Since 32r + i > 2`+4, we have

min0(32n+ i) ≡ min0(2`+6 − 32r − i) + ∆0(2`+6 − 32r − i) (Proposition 25)

≡ min0(32n′ + j) + ∆0(32n′ + j) (mod 2)

with j = 32 − i and n′ = 2`+1 − r − 1. If i ∈ {3, 13, 19, 29}, then j ∈ {3, 13, 19, 29}. By
the induction hypothesis, min0(32n′ + j) ≡ ∆0(32n′ + j) ≡ 0 (mod 2) and we are done.

For the remaining cases, i, j 6∈ {3, 13, 19, 29}. As min0 and ∆0 satisfy the same
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recurrence relations, by the induction hypothesis, there exists k ∈ {1, 3, 5, 7} such that

min0(32n+ i) ≡ min0(8n′ + k) + ∆0(8n′ + k)

≡ min0(2`+4 − (8r + 8− k)) + ∆0(2`+4 − (8r + 8− k))

≡ min0(2`+3 + (8r + 8− k)) (Proposition 25)

≡ min0(8n+ (8− k)) (mod 2).

Observe that the value of 8− k is the value given in the relation for i. This concludes the
proof of the min0 relations. A similar argument works for the ∆0 relations.

We break the proof of Proposition 25 into three parts, covered by Lemmas 27, 29 and
31. We first deal with powers of 2.

Lemma 27. Let ` ∈ N, ` ≥ 1. We have P(1)
x (2`) = 4,

∆0(2`) = 2, max0(2`+1) = 2` −min0(2`) and min0(2`+1) = 2` −max0(2`).

Proof. Recall that Ψ(w) = (|w|0, |w|1, |w|2) is the Parikh vector of w. We show by induc-
tion that

{Ψ(w) : w factor of x with |w| = 2`}
= {P` + (0, 0, 0), P` + (−2, 1, 1), P` + (−1, 1, 0), P` + (−1, 0, 1)}

and that

Ψ(φ`(0)) =

{
P` if ` is even

P` + (−2, 1, 1) if ` is odd

Ψ(φ`(2)) =

{
P` + (−2, 1, 1) if ` is even

P` if ` is odd,

where P` = (2`+4
3
, 2`−2

3
, 2`−2

3
) if ` is odd and P` = (2`+2

3
, 2`−1

3
, 2`−1

3
) if ` is even. Since Parikh

vectors of factors of length 2` can take exactly four values, the conclusion is immediate.
The result is true for ` ∈ {1, 2}. Let ` > 2 and assume the result holds for `− 1. Let

w be a factor of length 2`.
If w can be de-substituted, then w = φ(v) for some factor v of length 2`−1, and

Ψ(w) = (2|v|2, |v|0 + |v|1, |v|0 + |v|1). Using the induction hypothesis, it is easy to check
that Ψ(w) = P` or Ψ(w) = P` + (−2, 1, 1) and that the equalities for Ψ(φ`(0)),Ψ(φ`(2))
are satisfied.

If w cannot be de-substituted, then w occurs at an odd index in x and w is of the
form

0−1φ(v)0, 1−1φ(v)1, 0−1φ(v)1 or 1−1φ(v)0

for some factor v of length 2`−1. If w is of one of the first two forms, then Ψ(w) = Ψ(φ(v))
and Ψ(w) = P` or Ψ(w) = P` + (−2, 1, 1) (as in the previous case).
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If w = 0−1φ(v)1, then w can also be written as w = 0φ(u)2−1 for some factor u of
length 2`−1. So both Parikh vectors Ψ(φ(v)) and Ψ(φ(u)) belong to {P`, P` + (−2, 1, 1)}.
Since by construction φ(v) has two more zeros than φ(u), we obtain Ψ(φ(v)) = P` and
Ψ(φ(u)) = P` + (−2, 1, 1). Thus Ψ(w) = Ψ(φ(v)) + (−1, 1, 0) = P` + (−1, 1, 0).

Similarly, if w = 1−1φ(v)0, then Ψ(w) = P` + (−1, 0, 1).
To conclude the proof, we just need to show that these four cases actually occur for

all `. Since {Ψ(φ`(0)),Ψ(φ`(2))} = {P`, P` + (−2, 1, 1)}, consider all factors of length 2`

occurring between two consecutive occurrences of Ψ(φ`(0)) and Ψ(φ`(2)). By continuity2,
of the number of 0’s, one of these factors must have a Parikh vector equal to P`+(−1, 1, 0)
or P` +(−1, 0, 1). Using Lemma 24, we obtain that w is a factor of length 2` with Ψ(w) =
P` + (−1, 1, 0) if and only if τ(w)R is a factor of length 2` with Ψ(w) = P` + (−1, 0, 1). So
all four values actually occur.

To show Lemmas 29 and 31, we first prove the following technical result.

Lemma 28. Let u be a factor of x of length n ≥ 1. Let max2(n) (resp. min2(n)) denote the
maximum (resp. minimum) of {|w|2 : w factor of x of length n}. We have |u|2 = max2(n)
if and only if |φ(u)|0 = max0(2n), and |u|2 = min2(n) if and only if |φ(u)|0 = min0(2n).

Proof. For the first assertion, assume that |u|2 = max2(n) and suppose that |φ(u)|0 <
max0(2n). Note that |φ(u)|0 = 2|u|2 by definition of φ. Let v be a factor of length 2n
such that |v|0 = max0(2n), which is even by Lemma 19. In addition, we can assume that
v starts with 00. Indeed, if it is not the case, then either v starts with 01 and ends with
0, or v is of the form t00s where t does not contain any zero. In the first case, we can
consider the word 0v0−1 that starts with 00 and has max0(2n) zeros. In the second case,
we can consider the word 00sw for some w with |w| = |t|. This factor has also max0(2n)
zeros. Therefore v can be de-substituted. So v = φ(z) and |z|2 = 1

2
|v|0 > |u|2, which is a

contradiction.
For the other direction, assume |φ(u)|0 = max0(2n) and suppose |u|2 does not maxi-

mize the number of 2’s. Then there exists a factor v of length n such that |v|2 = max2(n).
Hence,

|φ(v)|0 = 2|v|2 > 2|u|2 = |φ(u)|0 = max0(2n),

which is a contradiction. Similar arguments hold for the second assertion.

Lemma 29. If ` ≥ 2 and 0 ≤ r ≤ 2`−1, then

max0(2` + r) = max0(2`) + max0(r),

min0(2` + r) = min0(2`) + min0(r).

Proof. We work by induction on `. One checks the case ` = 2. Let ` > 2 and assume the
statements are true for `− 1. Let r such that 0 ≤ r ≤ 2`−1.

Assume first that r is even. We shall exhibit a factor of length 2` + r that has
max0(2`) + max0(r) zeros and maximizes the number of 0’s. By the induction hypothesis,

2We mean by continuity that the number of 0’s is varying by at most 1 between two factors of the
same length starting at consecutive indexes.
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the result is true for 2`−1 + r/2. So there exists a factor u of length 2`−1 + r/2 with
min0(2`−1 + r/2) = min0(2`−1) + min0(r/2) zeros. In addition, we can assume that u
maximizes the number of 2’s. Indeed, since |u|0 = min0(2`−1 + r/2), |u|1 + |u|2 is maximal
among all factors of length 2`−1+r/2. If the number of 1 and 2 in u is even, then |u|2 = |u|1
is maximal. Otherwise, either |u|2 = |u|1 + 1 and |u|2 is maximal, or |u|2 = |u|1− 1 and u
does not maximize the number of 2’s. In the last case, by Lemma 24, we can consider the
factor τ(u)R which satisfies |τ(u)R|0 = |u|0 and |τ(u)R|2 = |u|1. Hence, τ(u)R minimizes
the number of 0’s and maximizes the number of 2’s.

Let us write u = vw with |v| = 2`−1 and |w| = r/2. Then, as |v|0 + |w|0 = |u|0 =
min0(2`−1) + min0(r/2), the words v and w minimize the number of 0’s for words of their
respective lengths. The word v maximizes also the number of 2’s for factors of length
2`−1 because |v| and |v|0 = min0(2`−1) are even by Lemma 27 and so is |v|1 + |v|2. Since
u maximizes the number of 2’s and |v|2 = |v|1, the word w also maximizes the number of
2’s. Hence, by Lemma 28, φ(u), φ(v) and φ(w) maximize the number of 0’s for words of
their respective lengths. Thus,

max0(2` + r) = |φ(u)|0 = |φ(v)|0 + |φ(w)|0 = max0(2`) + max0(r).

If r is odd, we still have 0 ≤ r− 1 ≤ r+ 1 ≤ 2`−1 and we can use the previous results:

max0(2` + r − 1) = max0(2`) + max0(r − 1),

max0(2` + r + 1) = max0(2`) + max0(r + 1).

Note that max0 is even for even values and can only grow by 0 or 1. So there are two
cases to consider: either max0(2` + r + 1) = max0(2` + r − 1) or max0(2` + r + 1) =
max0(2` + r − 1) + 2.

If the two maxima are equal, then max0(r + 1) = max0(r − 1), max0(2` + r) =
max0(2`+r−1) and max0(r) = max0(r−1), and we are done. Otherwise, the two maxima
differ by 2, and then max0(r+ 1) = max0(r− 1) + 2, max0(2` + r) = max0(2` + r− 1) + 1
and max0(r) = max0(r − 1) + 1, and we are done.

