
HAL Id: hal-01144622
https://hal.science/hal-01144622v1

Submitted on 22 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Synthesis of ranking functions using extremal
counterexamples

Laure Gonnord, David Monniaux, Gabriel Radanne

To cite this version:
Laure Gonnord, David Monniaux, Gabriel Radanne. Synthesis of ranking functions using extremal
counterexamples. Programming Languages, Design and Implementation, Jun 2015, Portland, Oregon,
United States. �10.1145/2737924.2737976�. �hal-01144622�

https://hal.science/hal-01144622v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Synthesis of ranking functions using extremal counterexamples∗

Laure Gonnord
LIP, Univ. Lyon-1, France
Laure.Gonnord@ens-lyon.fr

David Monniaux
VERIMAG, CNRS, Grenoble, France

David.Monniaux@imag.fr

Gabriel Radanne
PPS, Univ. Paris. Diderot, France

gabriel.radanne@pps.univ-paris-diderot.fr

April 20, 2015

Abstract

We present a complete method for synthesizing lexicographic linear ranking functions (and thus
proving termination), supported by inductive invariants, in the case where the transition relation of
the program includes disjunctions and existentials (large block encoding of control flow).

Previous work would either synthesize a ranking function at every basic block head, not just loop
headers, which reduces the scope of programs that may be proved to be terminating, or expand large
block transitions including tests into (exponentially many) elementary transitions, prior to computing
the ranking function, resulting in a very large global constraint system. In contrast, our algorithm
incrementally refines a global linear constraint system according to extremal counterexamples: only
constraints that exclude spurious solutions are included.

Experiments with our tool Termite show marked performance and scalability improvements com-
pared to other systems.

1 Introduction

Program termination can be shown by providing a ranking function: a function from program states to
a well-founded ordering, decreasing along any transition in the program.

In formal methods by assisted proofs (e.g. B method, Frama-C) the user typically has to provide a
ranking function for each loop; automation may relieve that burden — but that is not all! In compilation,
certain optimizations, such as lazy code motion, need to ensure that certain fragments of code terminate
to be correct Tristan and Leroy [2009]; yet termination analysis is often considered too inefficient to be
integrated into a compiler1 — we show it needs not be. Also, from a ranking function and an invariant
one may compute a bound (constant or parametric) on the number of iterations, which is necessary for
worst-case execution time (WCET)2 or for high-level synthesis (“C-to-silicon”). These applications need
a fully automated, efficient algorithm providing the ranking function in most cases.

Because finding a ranking function is equivalent to proving termination, which is undecidable, auto-
mated approaches are incomplete. They typically search for ranking functions in restricted classes: if
a ranking function is found, then the program necessarily terminates, but it may still terminate even
though no function is found within the class. One popular class is linear ranking functions: such a
function ρ maps the vector x ∈ Zn of program variables to an integer linear combination

∑
i αixi such

that ρ(x′) < ρ(x) for any possible program step x → x′, and such that ρ(x) ≥ 0 for any reachable
program state (remark that this entails proving an auxiliary invariant property). Furthermore, the αi

∗The research leading to these results has received funding from the European Research Council under the European
Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement nr. 306595 “STATOR”

1Between the 1999 and 2011 C standards an exception (§6.8.5:6) was added to allow compilers to assume that every
non trivially infinite computation loop always terminates — a brutal way to avoid termination analysis!

2Tools such as Absint’s aiT (http://www.absint.com/ait/) and OTAWA (http://otawa.fr/OTAWA) need loop bounds, by
user annotation if necessary.

mailto:Laure.Gonnord@ens-lyon.fr
mailto:David.Monniaux@imag.fr
mailto:gabriel.radanne@pps.univ-paris-diderot.fr
http://erc.europa.eu/
http://stator.imag.fr/
http://www.absint.com/ait/
http://otawa.fr/OTAWA

may be allowed to depend on the program point k, thus the unknowns are αi,k: the decreasing condition
becomes

∑
i αi,k′x

′
i <

∑
i αi,kxi for any transition (k,x)→ (k′,x′).

Various methods for the automated synthesis of such functions have been proposed Podelski and
Rybalchenko [2004]; they build a constraint system in the unknowns αi,k and solve it. This class is
extended to lexicographic linear ranking functions: instead of a single function ρ(x), one uses a tuple of
them 〈ρ1(x), . . . , ρm(x)〉, which is shown to be strictly decreasing with respect to lexicographic ordering.
Again, the function ρ can be allowed to depend on the program point, and complete automated synthesis
methods exist for this class Alias et al. [2010], Ben-Amram and Genaim [2014].

A common weakness of many existing approaches is the need to solve for linear coefficients at all
basic blocks, which leads to scalability and precision issues.

First, if the program has K basic blocks, n integer variables and one searches for a m-dimensional
ranking function, then the number of unknowns in the constraint system is K.m.n, which might be too
big Alias et al. [2010]. Thus, it is desirable to limit the set of points to consider to heads of loops, or,
more generally, a cut-set of K ′ program points — a set such that removing these points cuts all cycles
in the program Shamir [1979].

Second, considering each transition separately might also lead to a lack of precision: a loop might
have a linear lexicographic ranking function that decreases along each of its paths as a whole, but none
that decreases at each step of these paths, e.g., Listing 1. Thus, following Gulwani and Zuleger [2010],
we will treat each path inside a loop as a single transition. Unfortunately the number of paths may
be exponential in the size of the program (e.g. if the loop consists in t successive if-then-else tests, the
number of paths is 2t), thus the constraint system may become very large, even though it features fewer
variables. We propose a new approach which avoids the explicit computation of (all) the paths.

Contribution We present an approach for computing lexicographic linear ranking functions when all
paths inside a loop are treated separately. We lazily build a constraint system according to extremal
counterexamples (a counterexample is a path where a candidate ranking function increases) — a naive
approach with arbitrary counterexamples could fail to terminate. We implemented our approach and
benchmarked it against existing analyzers.

Contents This article is organized as follows. After recalling the main definitions and notations (sec-
tion 2), we present the main ideas of a first algorithm in section 3, and then the workarounds to ensure
its own termination (section 4). Section 5 and section 6 discuss extensions to multidimensional ranking
functions and multi control points. Section 7 discusses coNP-completeness and worst-case complexity.
Section 8 gives some possible extensions w.r.t. the expressiveness of the method. Section 9 discusses
implementation and experimental results. Finally, Section 10 highlights the improvements brought by
our contribution.

Related Work The use of ranking functions (a nonnegative strictly decreasing integer quantity) for
proving the termination of programs goes back to Turing [1949]. We thus will not attempt to give a
complete timeline of the topic; Ben-Amram and Genaim [2014] present a longer survey.

In proof assistants (such as e.g. the B method or PVS), it is customary to require from the user such
a function for proving the termination of loops or recursive calls. Linear ranking functions are one of the
simplest kind to generate automatically; yet not every interesting numerical program can be proved to
terminate with such a function. Polynomial ranking functions are more powerful, but considerably more
difficult to handle.

In recent years, two approaches have attracted particular attention. Lexicographic linear ranking
functions Alias et al. [2010], Cook et al. [2013], Bradley et al. [2005b,a], Ben-Amram and Genaim [2014]
are both much more powerful than linear ranking functions (e.g. one can easily prove the termination of
the Ackermann-Péter function) and not much harder to obtain. A natural extension of this framework
is, instead of requiring a single, monolithic ranking function at all program points, to make it dependent
on the program point. Other extensions include piecewise linear ranking functions [Urban, 2013] and
ordinal-value ranking functions [Urban and Miné, 2014], which subsume lexicographic orders.

Another approach is based on Ramsey’s theorem Codish and Genaim [2003], the idea being that a
program is non-terminating if and only if there exists some feasible non-terminating loop in the control

PLDI’15 Gonnord, Monniaux, Radanne - Author Version - 2/20

flow. As noted in Cook et al. [2013], while some of the reasoning is local (one loop at a time), the method
operates over the transitive closure of program transitions, which is not easy to approximate finely.

The problem of synthesizing a nonnegative linear function over a convex polyhedron satisfying certain
properties was studied in the context of scheduling. Feautrier [1992a] proposed applying Farkas’ lemma;
others suggested an approach based on generators (vertices), as ours. A comparison of the two dual
approaches (constraints vs generators) showed that constraints scaled better for scheduling problems
Balev et al. [1998]. In contrast, Ben-Amram and Genaim [2014] used the vertices of the integer hull
of the transition relation. We improve on this approach by lazily enumerating the generators, without
explicitly computing this convex hull.

2 Preliminary Definitions

In this section, we will define the concepts used in the rest of the article, following the notations of
Ben-Amram and Genaim [2014]. Theses concepts will be illustrated in Example 1. We write column
vectors in boldface (as x). Sets are represented with calligraphic letters such as W, P, etc.

2.1 Closed Convex Polyhedra

Schrijver [1998] presents this topic in detail.

Definition 1 (Polyhedra). A rational convex polyhedron P ∈ Qn is the set of solutions of a set of
inequalities Ax ≤ b where A ∈ Qm×n is a rational matrix of n columns and m rows, x ∈ Qn and b ∈ Qm
are columns vectors of n and m rational values respectively. We denote by Constraints(P) the set of
constraints of P.

Definition 2 (Integer Hull). For a given polyhedron P ∈ Qn the set of integer points of P is denoted by
I(P).

