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We present a preconditioning of a generalized forward-backward splitting algorithm for nding a zero of a sum of maximally monotone operators ∑ n i= A i + B with B cocoercive, involving only the computation of B and of the resolvent of each A i separately. is allows in particular to minimize functionals of the form ∑ n i= i + f with f smooth, using only the gradient of f and the proximity operator of each i separately. By adapting the underlying metric, such preconditioning can serve two practical purposes: rst, it might accelerate the convergence, or second, it might simplify the computation of the resolvent of A i for some i. In addition, in many cases of interest, our preconditioning strategy allows the economy of storage and computation concerning some auxiliary variables. In particular, we show how this approach can handle large-scale, nonsmooth, convex optimization problems structured on graphs, which arises in many image processing or learning applications, and that it compares favorably to alternatives in the literature.

Introduction

e generalization of the forward-backward splitting algorithm which we presented recently (Raguet et al., ) aims at solving, over a real Hilbert space , monotone inclusion problems of the form (see § . for notations)

nd x ∈ zer n i= A i + B , ( . )
by making only use of the resolvent of each set-valued operator A i ∶ → , supposed maximally monotone, and of the explicit application of B∶ → , supposed cocoercive. Namely, noting x the main iterate and introducing n auxiliary variables (z i ) ≤i≤n ∈ n , iteration k ∈ N of the algorithm consists in for i ∈ { , . . . , n} do

z i ← z i + ρ k J γ w i A i ( x -z i -γBx) -x , ( . )
x ← ∑ n i= w i z i ,
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where for each i, J γ w i

A i def = Id + γ w i A i -denotes the resolvent of γ w i A i . e weights (w i ) ≤i≤n sum up to unity and tune the in uence of each operator in the splitting; the step size γ is constant along iterations, while each ρ k is a relaxation parameter.

Interestingly, the case n set = reduces to the relaxed forward-backward splitting algorithm (Combettes, , Section ); in this case, convergence can be ensured with step size γ varying along iterations. On the other hand, the case B set = retrieves the relaxed Douglas-Rachford splitting algorithm (Combettes, , Section ) on the product space n , following the method of partial inverse of Spingarn (

). ose are a few among numerous existing proximal splitting algorithms.

e increasing success of those methods during the past decades can be largely explained by their relative ease of implementation, their ability to handle large-scale problems, and their wide range of application. In particular, they allow to solve optimization problems when the monotone operators considered are subdi erentials of convex functionals. In this context, under suitable quali cation conditions, solving ( . ) with our algorithm is equivalent to nd x ∈ argmin

n i= i + f , ( . )
by making only use of the proximity operator of each functional i ∶ →]-∞, +∞], supposed convex, proper and lower semicontinuous, and of the gradient of f ∶ → R, supposed moreover di erentiable, with a gradient which is Lipschitz continuous (equivalent to cocoercivity, by the theorem of Baillon and Haddad, ). Iteration ( . ) translates to this case by substituting B with ∇f and each J γ w i A i with prox γ w i i ∶ → ∶ x ↦ argmin y∈

xy + γ w i i (y) , the latter being the resolvent of the subdi erential of γ w i i (Moreau, ). In some cases however, rst-order methods su ers from prohibitively slow rates of convergence. Consider in particular the simple gradient descent with constant step size, addressing ( . ) when each function i is zero. Ignoring relaxation, iteration ( . ) reduces to x ← x -γ∇f x. If ℓ is (strictly positive) such that ℓ -∇f is nonexpansive (i.e. ℓ is a Lipschitz constant of ∇f ), then convergence towards a solution is ensured as long as ℓγ < .

However, when the gradient is signi cantly more sensitive along some directions than along others, e.g. for twice di erentiable functionals, when the Hessian ∇ f is badly conditioned, a single scalar ℓ is a poor second-order information. A ner approach is to replace the (strictly positive) step size γ by a (self-adjoint, strongly positive) linear operator Γ, adaptive to the direction: x ← x -Γ∇f x. If now L is (self-adjoint, strongly positive) such that L -∇f L -is nonexpansive, convergence condition becomes then L ΓL < . Now, recall that if M is any self-adjoint, strictly positive operator on , then (x, y) ↦ ⟨Mx y⟩ is an inner product on and we denote M the Hilbert space endowed with this inner product. Interestingly, the above term Γ∇f is actually the gradient of f in Γ -. Similarly, L -∇f L - being nonexpansive in is equivalent to f having a nonexpansive gradient in L . erefore, it is customary to refer to the above modi cation of the gradient descent as a change of metric.

Such method has been known for long (see for instance Davidon, , ); in particular for twice di erentiable f , setting at each iteration Γ set = ∇ f (x)

-yields Newton method for nding a zero of ∇f . e quasi-Newton methods, where the inverse of the Hessian is iteratively estimated (see Broyden, ), are certainly the most celebrated variable metric methods for numerical optimization. ough they were originally developed for minimizing smooth functionals, variable metric methods can be applied to nonsmooth optimization techniques; the main purpose of
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this paper is to study an adapted metric version of our generalized forward-backward splitting algorithm. In the following, we give rst an overview of preconditioning techniques for proximal algorithms. en, we motivate our speci c emphasis over applications to optimization structured on graphs. Finally, we precise our contributions and outline the content of this paper.

. Preconditioning of Proximal Splitting Algorithms

Following ideas of Qian ( ), variable metric versions for the proximal point algorithm are provided in the context of optimization, for instance by Bonnans et al. ( ), Qi and Chen ( ) and Chen and Fukushima ( ). is allows to solve ( . ) in the restricted case f set = and only n set = functional (i.e. without splitting). ey focus on convergence rates, usually involving some smoothness hypotheses. e proposed choice of the variable metric are derived from quasi-Newton methods, taking advantage of the fact that a proximal step on a functional is a gradient descent on its Moreau envelope; very little is said about the actual computation of the proximal step within the modi ed metric. Burke and Qian ( ) write the corresponding study of the proximal point algorithm in the general framework of monotone operators (solving ( . ) where

B set = , n set = ).
During the same period, Chen and Rockafellar (

) give a variable metric version of the forward-backward splitting algorithm for monotone inclusion, addressing ( . ) in the restricted case n set = , A + B strongly monotone and nite-dimensional, achieving linear rate of convergence. e actual choice of the variable metric is not discussed, neither is the computation of the resolvent of A (for the backward step) within the modi ed metric.

It is only a decade later that modi ed metric versions of proximal algorithm regained attention. Parente et al. ( ) explore respectively a variable metric inexact proximal point algorithm, and give a speci c application to the resolution of a system of monotone di erentiable equations.

e same authors introduces then (Lotito et al., ) a class of methods solving structured monotone inclusions (encompassing the particular case ( . ) with n set = ), retrieving some already existing methods as special case; no application is considered.