A similar proof shows that min0(2` + r) = min0(2`) + min0(r).

Lemma 31 will follow directly from the following lemma.

Lemma 30. If ` ≥ 2 and 2`−1 ≤ r ≤ 2`, then

max0(2`+1) = max0(2` + r) + min0(2` − r),
min0(2`+1) = min0(2` + r) + max0(2` − r).

Moreover, there is a factor of length 2`+1 maximizing (resp. minimizing) the number of
0’s such that the prefix of length 2` + r also maximizes (resp. minimizes) the number of
0’s. In addition, the first equality max0(2`+1) = max0(2` + r) + min0(2`− r) holds even if
` = 1.
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Proof. We proceed by induction on `. One checks that the results are true for ` = 2 and,
for the first equality, for ` = 1. Let ` > 2 and assume both equalities hold for `− 1. Let
r such that 2`−1 ≤ r ≤ 2`.

Assume first that r is even. By the induction hypothesis, there exists a factor u = vw
of length 2` such that

|u|0 = min0(2`) = min0(2`−1 + r/2) + max0(2`−1 − r/2),

|v| = 2`−1 + r/2 and v minimizes the number of 0’s. Hence, |v|0 = min0(2`−1 + r/2) and
|w|0 = max0(2`−1 − r/2).

Observe that u maximizes the number of 2’s as |u| and |u|0 = min0(2`) are even. In
addition, we can assume that v also maximizes the number of 2’s. Indeed, if v is of even
length, |v|0 = min0(2`−1 + r/2) implies |v|2 is maximal. If v is of odd length and v does
not maximize the number of 2’s, then it ends with 1. Thus, v is followed by a 2. In
particular, v occurs at an even index in x. So is u and u12 or u00 is a factor of x. If u12
is a factor, then consider, instead of u, u′ = z−1u1 where z denotes the first letter of u. In
that case, the prefix of length 2`−1 +r/2 of u′ is z−1v2. It still minimizes the number of 0’s
and now maximizes the number of 2’s. Assume now that u00 is a factor. Observe that x
is the fixed point of φ. So it is also the fixed point of φ2. Therefore, x is a concatenation
of blocks of length 4 of the form φ2(0) = φ2(1) = 1200 and φ2(2) = 1212. Since u00 is a
factor of x, the only extension of this factor is 12u00 as |u| = 2` ≡ 0 (mod 4). Consider
then u′ = 2u2−1.

Since |u|1 = |u|2 and |v|2 ≥ |v|1, |w|1 ≥ |w|2. Thus, as |w|0 = max0(2`−1 − r/2), w
minimizes the number of 2’s. By Lemma 28, we obtain |φ(u)|0 = max0(2`+1), |φ(v)|0 =
max0(2` + r), |φ(w)|0 = min0(2` − r). So

max0(2`+1) = |φ(u)|0 = |φ(v)|0 + |φ(w)|0
= max0(2` + r) + min0(2` − r).

We can show similarly that min0(2`+1) = min0(2` + r) + max0(2` − r). Note that in
this case, we can assume that the factor u with |u|0 = max0(2`), given by the induction
hypothesis, starts with 00 as in the proof of Lemma 28.

Assume now that r is odd. Then 2`−1 ≤ r − 1 < r + 1 ≤ 2` and we can apply the
previous result:

max0(2`+1) = max0(2` + r − 1) + min0(2` − r + 1)

= max0(2` + r + 1) + min0(2` − r − 1).

Since max0 is even for even values and can only grow by 0 or 1, there are two cases to
consider: either max0(2`+r−1) = max0(2`+r+1) or max0(2`+r−1)+2 = max0(2`+r+1).

If the two maxima are equal, then min0(2`− r+ 1) = min0(2`− r− 1) = min0(2`− r)
and max0(2` + r) = max0(2` + r− 1), and we are done. Otherwise, the two maxima differ
by 2, and then min0(2`−r+1)−2 = min0(2`−r−1). So max0(2`+r) = max0(2`+r−1)+1
and min0(2` − r) = min0(2` − r + 1) − 1, and we are done. Using similar argument, we
can conclude that min0(2`+1) = min0(2` + r) + max0(2` − r).
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For the construction of the factors, one can construct them using the factors φ(u) and
φ(u′) given for r − 1 and r + 1 in the previous construction. We consider the same two
cases as before.

If the maxima are equal, then max0(2` + r) = max0(2` + r− 1). By construction, φ(u)
has a prefix φ(v) of length 2` +r−1, maximizing the number of 0’s. The letter z following
the prefix φ(v) in φ(u) is not a 0. Otherwise, φ(v)0 would be a factor of length 2` + r
with max0(2` + r) + 1 zeros, which is a contradiction. Hence, φ(v)z is a prefix of length
2` + r of φ(u) that maximizes the number of 0’s.

If max0(2` + r− 1) + 2 = max0(2` + r+ 1), then max0(2` + r) = max0(2` + r+ 1)− 1.
By construction, φ(u′) has a prefix φ(v′) of length 2` + r + 1, maximizing the number
of 0’s. This prefix must end with 0. Otherwise, deleting the last letter of φ(v′) would
give a factor of length 2` + r with max0(2` + r + 1) = max0(2` + r) + 1 zeros, which is
a contradiction. Hence, φ(v′)0−1 is a prefix of length 2` + r of φ(u′) that maximizes the
number of 0’s.

A similar construction yields a factor of length 2`+1 minimizing the number of 0’s such
that the prefix of length 2` + r also minimizes the number of 0’s.

The previous lemma permits us to reformulate some relations between the two se-
quences max0(n)n≥0 and min0(n)n≥0.

Lemma 31. If ` ≥ 2 and 2`−1 ≤ r ≤ 2`, then

max0(2` + r) = 2` −min0(2`+1 − r),
min0(2` + r) = 2` −max0(2`+1 − r).

The first equality holds even if ` = 1.

Proof. One can check the first equality for ` = 1. Let ` ≥ 2 and r such that 2`−1 ≤ r ≤ 2`.
From the previous lemma, we have

max0(2` + r) = max0(2`+1)−min0(2` − r).

Note that, by Lemma 27, we have max0(2`+1) = 2` −min0(2`). Moreover, by Lemma 29,
since 0 ≤ 2` − r ≤ 2`, we get

min0(2`) + min0(2` − r) = min0(2` + 2` − r).

Since similar relations hold when exchanging min0 and max0, the conclusion follows.

The proof of Proposition 25 about the reflection relation satisfied by ∆0(n) and the
recurrence relation of min0(n) is now immediate.

Proof of Proposition 25. Let ` ≥ 2. For r such that 0 ≤ r ≤ 2`−1, subtracting the two
relations provided by Lemma 29 gives ∆0(2` + r) = ∆0(2`) + ∆0(r) and we can conclude
using the first relation given in Lemma 27, ∆0(2`) = 2. Furthermore, min0(2` + r) ≡
min0(2`) + min0(r) (mod 2) by Lemma 29. The expression for min0(2` + r) follows since
min0(2`) ≡ 0 (mod 2) by Lemma 27.
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For 2`−1 < r < 2`, subtracting the two relations provided by Lemma 31 permits us to
conclude the proof of the expression claimed for ∆0(2` + r). Moreover, using Lemma 31,
we get

min0(2` + r) ≡ max0(2`+1 − r) (mod 2)

≡ min0(2`+1 − r) + ∆0(2`+1 − r) (mod 2).

4.3 Another proof of the 2-regularity of P (1)
x (n)n≥0

In this section we prove the 2-regularity of the abelian complexity P(1)
x (n)n≥0 in a second

way, by proving Theorem 21. The proof makes use of Propositions 20 and 25.

Proof of Theorem 21. If 2`−1 ≤ r ≤ 2`, since all the conditions in Proposition 20 are
equivalent whether considering 2` + r or 2`+1 − r, we have

P(1)
x (2` + r) = P(1)

x (2`+1 − r).

Assume now that 0 ≤ r ≤ 2`−1. If ∆0(2`+r) is odd, ∆0(r) is also odd by Proposition 25.

By Proposition 20, we have P(1)
x (2`+r) = 3

2
(∆0(2`+r)+1) and P(1)

x (r) = 3
2
(∆0(r)+1). By

Proposition 25, we have ∆0(2` + r) = ∆0(r) + 2. Putting these three equalities together,

we get P(1)
x (2` + r) = P(1)

x (r) + 3.
The other cases can be done similarly. If ∆0(2` + r) and 2` + r−min0(2` + r) are even,

then ∆0(r) and r −min0(r) are even and

P(1)
x (2` + r) = 3

2
∆0(2` + r) + 1 (by Proposition 20)

= 3
2
(∆0(r) + 2) + 1 (by Proposition 25)

= P(1)
x (r) + 3 (by Proposition 20).

If ∆0(2`+r) is even and 2`+r−min0(2`+r) is odd, then ∆0(r) is even and r−min0(r)
is odd. Then

P(1)
x (2` + r) = 3

2
∆0(2` + r) + 2 (by Proposition 20)

= 3
2
(∆0(r) + 2) + 2 (by Proposition 25)

= P(1)
x (r) + 3 (by Proposition 20).

One can prove the following result in a manner similar to the proof of Theorem 4.
There may be simpler recurrences, but these relations exhibit the same symmetry as in
Theorem 4.

Theorem 32. The abelian complexity sequence P(1)
x (n)n≥0 of the 2-block coding of the
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period-doubling word satisfies the following relations.