Definition 3 (Generator representation). The vertices and rays (if unbounded) of a closed convex
polyhedron form a system of generators:

P =

{(∑
i

αivi

)
+

(∑
i

βiri

)∣∣∣∣∣ αi ≥ 0, βi ≥ 0∑
i αi = 1

}

In the following, the expressions “convex polyhedron” and “polyhedron” refer to rational closed convex
polyhedra as defined above.

2.2 Transitions and Invariants

We consider programs over a state space W × Zn, where W is the finite set of control states, defined by
an initial state and a transition relation τ .
W needs not be the set of syntactic control points in the program (e.g. one per instruction, or one

per basic block): it is sufficient that they form a cut-set of the syntactic control states, that is, a set of
points such that removing them cuts all cycles in the program. This ensures that, for any k, k′ ∈ W, the
transition relation (k,x)→τ (k,x′) can be expressed in the same theory as the individual transitions with
a formula of linear size, using propositional variables to encode execution paths, as commonly practiced
in predicate abstraction and other analysis methods using satisfiability modulo theory Monniaux and
Gonnord [2011]. In block-structured programs the set of loop headers is a cut-set, and a minimal cut-set
may be computed in linear time Shamir [1979].

Let us thus assume that τ is given as the solution over x1, . . . , xn and x′1, . . . , x
′
n, the values before

and after the transition (all other variables being considered as implicitly existentially quantified), of a
formula built from ∧, ∨ and non-strict linear inequalities and linear equations, excluding negation and
strict inequalities. τ is then equivalent to a union U of closed convex polyhedra; intuitively each disjunct
of {(x,x′) | (k,x, k′,x′) ∈ τ} corresponds to a path from k to k′ in the program.

Definition 4 (Invariants). An invariant on a control point k ∈ W is a formula φk(x) that is true for
all reachable states (k,x). We will note invariants as Ik (or I when the control point is implicit).

PLDI’15 Gonnord, Monniaux, Radanne - Author Version - 3/20

Definition 5 (Constraints). Let us consider an invariant I as a nonempty closed convex polyhedron
whose integer hull is given by a set of inequalities I = {x |

∧m
i=1 ai.x ≥ bi}. Constraints(I) denotes

{ai, i ∈ [1,m]}

We assume that some external tool provides us with invariants: either affine invariants provided by
e.g. polyhedral analysis Cousot and Halbwachs [1978] or its refinements as in the Aspic3 Gonnord and
Halbwachs [2006], Feautrier and Gonnord [2010] or the Pagai Monniaux and Gonnord [2011], Henry
et al. [2012b, 2014] tools. In section 8 we shall relax this requirement.

Φ denotes a set of quadruples (k,x, k′,x′), where k, k′ are control states and x,x′ vectors of numeric
variables, such that for any possible transition (k,x)→τ (k′,x′) of the program, (k,x, k′,x′) ∈ Φ. Such
a Φ may be obtained from invariants as follows: (k,x, k′,x′) ∈ Φ ⇐⇒ Ik(x) ∧ (k′,x)→τ (k,x′).

We only require that Φ may be expressed in a decidable theory in which it is possible to perform
linear optimization; e.g. linear integer arithmetic, combined or not with uninterpreted functions; this
is a form of large block encoding. Again, this includes the case considered by Ben-Amram and Genaim
[2014]: for k, k′ fixed, the projection to x,x′ can be expressed as a union of polyhedra.

There is a crucial difference between our approach and that of Ben-Amram and Genaim [2014, §2.3–
2.4] with respect to complexity. They consider an explicit list of polyhedra, which may contain 2n

polyhedra if the program from location k to location k′ consists in n successive if-then-else statement:
in essence, they take Φ in disjunctive normal form. In contrast, in this article we seek to enumerate
vertices of the convex hull of Φ lazily, never computing its disjunctive normal form.

In addition to allowing disjunctions ∨ inside the formula (not just at the outer level), we allow
existential quantifiers ∃. Such a formula is equivalent to one of same size and in prenex form where all
the variables not in x,x′ are existentially quantified. Again, this is important for complexity: even for
a conjunction of linear constraints, eliminating a block of existential quantifiers (that is, projecting the
polyhedron) may result in exponential blow-up.

2.3 Ranking Functions

Definition 6 (Linear ranking function). A (strict) lexicographic linear ranking function of dimension
m is a function ρ :W × Zn → Zm, such that

1. for any state k ∈ W, x 7→ ρ(k,x) is affine;

2. for any (k,x, k′,x′) ∈ Φ, ρ(k′,x′) ≺ ρ(k,x)
where 〈x1, . . . , xm〉 ≺ 〈y1, . . . , ym〉 if and only if there exists an i such that xj = yj for all j < i
and xi < yi;

3. for any state (k,x) in the invariant I, all coordinates of ρ(k,x) are nonnegative.

It is said to be monodimensional, or a linear ranking function, if m = 1, and multidimensional
otherwise.

We note ranking functions: ρ(k,x) = λk · x + λk0 or ρ(x) = λ · x + λ0 when the control point is
implicit.

Definition 7 (Quasi lexicographic linear ranking function). A quasi lexicographic linear ranking function
replaces Condition 2 by ρ(k′,x′) � ρ(k,x) where � is the lexicographic ordering.

The existence of a strict (lexicographic) linear ranking function entails the termination of the program.
In the following, we deal with a unique control point k with I its invariant and τ its transition

relation4. We will consider the situation with multiple control points section 6.

Example 1 (Monodimensional linear ranking function). Consider the following transition relation on
Q2, where transitions are specified by (guardaction):

k0
t1

x ≤ 10 ∧ 0 ≤ y
x := x + 1
y := y − 1

t2
0 ≤ x ∧ 0 ≤ y
x := x− 1
y := y − 1

PLDI’15 Gonnord, Monniaux, Radanne - Author Version - 4/20

O
x

y

Initial position

t1t2

Figure 1: Invariant polyhedron for Example 1

Under initial assumptions x = 5, y = 10, an invariant generator (Aspic) gives the following inductive
invariant for I (Figure 1):

I = {0 ≤ x+ 1, x ≤ 11, 0 ≤ y + 1, y ≤ x+ 5, x+ y ≤ 15}

from these invariants we compute the ai and bi :

a =
(
1
0

) (−1
0

) (
0
1

) (
1
−1
) (

1
1

)
b = 1 11 1 5 15

A possible monodimensional strict linear ranking function for this automaton is ρ(x, y) = y + 1: this
expression is always nonnegative on I, and both t1 and t2 make this expression strictly decrease.

2.4 Cones

We first recall the definition of convex cones and orthogonality [Gärtner and Matoušek, 2012, §4.2].

Definition 8. A convex cone of Qn is a subset ∆ of Qn such that : i) For all x ∈ ∆, α > 0, αx is
also in ∆. ii) For all x,y ∈ ∆, x+ y is also in ∆.

Definition 9. The orthogonal ∆⊥ of ∆ is defined as {u | ∀v ∈ ∆, u.v ≥ 0}. If ∆ is a convex cone,
∆⊥ is also a convex cone.

Proposition 1. The quasi ranking functions form a closed convex cone.

3 Quasi Monodimensional Ranking Functions of Maximal Ter-
mination Power

We shall now see that, for a program with one control state, finding a quasi monodimensional ranking
function amounts to finding a vector in the intersection of the cone generated by the constraints of an
inductive invariant (to ensure positiveness) and the orthogonal of the cone {x−x′ | (x,x′) ∈ τ} where τ
is the transition relation. This suggests a naive (but wrong) algorithm, which incrementally constructs
the desired cone as the solution set of a constraint system, generated through a counterexample-guided
approach.

3.1 Quasi Ranking Functions in Terms of Cones

We assume here that Φ = {(x,x′) | x ∈ I ∧ (x,x′) ∈ τ} where I is a (nonempty) invariant defined by
I = {x |

∧m
i=1 ai.x ≥ bi}. A quasi ranking function is considered to be a linear affine function that is

nonincreasing when a τ step is taken, and stays nonnegative on I. The rest of the section recalls some
results obtained in the field of polyhedral scheduling Feautrier [1992a,b].

3http://laure.gonnord.org/aspic/
4This also emulates the situation where one looks for the exact same linear function at all control points.

PLDI’15 Gonnord, Monniaux, Radanne - Author Version - 5/20

http://laure.gonnord.org/aspic/

Proposition 2. Under these assumptions, ρ = λ · x+ λ0 is a quasi ranking function if and only if the
following conditions hold:

∀x,x′ x ∈ I ∧ (x,x′) ∈ τ =⇒ λ · (x− x′) ≥ 0 (1)

∃γ1 ≥ 0, . . . , γm ≥ 0, λ =

m∑
i=1

γiai (2)

Proof. First, Equation 1 is obtained by rewriting the decreasing condition using linearity. Secondly,
Farkas’ Lemma Schrijver [1998] applied to the nonempty polyhedron I, where vector inequality ρ(k,x) ≥
0 holds, yields:

∃γ1 ≥ 0, . . . , γm ≥ 0, λ =

m∑
i=1

γiai ∧ λ0 ≤
m∑
i=1

γibi

Once the condition λ =
∑m
i=1 γiai is met then an appropriate choice of λ0 can always be made, thus

Equation 2 is verified.

