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RESPONSE SURFACE METHODOLOGY FOR FUNCTIONAL DATA
WITH APPLICATION TO NUCLEAR SAFETY

ANGELINA ROCHE

Abstract. The paper proposes an adaptation of Responce Surface Methodology (RSM)
when the covariate is a functional data (one or more functions for instance). The key of
the method is to combine dimension reduction techniques with usual Design of Exper-
iments. We prove that the good properties of multivariate designs (rotatability, alpha-
betic optimality,...) are also verified by the functional designs. The good behavior of the
method is illustrated on numerical experiments and applied to nuclear safety.
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1. Introduction

Response Surface Methodology (RSM) was introduced by Box and Wilson (1951) with
the goal of identifying optimal conditions for experiments in chemistry. The target was to
minimize the cost of experimentation or maximize the purity of the product obtained by
finding the right combination of factors (temperature, pressure, proportion of reactants,
...). Then, its purpose is to find the values of explanatory variables (x1, . . . , xd) ∈ Rd for
which the response variable is optimal Y ∈ R. This method has been and is still widely
used in the industry.

Suppose we want to find the values of (x1, . . . , xd)
′ ∈ R – where R is a given region

of Rd – minimizing an unknown (maybe random) function m : R → R. We assume here
that, for all (x1, . . . , xd)

′ ∈ R we can observe y = m(x1, . . . , xd).
The principle of the method is to find the optimal experimental conditions by perform-

ing a limited number of experiments. The function m is approximated using experimen-
tation and modeling. Usually the first step consists in fitting a first-order linear model to
the data

(1) y = β0 +
d∑

j=1

βjxj + ε,

while ε ∼ N (0, σ2) is an error term. Second-order models

(2) y = β0 +
d∑

j=1

βjxj +
d∑

j=1

βjjx
2
j +

∑
1≤j<k≤d

βj,lxjxl + ε

are also often considered to take into account surface curvatures. More complex models
such as generalized linear models (see Khuri, 2001, and references therein) or nonpara-
metric models (Facer and Müller, 2003) have been considered.
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The parameters of the chosen model are often least-squares estimates calculated from
observations {(yi,xi), i = 1, ..., n} where, for all i = 1, ..., n, yi = m(xi) and the design
points {xi ∈ R, i = 1, ..., n} are chosen by the user.

This question of the choice of an appropriate design is still an open problem, the idea
is that the model must be fitted as best as it is possible, realizing a small number of
experiments. We refer to Georgiou et al. (2014) and references therein for the recent
advances on the subject. We focus here on the designs classically used for RSM but the
method we propose can be applied to all multivariate designs.

Let us describe the 2d factorial design which is the simplest. It is a first-order design is
the sense that it is frequently used to fit a first-order linear model. For each explanatory
variable x1, . . . , xd, we choose two levels (coded by +1 and −1) and we take all the 2d

combinations of these two levels. If d is large, it may be impossible to achieve the 2d

factorial experiments. The fractional factorial design keeps only a certain proportion
(e.g. a half, a quarter, ...) of points of a 2d factorial design. Typically, when a fraction
1/(2p) is kept from the original 2d design, this design is called 2d−p factorial design. The
points removed are carefully chosen, we refer e.g. to Gunst and Mason (2009) for more
details.

Traditional second-order designs are factorial designs, central composite designs and
Box-Behnken designs.

• 3d or 3d−p factorial designs are similar to 2d and 2d−p factorial designs but with
three levels (+1, −1 and 0).
• Central Composite Designs (CCD) are obtained by adding to the two-level factorial

design (fractional or not) two points on each axis of the control variables on both
sides of the origin and at distance α > 0 from the origin.
• Box-Behnken Designs (BBD) are widely used in the industry. It is a well-chosen

subset of the 3d factorial design. For d ≥ 4, we refer to Myers et al. (2009, 7.4.7).

For all these designs, some or all points may be replicated, this may allow the design to
verify some additional properties and perform lack-of-fit tests (Brook and Arnold, 1985,
pp. 48-49).

The aim is to choose the design so that the coefficients of the model β0, β1, ..., βd (plus
βjk, j, k = 1, ..., d for the second-order model (2)) are estimated as effectively as possible.
There are different ways of conceiving the properties a design should satisfy and therefore
there are different criteria used in the literature. We focus on the most classical ones:
orthogonality, rotatability and alphabetic optimality.

The models (1) and (2) and even highest-order polynomial model can be rewritten in
a matrix form

y = Xβ + ε,

where y = (y1, ..., yn)t, ε = (ε1, ..., εn)t.
For instance, for the first-order model (1),

X =


1 x1,1 . . . x1,d

1 x2,1 x2,d
...

...
. . .

...
1 xn,1 . . . xn,d

 and β =


β0

β1
...
βd


with (x1,i, ..., xd,i) the coordinates of xi. The least-squares estimator of β is equal to

β̂ :=
(
XtX

)−1
XtY
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and is a random vector of mean E
[
β̂
]

= β and variance-covariance matrix given by

Var
(
β̂
)

= E
[(
β̂ − β

)(
β̂ − β

)t]
= σ2

(
XtX

)−1
.