P(1)
x (8n) = P(1)

x (2n)

4P(1)
x (8n+ 1) = −2P(1)

x (2n+ 1) + 7P(1)
x (4n+ 1)− 2P(1)

x (4n+ 2) + P(1)
x (4n+ 3)

4P(1)
x (8n+ 2) = −6P(1)

x (2n+ 1) + 9P(1)
x (4n+ 1)− 2P(1)

x (4n+ 2) + 3P(1)
x (4n+ 3)

4P(1)
x (8n+ 3) = −6P(1)

x (2n+ 1) + 5P(1)
x (4n+ 1) + 2P(1)

x (4n+ 2) + 3P(1)
x (4n+ 3)

P(1)
x (8n+ 4) = P(1)

x (4n+ 2)

4P(1)
x (8n+ 5) = −6P(1)

x (2n+ 1) + 3P(1)
x (4n+ 1) + 2P(1)

x (4n+ 2) + 5P(1)
x (4n+ 3)

4P(1)
x (8n+ 6) = −6P(1)

x (2n+ 1) + 3P(1)
x (4n+ 1)− 2P(1)

x (4n+ 2) + 9P(1)
x (4n+ 3)

4P(1)
x (8n+ 7) = −2P(1)

x (2n+ 1) + P(1)
x (4n+ 1)− 2P(1)

x (4n+ 2) + 7P(1)
x (4n+ 3)

5 2-abelian complexity of the period-doubling word

To prove the 2-regularity of P(2)
p (n)n≥0, the aim of this section is to express the 2-abelian

complexity P(2)
p in terms of the 1-abelian complexity P(1)

x and the following additional
2-regular functions.

Definition 33. We define the max-jump function MJ0 : N→ {0, 1} by MJ0(0) = 0 and,
for n ≥ 1,

MJ0(n) =

{
1 if max0(n) > max0(n− 1)

0 otherwise,

i.e., MJ0(n) = 1 when the function max0 increases. Similarly, let mj0 : N→ {0, 1} be the
min-jump function defined by

mj0(n) =

{
1 if min0(n+ 1) > min0(n)

0 otherwise.

Since max0(n) and min0(n) are non-decreasing, we can write

MJ0(n+ 1) = max0(n+ 1)−max0(n),

mj0(n) = min0(n+ 1)−min0(n).

The relationship between these sequences and P(2)
p and P(1)

x is stated in the following
result.

Proposition 34. Let n ≥ 1 be an integer. Then

P(2)
p (n+ 1)− P(1)

x (n) =

{
0 if n is odd
∆0(n)

2
+ 1−MJ0(n)−mj0(n) if n is even.
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We require several preliminary results.

Proposition 35. Let u and v be factors of p of length n. Let u′ and v′ be the 2-block
codings of u and v. The factors u and v are 2-abelian equivalent if and only if u′ and v′

are abelian equivalent and either u′ and v′ both start with 2 or none of them start with 2.

Proof. By Lemma 15, u and v are 2-abelian equivalent if and only if they start with
the same letter and have the same number of factors 00, 01 and 10. The number of 00
(respectively 01 and 10) in u is exactly the number of 0 (resp. 1 and 2) in u′. Moreover,
u starts with 0 (resp. by 1) if and only if u′ starts with 0 or 1 (resp. by 2). Therefore,
u and v are 2-abelian equivalent if and only if u′ and v′ are abelian equivalent and both
start with 2 or none of them start with 2.

To compute P(2)
p , we will use the abelian complexity of x = block(p, 2), P(1)

x , and study
when an abelian equivalence class of x splits into two 2-abelian equivalence classes of p,
or in other words, study when two abelian equivalent factors of x can start, respectively,
with 2 and with 0 or 1. If the class does not split, we say that it leads to only one class.

Lemma 36. Let X be an abelian equivalence class of factors of length n of x. If the
number of 1’s in an element of X differs from the number of 2’s, then X leads to only
one 2-abelian equivalence class of p.

Proof. It is enough to prove that if an element of X starts with 2, all the other elements
of X start with 2. If u starts with 2, then all the elements of X have more 2’s than 1’s.
But any factor with more 2’s than 1’s starts with a 2.

Corollary 37. If n is odd, P(2)
p (n+ 1) = P(1)

x (n).

Proof. Let X be an abelian equivalence class of factors of odd length n. If no element of X
starts with a 2, X leads to only one 2-abelian equivalence class of factors of p. So assume
that there is a factor u in X starting with 2. Since n is odd, we can write u = 2φ(u′).
Then the number of 0’s in u is even and there is a different number of 2’s than 1’s. By
Lemma 36, X again leads to a unique 2-abelian equivalence class of p.

Corollary 38. Let X be an abelian equivalence class of factors of x of even length n with
an odd number of zeros. Then X leads to only one 2-abelian equivalence class of p.

Proof. Factors in X have an odd number of 1’s and 2’s counted together, so the number
of 1’s and the number of 2’s are different and we can apply Lemma 36.

Thus, an abelian equivalence class X of factors of length n of x can possibly lead to
two 2-abelian equivalence classes of factors of length n + 1 of p only if n is even and if
there are an even number of zeros in X . In most cases X will indeed lead to two different
equivalence classes. The exceptions are identified by the following lemma.

Lemma 39. Let n be a positive even integer and n0 such that min0(n) ≤ n0 ≤ max0(n).
Let X be an abelian equivalence class of factors of x of length n with exactly n0 zeros.
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• We have n0 = max0(n) and MJ0(n) = 1 if and only if every factor u in X can be
written as u = 00u′00.

• We have n0 = min0(n) and mj0(n) = 1 if and only if every factor u in X is preceded
and followed only by 00.

Proof. We start by proving the first part of the lemma. Assume that all the elements of
X have the form 00u′00. In particular, n0 is even. If n0 6= max0(n), it means that there
is a factor v of length n with n0 + 1 zeros. Indeed, sliding a window of length n from
a word of X to a factor with max0(n) zeros gives factors with all possibilities between
n0 and max0(n) for the number of zeros. Since |v|0 is odd and n is even, we must have
v = 0φ(v′)1 or v = 2φ(v′)0. But then 0−1v2 or 1v0−1 is an element of X not of the form
00u′00, a contradiction. Hence n0 = max0(n). If MJ0(n) = 0, then max0(n − 1) = n0

and there is a factor v of odd length n − 1 with even number n0 of 0’s. We must have
v = 2φ(v′) or v = φ(v′)1 but then 1v or v2 is an element of X not of the form 00u′00, a
contradiction and MJ0(n) = 1.

For the other direction, assume that n0 = max0(n) and MJ0(n) = 1. In particular,
max0(n − 1) = n0 − 1. Assume there exists a factor u of X not of the form u = 00u′00.
Since u has even length and even number of 0’s, we must have u = 01u′20 or u has its
first or last letter y not equal to 0. In the first case, v = 001u′ has length n − 1 and n0

zeros, a contradiction. In the second case, removing the letter y leads also to a factor of
length n− 1 with n0 zeros.

The second part of the lemma is similar. Assume first that all the elements of X are
preceded and followed by 00. In particular, n0 is even. If n0 6= min0(n), there is a factor
v of length n with n0− 1 zeros. Since |v|0 is odd but n is even, we must have v = 0φ(v′)1
or v = 2φ(v′)0 but then 0v1−1 or 2−1v0 is an element of X that starts or ends with 00
and so is preceded or followed by 12, a contradiction. Hence we have n0 = min0(n). If
mj0(n) = 0, then min0(n+ 1) = n0 and there is a factor v of odd length n+ 1 with even
number n0 of 0’s. We must have v = 2φ(v′) or v = φ(v′)1 but then φ(v′) is an element of
X without a 00 preceding or following it.

For the other direction, assume that n0 = min0(n) and mj0(n) = 1. In particular
min0(n+ 1) = n0 + 1. If there exists a factor u of X such that 1u, 2u, u1 or u2 is a factor,
then min0(n+1) ≤ n0, a contradiction. Hence all the factors u of X can only be extended
by 0u0. Finally, note that u ∈ X cannot occur in x at odd index. In other words, any
u ∈ X can be de-substituted. Indeed, if it is not the case, then u is of the form 0φ(u′)0,
0φ(u′)1, 2φ(u′)0 or 2φ(u′)1. If u is of the first form, then φ(u′)001 is a factor of length
n+ 1 with only n0 zeros, which is a contradiction. Otherwise, u is of one of the last three
forms. Then either u2 or 1u is a factor of x, which is not possible. So the only extension
of u as a factor of x is 00u00.

Lemma 40. Let n be a positive even integer and n0 even such that min0(n) ≤ n0 ≤
max0(n). Let X be an abelian equivalence class of factors of x of length n with n0 zeros.
The class X leads to only one 2-abelian equivalence class of p if and only if n0 = min0(n)
and mj0(n) = 1 or n0 = max0(n) and MJ0(n) = 1. Otherwise, X splits into two classes.
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Proof. The factors in x of length n = 2 are 00, 01, 12, 21, 20. The two classes to consider
are X1 = {00}, which leads to one class, and X2 = {12, 21}, which splits into two classes.
Since MJ0(2) = 1 and mj0(2) = 0, the proposition is true.

Hence let n ≥ 4 even. If n0 = min0(n) and mj0(n) = 1, then by Lemma 39, all the
elements of X are preceded by 00. In particular, they all start with 1 and X leads to
only one 2-abelian equivalence class. Similarly, if n0 = max0(n) and MJ0(n) = 1, then by
Lemma 39, all the elements of X start with 0 and we have only one class.