Equation 2 means that λ belongs to the cone generated by the ai constraints, denoted as Coneconstraints(I)
from now on. Equation 1 is also equivalent to stating that λ belongs to some (other) cone, as we will see
in the following. Let PI,τ = {x−x′ | x ∈ I ∧ (x,x′) ∈ τ} be the set of all reachable 1-step differences.5

Equation 1 is then equivalent to stating that λ belongs to the orthogonal of the convex cone generated
by PI,τ .

Let us reexamine the condition that λ · u ≥ 0 for all u ∈ PI,τ . Remark that this condition is left
unchanged if we replace PI,τ by its convex hull (a linear inequality is true over a set if and only if it is
true over the convex hull of this set). Because I and τ are (finite unions of) convex closed polyhedra,
so is PI,τ , and thus the closure of its convex hull PHI,τ is a closed convex polyhedron.6 If bounded, then
this convex polyhedron is just the convex hull of its vertices, but if unbounded one has to include rays
and lines as generators, as in Definition 3: the condition λ · u ≥ 0 for all u ∈ PHI,τ is then replaced by
∀i λ ·vi ≥ 0∧∀i λ ·ri ≥ 0 For the sake of simplicity, we now group these three conditions into one: there
is a finite set V = {v1, . . . ,vm} such that Equation 1 is equivalent to ∀1 ≤ i ≤ m, λ · vi ≥ 0, otherwise
said λ belongs to the polyhedral convex cone with faces defined by the vi, denoted by Cone(VI,τ).

We have expressed both conditions of Definition 6 as membership of λ in polyhedral cones, respec-
tively given by constraints and generators:

Proposition 3. Let VI,τ a set of generators of PHI,τ . Then ρ(x) = λ ·x+λ0 is a quasi ranking function
iff λ ∈ Coneconstraints(I) ∩ Cone(VI,τ).

Thanks to this proposition, we can restrict the search of a ranking function to vectors that are linear
combinations of Constraints(I) and of VI,τ , which we will do in Definition 11.

3.2 Maximal “Termination Power” and Strict Ranking Functions

We are however interested in more than quasi ranking functions (otherwise, λ = 0 would do!). In the
simplest cases, we would like ∀1 ≤ i ≤ m, λ · vi > 0: by appropriate scaling of λ, we can ensure that
∀1 ≤ i ≤ m, λ ·vi ≥ 1 and thus λ is a ranking function, proving termination. Remark that this condition
∀i λ · vi > 0 is otherwise expressed by “λ lies in the interior V ⊥

◦
of V ⊥”.

In case there is no strict ranking function, we will settle for what is the closest best:

Definition 10. λ is said to have maximal termination power if λ · vi > 0 for as many vi as possible.
In the framework of Alias et al. [2010], this would be equivalent to maximizing the number of transitions
where ρ decreases strictly.

The notations and results of this section are also adapted from Feautrier [1992a,b].
For λ ∈ V ⊥, we define the set πV(λ) = {v ∈ V | λ · v > 0}; we would like ρ = λ · x+ λ0 of maximal

|πV(λ)|.
5Ancourt et al. [2010] use it to compute loop invariants.
6If PI,τ is bounded, then its convex hull PHI,τ is a closed convex polyhedron, but it might not be closed if PI,τ is

unbounded: e.g. the convex hull of {(0, 0)} and {(1, x) | x ∈ Q} is {(0, 0)} ∪ (0, 1]× Q, which is not closed.

PLDI’15 Gonnord, Monniaux, Radanne - Author Version - 6/20

Proposition 4. Given V = {v1, . . . ,vN} a set of vectors and λ a vector, πV(λ) is maximal with respect
to cardinality if and only if it is the maximum with respect to inclusion, i.e.

∀λ′, |πV(λ′)| ≤ |πV(λ)| ⇔ ∀λ′, πV(λ′) ⊆ πV(λ)

Proof. It is obvious that for all λ′, if πV(λ′) ⊆ πV(λ) then |πV(λ′)| ≤ |πV(λ)|. Let us now prove
the other implication. Let λ be a vector such that ∀λ′, |πV(λ′)| ≤ |πV(λ)| and λ′ a vector. Let us
suppose that πV(λ′) 6⊆ πV(λ), then πV(λ′)\πV(λ) is not empty. Since πV(λ) ∪ πV(λ′) ⊆ πV(λ + λ′),
|πV(λ+ λ′)| ≥ |πV(λ) ∪ πV(λ′)| = |πV(λ)|+ |πV(λ′)\πV(λ)| > |πV(λ)|, which is absurd since |πV(λ)| is
assumed to be maximal. Thus, ∀λ′, πV(λ′) ⊆ πV(λ).

From now, the problem of finding a ranking function of maximal termination power is thus reduced
to maximising an affine objective function on a set of affine constraints. We thus define a family of Linear
Programming instances:

Definition 11. Given V = {vj |1 ≤ j ≤ N} a set of generators of (the convex hull of) PI,τ and
Constraints(I) = {ai|1 ≤ i ≤ m} a set of vectors (constraints of I), we denote by LP (V,Constraints(I))
the following linear programming instance where γi and δi are the unknowns:

Maximize
∑
i δi s.t.

γ1, . . . , γm ≥ 0
0 ≤ δj ≤ 1 for all 1 ≤ j ≤ N∑m
i=1 γi(vj .ai) ≥ δj for all 1 ≤ j ≤ N

The result of such an LP problem is None if the problem is unfeasible, or a valuation of the γi and
δi variables maximizing the objective function. In the following, we denote as γ the vector with γi
components. Thanks to the previous section, we have the following result:

Proposition 5. Let V = {vj |1 ≤ j ≤ N} be a set of generators of the convex hull of PI,τ and
Constraints(I) = {ai|1 ≤ i ≤ m} the constraints of I. Then :

• LP (V,Constraints(I)) is always feasible.

• LP (V,Constraints(I)) gives γis such that ρ(x) = λ ·x+λ0 with λ =
∑m
i=1 γiai and λ0 =

∑m
i=1 γibi

is a quasi ranking function of maximal πV .

Proof. • Let us start by noticing that (γ, δ) = (0,0) is a solution of the inequalities, and
∑
i δi ≤ N ,

thus the set {
∑
i δi|(γ, δ) is a solution of LP} has a least upper bound.

Moreover, in the optimum of LP (V,Constraints(I)), each δj is either 0 or 1 : if 0 < δj < 1, then
by scaling up λ by a factor 1/δj we obtain a solution ρ with δ′j = 1. Therefore, the least upper
bound is a maximum. It ensues that LP (V,Constraints(I)) is always feasible.

• All solutions of the inequalities are quasi ranking functions, thanks to Proposition 3.

• δi = 1 iff vi ∈ πV(λ), thus |πV(λ)| =
∑
i δi.

Note that δj = 0 means that all solutions to the problem satisfy λ · vj = 0, a flatness condition that
we shall discuss later.

Computing this set V (or, equivalently, any finite set between it and PI,τ) may be expensive (and
the cardinal of V may be exponential in the number of constraints). Obviously, we could compute a
disjunctive normal form (DNF) for τ ∧ I, each disjunct denoting a convex polyhedron Ben-Amram and
Genaim [2014], compute their generators (x,x′) and collect all resulting x − x′; computing the DNF
has exponential cost even if not all disjuncts are needed. The new approach described in this article will
only compute extremal points as needed, as opposed to eagerly expanding the DNF.

3.3 A Wrong but Intuitive Algorithm

Let us propose a simple but somewhat wrong incremental algorithm, which will help understand the
correct algorithm presented later. C is a set of vectors and ρ(x) = λ · x + λ0 a candidate ranking
function.

1. Initialize C := ∅, ρ(x) := 0, thus λ = 0.

PLDI’15 Gonnord, Monniaux, Radanne - Author Version - 7/20

2. Find a transition with an u = x−x′ in PHI,τ which contradicts that ρ is a strict ranking function.
More precisely:
(a) Ask an SMT-solver if ∃u s.t. I ∧ τ ∧ λ · u ≤ 0.
(b) If Unsat, ρ is a strict ranking function. Return it.
(c) If Sat, we get u from the SMT model.

3. Add u to C.
4. Call LP (C, Constraints(I)) (see Definition 11) to compute a new ranking function that maximises

the number of v ∈ C such that ρ(v) > 0 and go back to step 2.

Example 2 (Example 1, cont.). We already computed the generators ai for I.

k0
t1

x ≤ 10 ∧ 0 ≤ y
x := x + 1
y := y − 1

t2
0 ≤ x ∧ 0 ≤ y
x := x− 1
y := y − 1

τ =

(x, y, x′, y′)

∣∣∣∣∣∣
x ≤ 10 ∧ 0 ≤ y ∧ x′ = x+ 1 ∧ y′ = y − 1

∨
0 ≤ x ∧ 0 ≤ y ∧ x′ = x− 1 ∧ y′ = y − 1

Recall that we are looking for ρ(x) = λ · x+ λ0 with λ a positive linear combination of the ais.
We will follow the algorithm described subsection 3.3 step by step, repeated steps will be noted with ’.

1. Beginning with C = {} and ρ(x) = 0, that is: λ = 0 and λ0 = 0. The unknown vector u is always(
x−x′

y−y′
)
.

First iteration.
2. Sat (I ∧ τ ∧ 0 · u ≤ 0) ?