Pock and Chambolle ( ) present a preconditioning of their popular primal-dual proximal splitting algorithm (Chambolle and Pock, ) for minimizing functionals of the form + ○ K, where K is any bounded linear operator, but which do not take advantage of the potential smoothness of a term. ey do not consider a metric variable along iterations, hence the term preconditioning. For computational purpose, they give a family of diagonal preconditioners which aim at reducing the condition number of the involved linear operators, and which are easy to compute as long as K is known as a matrix.

Becker and Fadili ( ) focus on the computational point of view of the variable metric forward-backward splitting algorithm applied to convex optimization. ey show how the proximal step of some functionals of interest can be e ciently computed when the metric can be decomposed as the sum of a diagonal operator and of an operator of rank . is allows them to consider the symmetric rank quasi-Newton update (see Broyden, ), derived from the secant equation on f , i.e. on the smooth part of the splitting. ), able to address ( . ) in the special case n set = but with a possibly nonconvex smooth functional f . In numerical applications, they consider for f a nonconvex data-delity term arising from many signal processing tasks, and show how to build metrics along iterations so as to obtain good majorizing, quadratic approximations. In order to compute the proximal step, which is in itself an optimization problem, they must however resort to subiterations.
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Closer to our current interest, Giselsson and Boyd ( a, b) consider preconditioning of proximal methods for minimizing f + ○ K where f and are convex, K is a bounded linear operator and f has additional properties. In the former paper, they assume f strongly convex, which translates to a smooth functional in the splitting of the dual formulation, which is then solved with fast forward-backward splitting algorithm (see the review of Tseng,

). In the latter paper, they study the Douglas-Rachford splitting applied either to the primal or to the dual formulation, and derive an interesting linear convergence rate under the hypothesis of f being both strongly convex and smooth. In both papers, they motivate the use of preconditioners which reduce the condition number of an operator which depends on K and on the metrics capturing the properties of f . ey also advise for diagonal preconditioners in order to ease the computations of proximity operators, and suggest various procedures to select them based on the above criterion.

In a more theoretical perspective, the rst convergence proof of a variable metric forwardbackward splitting algorithm is provided by Combettes and Vũ ( ), in the general framework of maximally monotone operators de ned in Hilbert spaces. Vũ (

) also gives the analogous study for the forward-backward-forward splitting algorithm of Tseng (

), the latter being originally designed to tackle ( . ) in the restricted case n set = , but with an operator B which is merely Lipschitzian. Pesquet and Repetti ( ) write the preconditioning version of the randomized block-coordinate forward-backward splitting introduced recently by Combettes and Pesquet (

). Unfortunately, none of these works exemplify how such variable metric can be used in practice. At last, Lorenz and Pock (

) develop an inertial forward-backward splitting algorithm, allowing for a preconditioning and a variable step size along iterations. Among other practical considerations for convex optimization, they extend the diagonal preconditioners proposed by Pock and Chambolle ( ) to the case where the gradient of a smooth functional in the splitting are considered in explicit steps.

Let us recall that many problems can be reduced to the forward-backward setting when written in the primal-dual form over the appropriate augmented space. is also applies for problems whose scope go beyond ( . ) (or ( . ) in the context of convex optimization) by involving compositions with linear operators and parallel sums (inf-convolutions in convex optimization). Using this fact, each work mentioned in the previous paragraph develop variable metric versions of the primal-dual algorithms of Vũ ( ); Combettes and Pesquet ( ); Condat ( ). Although each of the latter methods can be used to solve ( . ) with full splitting, our generalized forwardbackward, dealing only with the primal problem, is somewhat simpler and seems more adapted to splitting restricted to the form ( . ) (see Raguet et al., and Raguet, , § III. . , § IV. ). In this context, it is natural to write a preconditioned version of our algorithm.

. Optimization on Graphs

As already pointed out, proximal splitting algorithms are mostly useful for solving problems where billions of coordinates are involved in an intricate way. A growing number of such problems are structured on graphs, either because it is physically inherent to the subject at hand (see for instance Shuman et al. (

) for signal processing in general, and Richiardi et al. ( ) in the context of functional imaging), or because it captures abstract relationship between objects (see Peyré et al. ( ) in image processing). Usually in this context, the splitting strategy aims at isolating some coordinates in the graph from interacting neighbors. A recent, notable example is provided by Couprie et al. ( ), who develop a dual optimization framework for tackling total variation based regularizations of inverse .
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problems. e coordinates of interest are labels over vertices of the graph, and the proposed regularizations penalize nite di erences (or increasing functions thereof) between neighboring vertices in the graph. e dimension of the dual space is thus the number of edges, which is usually much higher than the number of vertices; however, the dual formulation of some cases of interest can be easily split as the sum of simpler functionals.

In contrast in the primal-only setting, the splitting seems less obvious. Consider the simplest penalization inspired by total variation, which is the sum of the absolute values of the di erences between all pairs of coordinates labelling adjacent vertices in the graph. e proximity operator of the distance between two scalars is easy to compute (see Proposition . (ii)), but in order to use proximal schemes like ( . ), each coordinate would have to appear within as many auxiliary variables as the degree (the number of neighbors) of its corresponding vertex. us, a naive application of a primal splitting would introduce, at least, as many auxiliary variables as the number of neighbors of the vertex of highest degree in the graph.

. Tight Primal Splitting

To the best of our knowledge, in all primal-only splitting proposed to date, each auxiliary variable is a full copy of the original one. In the case described above, these auxiliary variables are supposed to have the dimension of the total number of vertices, regardless of the actual number of neighbors of the vertices of fewer degrees. is is not a concern when the graph is regular, but is prohibitively suboptimal in the case of highly irregular graphs. More generally, a naive primal splitting like ( . ) would not be tight if for some i ∈ { , . . . , n}, the functional i depends only on a strict subspace i ⊂ , i.e. i = i ○ P i where P i is the orthogonal projector on i . Note that this situation can be cast in an even more general setting by considering any bounded linear operator L i ∶ → i , composed with i ∶ i →]-∞, +∞]. en, the resulting problem can be e ciently tackled by the numerous primal-dual algorithms mentioned in § . , where the auxiliary variables actually lie in the target Hilbert spaces i . Now, it would be possible to extend our generalized forward-backward to this setting, provided that the operator ∑ n i= w i L i * L i ∶ → is invertible, and at the expense of computing its inverse at each iteration. Although such extension does not require much e ort and presents its own interest, it goes beyond the scope of this paper and is le for a future publication.

Instead, we limit the current study to the particular case of interest where for all i ∈ { , . . . , n}, L i set = P i , and focus on reducing the auxiliary product space n to the restrained space ⨉ n i= i . Let us already mention that this is illustrated in § . . for the above example on a graph, where is high-dimensional but most i lie in R .

In the monotone inclusion setting ( . ), this case translates for each i to A i = P i A i P i , that is to say, A i depends only on i but also has range included in i . Moreover in the context of preconditioning, we replace the (strictly positive) weights (w i ) ≤i≤n by suitable (self-adjoint, positive) linear operators (W i ) ≤i≤n . At the expense of adding a zero operator in the splitting ( . ), we can assume span ∪ n i= i = , and the unit sum condition on the weights becomes ∑ n i= W i = Id .