Assume now that X leads to only one class. If an element u of X starts with 2, we
have u = 2φ(u′)1 since n and n0 are even. Then 1u1−1 is an element of X starting with
1 and X splits into two classes. Hence every element u of X starts with 0 or 1. Assume
there exists a factor u in X that starts with a 1. Then u = 12φ(u′) and u cannot be
followed by a 1 since otherwise 1−1u1 would be an element of X starting with 2. Hence
u is always followed by 00 and so ends with 12. Similarly, it can only be preceded by 00.
Hence all the factors in X starting with a 1 are preceded and followed by 00. In particular,
if a factor in X starts with 1 and occurs in x at index i, then the two factors starting at
indices i − 1 and i + 1 in x have n0 + 1 zeros. Assume now there exists a factor u in X
starting with a 0. Then, u can be de-substituted. Otherwise, as n and n0 are even, u is
of the form 0φ(u′)0 where φ(u′) ends with 12. Thus 2φ(u′)2−1 is an element of X starting
with 2, which is a contradiction. Hence u starts with 00. If u ends with 12, then again,
2u2−1 is an element of X starting with 2. Hence u = 00φ(u′)00 and all elements of X
starting with 0 start and end with 00. In particular, if a factor in X starts with 0 and
occurs in x at index i, then the two factors starting at indices i − 1 and i + 1 in x have
n0 − 1 zeros.

If no elements of X start with 1 or no elements start with 0, we are done by Lemma 39.
Otherwise, since one can show that x is uniformly recurrent3, we can assume that there
exist a factor u ∈ X that starts with 0 and occurs at index i in x, and a factor v ∈ X that
starts with 1 and occurs at index i+ ` in x, such that any factor ws of length n occurring
at index i+ s in x does not belong to X for 0 < s < `. Then w1 has n0− 1 zeros whereas
w`−1 has n0 + 1 zeros. But there is no factor ws with n0 zeros. This is a contradiction
since the number of 0’s changes by at most one between two factors of the same length
starting at consecutive indexes.

Proof of Proposition 34. The case n odd is given by Corollary 37. Assume now that n is
even. Then by Lemma 19, min0(n) and max0(n) are even, and therefore ∆0(n) is even
as well. Let X be an abelian equivalence class of factors of x of length n. Let n0 be the
number of 0’s in the elements of X . There are exactly ∆0(n)

2
odd values of n0 and ∆0(n)

2
+1

even values. By Corollary 38, if n0 is odd, X leads to one 2-abelian equivalence class of
p. By Lemma 40, X splits into two classes except for n0 = min0(n) if mj0(n) = 1 and for

n0 = max0(n) if MJ0(n) = 1. Hence there are in total ∆0(n)
2

+ 1−MJ0(n)−mj0(n) cases

3A word is uniformly recurrent if every factor occurs infinitely often and, for each factor, there is a
constant c such that two consecutive occurrences of the factor occur within c of each other. To prove
that x is uniformly recurrent, it is enough to observe that φ is primitive since for each letter y ∈ {0, 1, 2},
φ3(y) contains all the letters.
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where X leads to two 2-abelian equivalence classes of p instead of one and this is exactly
the difference between P(2)

p (n+ 1) and P(1)
x (n).

Corollary 41. The sequence P(2)
p (n)n≥0 is 2-regular.

Proof. We can make use of Lemma 8. Thanks to Proposition 34, P(2)
p (n + 1) can be

expressed as a combination of P(1)
x (n), ∆0(n), MJ0(n), mj0(n) using the predicate (n mod

2). Note that the predicate (n mod 2) is trivially 2-automatic.

We proved the 2-regularity of P(1)
x (n)n≥0 and of ∆0(n)n≥0 in Section 4. Observe that

MJ0(n+ 1) = max0(n+ 1)−max0(n) = min0(n+ 1) + ∆0(n+ 1)−min0(n)−∆0(n).

Since MJ0(n+1) can only take the values 0 and 1, the latter relation can also be expressed
using (min0(n) mod 2)n≥0 and (∆0(n) mod 2)n≥0. These latter sequences are 2-regular
by Corollary 26. By Lemma 11, MJ0(n + 1)n≥0 is thus a combination of four 2-regular
sequences. Applying again Lemma 11, MJ0(n)n≥0 is also 2-regular. We can show similarly
that mj0(n)n≥0 is 2-regular. In fact, both sequences MJ0(n)n≥0 and mj0(n)n≥0 are 2-
automatic since they only take values 0 and 1. Thus, all the functions in the expression
for P(2)

p (n+ 1) are 2-regular.

Finally, as P(2)
p (n+ 1)n≥0 is 2-regular, P(2)

p (n)n≥0 is 2-regular by Lemma 11.

6 Abelian complexity of block(t, 2)

In this section, we turn our attention to the Thue–Morse word t. Let y denote

block(t, 2) = 132120132012132120121320 · · · ,

the 2-block coding of t introduced in Example 17. Recall that y is a fixed point of the
morphism ν defined by ν : 0 7→ 12, 1 7→ 13, 2 7→ 20, 3 7→ 21. The approach here is similar
to that of the period-doubling word: we consider in this section the abelian complexity
of y, and then we compare P(1)

y (n) with P(2)
t (n) in Section 7.

Our study of the period-doubling word in Sections 4 and 5 made substantial use of
counting 0’s in factors of x. Alternatively, we could have counted the total number of 1’s
and 2’s in factors of x, since this is equivalent information and since the letters 1 and 2
alternate in x.

For the Thue–Morse word, the appropriate statistic for factors of y is the total number
of 1’s and 2’s (or, equivalently, the total number of 0’s and 3’s). We will show in Lemma 45
that the letters 1 and 2 alternate in y. Therefore, for n ∈ N we set

max12(n) := max{|u|1 + |u|2 : u is a factor of y with |u| = n},
min12(n) := min{|u|1 + |u|2 : u is a factor of y with |u| = n},

∆12(n) := max12(n)−min12(n).
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Remark 42. Note that g(y) is exactly the period-doubling word p, where g is the coding
defined by g(0) = 1, g(1) = 0, g(2) = 0 and g(3) = 1. In particular, ∆12(n) + 1 is the
abelian complexity function of the period-doubling word. This function was also studied
in [5, 14]. Here we obtain relations of the same type as the relations in Theorem 4.

The fact that P(1)
y (n)n≥0 is 2-regular will follow from the next statement.

Proposition 43. Let n ∈ N. We have

P(1)
y (n) =


2∆12(n) + 2 if n is odd
5
2
∆12(n) + 5

2
if n and ∆12(n) + 1 are even

5
2
∆12(n) + 4 if n, ∆12(n) and min12(n) + 1 are even

5
2
∆12(n) + 1 if n, ∆12(n) and min12(n) are even.

(3)

To be able to apply the composition result given by Lemma 8 to the expression of P(1)
y

derived in Proposition 43, we have therefore to prove that

• the sequence ∆12(n)n≥0 is 2-regular and

• the predicates occurring in (3) are 2-automatic.

Section 6.1 is dedicated to the proof of Proposition 43. In Section 6.2, we give a
proof of the two previous items. In particular, we show that ∆12(n)n≥0 satisfies a reflec-

tion symmetry. This permits us to express recurrence relations for P(1)
y at the end of

Section 6.2.

6.1 Proof of Proposition 43

We first need three technical lemmas about factors of y = block(t, 2).

Lemma 44. The set of factors of y of length 2 is Facy(2) = {01, 12, 13, 20, 21, 32}.

Proof. It is easy to check that these six words are factors. To prove that they are the
only ones, it is enough to check that for any element u in {01, 12, 13, 20, 21, 32} the three
factors of length 2 of ν(u) are still in {01, 12, 13, 20, 21, 32}.

The following lemma has already been observed in [14, Lemma 10].

Lemma 45. If w is a factor of y, then
∣∣|w|1 − |w|2∣∣ ≤ 1 and

∣∣|w|0 − |w|3∣∣ ≤ 1. In
particular, the letters 1 and 2 (respectively 0 and 3) alternate in y.

Proof. First note that if for all factors of a word u, the numbers of two letters x and y
differ by at most 1, then x and y alternate in u. Furthermore, if the first or the last
occurrence of one of these letters is x, then |u|x ≥ |u|y. If both the first and the last
occurrences are x, then |u|x = |u|y + 1.
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We prove the result by induction on the length ` of the factor. The result is true for
factors of length ` = 1. Let w be a factor of length ` > 1 and assume the result holds for
factors of length smaller than `. If w can be de-substituted as w = ν(w′), we have

|w|0 = |w′|2,
|w|1 = |w′|0 + |w′|1 + |w′|3,
|w|2 = |w′|0 + |w′|2 + |w′|3,
|w|3 = |w′|1.

Using the induction hypothesis, we have∣∣|w|1 − |w|2∣∣ =
∣∣|w|0 − |w|3∣∣ =

∣∣|w′|1 − |w′|2∣∣ ≤ 1.

If w cannot be de-substituted and has odd length, we have

w ∈
{

1−1ν(w′), 2−1ν(w′), ν(w′)1, ν(w′)2
}

for some factor w′ with |w′| < `. Assume that w = 1−1ν(w′). Then as before
∣∣|w|0−|w|3∣∣ =∣∣|w′|1− |w′|2∣∣ ≤ 1. For the numbers of 1 and 2, w′ starts with 0 or 1. Since by Lemma 44

a 0 is always followed by a 1, w′ starts either with 01 or with 1. In both cases, since 1
and 2 alternate, we have |w′|1 ≥ |w′|2 and thus∣∣|w|1 − |w|2∣∣ =

∣∣|w′|1 − |w′|2 − 1
∣∣ ≤ 1.