Yes and we have the model u =
(−1

1

)
3. C ←

{(−1
1

)}
4. Call LP (C, Constraints(I)) =

Maximize δ1 s.t.
γ1, γ2, γ3, γ4, γ5 ≥ 0
0 ≤ δ1 ≤ 1
−γ1 + γ2 + γ3 − 2γ4 ≥ δ1

(The last constraint comes from u · ai for each i.)
The solver answers γ2 = 1, γ1 = γ3 = γ4 = γ5 = 0.
We deduce λ = a2 =

(−1
0

)
and λ0 = b2 = 11.

Second iteration.
2’. Sat

(
I ∧ τ ∧

(−1
0

)
· u ≤ 0

)
?

Yes and we have the model u =
(
1
1

)
3’. C ←

{(−1
1

)
;
(
1
1

)}
4’. Call LP (C, Constraints(I)) =

Maximize δ1 + δ2 s.t.
γ1, γ2, γ3, γ4, γ5 ≥ 0
0 ≤ δ1, δ2 ≤ 1
−γ1 + γ2 + γ3 − 2γ4 ≥ δ1
γ1 − γ2 + γ3 − 2γ5 ≥ δ2

The solver answers γ3 = 1, γ1 = γ2 = γ4 = γ5 = 0. We deduce λ = a3 =
(
0
1

)
and λ0 = b3 = 1.

Third iteration.
2”. Sat(I ∧ τ ∧ y − y′ ≤ 0) ? No, we stop.

Return. We have λ =
(
0
1

)
and λ0 = 1. We obtain ρ(x, y) = y + 1, a strict ranking function for (τ, I).

Let us point out the fact that the two models u we obtained correspond to the two transitions t1 and t2.

3.4 Termination Problems

Unfortunately, this simple algorithm suffers from two problems which may prevent its termination (see
Example 3).

PLDI’15 Gonnord, Monniaux, Radanne - Author Version - 8/20

The set of counterexamples is infinite First, termination is guaranteed only if the models provided
by the SMT tests come from a finite set (then the number of iterations is bounded by the cardinality of
that set). Depending on the implementation of the SMT-solver, it may be the case that all models u are
vertices constructed by intersection of the linear atomic constraints in I ∧ τ , of which there are finitely
(exponentially) many, which would ensure termination.

Note that, even in this favorable case, the algorithm will produce vertices that do not lie on the
boundary of the convex hull PHI,τ , and thus accumulate unoptimally tight constraints, which may even-
tually become redundant. A better option is to impose that the model for the SMT-test should minimize
λ·u, as in “optimization modulo theory” Nieuwenhuis and Oliveras [2006], Sebastiani and Tomasi [2012],
which ensures that vertices are on the boundary of PHI,τ ; we shall explore this idea in section 4.

No Strict Ranking Function Second, even if the first issue is resolved, the above algorithm termi-
nates only if there is a strict ranking function (λ · v > 0 for all v ∈ V). Indeed, termination is ensured
by the algorithm never choosing twice the same u = x − x′, which is the case if there exists a (quasi)
ranking function such that λ · u > 0. But what if the SMT-solver picks u such that all quasi ranking
functions λ satisfy λ ·u = 0? In this case, the algorithm may not terminate, always picking the same u.

Example 3. The algorithm does not terminate on this automaton:

k0 t1
i > 0 ∧ j > 1
j := j − 1

t2
i > 0 ∧ j 6 0
i := i− 1
j := N

Indeed, on the transition t2, j − j′ ≤ −N , and there is no constraint on N . Thus, if x = (i, j,N)
denoted the vector of variables, r = (0,−1, 0) is a ray of PHI,τ . As long as λ · r < 0, the SMT solver can
return an infinite number of models as I ∧ τ ∧ λ · (x− x′) ≤ 0 is always satisfiable. �

4 Corrected Mono-dimensional Algorithm

Let us now address the termination issues raised in subsection 3.4. We will first assume, as said then,
that we use an optimizing SMT solver to minimize λ ·u for u = x−x′ in order to discover tight bounds
of PHI,τ .

4.1 Non Termination due to the Absence of a Strict Ranking Function

The set {u | λ ·u = 0 ∀ quasi ranking function ρ(x) = λ ·x+λ0} is a linear subspace of Qn. To prevent
elements from this subspace from being returned again and again by the SMT-solver, we maintain a
linearly independent family {B1, . . . ,Bp} ⊆ Qn (initially empty), such that we search for solutions λ
such that λ ·Bi = 0 for all 1 ≤ i ≤ p. Every time a new model u is found, it is added to C, and a new
optimal solution (λ, λ0, δ) is computed, we check whether δu (ie. δi for i the index of u in C) is 0 or 1.
If it is 0, which means that all quasi ranking functions will satisfy λ · u = 0, thus u is added to B. We
then add to the SMT-query a subformula AvoidSpace(u,B) that forces u not to be a linear combination
of elements of vectors of B (u /∈ Span(B)).

This constraint can be implemented by completing B into a basis (B,B′) of Qn, then:

AvoidSpace(u,B)⇔
∃(αi)vi∈B∃(βi)vi∈B′ s.t.
u =

∑
vi∈B αivi +

∑
vi∈B′ βivi

∧
∨
i βi 6= 0

4.2 SMT Formulas with Unbounded Domain

In light of Example 3, the issue could be corrected by adding the constraints λ·r ≥ 0 for all ray generators
r of PH (we will prove later that it does). However, computing all generators of PH may be expensive.
Instead, we add generators on demand, as we do for vertices.

In addition to the vertices, we add to C the ray generators r incrementally, when the SMT-solver
returns a model of the form u = · · ·+ βr such that λ · u unbounded, we compute r and add it to C.

Proposition 5 is still true, since
∑m
i=1 γi(r.ai) ≥ 0 for all r a ray of PH is a necessary condition for

λ to be a quasi ranking function.

PLDI’15 Gonnord, Monniaux, Radanne - Author Version - 9/20

4.3 Final Algorithm and Proof

These remarks and solutions finally lead to Algorithm 1.

Algorithm 1 Monodim

Input: I and τ
C ← ∅, B ← ∅
finished ← false
λ← 0, λ0 ← 0
while ¬finished ∧ Sat(I ∧ τ ∧AvoidSpace(u,B)) with minimization for λ · u(≤ 0) do

(u, unbound)← a model for u in the above SMT test
C ← C ∪ {u}
if unbound then

Let r a ray generator of PH such that u = · · ·+ αr
C ← C ∪ {r}

(γ, δ)← LP (C, Constraints(I))
if γ = 0 then

finished ← true
else
λ←

∑m
i=1 γiai, λ0 ←

∑m
i=1 γibi

if δu = 0 then
B ← B ∪ {u}

return (λ, λ0, (
∧
i δi = 1) ∧ ¬Sat(I ∧ τ ∧ u = 0))

Adding “(I ∧ τ ∧ u = 0) unsatisfiable” is necessary in the case where there is a vector x such that
(x,x′) ∈ τ . Indeed, the constraint AvoidSpace(u,B) prevents the SMT-solver from returning the model
(x,x). Without this additional test, if B = ∅ at the end, the algorithm would return (λ, λ0, true) instead
of (λ, λ0, false).

Proposition 6. Algorithm 1 always terminates and returns a quasi ranking function of maximal termi-
nation power (Definition 10)

Lemma 1. Algorithm 1 always terminates.

Proof. The number of vectors in B can only increase or stay the same, and it is bounded by n, thus B
becomes stationary. Once it is stationary, so is the SMT formula (save for the optimization direction
λ · u ≤ 0).

We argue that when B is stationary, then once δi = 1 at one iteration, then it stays so at all
future iterations. Suppose the opposite: we had a system C of constraints (that is,

∧
i λ · ci ≥ 0)

such that δi0 = 1 at the preceding iteration, and we are adding a new constraint C′ (λ · c′ ≥ 0). As
LP(C ∪ {C′}, Constraints(I)) yields δi0 = 0 for some i0, this means, by Farkas’ lemma Schrijver [1998],
that −ci0 can be expressed as a combination of the other constraints in C and of C′, otherwise said there
exist nonnegative γi, γ

′ such that −ci0 =
∑
i6=i0 γici+γ′c′. If γ′ = 0, then C (without C′) already implies

λ · ci0 ≤ 0 and thus δi0 is already null at the preceding iteration; contradiction. Therefore, there exist
nonnegative µi such that −c′ =

∑
i µici, otherwise said any solution of C satisfies λ · c′ ≤ 0; then this

means, in our algorithm, that δu = 0, and thus B is updated; but we have assumed B is stationary so
this cannot occur.

Once B is stationary, all vectors u (or r) in C either belong to the vector space spanned by B (case
δu = 0), or satisfy δu = 1. All λ obtained thus verify λ · u > 0 for all u in C but not in the span of B.
A u or r that was already given as solution by the SMT solver cannot be given again.

Since we have assumed that the solutions of the form
∑
i αivi returned by the SMT solver are taken

from the finite set of generators of PH , then the algorithm terminates in at most as many iterations as
the number of generators.

The algorithm returns (λ, λ0, b) where ρ(x) = λ ·x+λ0 is a quasi ranking function and b is a Boolean
stating whether it is strict. Note that it is possible that λ is null, meaning that there is no linear ranking
function that makes at least one transition (x,x′) decrease strictly. The following lemmas state that λ is
of maximal termination power; recall that π(λ) is the set of vertices (x,x′) of I ∧ τ such that λ ·u > 0.