.

Contributions and Outline

We propose an extension of our generalized forward-backward splitting algorithm for solving monotone inclusion problems of the form ( . ), and in particular optimization problems of the form ( . ). is extension allows for preconditioning of the explicit forward step (through the
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operator Γ, generalizing the step size γ) as well as each of the implicit backward steps (through the operators (W i ) ≤i≤n , generalizing the weights (w i ) ≤i≤n ). Moreover, it smartly takes into account situations where all the coordinates are not involved in the same numbers of operators in the splitting. e necessary de nitions and the algorithmic scheme is described in § , together with technical comparisons with other works. For the interested reader, the detailed convergence proof in an in nite dimensional setting is expounded in § . In § , we discuss practical preconditioning approaches for use of our generalized forward-backward for convex optimization. In particular, we provide some heuristics for dealing with popular regularization terms, such as sparsity-inducing norms and total variation.

Finally, motivated by problems encountered in geoinformatics, we exemplify these approaches in § on popular regularizations of data represented over graphs. In particular, one of them is akin to total variation, as a convex relaxation of the geometric term in the Mumford-Shah functional. We show that the heuristics presented in § give relevant preconditionings, and that the resulting minimization method compares favorably with alternatives from the literature.

Problem Formulation and Algorithm

We formulate the problem at hand together with our proposed algorithm, and then give the proof of convergence. For the sake of completeness, we rst precise some de nitions. Some properties of monotone operators are given in § . ; for general notions of convex analysis, see for instance Bauschke and Combettes ( ).

. Preliminary De nitions

We consider a given real Hilbert space with inner product ⟨⋅ ⋅⟩ and associated norm ⋅ . e identity operator on is denoted Id or simply Id when no confusion is possible. In the following, A∶ dom A → is a set-valued operator and T∶ dom T → is a single-valued operator.

De nition . (graph, inverse, domain, range, zeros and xed-points). e graph of A is the set gra A def = (x, y) ∈ y ∈ Ax . e inverse of A, noted A -, is the operator whose graph is gra

A -def = (x, y) ∈ (y, x) ∈ gra A . e domain of A is dom A def = {x ∈ Ax ≠ }. e range of A is ran A def = {y ∈ ∃ x ∈ , y ∈ Ax}, and its set of zeros is zer A def = {x ∈ ∈ Ax} = A -. e set of xed-points of T is x T def = {x ∈ Tx = x}.
De nition . (resolvent and re ection operators). e resolvent of A is the operator

J A def = Id +A
-. e re ection operator associated to J A is the operator R A def = J A -Id.

De nition . (maximally monotone operator

). A is monotone in if ∀ (x, y) ∈ (dom A) , ∀ (u, v) ∈ Ax × Ay, ⟨u -v x -y⟩ ≥ ;
it is moreover maximally monotone if its graph is not strictly contained in the graph of any other monotone operator. 

De nition . (uniformly monotone operator

= P -Id.
Finally, we consider de nitions mentioned in § . . We say that a bounded, linear, self-adjoint operator M∶ → is positive if for all x ∈ , ⟨Mx x⟩ ≥ , and strongly positive if there exists a strictly positive real m ∈ R ++ such that Mm Id is positive; we denote respectively by S + ( ) and S ++ ( ) the sets of such operators.

For M ∈ S + ( ) (respectively M ∈ S ++ ( )), (x, y) ↦ ⟨x y⟩ M def = ⟨Mx y⟩ and x ↦ x M def = ⟨Mx x⟩ de ne a semi-inner product and a seminorm (respectively an inner product and a norm) over . For M ∈ S ++ ( ), we denote by M the Hilbert space endowed with this inner product. Since for all x ∈ , m x ≤ x M ≤ M x , these norms are equivalent and induce the same topology over . In particular, if ⊆ is closed in , then it is closed in M , and we write P M and R M def = P M -Id when considering an orthogonal projector over in M . More generally, if a functional is lower semicontinuous in , it is also lower semicontinuous in M , and if it is also proper and convex, we write prox M for its proximity operator in M .

Finally, for M ∈ S + ( ) (respectively M ∈ S ++ ( )), we denote by M (respectively M -) its square root (respectively inverse). We refer the reader to Riesz and Sz.-Nagy ( , § ) for the existence and properties of those operators.

. Problem Statement and Assumptions

Let n be a strictly positive integer. We consider problem ( . ) with the following assumptions.

(H ) B∶ → has full domain, and L ∈ S ++ ( ) is such that

∀ (x, y) ∈ , ⟨Bx -By x -y⟩ ≥ Bx -By L -. ( . ) (H ) For each i ∈ { , . . . , n}, A i ∶ → is maximally monotone in , and i ⊆ is a closed subspace such that A i = P i A i P i . P G F -B
(H ) zer {∑ n i= A i + B} ≠ . We now formulate the analogous assumptions in the convex optimization case ( . ).

(h ) f ∶ → R is convex and everywhere di erentiable such that its gradient in L is nonexpansive, where L is de ned in (H ).

(h ) For each i ∈ { , . . . , n}, i ∶ →]-∞, +∞] is convex, proper and lower semicontinuous such that i = i ○ P i , where i is de ned in (H ). (h ) Domain quali cation and feasibility conditions:

(i) for all i ∈ { , . . . , n}, ∈ sri dom i -∩ i-
j= dom j , and (ii) argmin {∑ n i= i + f } ≠ . Finally, we give the requirements on the preconditioners.

(P ) Γ ∈ S ++ ( ) such that (i) L ΓL
< , where L is de ned in (H ), and

(ii) ∀ i ∈ { , . . . , n}, Γ( i ) ⊆ i , where i is de ned in (H ). (P ) For each i ∈ { , . . . , n}, W i ∈ S + ( ) is such that (i) ker W i = i , (ii) W i i ∈ S ++ ( i ), and (iii) Γ -W i = W i Γ -.
Moreover, (iv) ∑ n i= W i = Id . Remark . . Hypothesis (H ) is used to reduce the i-th auxiliary variable in Algorithm from to the possibly restricted space i . Under this hypothesis, for all i ∈ { , . . . , n}, we consider A i i , the restriction of A i to i , i.e. the operator whose graph is gra A i i def = gra A i ∩ i . For all y ∈ i , thanks to Lemma . (i)⇔(iv) (see § . ) we can de ne x def = J A i y. By de nition, y ∈ x + A i x, and since A i x ⊆ i , we deduce x ∈ i , and thus x = J A i i y. Altogether, we get that J A i i = (J A i ) i is rmly nonexpansive in i with full domain, it is thus the resolvent of a maximally monotone operator in i ; but the latter is uniquely de ned by

J A i i - -Id i = A i i , proving maximal monotonicity of A i i . Remark . . Denoting ∇f the gradient of f in , it is easy to see that the gradient of f in L is L -∇f . us, (h ) ⇔ ∀ (x, y) ∈ , L - ∇f x -L - ∇f y L ≤ x -y L , ⇔ ∀ (x, y) ∈ , L - ∇f x -L - ∇f y ≤ L x -L y , ⇔ ∀ (u, v) ∈ , L - ∇f L -u -L - ∇f L -v ≤ u -v ,
where we used the fact that L is self-adjoint and invertible. We retrieve that (h ) is equivalent to nonexpansivity of L -∇f L -in , as announced in the introduction. When f is twice di erentiable, a simple application of the chain rule and of the mean value inequality shows that a su cient condition for (h

) is sup x∈ { L -(∇ f (x))L -} ≤ . . A S
Remark . . Hypothesis (h ) is used to reduce the i-th auxiliary variable in Algorithm in the convex optimization case from to the possibly restricted space i . Analogously to Remark . , note that (h ) implies that i i ∶ i → ]-∞, +∞] is convex, proper and lower semicontinuous in i , and its proximity operator prox i i is well de ned.