The same reasoning can be done for w = 2−1ν(w′). If w = ν(w′)1, then we clearly have∣∣|w|0 − |w|3∣∣ ≤ 1 using the result on ν(w′). By Lemma 44, the factor ν(w′) must end
either with 0 or 2. So w′ ends with 0 or 2 as well. Since a 0 is always preceded by a 2, we
necessarily have |w′|2 ≥ |w′|1 and∣∣|w|1 − |w|2∣∣ =

∣∣|w′|1 − |w′|2 + 1
∣∣ ≤ 1.

The same reasoning applies to w = ν(w′)2.
If w cannot be de-substituted and has even length, then we have

w ∈
{

1−1ν(w′)1, 1−1ν(w′)2, 2−1ν(w′)1, 2−1ν(w′)2
}

for some factor w′ with |w′| < `. If the same letter is removed and added to ν(w′), then
the result is clearly true. Otherwise, assume that w = 1−1ν(w′)2 (the same reasoning
holds for the last case). It is clear that

∣∣|w|0 − |w|3∣∣ ≤ 1 using the result on ν(w′). For
the numbers of 1 and 2, as before, w′ starts with 01 or 1 and ends with 13 or 1. Hence
we have |w′|1 = |w′|2 + 1 and then∣∣|w|1 − |w|2∣∣ =

∣∣|w′|1 − |w′|2 − 2
∣∣ ≤ 1.
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Lemma 46. Let τ, τ ′ be the morphisms respectively defined by

τ :


0 7→ 0
1 7→ 2
2 7→ 1
3 7→ 3

and τ ′ :


0 7→ 3
1 7→ 1
2 7→ 2
3 7→ 0

.

If w is a factor of y, then τ ′(w)R, τ(w)R and τ ′(τ(w)) are also factors of y.

Proof. We prove the lemma for τ ′(w)R and τ(w)R since τ ′(τ(w)) = τ ′(τ(w)R)R.
We first prove by induction that for any factor u starting with the letter x and ending

with the letter y,
τ ′(ν(u))R = a−1ν(τ(u)R)b (4)

where a = 1 (respectively a = 2, b = 1, b = 2) if and only if y ∈ {0, 2} (resp. y ∈ {1, 3},
x ∈ {0, 1}, x ∈ {2, 3}). Note that a−1ν(τ(u)R)b is well defined. Indeed, if y ∈ {0, 2},
then τ(u)R starts with 0 or 1 and thus ν(τ(u)R) starts with a = 1. The same holds with
y ∈ {1, 3}.

The relation (4) is true for u of length 1. We have for example

τ ′(ν(0))R = 21 = 1−1ν(0)1 = 1−1ν(τ(0)R)1

and
τ ′(ν(1))R = 01 = 2−1ν(2)1 = 2−1ν(τ(1)R)1.

Let u = u′yx be a factor with at least two letters x and y. Assume the conclusion holds
for words of length at most |u| − 1. By the induction hypothesis, we have τ ′(ν(u′y))R =
a−1ν(τ(u′y)R)b and τ ′(ν(x))R = c−1ν(τ(x)R)d with appropriate a, b, c, d. Since yx is a
factor, one can check using Lemma 44 that a = d. Indeed, if y ∈ {0, 2}, then x ∈ {0, 1}.
So a = 1 and d = 1. Similarly, if y ∈ {1, 3}, then x ∈ {2, 3}. Hence, a = 2 and d = 2.
Thus, we have

τ ′(ν(u))R = τ ′(ν(u′yx)R)

= τ ′(ν(x))Rτ ′(ν(u′y))R

= c−1ν(τ(x)R)da−1ν(τ(u′y)R)b

= c−1ν(τ(u′yx)R)b

= c−1ν(τ(u)R)b.

We can similarly prove by induction that for any factor u starting with the letter x
and ending with the letter y,

τ(ν(u))R = a−1ν(τ ′(u)R)b

where a = 1 (respectively a = 2, b = 1, b = 2) if and only if y ∈ {1, 3} (resp. y ∈ {0, 2},
x ∈ {2, 3}, x ∈ {0, 1}).
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We now prove the lemma (for τ and τ ′ together) by induction on the length of w. One
can check by hand that the lemma is true for w of length at most 4. Assume the lemma
is true for any factor of length at most n ≥ 4, and let w be a factor of length n+ 1. There
exist some factors s, t and v such that swt = ν(v), 0 ≤ |t| ≤ 1 and 1 ≤ |s| ≤ 2. Then we
have |v| ≤ n+4

2
≤ n. By the induction hypothesis, τ(v)R is a factor of y. Hence ν(τ(v)R)

is also a factor of y. Using the previous result, τ ′(ν(v))R = a−1ν(τ(v)R)b for some letters
a and b. But we also have τ ′(ν(v))R = τ ′(t)Rτ ′(w)Rτ ′(s)R and since s has at least one
letter, τ ′(w)R is a factor of ν(τ(v)R). Hence it is a factor of y. We do the same proof for
τ(w)R.

We are now ready to prove the relationship between P(1)
y (n) and ∆12(n).

Proof of Proposition 43. Let u be a factor of length n of y. Let n12 = |u|1 + |u|2 and
n03 = |u|0 + |u|3.

Assume first that n is odd. If n12 is even, then there are the same number of 1’s and
2’s in u by Lemma 45. Since n13 is odd, if |u|0 = |u|3 +1 (resp. |u|3 = |u|0 +1), then τ ′(u)R

is a factor by Lemma 46 and |τ ′(u)R|3 = |τ ′(u)R|0 + 1 (resp. |τ ′(u)R|0 = |τ ′(u)R|3 + 1).
In either case, τ ′(u)R still has n12 ones and twos. Hence there are exactly two abelian
equivalence classes for fixed n odd and n12 even. We can do the same reasoning if n12 is
odd. Finally, there are ∆12(n) + 1 possible values for n12 and thus 2(∆12(n) + 1) abelian
equivalence classes for a fixed odd n.

Assume now that n is even. If both n12 and n03 are even, then u necessarily has
the same number of 1’s as 2’s and the same number of 0’s as 3’s, and thus there is
only one abelian equivalence class. Hence assume that n12 and n03 are odd. We have
(|u|0 − |u|3, |u|1 − |u|2) ∈ {−1, 1}2. By Lemma 46, the four factors u, τ ′(u)R, τ(u)R and
τ ′(τ(u)) realize the four possibilities for (|u|0 − |u|3, |u|1 − |u|2). Hence if n12 and n03 are
both odd, there are four abelian equivalence classes.

Now, we just have to count pairs (n, n12) with n and n12 even. If ∆12(n) is odd, there
are exactly (∆12(n) + 1)/2 such pairs. So there are

1 · (∆12(n) + 1)/2 + 4 · (∆12(n) + 1)/2 =
5

2
(∆12(n) + 1)

abelian classes for this value of n. If ∆12(n) is even and min12(n) is odd, there are exactly
∆12(n)/2 even values for n12, and so there are

1 ·∆12(n)/2 + 4 · (∆12(n)/2 + 1) =
5

2
∆12(n) + 4

abelian classes. Finally, if ∆12(n) is even and min12(n) is even, there are ∆12(n)/2 + 1
even values for n12, and so there are

1 · (∆12(n)/2 + 1) + 4 ·∆12(n)/2 =
5

2
∆12(n) + 1

abelian classes.
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6.2 ∆12(n)n≥0 is 2-regular, (min12(n) mod 2)n≥0 is 2-automatic

In this section, we prove the following result.

Proposition 47. Let ` ≥ 1 and r such that 0 ≤ r < 2`. We have

∆12(2` + r) =

{
∆12(r) + 1 if r ≤ 2`−1

∆12(2`+1 − r) if r > 2`−1.

Moreover,

min12(2` + r) ≡

{
min12(r) + ` (mod 2) if r ≤ 2`−1

min12(2`+1 − r) + ∆12(2`+1 − r) (mod 2) if r > 2`−1.

Note that those latter relations have a form similar to (but slightly different from) the
assumptions of Theorem 4. Before giving the proof, we prove a corollary. The 2-regularity
of P(1)

y (n)n≥0 follows from Proposition 43 and Corollary 48.

Corollary 48. The following statements are true.

• The sequence ∆12(n)n≥0 is 2-regular.

• The sequence (∆12(n) mod 2)n≥0 is 2-automatic.

• The sequence (min12(n) mod 2)n≥0 is 2-automatic.

Proof. The first assertion is a direct consequence of Proposition 47 and Theorem 4. The
second assertion follows from Lemma 10.

To prove the last assertion, we prove by induction that, modulo 2,

min12(16n+ i) ≡



min12(4n) if i = 0

min12(4n+ 1) if i ∈ {1, 4, 5}
min12(4n+ 1) + 1 if i ∈ {2, 3}
min12(4n+ 2) if i ∈ {6, 8, 9}
min12(4n+ 2) + 1 if i ∈ {7, 10}
min12(4n+ 3) if i ∈ {12, 13, 15}
min12(4n+ 3) + 1 if i ∈ {11, 14}

and

∆12(16n+ i) ≡



∆12(4n) if i = 0

∆12(4n+ 1) if i ∈ {1, 2, 4}
∆12(4n+ 1) + 1 if i ∈ {3, 5}
∆12(4n+ 2) if i = 8

∆12(4n+ 2) + 1 if i ∈ {6, 7, 9, 10}
∆12(4n+ 3) if i ∈ {12, 14, 15}
∆12(4n+ 3) + 1 if i ∈ {11, 13}.
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The relations are true for n = 0. Let n > 0 and assume they are true for n′ < n. We can
write n = 2` + r with ` ≥ 0 and 0 ≤ r < 2`. Let i ∈ {0, . . . , 15}. We consider two cases.