PLDI’15 Gonnord, Monniaux, Radanne - Author Version - 10/20

Lemma 2. The algorithm returns λ with maximal π(λ).

Proof. If there is (x,x′) such that λ · u = 0, either u ultimately belongs to B in which case there is no
λ such that λ · u > 0, either it does not in which case λ · u > 0.

Lemma 3. Let λ be the quasi ranking function produced by the algorithm and λ′ be another quasi ranking
function. Then, for all (x,x′) ∈ I ∧ τ , if λ′ · u > 0 then λ · u > 0.

Proof. u can be expressed as a barycenter of a subset of vertices of PH : u =
∑

v∈V ′ αvv with
∑

v∈V ′ αv =
1 and for all v ∈ V ′, αv > 0, where V ′ ⊆ V . Thus λ ·u =

∑
v αvλ ·v (similarly for λ′). Thus if λ ·u = 0,

then for all v ∈ V ′, λ · v = 0. Since λ has maximal πV(λ) by the preceding lemma, it follows that
λ′ · v = 0 for any v ∈ V ′. But then λ · u = 0. We thus have proved the contrapose of the result.

5 Multidimensional Algorithm

Let us note ≺ (resp. �) the strict lexicographic ordering (resp. quasi lexicographic ordering) over vectors
of integers. Our approach is similar to the one of Alias et al. [2010]: for each dimension (d), generate
a quasi ranking function of maximal termination power ρd(x) = λd · x + λ0,d , after restricting the
invariant on successive states to transitions that leave the previous components constant. The algorithm
is described in Algorithm 2.

Algorithm 2 Multidim

Input: I and τ
d← 1, failed ← false
repeat

(λ, λ0, strict)← Monodim

(
I, τ ∧

∧
d′<d

λd′ · u = 0

)
if ¬strict then

if λ is in the span of ρ then
failed ← true

else
ρd ← λ+ λ0
d← d+ 1

until strict ∨ failed
return if failed then “None” else ρ

Lemma 4. At every iteration of Algorithm 2, ρ is a linearly independent family.

Proof. By induction over the number of iterations (the size of ρ). If λ obtained from Monodim is a
linear combination of ρ, then λ · u = 0 for all transitions specified in the call to Monodim; but then
Monodim should have returned failed.

Corollary 1. Algorithm 2 always terminates in at most n iterations.

Proof. ρ is a linearly independent family in Qn, its size growing at each iteration.

The multidimensional ranking function produced by Algorithm 2 is at least as powerful for proving
termination as any other:

Lemma 5. Let ρ be the quasi multidimensional ranking function produced by Algorithm 2 at any iteration
m and ρ′ be another quasi multidimensional ranking function of dimension at most m. Then, for all
(x,x′) ∈ I ∧ τ , if ρ′(x) � ρ′(x′) then ρ(x) � ρ(x′).

Proof. By induction over m. The base case m = 0 is obvious. Now for m > 0. Let ρ<m and ρ′<m be
the respective projections of ρ and ρ′ to their first m − 1 coordinates. Let (x,x′) ∈ I ∧ τ such that
ρ′(x) � ρ′(x′). If ρ′<m(x) � ρ′<m(x′), then the induction hypothesis concludes.

Now assume ρ′<m(x) = ρ′<m(x′). Let ρm and ρ′m be the respective projections of ρ and ρ′ on their
m-th coordinate; then ρ′m(x) > ρ′m(x′). Recall that ρ′m and ρm are quasi monodimensional ranking
functions over {x | ρ′<m(x) = ρ′<m(x′)}, and ρm is the one returned by Monodim. By Lemma 3,
ρm(x) > ρm(x′), which concludes.

PLDI’15 Gonnord, Monniaux, Radanne - Author Version - 11/20

Theorem 1. Algorithm 2 returns a multidimensional strict ranking function if and only if one exists
relative to the invariant given; furthermore, the function returned is of minimum dimension.

Proof. (If) Let ρ′ be a multidimensional strict ranking function and ρ is the quasi multidimensional
ranking function returned by Algorithm 2 (or, if None, the last value of ρ). Let (x,x′) ∈ τ ∧ I;
ρ′(x) � ρ′(x′) because ρ′ is a strict ranking function; then by Lemma 5, ρ(x) � ρ(x′); thus ρ is also a
strict ranking function.

(Only if) From the termination condition, if Algorithm 2 does not return None, then it returns a strict
ranking function.

(Minimality) Let ρ′ be a multidimensional strict ranking function and ρ the one returned by Algorithm 2.
Assume also that the dimension m of ρ′ is less than that of ρ. By Lemma 5 applied to the m-th iteration,
then ρ<m is a strict ranking function; but then the algorithm should have stopped at that iteration.

6 Multiple Control Points

Let us now consider a program with n variables, a set of control pointsW, an invariant I and a transition
invariant Φ (the general case). We do not distinguish between a control point k and its integer index in
W.

Once a cut-set W of program control points has been identified, the program can be rewritten with
only W as control points, with ”large block transitions” between the control points in W . To each control
point k in W , one associates a lexicographic linear function fk. We want that, for any path k1 → k2
with initial values x and final values x′, , fk1(x) < fk2(x2). Then, searching for such rankings amounts
to searching for a unique vector of size |w| × n, which is f = (fk1, fk2, . . .). All notations are adapted
adequately.

Considering k in W, we remind the following notations:

1. We note the ranking function in k: ρ(k,x) = λk · x+ λk0 .

2. We note the invariant in k: Ik = {x,
∧mk

i=1 a
k
i .x ≥ bk}.

Definition 12. ek(x) is a vector of size |W| × n null everywhere except in the coordinates k × n to
(k + 1)× n− 1, where it is x.

Definition 13. We note λ the vector of size |W| × n formed by the concatenation of the λk.

ek(x) =
(
0 · · · 0 x 0 · · · 0

)>
λ =

(
λ1 · · · λk−1 λk λk+1 · · · λ|W|

)>
We have λ · ek(x) = λk · x.

Definition 14. We note Constraints(I) = ∪k{ek(aki)|aki ∈ Constraints(Ik)} the set of vectors encod-
ing the program invariants.

We will now modify the algorithm presented subsection 3.3 to work on multiple control points. The
main modification is in the encoding of the SMT problem:

1. Two new additional variables, k and k′, denotes the starting and ending control points.

2. We now have u = ek(x)− ek′(x′).

3. We still minimize λ · u = ρ(k,x)− ρ(k′,x′).

Algorithm 1 is modified into Algorithm 3. The multidimensional Algorithm 2 is left unchanged,
except that it calls Algorithm 3 instead of Algorithm 1.

Example 4 (Multi control points). The following example comes from a program with two nested
loops Alias et al. [2010]. We have W = {1, 2} and 2 variables i, j.

PLDI’15 Gonnord, Monniaux, Radanne - Author Version - 12/20

Algorithm 3 Monodim-Multi for multiple control points

Input: (Ik)k∈W and τ
C ← ∅, B ← ∅
finished← false
λk ← 0, λk0 ← 0 for all k ∈ W
while ¬finished ∧Sat(I∧τ ∧AvoidSpace(u,B)∧u = ek(x)−ek′(x′)) with minimization for λ ·u(≤ 0)
do

(u, unbound)← a model for u in the above SMT test
C ← C ∪ {u}
if unbound then

Let r a ray generator of PH such that u = · · ·+ αr
C ← C ∪ {r}

(γ, δ)← LP (C, Constraints(I))
if γ = 0 then

finished← true
else
λk ←

∑
i γ

k
i a

k
i , λk0 ←

∑
i γ

k
i b
k
i for all k

if δu = 0 then
B ← B ∪ {u}

return (λ1, . . . ,λ|W|, λ10, . . . , λ
|W|
0 , (

∧
i δi = 1) ∧ ¬Sat(I ∧ τ ∧ u = 0))

1 2
t1

j > 0
t2

i < 5
j := 0

t3
i > 2 ∧ j ≤ 9
j := j + 1

t4
i ≤ 2 ∨ j > 9
i := i + 1

We have the following invariant:
I : (k = 1 =⇒ i ≤ 5) ∧ (k = 2 =⇒ 0 ≤ j ≤ 10 ∧ i ≤ 4)

1. Beginning with C = {} and ρ(x) = 0, that is: λ1 = 0 and λ2 = 0. We have x =
(
i
j

)
and

u = ek(x)− ek′(x′). In the SMT-query, τ is now written as follows:(
k = 1 ∧ k′ = 2 =⇒ i < 5 ∧ j′ = 0 ∧ u = (i, j, i′, j′)>

)
∧ . . .

First iteration.
2. Sat(I ∧ τ ∧AvoidSpace(u,B) ∧ 0 · u ≤ 0) ?

Yes, with k = 2, k′ = 1, x =
(
1
10

)
and x′ =

(−2
10

)
(this corresponds to transition t4)

3. C ←
{(

1 10 −2 −10
)>}

4. Call LP (C, Constraints(I)).
It gives us λ1 =

(
0
0

)
and λ2 =

(
1/2
0

)
.

Second iteration.
2’. Sat(I ∧ τ ∧AvoidSpace(u,B) ∧ λ · u ≤ 0) ?