Remark . . A su cient condition for (h ) (i) in nite dimension is ∩ n i= ri {dom i } ≠ . Also, condition (h ) (ii) is typically ensured by coercivity, or if any functional i has bounded domain.

Remark . . Referring again to Riesz and Sz.-Nagy ( , § ), under (P ) (ii) and (P ) (ii), (P ) (iii) imply that for all i ∈ { , . . . , n}, Γ -W i ∈ S ++ ( i ).

Algorithm Preconditioned generalized forward-backward for solving monotone inclusion ( . ) under (H )-(H ). For solving convex optimization ( . ) under (h )-(h ), substitute B with ∇f and for all i ∈ { , . . . , n},

J W i -ΓA i with prox Γ -W i i i . R (z i ) ≤i≤n ∈ ⨉ n i= i ; Γ satisfying (P ) ; (W i ) ≤i≤n satisfying (P ) ; ∀ k ∈ N, ρ k ∈ ] , -L ΓL [ . I x ← ∑ n i= W i z i ; k ← . repeat M I p ← x -ΓBx ; for i ∈ { , . . . , n} do z i ← z i + ρ k J W i -ΓA i p i -z i -x i ; x ← ∑ n i= W i z i ; k ← k + . until convergence; R x.
. Algorithmic Scheme e algorithm for solving the monotone inclusion ( . ) or convex optimization ( . ) is given in Algorithm . e following theorem ensures the convergence and robustness to summable errors on the computations of each operator. For each iteration k ∈ N, we de ne b k ∈ the error when computing B and for each i ∈ { , . . . , n}, a i,k ∈ i the error when computing

J W i -ΓA i . eorem . . Set (z i, ) ≤i≤n ∈ ⨉ n i= i and de ne (x k ) k∈N the sequence in together with (z i,k ) ≤i≤n k∈N the sequence in ⨉ n i= i such that for all k ∈ N, x k = ∑ n i= W i z i,k and for all i ∈ { , . . . , n}, z i,k+ = z i,k + ρ k J W i -ΓA i x k i -z i,k -Γ(Bx k + b k ) i + a i,k -x k i , ( . 
)

where b k ∈ , a i,k ∈ i , and ρ k ∈ ] , -L ΓL [. Under assumptions (H )-(H ) and (P )-(P ), if (i) ∑ k∈N ρ k -L ΓL -ρ k = +∞, and 
(ii) ∑ k∈N ρ k b k < +∞, and ∀ i ∈ { , . . . , n}, ∑ k∈N ρ k a i,k < +∞, P G F -B
then the sequence (x k ) k∈N de ned by ( . ) converges weakly towards a solution of ( . ).

If moreover

(iii) < inf k∈N {ρ k } ≤ sup k∈N {ρ k } ≤ -L ΓL , and
(iv) B is uniformly monotone, then the convergence is strong.

e following corollary specializes eorem . to the case of convex optimization problems of the form ( . ).

Corollary . . Let the sequence (x k ) k∈N be de ned by substituting in ( . ), B with ∇f and for all i ∈ { , . . . , n}, J W i -ΓA i with prox Γ -W i i i

. If, in addition to (h )-( h) and (P )-(P ), assumptions (i)-(ii) of eorem . are satis ed, then the sequence (x k ) k∈N converges weakly towards a minimizer of ( . ). If moreover assumption (iii) of eorem . is satis ed, and f is uniformly convex, then (x k ) k∈N converges strongly to the unique minimizer of ( . ).

Remark . (Scalar metric). Setting

Γ set = γ Id , γ ∈ R ++ , and for all i ∈ { , . . . , n}, i set = and W i set = w i Id , w i ∈ R ++ , such that ∑ n
i= w i = , one retrieves our generalized forwardbackward splitting algorithm. Note that condition (H ) (respectively condition (h )) with L set = ℓ Id , ℓ ∈ R ++ , is equivalent to B being cocoercive with modulus ℓ -(respectively to ∇f being Lipschitz continuous with constant ℓ). In those cases, (P ) (i) reduces to the classical convergence condition on the step size γℓ < , and condition (i) on the relaxation parameters becomes ∑ k∈N ρ k -γℓρ k = +∞ as given by us in its full extent elsewhere (Raguet, , eorem III. . (ii)). Finally, condition (iii) in eorem . allows strong convergence from uniform monotonicity of B with overrelaxation, i.e. < sup k∈N {ρ k } < -γℓ . Shortly before publishing our work, we became aware of the recent work of Combettes and Yamada ( ), proposing independently and concurrently the same bound for the simple forward-backward splitting.

Remark . (Variable metric forward-backward splitting). In the special case n set = , our algorithm reduces to a preconditioned version of the forward-backward splitting. In this case, it is possible to use variable metrics, i.e. varying preconditioning matrix Γ along iterations, as studied by Combettes ) who only consider varying step sizes. Also in the context of convex optimization, accelerated versions of the forward-backward can be easily preconditioned, as considered by Giselsson and Boyd ( a). Finally, note that the de nition of L, the cocoercivity metric of B, given by ( . ), and the resulting condition (P ) (i) on the step metric Γ, are somewhat similar to those given by Lorenz and Pock (

) or Pesquet and Repetti ( ). In contrast, Combettes and Vũ (

) restrict their analysis to a scalar metric L, yielding possible step metrics which are of little interest for practical preconditioning purpose.

Remark . (Preconditioned Douglas-Rachford splitting). In the special case B set = , n set = and for all i ∈ { , . . . , n}, i set = , our algorithm reduces to a preconditioned version of the relaxed Douglas-Rachford splitting. is setting is studied in Giselsson and Boyd ( b), in both the primal and dual formulations. For n ≤ , our method constitutes a preconditioning of the Douglas-Rachford splitting applied to the method of the partial inverses on the product space n (see § ). In addition, it allows for more adapted splitting along coordinates with arbitrary i ⊂ as explained in § . , and for individual preconditioning of each function in the splitting, as further detailed in § . .