Assume first that r < 2`−1. We have 16n+ i = 2`+4 + 16r + i and 16r + i < 2`+3.

min12(16n+ i) ≡ min12(16r + i) + `+ 4 (Proposition 47)

≡ min12(4r + j) + δ + `+ 4 (induction)

≡ min12(2`+2 + 4r + j) + δ (Proposition 47)

≡ min12(4n+ j) + δ (mod 2)

for some j ∈ {0, . . . , 3} and δ ∈ {0, 1} according to the relations. A similar reasoning
holds for the ∆12 relations.

Assume now that r ≥ 2`−1 and i 6= 0. Setting i′ = 16 − i and n′ = 2`+1 − r − 1, we
obtain 16n′ + i′ = 2`+5 − 16r − i. It follows that, by Proposition 47,

min12(16n+ i) ≡ min12(2`+5 − 16r − i) + ∆12(2`+5 − 16r − i)
≡ min12(16n′ + i′) + ∆12(16n′ + i′)

≡ min12(4n′ + k) + δ + ∆12(4n′ + k′) + δ′ (induction)

for some k, k′ ∈ {0, . . . , 3} and δ, δ′ ∈ {0, 1} according to the relations. Note that we have
k = k′, so

min12(16n+ i) ≡ min12(4n′ + k) + δ + ∆12(4n′ + k) + δ′

≡ min12(2`+3 − (4r + 4− k)) + δ + ∆12(2`+3 − (4r + 4− k)) + δ′

≡ min12(2`+2 + (4r + 4− k)) + δ + δ′ (Proposition 47)

≡ min12(4n+ (4− k)) + δ + δ′ (mod 2).

Table 1 gives the values of i′, k, δ and δ′ for all the values of i 6= 0. Observe that the
values of 4− k and (δ + δ′ mod 2) are the values given in the relation for i. To conclude
the proof, consider the case i = 0. We have

min12(16n) ≡ min12(16(2`+1 − r)) + ∆12(16(2`+1 − r)) (Proposition 47)

≡ min12(4(2`+1 − r)) + ∆12(4(2`+1 − r)) (induction)

≡ min12(4n) (mod 2) (Proposition 47).

A similar reasoning works for the ∆12 relations.

Proposition 47 is a direct consequence of Lemmas 49, 52 and 54 given in this section.

Lemma 49. Let ` ∈ N, ` ≥ 1. We have ∆12(2`) = 1, min12(2`) ≡ ` (mod 2),

min12(2`) + max12(2`+1) = 2`+1 and max12(2`) + min12(2`+1) = 2`+1.
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i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
i′ 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
k 3 3 3 3 3 2 2 2 2 2 1 1 1 1 1
δ 0 1 0 0 1 1 0 0 1 0 0 0 1 1 0
δ′ 0 0 1 0 1 1 1 0 1 1 1 0 1 0 0

Table 1: The corresponding values of i′ = 16− i, k, δ and δ′.

Proof. Let ` ≥ 1, A` = 2`+1+(−1)`

3
and B` = 2`+1+2(−1)`+1

3
. The sequences

(A`)`≥1 = (1, 3, 5, 11, 21, . . .) and (B`)`≥1 = (2, 2, 6, 10, 22, . . .)

are integer sequences and both satisfy the recurrence relation X`+1 = 2`+1−X`. Moreover
we have A` = B`+1 for even ` and B` = A`+1 for odd `. Note that |ν`(1)|1+|ν`(1)|2 = A`

and |ν`(0)|1 + |ν`(0)|2 = B`.
We show by induction that{

|w|1 + |w|2 : w factor of y with |w| = 2`
}

= {A`, B`}.

Note that this result will imply the lemma and that we already have A` and B` in the
set.

It is easy to check the result for ` = 1. Assume the result is true for ` ≥ 1. Let
w be a factor of y of length 2`+1. If w can be de-substituted, then w = ν(u) and
|w|1 + |w|2 = 2|u|0 + |u|1 + |u|2 + 2|u|3 as in the proof of Lemma 45. Hence |w|1 + |w|2 =
2|u|−(|u|1+|u|2) = 2`+1−(|u|1+|u|2). Using the recurrence relation forA` andB` and since
|u|1 + |u|2 ∈ {A`, B`}, we have |w|1 + |w|2 ∈ {A`+1, B`+1}. If w cannot be de-substituted,
then we can write w = a−1ν(u)b for some letters a, b ∈ {1, 2} and |ν(u)| = 2`+1. So |w|1 +
|w|2 = |ν(u)|1 + |ν(u)|2. Since we already proved that |ν(u)|1 + |ν(u)|2 ∈ {A`+1, B`+1},
we are done.

To prove the second assertion of the lemma, observe that min12(2`) = A` if ` is odd
and min12(2`) = B` if ` is even. Furthermore, A` is always odd whereas B` is always
even.

In order to prove Lemmas 52 and 54, we first need some technical results.

Lemma 50. Let u be a factor of y of length n. We have |u|1 + |u|2 = max12(n) if
and only if |ν(u)|1 + |ν(u)|2 = min12(2n), and |u|1 + |u|2 = min12(n) if and only if
|ν(u)|1 + |ν(u)|2 = max12(2n).

Proof. Recall that |ν(u)|1+|ν(u)|2 = 2n−(|u|1+|u|2). Assume that |u|1+|u|2 = max12(n)
and that |ν(u)|1+|ν(u)|2 = x > min12(2n). Thus x = 2n−max12(n). There exists a factor
w of length 2n with x− 1 ones and twos. We can assume that w can be de-substituted.
Otherwise, we can write w as w = a−1ν(v)b for some a, b ∈ {1, 2}. Thus ν(v) has the
same length as w and the same number of 1’s and 2’s. So we can assume w = ν(v). Then
|v|1 + |v|2 = 2n− (x− 1) = max12(n) + 1, a contradiction.
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For the other direction, assume that |u|1 + |u|2 = x < max12(n) and that |ν(u)|1 +
|ν(u)|2 = min12(2n). Thus x = n−min12(n). As before, there exists a factor v of length
n with x+ 1 ones and twos. Then ν(v) has min12(n)− 1 ones and twos, a contradiction.

The second part of the lemma is similar.

Lemma 51. Let n be an odd integer. Then we have

min12(n) = min12(n+ 1)− 1,

max12(n) = max12(n− 1) + 1.

Proof. Let u be a factor of even length n+ 1 minimizing the number of 1’s and 2’s. Then
either u starts with 1 or 2, or ends with 1 or 2. Indeed, if u can be de-substituted, then
it starts with 1 or 2. Otherwise, its last letter is the beginning of an image of ν and
thus is 1 or 2. Removing this letter, we get a word of length n with min12(n + 1) − 1
ones and twos. Since the function min12 increases by 0 or 1 from n to n + 1, we have
min12(n) = min12(n+ 1)− 1.

For the second equality, consider a factor u of even length n − 1 with max12(n − 1)
ones and twos. There exist two letters a and b such that aub is a factor. Then, as before,
since aub has even length, a or b must be a 1 or a 2. Then au or ub is a factor of length
n with max12(n− 1) + 1 ones and twos and we conclude as before.

Lemma 52. If ` ≥ 1 and 0 ≤ r ≤ 2`−1, then

max12(2` + r) = max12(2`) + max12(r)

min12(2` + r) = min12(2`) + min12(r).

Proof. We prove the two results together by induction on `. One checks the case ` = 1.
Let ` > 1 and assume the result is true for `− 1. Let r such that 0 ≤ r ≤ 2`−1.

Assume first that r is even. By the induction hypothesis, there exists a factor u of
length 2`−1 + r/2 such that

|u|1 + |u|2 = min12(2`−1 + r/2) = min12(2`−1) + min12(r/2).

We can write u = vw with v of length 2`−1 and w of length r/2. Both the words v and
w must minimize the number of 1’s and 2’s for their respective lengths. By Lemma 50,
ν(u) = ν(v)ν(w) maximizes the number of 1’s and 2’s and so do ν(v) and ν(w). Thus,
max12(2` + r) = |ν(u)|1 + |ν(u)|2 and

max12(2` + r) = |ν(v)|1 + |ν(v)|2 + |ν(w)|1 + |ν(w)|2 = max12(2`) + max12(r).

A similar proof shows that min12(2` + r) = min12(2`) + min12(r).
Assume now that r is odd. We still have 0 ≤ r − 1 < r + 1 ≤ 2`−1. Hence we can

apply the previous result to obtain max12(2` + r − 1) = max12(2`) + max12(r − 1). By
Lemma 51,

max12(2` + r) = max12(2` + r − 1) + 1

= max12(2`) + max12(r − 1) + 1

= max12(2`) + max12(r).
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For the min12 equality, a similar argument holds (using the previous result for r +
1).