Yes, with k = 2, k′ = 2, x =
(
3
0

)
and x′ =

(
3
1

)
.

3’. C ← C ∪
{(

0 0 0 −1
)>}

4’. Call LP (C, Constraints(I)).
It gives us λ1 =

(
0
0

)
and λ2 =

(−11/2
−1

)
.

Third iteration.
2”. Sat(I ∧ τ ∧ y − y′ ≤ 0) ? No, we stop.

Return. We obtain ρ1(x) = 0, ρ2(i, j) = −11/2i− j + 32, a strict ranking function for (τ, I).

7 Complexity

Ben-Amram and Genaim [2014, Sec. 3], which consider integer programs with the combined transition

PLDI’15 Gonnord, Monniaux, Radanne - Author Version - 13/20

relation and invariant Φ specified in disjunctive normal form, provide an exponential-time algorithm and
prove that the problem of deciding the existence of a linear ranking function is coNP-complete. We
now shall show that this decision problem is still coNP-complete if the Φ specified as input is given in
general form (let us say, with a linear integer arithmetic formula with prefix existential quantifiers and
disjunctions allowed) as opposed to disjunctive normal form.

Proposition 7. Deciding the existence of a linear ranking function given Φ (with ∃-prefix and ∨) is
coNP-complete.

Proof. coNP-hardness directly follows from our class of input including that studied by Ben-Amram and
Genaim [2014]; let us now show membership in coNP.

Our algorithms (section 4, section 6) stop when either they have a linear ranking function, either
they reach an unsolvable system of constraints. If the number of program variables is n and the number
of control points is |P |, then these constraints are over u = (n+ 1) · |P | unknowns. By a combination of
Farkas’ lemma and Carathéodory’s theorem [Schrijver, 1998, §7.7], if this system is unsatisfiable, there
exists an unsatisfiable subset of u+ 1 of these constraints.

Each of this constraints is given by a generator (vertex or ray) of the integer hull of one of the disjuncts
of the disjunctive normal form of Φ. The bit-size of such a generator is polynomial in the size of the
constraint representation of this disjunct [Schrijver, 1998, §17.1], and this constraint representation is an
extract of Φ. Therefore, a witness of the unsatisfiability of the constraint system (i.e. of the absence of
a linear affine ranking function) may be given by u + 1 elements of polynomial size, and thus is itself
polynomial.

Proposition 8. Our algorithms have exponential complexity at most.

Proof. Our algorithms enumerate at most once each generator of the integer hull of each disjunct of
the disjunctive normal form of Φ, which (as in the previous proof) have polynomial size; thus there is
an exponential number of them. Each of them may be obtained as the maximum solution of integer
linear programming problems for all disjuncts, which can be done in exponential time. Finally, at each
iteration the constraint system is solved by linear programming.

Thus, moving to a more succinct representation of transitions than in Ben-Amram and Genaim [2014]
conserves coNP-membership and solving in exponential complexity.

8 Extensions

Coupling of Invariant and Transition Relation We supposed in subsection 3.1 that we have
an invariant I expressed as the constraints of a convex closed polyhedron, and a transition related τ
expressed as a formula of real linear arithmetic. In subsection 2.2, following Ben-Amram and Genaim
[2014] we instead considered a single relation Φ incorporating both invariant and transition. This format
can be handled by also using counterexamples for the nonnegativity constraint — i.e. counterexamples
are not only extremal nondecreasing quadruples (k,x, k′,x′) but also extremal points (k,x) where the
ranking function candidate is negative.

Note a subtle difference between the two approaches, when instantiated on the multidimensional
algorithm from section 5: in our original algorithm, as in Alias et al. [2013], we require that each com-
ponent ρj of the multidimensional ranking function should be nonnegative with respect to an invariant
I (∀x ∈ I ρj(x) ≥ 0) while in the modified version, we restrict at each step the invariant to the states
over which the preceding components of the multidimensional ranking function do not decrease. This is
a more powerful approach: there are programs that cannot be proved to terminate by using the same
invariant for nonnegativity in all components of a lexicographic linear ranking function, but can be if
the invariant is refined across components [Ben-Amram and Genaim, 2014, Ex. 2.12].

Richer Classes of Formulas For the transition relation τ and for the compound transition rela-
tion+invariant Φ, we have so far assumed linear integer arithmetic. In fact, any decidable theory for
which it is possible to perform optimization with respect to the integer components will do.

It is for instance possible to handle uninterpreted functions and arrays, since, by Ackermann’s ex-
pansion, to a quantifier-free formula F with uninterpreted functions one can associate a formula F ′

without uninterpreted functions, such that F ′ has the same models with respect to the free variables of

PLDI’15 Gonnord, Monniaux, Radanne - Author Version - 14/20

F [Kroening and Strichman, 2008, ch. 4]. Universally quantified properties (e.g. ∀0 ≤ k < n t[k] = 4)
can be over-approximated by quantifier instantiation.

Rational Variables The monodimensional algorithms are suitable for synthesizing what Ben-Amram
and Genaim [2014] call weak ranking functions on programs using rational variables: in Definition 6,
replace Z by Q.

Proposition 9. If ρ is a monodimensional weak ranking function, there exists α > 0 such that αρ
decreases by at least 1 at each step. Thus, the program terminates.

Proof. Let β = inf{ρk ·x−ρk′ ·x′ | (k,x, k′,x′) ∈ Φ}. Since Φ is a finite union of closed convex polyhedra,
this infimum is reached within the set. β ≤ 0 would contradict the weak ranking function hypothesis.
Then β > 0 and one can take α = 1/β.

This simple scaling approach does not always work for multidimensional ranking functions, and a
somewhat more complicated procedure must be applied to obtain a multidimensional ranking func-
tion (strict decreasing steps of at least 1 unit) from a multidimensional weak ranking function [Ben-
Amram and Genaim, 2014, §5.3]. We did not investigate the combination of that procedure with our
counterexample-based approach, since all multidimensional problems that we tried (except for concocted
examples) were solved by scaling.

Disjunctive Invariants In some cases, it is interesting to have multiple ranking functions for the
same control point, depending on some kind of partitioning. For instance, in

k

n > 0
d = 1;x = 0

x := x + d
x = n

x := x + d; d := −1

it is necessary to distinguish two phases of the loop (d = 1, d = −1) with two different ranking functions
(n− x and x).

Certain static analyzers, including Pagai in certain modes of operation Henry et al. [2012b,a,b],
return disjunctive invariants: to a given program point (possibly in a cut-set of program points) they
associate a disjunction of abstract elements; for instance, here, a possible invariant is (d = 1 ∧ 0 ≤ x ≤
n) ∨ (d = −1 ∧ 0 ≤ x ≤ n) It is possible to split the control point according to d = 1 ∨ d = −1:

kpos kneg

n > 0
d = 1;x = 0

x := x + d

x = n
d = −1

x := x + d

Then by taking {kpos; kneg} as cut-set, one can construct the ranking function.

9 Implementation and Experimental Results

Implementation We implemented our prototype Termite in 3k lines of OCaml 7. Termite uses
LLVM8 to compile C code into a Single Static Assignment intermediate representation Cytron et al.
[1991]. Pagai Henry et al. [2012b, 2014] is used to compute invariants from the LLVM IR. The transition
relation is produced from these invariants and the LLVM IR. Then, the core analyzer implements the
multidimensional, multiple control point algorithm described herein. Z39 answers (optimizing) SMT and
LP queries.

Experiments We have compared Termite with Loopus10 Zuleger et al. [2011], AProVE11 Giesl
et al. [2014], Ultimate Büchi Automizer12, Rank Alias et al. [2013] (with the c2fsm front-end and As-

7http://termite-analyser.github.io/
8http://llvm.org/
9https://github.com/Z3Prover

10http://forsyte.at/software/loopus/
11http://aprove.informatik.rwth-aachen.de/
12http://ultimate.informatik.uni-freiburg.de/BuchiAutomizer/

PLDI’15 Gonnord, Monniaux, Radanne - Author Version - 15/20

http://termite-analyser.github.io/
http://llvm.org/
https://github.com/Z3Prover
http://forsyte.at/software/loopus/
http://aprove.informatik.rwth-aachen.de/
http://ultimate.informatik.uni-freiburg.de/BuchiAutomizer/

Table 1: Comparison. For each benchmark suite, the total number of benchmarks and the number of
benchmarks proved to terminate by each tool are given. Timings, in milliseconds, exclude the front-end
for Termite and Loopus and the invariant generator for Termite. (l, c) are the average number of
lines and columns of the linear programming instances.

Suite # benchmarks Termite Loopus AProVE Ultimate
success time (l, c) # success time # success time # success time

PolyBench 30 22 117 (9, 3) 30 37 0 2100 0 2750
Sorts 6 5 126 (15, 4) 3 67 0 12230 0 2980
TermComp 129 119 12 (2, 1) 78 15 111 9757 85 5863
WTC 58 46 64 (5, 2) 33 48 36 11740 40 4536

pic13 Gonnord and Schrammel [2014] accelerating invariant generator), on examples from Polybench14,
WTC (V2)15, the termination competition16 and some sorting algorithms (Table 9). Termite solves
33% more examples than Loopus, in twice the time. AProVE and Ultimate are considerably slower.