Preconditioning Approaches for Primal Convex Optimization

We detailed in the previous section the necessary conditions over the involved operators to ensure convergence of our preconditioned generalized forward-backward. In this section, we describe some approaches for choosing the preconditioners in practice, in the context of convex optimization.

As mentioned in the introduction § . , our speci c interest lies on large-scale problems, involving sums of functionals that are fairly simple when taken individually. For reasons which will become clear in the following, we restrict ourselves to diagonal preconditioners.

With this focus in mind, we rst exemplify the usefulness of preconditioning on speci c but popular instances of functionals, before describing a general method for computing the preconditioners for our generalized forward-backward splitting algorithm.

. First-order Primal Proximal Preconditioning

We brie y present here two of the main motivations for preconditioning rst order proximal methods. First, we show that preconditioning can drastically simplify the computation of proximity operators. en, we describe the use of second-order information for accelerating the convergence, following classic changes of metric inspired by quasi-Newton methods (see introduction).

. . Simplifying some Proximity Operators

e most straightforward examples are convex penalizations involving the norm of the considered Hilbert space; let us mention some of them. In the terms and notations of the previous sections, let ⊆ be a particular closed subspace of interest, let λ ∈ R ++ , and de ne the group seminorm ∶ x ↦ λ x , and the group constraint

h∶ x ↦ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ +∞ if x > λ , if x ≤ λ .
Note that when set = i is spanned by a subset of a given orthonormal basis of , is an example of group norm over this basis; in this case, it is o en used as a regularizing functional to enforce group sparsity (see for instance Jenatton et al., ) in the solution of ( . ). Another case of interest is when = i ∩ i , where i is the rst bisector in a given orthonormal basis of i . e functional is then the deviation seminorm, which can be used to discretize the total variation seminorm with better isotropy and more convenient computational properties than classical discretizations (see Raguet, , § IV. . , § IV. ). In any case, the proximity operators of these functionals only involve the computations of the projector over and of the norm, as shown in the following proposition.

Proposition . . With the above de nitions, for all x ∈ ,

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ if x > λ, then prox (x) = x + -λ x x and prox h (x) = x + λ x x ; if x ≤ λ, then prox (x) = x and prox h (x) = x .
Proof. For set = , prox and prox h reduces respectively to the group so -thresholding (Combettes and Wajs, , Example . ) and to the orthogonal projector over the closed ball centered in
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and of radius λ, corresponding to the above expressions. Using this fact, together with the fact that P has the tight frame property with squared norm , i.e. P * P = P , an earlier result on compositions of functionals with such operators (see Raguet, , Proposition IV. . ) applies and lead to the given expressions. ∎

Now in many practical circumstances, it makes sense to use weighted versions of group seminorms or group constraints, for instance to account for di erent signi cations or importances along the coordinates. is is easily enforced with a change of metric; letting M ∈ S ++ ( ), we modify and h above by considering the orthogonal projector over in the metric induced by M, i.e. M ∶ x ↦ λ P M x M and

h M ∶ x ↦ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ +∞ if P M x M > λ , if P M x M ≤ λ .
Usually, such M is a diagonal operator, and the computations of the projector over and of the norm in M are as easy as their scalar metric counterparts. Since no assumption is made over the scalar product in in Proposition . , we directly obtain the following corollary.

Corollary . . With the above de nitions, for all x ∈ ,

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ if P M x M > λ, then prox M M (x) = P M x + -λ P M x M P M x and prox M h M (x) = P M x + λ P M x M P M x ; if P M x M ≤ λ, then prox M M (x) = P M x and prox M h M (x) = x .
Remark . . Note that in our setting, we are actually interested in M i ∈ S ++ ( i ) and want to compute the proximity operator of M i i within i M i . e substitution is straightforward. In contrast the minimization problems de ning prox M or prox h M within the original metric can be much more complicated, precisely because it involves two di erent norms. ink for instance of the orthogonal projection over an ellipsoid, for which no general closed-form expression is available. us, the change of metric allows to take e ciently into account functionals in ( . ) such as weighted norms, weighted total variation and ellipsoid constraints.

. . Accelerating First-order Methods

As pointed out in the introduction, variable metrics for accelerating rst-order methods based on gradient descent have been used for long and are well studied. In contrast, variable metric acceleration of methods involving proximity operators is not quite yet established. Recall from § . that attempts in that directions usually rely on some smoothness hypothesis; either for the proximal point algorithm (Bonnans et al., ; Qi and Chen, ; Chen and Fukushima, ) or for the forward-backward splitting (Becker and Fadili, ; Chouzenoux et al., ). In particular, note that the latter two works only use second-order information of f , the smooth part in the splitting. At last, recall the linear convergence rate of the Douglas-Rachford splitting algorithm obtained by Giselsson and Boyd ( b) under the hypothesis that one functional in the splitting is both smooth and strongly convex.

Roughly speaking, functionals which are both smooth and strongly convex are close to quadratic functionals, q∶ x ↦ ⟨Mx + µ x⟩ + q( ), with M ∈ S ++ ( ) and µ ∈ . In that case,
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the result of Giselsson and Boyd ( b, Proposition ) states that the rate is determined by the condition number of M, i.e. the ratio between its greatest and its smallest eigenvalues. Accordingly, this suggests to set the algorithm in the metric of M , which obviously reminds of Newton method, since in that case the Hessian ∇ q is constant and equal to M. us, our approach is quite natural: nd a quadratic approximation of each functional involved in the splitting ( . ), and use the linear operator of the resulting quadratic form for preconditioning. Note that our approach is only heuristic, in order to speed up the convergence of the algorithm, and should not be confused with majorization-minimization techniques. In particular, the approximations need not be majorizers of the corresponding functionals.

We do not discuss how to obtain convenient quadratic approximations, neither how to ensure that the preconditioner is strongly positive and, as needed for most cases of interest, diagonal. Concerning the two last points, an interesting discussion is given by Giselsson and Boyd ( a, § ). We provide speci c examples in § . and emphasize that for such large-scale, simple functionals, the diagonal approximation is obtained by simply dropping the o -diagonal terms (in the terms of the above cited discussion, this is coined in nite norm equilibration).

Finally, nothing has been said on how to combine several such metrics for dealing with an arbitrary splitting of the form ( . ); this is the subject of the next section.

. Preconditioning our Generalized Forward-Backward Splitting

Suppose that we are given the preconditioners M and (M i ) ≤i≤n , suggested respectively by the functionals f and ( i ) ≤i≤n , either for computational (see § . . ) or acceleration (see § . . ) purposes. By construction, M ∈ S ++ ( ) and for all i ∈ { , . . . , n}, M i ∈ S + ( ) such that M i i ∈ S ++ ( i ) and ker M i = i .

Suppose moreover that there exists an orthogonal basis of indexed by a set J, which contains for each i ∈ { , . . . , n}, an orthogonal basis of i indexed by J i ⊆ J, and such that each of the above operators is diagonal in this basis. Although not theoretically necessary, this greatly simpli es the manipulations presented below. For convenience, denote

M def = diag (m j )
j∈J and for all i ∈ { , . . . , n}, M i def = diag (m i j )

j∈J ; note in particular that J i = { j ∈ J m i j > }.