Lemma 53. If ` ≥ 1 and 2`−1 ≤ r ≤ 2`, then

max12(2`+1) = max12(2` + r) + min12(2` − r)
min12(2`+1) = min12(2` + r) + max12(2` − r).

Moreover, there is a factor of length 2`+1 maximizing (resp. minimizing) the number of 1’s
and 2’s such that the prefix of length 2` + r also maximizes (resp. minimizes) the number
of 1’s and 2’s.

Proof. We proceed by induction on `. The result is true for ` = 1 since the only non-trivial
case is r = 1. Then max12(4) = max12(3) + min12(1) and min12(4) = min12(3) + max12(1)
and the factors 2120 and 0132 satisfy the claim.

Let ` > 1 and assume the result is true for ` − 1. Let r such that 2`−1 ≤ r ≤ 2`.
Assume first that r is even. Then 2`−2 ≤ r/2 ≤ 2`−1. By the induction hypothesis, there
is a factor u of length 2` minimizing the number of 1’s and 2’s such that the prefix v
of length 2`−1 + r/2 minimizes the number of 1’s and 2’s. Thus we can write u = vw
and |v|1 + |v|2 = min12(2`−1 + r/2) and necessarily |w|1 + |w|2 = max12(2`−1 − r/2). By
Lemma 50, ν(u) and ν(v) maximize the number of 1’s and 2’s and ν(w) minimizes the
number of 1’s and 2’s. So we can conclude the result. A similar proof shows the other
relation. If r is odd, then we still have 2`−1 ≤ r − 1 ≤ 2` since ` > 1. Thus we can use
the previous result and together with Lemma 51, we have

max12(2`+1) = max12(2` + r − 1) + min12(2` − r + 1)

= max12(2` + r)− 1 + min12(2` − r) + 1

= max12(2` + r) + min12(2` − r).

Similarly, using the fact that r + 1 ≤ 2`,

min12(2`+1) = min12(2` + r + 1) + max12(2` − r − 1)

= min12(2` + r) + 1 + max12(2` − r)− 1

= min12(2` + r) + max12(2` − r).

For the construction of the factors, one can construct them using the factor ν(u)
maximizing the number of 1’s and 2’s given for r− 1 and the factor ν(u′) minimizing the
number of 1’s and 2’s given for r + 1 in the previous construction. Since r is odd, the
letter between the prefix ν(v) of length 2` + r − 1 and 2` + r of ν(u) is 1 or 2. Since the
prefix of length 2` + r− 1 of ν(u) maximizes the number of 1’s and 2’s, so does the prefix
of length 2` + r of ν(u). For min12, consider ν(u′). There exist letters a and b such that
w = a−1ν(u′)b is still a factor. We must have a, b ∈ {1, 2}. Then the prefix of length
2` + r of w minimizes the number of 1’s and 2’s.
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The previous lemma permits us to reformulate some relations between the two se-
quences max12(n)n≥0 and min12(n)n≥0.

Lemma 54. If ` ≥ 1 and 2`−1 ≤ r ≤ 2`, then

max12(2` + r) = 2`+1 −min12(2`+1 − r)
min12(2` + r) = 2`+1 −max12(2`+1 − r).

Proof. From the previous lemma, we have

max12(2` + r) = max12(2`+1)−min12(2` − r).

By Lemma 49, we have max12(2`+1) = 2`+1 −min12(2`). Moreover, by Lemma 52, since
0 ≤ 2` − r ≤ 2`−1, we get

min12(2` − r) = min12(2` + 2` − r)−min12(2`).

Similar relations hold when changing max12 to min12.

The proof of Proposition 47 about the reflection relation satisfied by ∆12(n) and the
recurrence relation of min12(n) is now immediate.

Proof of Proposition 47. If ` ≥ 1 and 0 ≤ r ≤ 2`−1, then subtracting the two relations
provided by Lemma 52 gives

∆12(2` + r) = ∆12(`) + ∆12(r)

and we can conclude using the first relation given in Lemma 49, ∆12(2`) = 1. By
Lemma 52, min12(2`+r) ≡ min12(2`)+min12(r) (mod 2). The expression for min12(2`+r)
follows since min12(2`) ≡ ` (mod 2) by Lemma 49.

If ` ≥ 1 and 2`−1 < r < 2`, then subtracting the two relations provided by Lemma 54
permits us to conclude the proof of the expression claimed for ∆12(2` + r). Moreover,
using Lemma 54, we get

min12(2` + r) ≡ max12(2`+1 − r) (mod 2)

≡ min12(2`+1 − r) + ∆12(2`+1 − r) (mod 2).

Using Propositions 43 and 47, we can express recurrence relations for P(1)
y as we did

for the proof of Theorem 21.

Theorem 55. Let ` ≥ 2 and r such that 0 ≤ r < 2`. For r ≤ 2`−1, we have

P(1)
y (2` + r) =



P(1)
y (r) + 2 if r is odd

P(1)
y (r) + 1 if (r, ∆12(2` + r) and min12(2` + r) are even)

or (r and ∆12(2` + r) + 1 are even

and min12(2` + r) ≡ `+ 1 (mod 2))

P(1)
y (r) + 4 otherwise.

For r > 2`−1, we have P(1)
y (2` + r) = P(1)

y (2`+1 − r).
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7 2-abelian complexity of the Thue–Morse word

The aim of this section is to express, in Theorem 56, P(2)
t (n + 1) in terms of P(1)

y (n),
∆12(n), (min12(n) mod 2) and two new functions MJ03(n) and mj03(n) that are defined
analogously to MJ0(n) and mj0(n) of Section 5. Let

max03(n) := max{|u|0 + |u|3 : u is a factor of y with |u| = n},
min03(n) := min{|u|0 + |u|3 : u is a factor of y with |u| = n},

and let

MJ03(n) :=

{
1 if max03(n) > max03(n− 1)

0 otherwise,

mj03(n) :=

{
1 if min03(n+ 1) > min03(n)

0 otherwise.

Theorem 56. For n odd, we have

P(2)
t (n+ 1)− P(1)

y (n) =
∆12(n) + 2− 2 MJ03(n)− 2 mj03(n) if min12(n) and ∆12(n) are even

∆12(n) + 1− 2 MJ03(n) if min12(n) and ∆12(n) + 1 are even

∆12(n) + 1− 2 mj03(n) if min12(n) and ∆12(n) are odd

∆12(n) if min12(n) + 1 and ∆12(n) are even.

For n even, we have

P(2)
t (n+ 1)− P(1)

y (n) =


1
2
∆12(n) + 1 if min12(n) and ∆12(n) are even

1
2
∆12(n) if min12(n) + 1 and ∆12(n) are even

1
2
∆12(n) + 1

2
if ∆12(n) is odd.

As in Section 5, we study when an abelian equivalence class of y = block(t, 2) splits
into two 2-abelian equivalence classes of t. We have similar propositions.

Proposition 57. Let u and v be factors of t of length n. Let u′ and v′ be the 2-block
codings of u and v. The factors u and v are 2-abelian equivalent if and only if u′ and v′

(of length n− 1) are abelian equivalent and either u′ and v′ both have first letter in {0, 1}
or both have first letter in {2, 3}.

Let X be an abelian equivalence class of factors of y of length n. For a letter a, let na

denote the number of a’s in each element of X and let n12 = n1 + n2, n03 = n0 + n3.

Lemma 58. If n12 is odd, then X leads to a unique 2-abelian equivalence class of t.
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Proof. Assume that n1 > n2 (the other case is similar). Then a word of X cannot start
with 2 since the letters 1 and 2 alternate in y by Lemma 45. It cannot start with 3 neither
since n1 > n2 and a 3 is always followed by 2 by Lemma 44. Hence it starts with 0 or 1.
Thus X leads to a unique 2-abelian equivalence class.

Lemma 59. If n and n12 are even, then X splits into two 2-abelian equivalence classes
of t.

Proof. If n and n12 are even, then n03 is also even and thus n1 = n2 and n0 = n3. Let
u be an element of X . Then u′ = τ ′(τ(u)) is also an element of X . Moreover, the first
letter of u is in {0, 1} if and only if the first letter of u′ is in {2, 3}. Hence X splits into
two 2-abelian equivalence classes.

So the last and hardest case happens when n is odd and n12 is even, i.e., when n and
n03 are odd. The MJ03 and mj03 functions permit us to handle this case.

Lemma 60. Let n and n03 are odd. Let a ∈ {0, 3} (resp. b ∈ {0, 3}) be the letter in
majority (resp. in minority) in factors in X , among {0, 3}.

• We have n03 = max03(n) and MJ03(n) = 1 if and only if every factor in X starts
and ends with a.

• We have n03 = min03(n) and mj03(n) = 1 if and only if every factor in X is preceded
and followed by b.

Proof. Assume that a = 0 and b = 3 (the other case is symmetric). We first prove the
statement for the maximum. Assume that all the factors in X start and end with 0.
If n03 < max03(n), by continuity of the number of 0’s and 3’s and since y is uniformly
recurrent, there exists a factor yuz such that the factor yu (resp. uz) is of length n with
n03 (resp. n03 + 1) zeros and threes. We necessarily have z ∈ {0, 3} and u is not finishing
with a letter in {0, 3}. Since yu has n03 zeros and threes, yu or τ ′(yu)R is an element
of X that is either not finishing or not starting with 0, a contradiction. Hence we have
n03 = max03(n). Assume now that max03(n − 1) = n03. There exists a factor u of even
length n − 1 with n03 zeros. Without loss of generality, we can assume that u has more
0’s than 3’s (otherwise one can consider τ ′(u)R by Lemma 46). Since u has even length,
either u occurs at an even index in y and is always followed by 1 or 2, or u occurs at an
odd index in y and is always preceded by 1 or 2. In other words, there is a factor of the
form yu or uy with y ∈ {1, 2}. Then yu or uy is an element of X with the first or last
letter different from 0, a contradiction.