Hence, the matrix XtX appears both in the definition of β̂ and in the expression on
its variance. The quality of the estimation of β then essentially rests on the properties of
XtX.

An important property is the orthogonality. An orthogonal design is a design for which

the matrix XtX is diagonal. This implies that the vector β̂ is also a Gaussian ran-
dom vector with independent components and makes it easier to test the significance of
the components of β in the model. 2d factorial designs are orthogonal first-order de-
signs. However, fractional designs have to be constructed carefully in order to keep the
orthogonality property, for instance {(1, 1), (1,−1)} is a 22−1 design but is not orthog-
onal. Orthogonality for second-order designs is even harder to verify, we refer to Box
and Hunter (1957) for general criteria applied to factorial and fractional factorial designs.
Central Composite Designs are orthogonal if

α =

√√
F (F + 2d+ n0)− F

2
,

where F is the number of points of the initial factorial design (see Myers et al. 2009).
A design is said to be rotatable if Var(ŷ(x)) depends only on the distance between x

and the origin. The rotatability is a desirable feature since it implies that the prediction
variance is unchanged under any rotation of the coordinate axes. We refer to Box and
Hunter (1957) for conditions of rotatability. All first-order orthogonal designs are also
rotatable. This is not the case for second-order designs, for instance a CCD design is
rotatable if α = F 1/4 which means that a CCD design can be rotatable and orthogonal
only for some specific values of n0 and F . Box-Behnken designs are rotatable for d = 4
and d = 7. Some measures of rotatability have been introduced (Khuri, 1988; Draper and
Guttman, 1988; Draper and Pukelsheim, 1990; Park et al., 1993) in order to measure how
close a design is to the rotatability property.

Another important notion is the D-optimality criterion which maximizes the determi-
nant of the matrix XtX. A justification of such a criterion is to minimize the volume of
the confidence region for β. Another classical criterion is the G-optimality criterion which
minimizes the maximal value of Var(ŷ(x)) over x ∈ R. D-optimal and G-optimal designs
may be generated by computers and are used as alternatives to classical designs when they
are not available (this is the case for instance when the region R is constrained). Other
criteria are A-optimality minimizing the average variance of the estimated coefficients or
E-optimality maximizing the minimal eigenvalue of the matrix XtX. We refer to Pázman
(1986) for more details.

2. Design of Experiments for functional data

2.1. Generation of a functional design of experiment (DoE). Suppose that the
response y depends on a variable x in an infinite or high-dimensional space H. We propose
a method of generation of a Design of Experiments for RSM in this context.

General principle. The method is based on dimension reduction coupled with classical
multivariate designs. The main idea is the following: suppose that we want to generate a
design around x0 ∈ H, we choose an orthonormal basis (ϕj)j≥1 of H, a dimension d and
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a d-dimensional design {xi, i = 1, . . . , n} = {(xi,1, . . . , xi,d), i = 1, . . . , n} around 0 ∈ Rd

and we define a functional design {xi, i = 1, . . . , n} verifying

xi := x0 +
d∑

j=1

xi,jϕj.

The advantage of such a method is its flexibility: all multivariate designs and all basis
of H can be used. Then, by choosing an appropriate design and an appropriate basis, we
can generate designs satisfying some constraints defined by the context.

Choice of basis. The choice of the basis has a significant influence on the quality of design.
According to the context, it is possible to use a fixed basis such as Fourier basis, spline
basis, wavelet basis, histogram basis...

However, if we have a training sample {(Xi, Yi), i = 1, . . . , n}, it may be relevant to use
the information of this sample to find a suitable basis. The data-driven bases existing in
the literature are.

• The PCA basis (Dauxois et al., 1982; Mas and Ruymgaart, 2015) which is the
basis of H verifying

1

n

n∑
i=1

‖Xi − Π̂dXi‖2 = min
Πd

{
1

n

n∑
i=1

‖Xi − ΠdXi‖2

}
,

where Π̂d is the orthogonal projector on span{ϕ1, . . . , ϕd}, ‖ · ‖ is a norm on the
space H (which has to be a Hilbert space here) and the minimum on the right-hand
side is taken over all orthogonal projectors Πd on d-dimensional subspaces of H.
• The PLS basis (Wold, 1975; Preda and Saporta, 2005) which permits to take

into account the interaction between X and Y . It is computed iteratively by the
procedure described in Delaigle and Hall (2012). For theoretical results on the PLS
basis in a functional context see Delaigle and Hall (2012) and references therein.

2.2. Least-squares estimation and design properties. In this section we focus on
least-squares estimation for first and second-order models. We first define first and second-
order models in functional data contexts. Then, we prove that the properties of orthogo-
nality, rotatability and alphabetic optimality can be extended to our context.

We focus here on first-order and second-order designs but the same reasoning may apply
to other models and other kind of optimality properties related to the model considered.