. . Satisfying the Requirements

Looking at Algorithm with § . in mind, one would like to precondition the algorithm with help of Γ and (W i ) ≤i≤n such that Γ -≈ M and for all i ∈ { , . . . , n}, Γ -W i ≈ M i . Unfortunately, in general we can't de ne them directly in this way, because requirements (P )-(P ) won't be satis ed. We present here practical approaches for complying to these requirements.

Preliminary: select the relaxation parameters (ρ k ) k∈N . For ease of demonstration, we suppose that the relaxation parameters are set prior to the conditioners. Looking at eorem . , we have necessarily for all k ∈ N, ρ k ∈ ] , [. Many papers advocate the use of overrelaxation, so in the absence of other requirements, we set typically for all k ∈ N, ρ k set = . . Strictly speaking, it is even possible to set (ρ k ) k∈N converging to a value arbitrarily close to , but it should be noted from ( . ) below that high relaxations impede the value of Γ.

Note that some speci c implementations (see for intance Raguet, , § IV. . ) are more e cient without relaxation (for all k ∈ N, ρ k set = ). In some extreme setting where the operators are computed up to nonsummable errors, it might also be useful to consider (ρ k ) k∈N converging to
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in such a way that conditions (i) and (ii) of eorem . are both satis ed; very slow convergence should be expected however.

First step: creating the global preconditioner Γ. A rst approximation of the global preconditioner Γ def = diag ( γ j ) j∈J can be immediately obtained either by preconditioning according to f alone, or, for reasons that can be understood below, according to the whole functional. at is,

Γ set = M -, i.e. ∀ j ∈ J, γ j set = m j , ( . a) or Γ set = (M + ∑ n i= M i ) -, i.e. ∀ j ∈ J, γ j set = m j + ∑ n i= m i j . ( . b) 
Note now that any diagonal operator satis es condition (P ) (ii). In order to ful ll requirement (P ) (i), suppose that assumption (h ) is also given with a diagonal operator L def = diag (ℓ j ) j∈J , and simply set

Γ def = diag (γ j )
j∈J , with for all j ∈ J,

γ j set = min δ - ρ ℓ j , γ j , ( . ) 
where ρ def = sup k∈N {ρ k } and δ is some value less than , typically δ def = . .

Second step: creating the preconditioners (W i ) ≤i≤n . We have now set Γ, so that for all i ∈ { , . . . , n}, a rst approximation of the preconditioner Wi def = diag ( wi j ) is given directly by Wi set = ΓM i , i.e. for all j ∈ J, wi j set = γ j m i j . By construction, each of these preconditioners satisfy conditions (P ) (i)-(iii). However, condition (P ) (iv) is not satis ed in general, that is to say S def = ∑ n i= Wi ≠ Id. Observe yet that S = diag (s j ) j∈J , where for all j ∈ J, s j def = ∑ n i= wi j . In order to ful ll the last condition, we propose two di erent ways of modifying each Wi , depending on the importance of keeping the shape of the metrics they induce.

Indeed, if it is not crucial to keep the exact metrics, as is typically the case for acceleration purpose (see again § . . ), then the simplest way is to scale each coordinate separately, according to the relative amplitude of each preconditioner. at is, for all i ∈ { , . . . , n}, set

W i def = diag (w i j ) j∈J as W i set = S-Wi , i.e. ∀ j ∈ J, w i j set = wi j s j .
( . a)

Now, suppose in contrast that the shape of the metrics is indeed crucial, for instance for computational purpose as explained in § . . . en, the only modi cations allowed to the above preconditioners are multiplications by (positive) scalars. In particular, for all i ∈ { , . . . , n}, de ne s i def = sup{s j j ∈ J i }, and set

W i set = s i Wi , i.e. ∀ j ∈ J, w i j set = wi j s i . ( . b) en, de ning W n+ def = Id -∑ n i= W i = diag ( -∑ n i= w i j ) j∈J , n+ def = (ker W n+ ) and n+ def =
, it is easy to check that, substituting n with n + , all assumptions are ful lled to apply eorem . , and that the sequence generated by the algorithm converges towards a solution of ( . ).

.
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Remark . . e proposed way of de ning the scalars (s i ) ≤i≤n is optimal in the sense that if any of them is decreased, then W n+ is not positive anymore. Let us precise also that the above technique applies of course to the monotone inclusion setting, substituting n+ with A n+ def = if necessary. In any case, the proximity operator of n+ , or the resolvent of A n+ , reduce to the identity operator. In general, it is necessary to store in memory the auxiliary variable z n+ , which has the dimension of the full problem; note however that using no relaxation (for all k ∈ N, ρ k set = ), this is not needed anymore since its update in Algorithm reduces to z n+ ← px. Finally, note that setting Γ according to ( . b) rather than ( . a) is justi ed by the fact that Γ intervenes in all nal metrics. is was actually more e cient for all numerical experiments of § (in which we only show results with method ( . b)).

. . Stationary Metric and Reconditioning

We advocate in § . . to select the preconditioning metrics according to quadratic approximations of the involved functionals. A major issue is that those approximations are only local, in the sense that the error is only controlled in a bounded neighborhood. Classically in such case, the approximations must be updated along with the iterate. Accordingly, the preconditioning operators must then be updated (following § . . ) along the run of the algorithm; we coin such a process reconditioning step. Unfortunately, our preconditioned generalized forward-backward splitting does not allow for variable metric as soon as n > , so that some special care must be taken.

For better understanding, let us emphasize the theoretical problem by brie y referring to § . . Given the preconditioners Γ and (W i ) ≤i≤n , Proposition . ensures the existence of auxiliary points satisfying the xed-point equation ( . ). e auxiliary variables (z i ) ≤i≤n introduced in Algorithm are indeed supposed to converge to such points. Now, if we modify the preconditioners, we also modify these auxiliary points. In particular, at the very next iteration following a reconditioning, the former (z i ) ≤i≤n are further away from the new convergence points, so that one might expect the iterate x to also draw away from the solution set.

In order to avoid such drawback, we thus suggest to also update the auxiliary variables when reconditioning, accordingly with the new preconditioners. A fairly simple approach is to suppose that convergence is almost achieved and that ( . ) is almost satis ed. Having a look at the proof of Proposition . , this means that for all i ∈ { , . . . , n}, there exists y i ∈ A i x such that W i (x -ΓBxz i ) ≈ Γ y i . Given the updated preconditioners Γ and ( Ŵi ) ≤i≤n , we keep the same iterate x and update the auxiliary variables (ẑ i ) ≤i≤n according to, for all i ∈ { , . . . , n},

ẑi = (x -ΓBx) i -Ŵ- i Γ y i , where y i = Γ -W i (x -ΓBx -z i ) .
Note that this can be easily implemented within Algorithm without signi cant computational or memory overhead.