Due to limitations in its front-end and invariant generator, Rank can only run on 46 files from the
WTC test suite, solving 25 of them in total time 76 ms, with average linear programming problem
(lines, columns) = (584, 229), much higher than Termite’s (5, 2). On some examples however, Rank
is able to prove termination that Termite is unable to prove. This essentially comes from the combi-
nation of its front-end c2fsm and its invariant generator Aspic that sometimes perform clever graph
transformations on the control-flow graph and thus are able to synthesize better invariants than Pagai.

Difficulties A termination analyser typically consists in 1) a front-end 2) an invariant generator 3) a
termination analysis. One therefore compares whole toolchains instead of only the termination analyses.
One difficulty is that some front-ends are more picky than others; for instance, AProVE’s front-end
crashes on some LLVM opcodes. We have made some reasonable efforts to have our examples accepted
by the various tools when we could identify some obvious reason why they could not be processed by the
front-end or invariant generator. We had to leave out other tools from our experiments due to difficulties
in running them successfully and lack of documentation. It is also possible that we used some of the
listed tools improperly; if so we apologize to their respective authors.

Limitations Contrary to iRankFinder 17, Termite is unable to prove termination when the desired
(multidimensional) ranking function has non positive components: we did not implement the CEGAR
loop for nonnegativity suggested in section 8.

Contrary to T218 Termite is also unable to prove termination when the behavior of a loop is
divided into phases (as we already discussed in section 6), unless some preprocessor divided the phases
into different control points.

We unfortunately were unable to compare these two tools with ours, due to different input formats
and unavailability of converters.

10 Conclusion and Future Work

We have proposed a new algorithm for the derivation of lexicographic linear ranking functions. There
has been ample literature on this on related topics (see [Alias et al., 2010, §6] and Cook et al. [2011] for
a large panel of proposed methods) ; let us therefore summarize salient points of difference.

Termination with Guaranteed Result Several existing approaches do not necessarily terminate.
In contrast, our approach always terminates, and always outputs a lexicographic linear ranking function
if one exists. Also, it is guaranteed to be of minimal dimension.

13http://laure.gonnord.org/pro/aspic/aspic.html
14http://www.cs.ucla.edu/∼pouchet/software/polybench/
15http://compsys-tools.ens-lyon.fr/wtc/index.html
16http://termination-portal.org/wiki/Termination Competition
17http://www.loopkiller.com/irankfinder/linrf.php
18http://research.microsoft.com/en-us/projects/t2/

PLDI’15 Gonnord, Monniaux, Radanne - Author Version - 16/20

http://laure.gonnord.org/pro/aspic/aspic.html
http://www.cs.ucla.edu/~pouchet/software/polybench/
http://compsys-tools.ens-lyon.fr/wtc/index.html
http://termination-portal.org/wiki/Termination_Competition
http://www.loopkiller.com/irankfinder/linrf.php
http://research.microsoft.com/en-us/projects/t2/

Use of Concrete Runs instead of Farkas’ Lemma Like previous algorithms Alias et al. [2010],
we solve a sequence of problems of finding quasi monodimensional linear ranking functions; and each
quasi monodimensional linear ranking function is obtained as the solution of a linear program. Where
we differ, however, is how we build these linear programs; our method produces much smaller ones (e.g.
by 1–2 orders of magnitude compared to Rank Alias et al. [2013], and thus is more scalable.

Most other approaches Bradley et al. [2005a,b], Alias et al. [2013], Podelski and Rybalchenko [2004],
Larraz et al. [2013] create new unknowns (coefficients from Farkas’ lemma) for each face of each transition
polyhedron corresponding to a path between control nodes considered for the ranking function, along
with relevant constraints. In contrast, with ours, constraints correspond to concrete (x,x′) transitions
and the number of unknowns does not depend on the complexity of the transitions. Also, instead of
creating constraints upfront, we create them on demand.

Furthermore, we can deal with integer variables both easily and precisely (by specifying them as inte-
gers in the SMT-solving call) while other approaches Larraz et al. [2013] need to apply refinements based
on Gomory-Chvátal cutting planes. We can similarly deal with existential quantification, uninterpreted
functions, arrays, Booleans etc. in the transition relation.

Use of a Cut-set Our approach is able to solve for ranking functions only at a “cut set” of control
nodes. In particular, we do not require that there is a lexicographic linear ranking function at points
outside of the cut-set. This is useful for instance if a ranking function would need to be defined by case
analysis at such points (e.g. according to the value of a Boolean variable, as at point B in the following
example); it is difficult to synthesize such ranking functions, but in our case we do not need to do so,
because we synthesize the ranking function only a cut-set points (e.g. A).19

Listing 1: A linear r.f. decreases on each path, not each step

int x = p o s i t i v e () ;
while (x >= 0) { /∗ A ∗/

bool c = choose () ;
i f (c) x=x−1; /∗ B ∗/
i f (! c) x=x−1;

}

In previous approaches Gulwani and Zuleger [2010], one had to expand the control flow between
these nodes, yielding (in general) an exponential number of transitions. In contrast, our algorithm
“sees” transitions as needed, performing counterexample-guided refinement of the constraint system,
which improves scalability.

Comparison with Other Approaches The difference with Rank and iRankFinder is not with
respect to expressive power (we show that one variant of our algorithm is equivalent to Rank and another
to iRankFinder) but with respect to complexity and efficiency. Rank and iRankFinder need transition
relations in disjunctive normal form: in order to deal, as we do, with “big block” transitions between
a cut-set of control locations, they would need to expand them at exponential cost — though one can
argue that in many programs this unfolding is not so large.

Our system of constraints is constructed lazily, theirs are constructed eagerly. Heizmann, Hoenicke
& Podelski’s approach (Ultimate Büchi Automizer) is to cover the set of program traces by ω-regular
languages of terminating traces (“modules”). The termination argument for each module can be obtained
from a variety of approaches; thus their approach truly is a meta-approach since a variety of sub-provers
can be used. We in fact think that our technique could be adapted into a sub-prover for their system.

Cook, See & Zuleger Cook et al. [2013] give contrived examples where lexicographic linear arguments
cannot prove termination, but linear Ramsey-based arguments can. They however conclude that in
almost all cases where linear Ramsey-based arguments work, lexicographic linear ranking functions are
sufficient and that the question is therefore how to find them efficiently. This is the question we address
in this article.

19Our approach can also be applied to synthesize the same linear ranking function at all nodes in the cut-set. This
linear ranking function is therefore allowed to locally increase at nodes outside of the cut-set, as long as this increase is
compensated before the next node in the cut-set is reached, as in some other approaches Zankl and Middeldorp [2009].

PLDI’15 Gonnord, Monniaux, Radanne - Author Version - 17/20

The algorithm in Loopus Zuleger et al. [2011] is similar to ours in some ways; however, it explores all
paths in a given loop, and uses heuristics to syntactically derive ranking functions from the transitions
of the loop. In our experiments, Loopus is able to quicky conclude for termination in many cases since
simple arguments are very often sufficient to prove that a given loop terminates Rodrigues et al. [2014].

Future Work A natural extension of our counterexample-guided refinement approach would be to
use it to generate the supporting invariant: instead of generating constraints for each (x,x′) transition
encountered where x lies within a precomputed invariant I, one would first try to prove x to be unreach-
able, using any approach capable of providing an inductive invariant J such that x /∈ J ; if successful,
one would replace I by I ∩ J and restart.

A further refinement of the method would be to look for a large set of initial states that guarantee
that x is unreachable; the intersection of such sets would be a sufficient condition for termination to be
proved by the ranking function output by the algorithm (conditional termination).

Our algorithm for finding linear ranking functions is a particular kind of partial quantifier elimination:
conditions 2 and 3 in Definition 6, or condition 1 in Proposition 2, are formulas of the form ∀x F where
F is quantifier free: we wish to obtain a satisfying assignment of their free variables. A full quantifier
elimination would compute exactly the cone of solutions, but we stop once we have a point in the relative
interior. It remains to be seen how our approach of extremal instantiation would generalize to a more
general class of quantified formulas.

Acknowledgments

We would like to show our gratitude to Paul Feautrier for sharing his comments and ideas during the
course of this research, and Marc Vincenti who helped us a lot with the benchmarks. We also thank
the anonymous reviewers for their insightful comments and feedback, which improved the quality of this
paper.

References

C. Alias, A. Darte, P. Feautrier, and L. Gonnord. Multi-dimensional rankings, program termination, and
complexity bounds of flowchart programs. In Static analysis (SAS), Perpignan, France, Sept. 2010.
doi: 10.1007/978-3-642-15769-1. URL http://hal.inria.fr/inria-00523298.

C. Alias, A. Darte, P. Feautrier, and L. Gonnord. Rank: a tool to check program termination and
computational complexity. In Constraints in Software Testing Verification and Analysis, Luxembourg,
Mar. 2013. doi: 10.1109/ICSTW.2013.75. URL http://hal.inria.fr/hal-00801571.

C. Ancourt, F. Coelho, and F. Irigoin. A modular static analysis approach to affine loop invariants
detection. Electronic Notes in Theoretical Computer Science, 267(1):3 – 16, 2010. ISSN 1571-0661.
doi: 10.1016/j.entcs.2010.09.002.

S. Balev, P. Quinton, S. Rajopadhye, and T. Risset. Linear programming models for scheduling systems
of affine recurrence equations - a comparative study. In ACM Symposium on Parallel algorithms and
architectures, pages 250–258. ACM, 1998. doi: 10.1145/277651.277691.