First-order model. We define first-order models in the following form

y := α + 〈β, x〉+ ε,

with α ∈ R, β ∈ H and ε ∼ N (0, σ2). This model is known as functional linear model
(Ramsay and Dalzell, 1991; Cardot et al., 1999) and has been widely studied (see Cardot
and Sarda 2011 for a recent overview or Brunel and Roche 2014 for a recent work on this
subject).

Now recall that, for all i = 1, . . . , n, xi = x0 +
∑d

j=1 xi,jϕj, then the first-order model
can be rewritten

(3) yi := β0 + 〈β, x0〉+
d∑

j=1

xi,j〈β, ϕj〉+ εi, for i = 1, . . . , n.
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With our choice of design points, this model is nothing more than a first-order multivariate
model and can be written

(4) Y = Xβ + ε

with design matrix

X =


1 x1,1 . . . x1,d

1 x2,1 x2,d
...

...
. . .

...
1 xn,1 . . . xn,d


and coefficients β = (β0 + 〈β, x0〉, 〈β, ϕ1〉, . . . , 〈β, ϕd〉)t. Then least-squares estimates
of the model parameters can be obtained directly and, since the design matrix X is
exactly the same, it is easily seen that all first-order properties of the multivariate design
{xi, i = 1, . . . , d} are also verified by the functional design.

Second-order model. Now we can see that a similar conclusion holds for the second-order
model, which can be written here

(5) y := β0 + 〈β, x〉+
1

2
〈Hx, x〉+ ε,

where β0 ∈ R, β ∈ H and H : H→ H is a linear self-adjoint operator. Then, by definition
of xi = x0 +

∑d
j=1 xi,jϕj we have

yi = β0 +〈β, x0〉+
1

2
〈Hx0, x0〉+

d∑
j=1

xi,j (〈β, ϕj〉+ 〈Hx0, ϕj〉)+
1

2

d∑
j,k=1

xi,jxi,k〈Hϕj, ϕk〉+εi.

This model is a second-order linear model for the data {(xi, yi), i = 1, . . . , n}, can also be
written in the form (4) with the same design matrix as in the model (2). Hence, all second-
order properties of {xi, i = 1, . . . , n} apply to the functional design {xi, i = 1, . . . , n}.

3. Application to nuclear safety

3.1. Data and objectives. An hypothetical cause of nuclear accident is the loss of
coolant accident (LOCA). This is caused by a breach on the primary circuit. In order to
avoid reactor meltdown, the safety procedure consists in incorporating cold water in the
primary circuit. This can cause a pressurised thermal shock on the nuclear vessel inner
wall which increases the risk of failure of the vessel.

The parameters influencing the probability of failure are the evolution over time of tem-
perature, pressure and heat transfer. Obviously, the behavior of the reactor vessel during
the accident can be hardly explored by physical experimentation and numerical codes
have been developed, for instance by the CEA1, reproducing the mechanical behavior of
the vessel given the three mentioned parameters (temperature, pressure, heat transfer).
Figure 1 represents different evolution of each parameter during the procedure depending
on the value of several input parameters.

The aim is to find the temperature transient which minimizes the risk of failure. We
have access here to the margin factor (MF) which decreases when the risk of failure
increases. Hence, the aim is to maximise the MF.

1French Alternative Energies and Atomic Energy Commission (Commissariat l’nergie atomique et
aux nergies alternatives), government-funded technological research organisation. http://www.cea.fr/
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Figure 1. Evolution of temperature, pressure and heat transfer. Source: CEA.
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Figure 2. Functional design around the initial curves.

3.2. Generation of design. The aim of this section is to generate a factorial design for
the temperature, pressure and heat transfer transient given in Figure 1. Since the PLS
basis has given good results in simulations, we focus on this basis.

Then, for each quantity considered (temperature, pressure, heat transfer) we define the
starting point of the algorithm. We choose the element for which the margin factor is
maximal.

We generate a functional design based on a minimum aberration 210−5 fractional design
for the temperature, a 23−2 design for the pressure and the heat transfer. As some design
points of the functional design around the initial heat transfer curve took negative values
(which can not correspond to the physic since the heat transfer is always positive), we
remove it and keep only the design points which are always positive. The design points
are plotted in Figure 2. The resulting design, which is a combination of all curves of
the three designs obtained (for temperature, pressure and heat penetration) counts 128
design points.

3.3. Results. We compute an estimation of the gradient with the results of the experi-
ments on the design points given in Figure 2. The results are given in Figure 3. We take
α0 = 200. The final estimates of the optimal curves are given in Figure 4.
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Figure 3. Left: value of the response on the estimated steepest ascent
direction. Right: solid line initial temperature point, dotted line: optimal
temperature transient estimated.
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Figure 4. Point of the estimated steepest ascent direction maximizing the response.

Acknowledgement

The data were provided by the French Alternative Energies and Atomic Energy Com-
mission (CEA). The author wants to thank especially Michel Marques for its patience and

cooperation, which was essential to obtain the final results and Élodie Brunel and Andr
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