For the other direction, assume that n03 = max03(n) and MJ03(n) = 1. Let u be a
factor in X . If u = xu′ or u = u′x with x 6= 0, then u′ has length n− 1 and n03 zeros and
threes. Thus MJ03(n) = 0, a contradiction.

The second statement is proved in the same way. Assume that all the factors in X
are preceded and followed by 3. If n03 > min03(n), by continuity of the number of 0’s and
3’s and since y is uniformly recurrent, there exists a factor yuz such that the factor yu
(resp. uz) is of length n with n03 (resp. n03 − 1) zeros and threes. We necessarily have
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z ∈ {1, 2}. Then as before yu or τ ′(yu)R is and element of X that is either not always
followed or not always preceded by 3, a contradiction. Hence we have n03 = min03(n).
Assume now that min03(n+1) = n03. There exists a factor u of even length n+1 with n03

zeros. Without loss of generality, we can assume that u has more 0’s than 3’s (otherwise
one can consider τ ′(u)R by Lemma 46). Since u has even length, either u occurs at an
even index and starts with 1 or 2 or u occurs at an odd index and ends with 1 or 2. In
other words, u = yu′ or u = u′y with y ∈ {1, 2} and u′ is an element of X preceded or
followed by a letter different from 3, a contradiction.

For the other direction, assume that n03 = min03(n) and mj03(n) = 1. Let u be a
factor in X . If u′ = ux or u′ = xu is a factor with x ∈ {1, 2}, then u′ has length n + 1
and n03 zeros and threes. So mj03(n) = 0, which is a contradiction. Observe also that
it is impossible to have 0u or u0 as factors of y since |u|0 > |u|3 by assumption and the
letters 0 and 3 alternate in y by Lemma 45. The conclusion is immediate.

Lemma 61. If n is odd and n12 is even, then X leads to only one 2-abelian equivalence
class of t if and only if n03 = min03(n) and mj03(n) = 1, or n03 = max03(n) and MJ03(n) =
1. Otherwise, X splits into two classes.

Proof. If n is odd and n12 is even, then n03 is even. Assume that n0 > n3 (the other case
is symmetric). If n03 = min03(n) and mj03(n) = 1 then, by Lemma 60, all the factors in
X start with 0, and so X leads to only one class. If n03 = max03(n) and MJ03(n) = 1,
then all the factors in X are preceded and followed by 3. In particular, they all start with
2 and again X leads to only one class.

For the other direction, suppose that X leads to only one class. All the factors in X
must start either with a letter in {0, 1} or with a letter in {2, 3}. Assume first that all the
elements of X start with 0 or 1. Let u be a factor in X . If the first letter of u is 1, it must
start with 120 since u has more 0’s than 3’s. Thus u is always preceded by 2. It cannot
end with 1 (since n1 = n2). So it must end with 0 or 2. If u = 120u′2, then 2120u′ is an
element of X starting with 2, which is a contradiction. If u = 120u′0 then u1 is a factor
of y. So 20u′01 is an element of X starting with 2, a contradiction. Hence u cannot start
with 1 and thus starts with 0. Observe that, if u does not end with 0, then τ(u)R is still
an element of X by Lemma 46 and τ(u)R does not start with 0, a contradiction. Hence
all the factors in X start and end with 0. By Lemma 60, we have n03 = max03(n) and
MJ03(n) = 1.

Assume now that all the elements of X start with 2 or 3. Since n0 > n3, they all start
with 2. Moreover, as n1 = n2, they must end with 0 or 1. If u ∈ X ends with 0, then
τ ′(u)R ∈ X starts with 3 by Lemma 46, a contradiction. So all factors in X end with 1.
Let u = 2u′1 be an element of X . By Lemma 44, the only possible extensions of u as a
factor of length n + 1 of y are 1u, 3u, u2 and u3. If 1u is a factor of y, then 12u′ ∈ X
starts with 1, which is a contradiction. If u2 is factor of y, then τ(u′12)R ∈ X starts with
1, a contradiction. Hence all the factors in X are preceded and followed by 3 in y. By
Lemma 60, this means that n03 = min03(n) and mj03(n) = 1.

We are now ready to prove Theorem 56.
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Proof of Theorem 56. The difference between P(2)
t (n + 1) and P(1)

y (n) is the number of
abelian equivalence classes of factors of length n of y that split into two 2-abelian equiv-
alence classes of factors of length n+ 1 of t.

For even n, by Lemmas 58 and 59, it happens when n12 is even. The number of even
values of n12 ∈ {min12(n), . . . ,max12(n)} is

1
2
∆12(n) + 1 if min12(n) and ∆12(n) are even

1
2
∆12(n) if min12(n) + 1 and ∆12(n) are even

1
2
∆12(n) + 1

2
if ∆12(n) is odd,

which leads to the result.
For odd n, by Lemmas 58 and 61, it happens when n12 is even, except if n03 = min03(n)

and mj03(n) = 1 or n03 = max03(n) and MJ03(n) = 1. The number of such cases is
∆12(n)

2
+ 1−MJ03(n)−mj03(n) if min12(n) and ∆12(n) are even

∆12(n)+1
2

−MJ03(n) if min12(n) and ∆12(n) + 1 are even
∆12(n)+1

2
−mj03(n) if min12(n) and ∆12(n) are odd

∆12(n)
2

if min12(n) + 1 and ∆12(n) are even.

Indeed, consider for example the case that min12(n) and ∆12(n) are even. First, there

are ∆12(n)
2

+ 1 even values of n12. Second, since min12(n) is even and n is odd, we have
max03(n) = n−min12(n) odd. Since ∆12(n) is even, max12(n) is also even and min03(n)
is odd.

If n is such that mj03(n) = 1 (resp. MJ03(n) = 1) then the case n03 = min03(n) and
mj03(n) = 1 (resp. n03 = max03(n) and MJ03(n) = 1) indeed happens. So we have to
remove 1, i.e., mj03(n) or MJ03(n) for each case.

As another example, consider the case that min12(n) and ∆12(n) are odd. Then

max03(n) is even and min03(n) is odd. There are ∆12(n)+1
2

even values of n12. We cannot
have n03 = max03(n) (for parity reasons) and thus we never have n03 = max03(n) and
MJ03(n) = 1. But the case n03 = min03(n) happens and thus we have to remove one case
when mj03(n) = 1.

Finally, observe that to each pair (n, n12), with n odd and n12 even, correspond two
abelian equivalence classes of y (see the proof of Proposition 43). Each of these classes
splits into two 2-abelian equivalence classes. Hence multiplying by 2 the number of pairs
(n, n12), with n odd and n12 even, gives the result claimed for n odd.

Corollary 62. The sequence P(2)
t (n)n≥0 is 2-regular.

Proof. We can make use of Lemma 8. Thanks to Theorem 56, P(2)
t (n+1) can be expressed

as a combination of P(1)
y (n), ∆12(n), MJ03(n), mj03(n) using the predicates (n mod 2),

(∆12(n) mod 2) and (min12(n) mod 2).
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The sequences P(1)
y (n)n≥0 and ∆12(n)n≥0 are 2-regular from Section 6. Note that we

have MJ03(n+ 1) = min12(n)−min12(n+ 1) + 1 and

mj03(n) = max12(n)−max12(n+ 1) + 1

= min12(n)−min12(n+ 1) + ∆12(n)−∆12(n+ 1) + 1.

As MJ03(n + 1) and mj03(n) can only take the values 0 and 1, these relations can also
be expressed using (min12(n) mod 2)n≥0 and (∆12(n) mod 2)n≥0. Since these two latter
sequences are 2-regular, the sequences (min12(n+1) mod 2)n≥0 and (∆12(n+1) mod 2)n≥0

are 2-regular by Lemma 11 and so are MJ03(n+1)n≥0 and mj03(n)n≥0 by Lemma 8. Thus,
MJ03(n)n≥0 is 2-regular by Lemma 11.

Since all the functions (resp. all the predicates) occurring in the statement of Theo-
rem 56 are 2-regular (resp. 2-automatic), the composition given in Lemma 8 implies that

the sequence P(2)
t (n+1)n≥0 is 2-regular. Hence, by Lemma 11, P(2)

t (n)n≥0 is 2-regular.

8 Conclusions

The two examples treated in this paper, namely the 2-abelian complexity of the period-
doubling word and the Thue–Morse word, suggest that a general framework to study the
`-abelian complexity of k-automatic sequences may exist. As an example, we consider the
3-block coding of the period-doubling word,

z = block(p, 3) = 240125252401240124 · · · .

The abelian complexity P(1)
z (n)n≥0 = (1, 5, 5, 8, 6, 10, 19, 11, . . .) seems to satisfy, for ` ≥ 4,

the following relations (which are quite similar to what we have discussed so far)

P(1)
z (2` + r) =


P(1)

z (r) + 5 if r ≤ 2`−1 and r even

P(1)
z (r) + 7 if r ≤ 2`−1 and r odd

P(1)
z (2`+1 − r) if r > 2`−1.

Then, the next step would be to relate P(3)
p with P(1)

z (and try to extend the developments
from Section 5).
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