In the spirit of Liang et al. ( , eorem . ), we could consider a variable metric algorithm as a stationary metric one with additional errors, and check under which conditions over the variable metrics the resulting errors are summable. We leave however such a study for a future work, and opt instead for a nite number of reconditionings along the run of the algorithm.

When the stopping criterion of the algorithm is speci ed as a maximum number of iterations, it is reasonable to perform reconditionings a er given fractions of this number have been reached. Another more adaptive way is to monitor the relative evolution of the iterate, and perform reconditionings when this evolution goes below a certain threshold.

P G F -B

We do not extensively investigate how to optimally schedule the reconditionings. Let us only underline that, early in the optimization process, as the iterate is still far from the solution set, neither the quadratic approximations nor the condition ( . ) might be relevant. On the other hand, too late a reconditioning is futile, as its purpose is precisely to speed up the convergence.

is is illustrated in our numerical experiments, § . . .

Application to Graph-Structured Optimization Problems

We now present a numerical application of our algorithm on a high-dimensional problem, structured on an irregular graph. Solving it implies performing a sequence of badly conditioned, nondi erentiable optimization problems, providing a good illustration of several notions developed in the previous sections. We rst introduce the motivations and the terms of the problem. en, we describe in details how we apply our preconditioned generalized forward-backward splitting. Finally, we show how the convergence speed of our approach compare with concurrent preconditioned proximal algorithms over three di erent instances of the problem, and provide visual illustrations of the results.

. Aggregating Spatial Statistics

e great amount of georeferenced socio-economic data available exceeds our current ability to analyse them. We consider in another work (Landrieu et al., ) the problem of aggregating spatial statistics to obtain simple yet accurate representations in map form, facilitating analysis and providing with valuable decision aids. e spatial data consists of an intensive value (e.g. the result of an election in percentages), related to an extensive quantity (e.g. the number of voters), de ned over subregions of a geographical space (e.g. electoral constituencies). See some instances in Table .  In order to capture the spatial structure of the data, we consider a graph G def = (V, E), where the vertices V represent the subregions and the edges E ⊆ V × V represent spatial adjacencies. Further spatial information is available, encoded by strictly positive vectors

λ def = (λ v ) v∈V ∈ R V ++ and µ def = (µ uv ) (u,v)∈E ∈ R E ++ ,
weighting the vertices (respectively the edges) by their corresponding surface (respectively border length). Observed spatial data constitute vectors

y def = (y v ) v∈V ∈ R V and ν def = (ν v ) v∈V ∈ R V
labelling the vertices respectively by their intensive value and extensive quantity. In addition, our setting takes into account vertices v corresponding to regions for which either the value of y v is missing, or the quantity ν is zero or unde ned. In the following, we set by convention for such vertex

y v set = or ν v set = if necessary.
. . Problem Formulation e simpli cation of the observed data y is modeled as an element x ( ) ∈ argmin {F }, where for all

x def = (x v ) v∈V ∈ R V , F (x) def = v∈V λ (ℓ ) v x v -y v + s (δ) (v,u)∈E λ (δ ) uv x u -x v + s (ℓ) v∈V λ (ℓ ) v x v ,
and by analogy with the ℓ -pseudonorm, we denote for any x ∈ R, x def = if x ≠ and = .

. e objective functional F is the sum of three terms, weighted by their respective penalization coe cients. e rst term is a data-delity measure, favoring a solution close to the observation. We naturally weight it by the extensive quantity, i.e. for all v ∈ V, λ

(ℓ ) v is set to ν v if y v is and to if y v is missing.
e second term is a penalization ensuring the simplicity of the solution, which tends to merge together neighboring subregions with similar values. We weight the contribution of each pair proportionally to the length of the edge border, i.e. for all (u, v) ∈ E, λ (δ ) uv set = µ uv . is term is thus proportional to the total length of the contours of the mapping x, in a similar fashion to the geometric term in the Mumford-Shah functional (see for instance the review of Vitti,

). e coe cient s (δ) ∈ R ++ scales its in uence relatively to the other terms in F .

Finally, the last term penalizes nonzero values attributed to regions whose extensive quantity is zero. Without this term, large areas could take values of little signi cance, eventually cluttering the map. Hence, we penalize such regions proportionally to their surface, i.e. for all v ∈ V, λ

(ℓ ) v is set to λ v if ν v = ,
and to otherwise. Again, s (ℓ) ∈ R ++ scales its overall in uence in F .

e minimization of F is very challenging because the functional ⋅ is noncontinuous and nonconvex. us, we consider a convex relaxation, de ned for all x ∈ R V , as

F(x) def = v∈V λ (ℓ ) v x v -y v + (v,u)∈E λ (δ ) uv x u -x v + v∈V λ (ℓ ) v x v , ( . 
)
where the penalization coe cients λ (δ ) and λ (ℓ ) can be related to λ (δ ) and s (δ) , and λ (ℓ ) and s (ℓ) , respectively.

. Applying a Preconditioned Generalized Forward-Backward

Let set = R V , and ⋅ be the Euclidean norm. ere is many ways of casting ( . ) as an instance of ( . ); we describe one of them. An implementation in M , which uses a representation of the graphical data adapted to matricial computations, is available at https://sites.google. com/site/landrieuloic/home-1.

. . Splitting

We set the smooth part of the splitting as the rst term, i.e. for all x ∈ R V ,

f (x) set = v∈V λ (ℓ ) v x v -y v . ( . ) P G F -B
is is a quadratic functional whose gradient is immediately ∇f ∶ x ↦ (λ

(ℓ ) v (x v -y v )
) v∈V ; it is easy to see with Remark . that assumption (h ) is satis ed with L being the diagonal operator whose v-th term is λ

(ℓ ) v if λ (ℓ ) v
> , and can be any strictly positive real otherwise. Now, we must split the remaining terms into simple functionals whose proximity operator is easy to compute. Note that our formulation allows the splitting to avoid the introduction of countless, useless variables in the implementation (see § . and . ), which would considerably increase the computational cost and memory requirements. With E

+ def = {(u, v) ∈ E λ (δ ) uv > } and V + def = {v ∈ V λ (ℓ ) v
> }, we can simply set n set = E + + V + , and consider each term of each sum as a separate functional in the splittng. More precisely, we de ne for all (u, v)

∈ E + , uv set = {x ∈ ∀ w ∈ V ∖ {u, v}, x w = } and for all v ∈ V + , v set = {x ∈ ∀ w ∈ V ∖ {v}, x w = }.
en, we index the simple functionals by the sets E + and V + instead of { , . . . , n}, where for all (u, v) ∈ E + and all w ∈ V + ,

uv ∶ x ↦ λ (δ ) uv x u -x v , and w ∶ x ↦ λ (ℓ ) w x w .
Note that each uv (respectively each v ) is isomorphic to R (respectively to R), and that the space of auxiliary variables in Algorithm reduces to (⨉ (u,v)∈E+ uv ) × (⨉ v∈V+ v ), isomorphic to R E+ + V+ . e following proposition shows that the proximity operator of each uv and of each v is easy to compute in any diagonal metric. 