A. M. Ben-Amram and S. Genaim. Ranking functions for linear-constraint loops. J. ACM, 61(4):
26:1–26:55, July 2014. ISSN 0004-5411. doi: 10.1145/2629488.

A. R. Bradley, Z. Manna, and H. B. Sipma. The polyranking principle. In Intl. Colloquium on Automata,
Languages and Programming (ICALP), volume 3580 of LNCS, pages 1349–1361. Springer, July 2005a.
doi: 10.1007/11523468 109.

A. R. Bradley, Z. Manna, and H. B. Sipma. Linear ranking with reachability. In K. Etessami and
S. K. Rajamani, editors, Computer aided verification (CAV), volume 3576 of LNCS, pages 491–504.
Springer, July 2005b. doi: 10.1007/11513988 48.

PLDI’15 Gonnord, Monniaux, Radanne - Author Version - 18/20

http://hal.inria.fr/inria-00523298
http://hal.inria.fr/hal-00801571

M. Codish and S. Genaim. Proving termination one loop at a time. In F. Mesnard and A. Serebrenik,
editors, 13th International Workshop on Logic Programming Environments, Tata Institute of Funda-
mental Research, Mumbai, India, December 8, 2003, Technical Report CW371, pages 48–59. Katholieke
Universiteit Leuven, 2003. URL http://www.cs.kuleuven.ac.be/publicaties/rapporten/cw/CW371.pdf.

B. Cook, A. Podelski, and A. Rybalchenko. Proving program termination. Commun. ACM, 54(5):88–98,
May 2011. ISSN 0001-0782. doi: 10.1145/1941487.1941509.

B. Cook, A. See, and F. Zuleger. Ramsey vs. lexicographic termination proving. In TACAS, volume
7795 of LNCS, pages 47–61. Springer, 2013. doi: 10.1007/978-3-642-36742-7 4.

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a program. In
ACM Symposium on Principles of Programming Languages (POPL), pages 84–97. ACM, 1978. doi:
10.1145/512760.512770.

R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently computing static single
assignment form and the control dependence graph. TOPLAS, 13(4):451–490, 1991. doi: 10.1145/
115372.115320.

P. Feautrier. Some efficient solutions to the affine scheduling problem, part I, one-dimensional time.
International Journal of Parallel Programming, 21(5):313–348, Oct. 1992a.

P. Feautrier. Some efficient solutions to the affine scheduling problem, part II, multi-dimensional time.
International Journal of Parallel Programming, 21(6):389–420, Dec. 1992b.

P. Feautrier and L. Gonnord. Accelerated Invariant Generation for C Programs with Aspic and C2fsm.
In Tools for Automatic Program AnalysiS (TAPAS’10), Perpignan, France, 2010. doi: 10.1016/j.entcs.
2010.09.014. URL http://hal.inria.fr/inria-00523320.

B. Gärtner and J. Matoušek. Approximation Algorithms and Semidefinite Programming. Springer, 2012.
doi: 10.1007/978-3-642-22015-9.

J. Giesl, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, C. Otto, M. Plücker, P. Schneider-Kamp,
T. Ströder, S. Swiderski, and R. Thiemann. Proving termination of programs automatically with
aprove. In S. Demri, D. Kapur, and C. Weidenbach, editors, Automated Reasoning (IJCAR), volume
8562 of LNCS, pages 184–191. Springer, 2014. doi: 10.1007/978-3-319-08587-6 13.

L. Gonnord and N. Halbwachs. Combining widening and acceleration in linear relation analysis. In Static
analysis (SAS), volume 4134 of LNCS, pages 144–160. Springer, Aug. 2006. doi: 10.1007/11823230 10.

L. Gonnord and P. Schrammel. Abstract acceleration in linear relation analysis. Sci. Comput. Program.,
93:125–153, 2014. doi: 10.1016/j.scico.2013.09.016. URL http://dx.doi.org/10.1016/j.scico.2013.09.016.

S. Gulwani and F. Zuleger. The reachability-bound problem. In ACM symposium on programming
language design and implementation (PLDI), pages 292–304. ACM, 2010. doi: 10.1145/1806596.
1806630.

J. Henry, D. Monniaux, and M. Moy. Succinct representations for abstract interpretation - combined
analysis algorithms and experimental evaluation. In Static Analysis - 19th International Symposium,
SAS 2012, Deauville, France, September 11-13, 2012. Proceedings, pages 283–299, 2012a. doi: 10.
1007/978-3-642-33125-1 20.

J. Henry, D. Monniaux, and M. Moy. Pagai: A path sensitive static analyser. Electr. Notes Theor.
Comput. Sci., 289:15–25, 2012b. doi: 10.1016/j.entcs.2012.11.003.

J. Henry, D. Monniaux, and M. Moy. The Pagai static analyser, 2014. URL http://pagai.forge.imag.fr/.

D. Kroening and O. Strichman. Decision procedures. Springer, 2008.

D. Larraz, A. Oliveras, E. Rodŕıguez-Carbonell, and A. Rubio. Proving termination of imperative
programs using max-SMT. In FMCAD, 2013.

PLDI’15 Gonnord, Monniaux, Radanne - Author Version - 19/20

http://www.cs.kuleuven.ac.be/publicaties/rapporten/cw/CW371.pdf
http://hal.inria.fr/inria-00523320
http://dx.doi.org/10.1016/j.scico.2013.09.016
http://pagai.forge.imag.fr/

D. Monniaux and L. Gonnord. Using bounded model checking to focus fixpoint iterations. In
18th International Static Analysis Symposium (SAS’11), Venice, Italy, Sept. 2011. doi: 10.1007/
978-3-642-23702-7 27.

R. Nieuwenhuis and A. Oliveras. On SAT modulo theories and optimization problems. In SAT, volume
4121 of LNCS, pages 156–169. Springer, 2006. doi: 10.1007/11814948 18.

A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear ranking functions. In
Verification, Model Checking and Abstract Interpretation (VMCAI’04), volume 2937 of LNCS, pages
239–251. Springer, 2004. doi: 10.1007/978-3-540-24622-0 20.

R. E. Rodrigues, P. Alves, F. Pereira, and L. Gonnord. Real-world loops are easy to predict : a case
study. In Workshop on Software Termination, Vienne, Austria, July 2014. URL https://hal.inria.fr/
hal-01006208.

A. Schrijver. Theory of linear and integer programming. Wiley, 1998.

R. Sebastiani and S. Tomasi. Optimization in SMT with LA(Q) cost functions. In Proceedings of the 6th
international joint conference on Automated Reasoning, (IJCAR’12), pages 484–498. Springer, 2012.
doi: 10.1007/978-3-642-31365-3 38.

A. Shamir. A linear time algorithm for finding minimum cutsets in reducible graphs. SIAM J. Comput.,
8(4):645–655, 1979. doi: 10.1137/0208051.

J. Tristan and X. Leroy. Verified validation of lazy code motion. In M. Hind and A. Diwan, editors,
Programming Language Design and Implementation (PLDI), pages 316–326. ACM, 2009. doi: 10.
1145/1542476.1542512.

A. M. Turing. Checking a large routine. In Report of a Conference on High Speed Automatic Calculating
Machines, 1949. URL http://www.turingarchive.org/browse.php/B/8.

C. Urban. The abstract domain of segmented ranking functions. In Static Analysis (SAS), volume 7935
of LNCS, pages 43–62. Springer, 2013. doi: 10.1007/978-3-642-38856-9 5.

C. Urban and A. Miné. An abstract domain to infer ordinal-valued ranking functions. In Programming
Languages and Systems (ESOP), volume 8410 of LNCS, pages 412–431. Springer, 2014.

H. Zankl and A. Middeldorp. Increasing interpretations. Ann. Math. Artif. Intell., 56(1):87–108, 2009.
doi: 10.1007/s10472-009-9144-7.

F. Zuleger, S. Gulwani, M. Sinn, and H. Veith. Bound analysis of imperative programs with the size-
change abstraction. In Proceedings of the 18th international conference on Static analysis, SAS’11,
pages 280–297, Berlin, Heidelberg, 2011. Springer-Verlag. URL http://dl.acm.org/citation.cfm?id=
2041552.2041574.

PLDI’15 Gonnord, Monniaux, Radanne - Author Version - 20/20

https://hal.inria.fr/hal-01006208
https://hal.inria.fr/hal-01006208
http://www.turingarchive.org/browse.php/B/8
http://dl.acm.org/citation.cfm?id=2041552.2041574
http://dl.acm.org/citation.cfm?id=2041552.2041574

	Introduction
	Preliminary Definitions
	Closed Convex Polyhedra
	Transitions and Invariants
	Ranking Functions
	Cones

	Quasi Monodimensional Ranking Functions of Maximal Termination Power
	Quasi Ranking Functions in Terms of Cones
	Maximal ``Termination Power'' and Strict Ranking Functions
	A Wrong but Intuitive Algorithm
	Termination Problems

	Corrected Mono-dimensional Algorithm
	Non Termination due to the Absence of a Strict Ranking Function
	SMT Formulas with Unbounded Domain
	Final Algorithm and Proof

	Multidimensional Algorithm
	Multiple Control Points
	Complexity
	Extensions
	Implementation and Experimental Results
	Conclusion and Future Work