Proposition . . Let (λ, µ) ∈ R ++ , ∶ R → R∶ x ↦ λ x , h∶ R → R∶ (x , x ) ↦ µ x -x , m ∈ R ++ , (m , m ) ∈ R ++ and M def = diag(m , m ). en, (i) ∀ x ∈ R, prox m (x) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ - λ m x x if x > λ m , if x ≤ λ m . (ii) ∀ x x ∈ R , prox M h x x = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ x x + - μ x -x w (x -x ) w (x -x ) if x -x > μ , x x if x -x ≤ μ ,

( . )

.
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Supposing that such a y exists, it necessarily satis es yy = xxμ y -y y -y . at is, if y > y , then x -x > μ, and if y < y , then x -x < -μ. Altogether, a necessary condition is xx > μ. But in that case, observe that with

y def = x - µ m x -x x -x and y def = x - µ m x -x
x -x , yy has the same sign as xx , and thus y def = (y , y ) satis es ( . ). In order to obtain the nal expression, note for instance that xx = w (x -x ), so that x -

µ m x -x x -x = x + w (x -x ) - µ(m +m ) x -x m m
and the result follows. If at the contrary xx ≤ μ, we deduce by contraposition that prox M h (x) = ( ȳ, ȳ), where ȳ def = argmin y∈R { m (x -y) + m (x -y) }, and optimality conditions immediately lead to ȳ = x. ∎

Finally, note that we can assume without loss of generality that span

{ uv (u, v) ∈ E + } ∪ { v v ∈ V + } = .
Otherwise, this would mean that there exists a vertex v ∈ V ∖ V + such that for all u ∈ V, (u, v) ∉ E + and (v, u) ∉ E + . But then the label x v of such a vertex intervenes in the functional F only through the term λ (ℓ ) v

x v -y v , in which case it can be set directly to y v if it is observed, or simply discarded from the problem otherwise.

. . Preconditioning

We follow here § . . Let us rst obtain suitable quadratic approximations. As already mentioned, f is itself quadratic with a diagonal Hessian. e latter is not necessarily strongly positive, but as explained below, this is not a concern.

Let now v ∈ V + , and recall that v ∶ x ↦ λ (ℓ ) v

x v . Given x ∈ , we consider the approximation of v at x as a quadratic function q v such that q v ( x) = v ( x), ∇q v ( x) ∈ ∂ v ( x), and for all x ∈ , q v (x) ≥ v (x). As long as xv ≠ , it is easy to see that the best candidate is given by

q v ∶ x ↦ λ (ℓ ) v x v xv + λ (ℓ ) v xv ,
as illustrated on Figure . Its Hessian is the diagonal operator whose only nonzero term is the v-th, equal to λ (ℓ ) v xv ; its restriction to v belongs to S ++ ( v ). However, the latter term explodes as xv tends to , inducing instability. To ensure robustness of the reconditioning procedure, we replace xv with max { xv , є ℓ }, for some small value є ℓ ∈ R ++ . In all experiments, we observed good robustness by setting it as a billionth of the average amplitude of the values, i.e. є ℓ

set = - V ∑ v∈V xv .
Letting now (u, v) ∈ E + , by analogy with the absolute value above, as long as xu ≠ xv we consider the quadratic approximation of uv at x as

q uv ∶ x ↦ λ (δ ) uv (x u -x v ) xu -xv + λ (δ ) uv xu -xv .
In contrast however, its Hessian is not diagonal. Recalling § . . , we apply the in nite-norm equilibration by simply dropping the o -diagonal terms. e result is the diagonal operator whose only nonzero terms are the u-th and v-th, both equal to λ (δ ) uv xuxv ; its restriction to uv belongs to S ++ ( uv ). Once again the latter term explodes as xuxv tends to , and we must replace xuxv with max { xuxv , є δ } for some small value є δ ∈ R ++ . In contrast with є ℓ , we observed low robustness with respect to є δ on several experimental settings. In
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order to avoid parameter tweaking, we set it for all experiments to a fairly large value, namely

є δ set = max { xu
, є ℓ }. Altogether, we are now set to apply the preconditioning procedure explained along § . . In particular, we set for all k ∈ N, ρ k set = . , and Γ according to ( . b); since we have span

{ uv (u, v) ∈ E + } ∪ { v v ∈ V + } = ,
this ensures in addition Γ ∈ S ++ ( ). Finally, since with Proposition . the needed proximity operators can be computed in any diagonal metric, we set (W v ) v∈V+ and (W uv ) (u,v)∈E+ according to ( . a).

. Experimental Setup and Results

We perform aggregation of spatial statistics over three di erent datasets, presented in Table . e datasets population and revenue are open-source, available at the French national institute for statistic and economics studies . e dataset election is also open-source, provided by the Cartelec project (Colange et al., ). e spatial regions of rasterized data are squares organized along regular grids, while the constituencies in election constitute arbitrary polygons. More readable maps are obtained by Delaunay triangulation on all vertices composing the shape of regions, with the constraint that all region borders must be used as edges by the triangles (see Chew, ). Each region is thus split into triangles, to which we attribute the intensive value observed on the region. In turn, the extensive values is shared among the triangles, proportionally to their surface.

In the following, we present the performance of our preconditioned generalized forwardbackward splitting algorithm over minimizations of F as de ned in ( . ), against other preconditioned proximal splitting algorithms available in the literature. For the sake of completeness and illustration, we then brie y comment some results obtained at the end of the overall procedure described all along § . .

. . Optimization Comparison

e following preconditioned proximal splitting algorithms are considered in the comparison. Each algorithm is implemented in M , and made available at https://www.ceremade. 

F def = f + ○ K,
where f is the data-delity term as in ( . ), and and K are de ned as

K∶ R V → R E × R V x → (δ, ξ) , with ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ∀ (u, v) ∈ E, δ uv def = λ (δ ) uv (x u -x v ) , ∀ v ∈ V, ξ v def = λ (ℓ ) v x v , and ∶ R E × R V → R (δ, ξ) → ∑ (u,v)∈V δ uv + ∑ v∈V ξ v .
e proximity operator of the functionals f and are easy to compute, and K is a linear operator, and thus iteration ( ) of Pock and Chambolle (

) can be applied. e preconditioning matrices T and Σ are de ned following Lemma , equation ( ), with the parameter α set = . We also set the relaxation parameter θ set = . Note that the preconditioning procedure only depends on the operator K; in particular, no information on the functionals f or is taken into account. us, another classical splitting, which consists in taking into account the coe cients (λ

(δ ) uv ) (u,v)∈E and (λ (ℓ )
v ) v∈V within the functional , gives bad performances on our data, where the coe cients present highly heterogeneous values (data not shown). Conversely, we also tried another splitting where the role of f is captured by K and , but no improvement was observed (data not shown either). Lorenz and Pock ( , IPPD). e iteration ( ) of Lorenz and Pock ( ) can be seen as an inertial extension of the above, where in addition the functional f can be taken into account through an explicit gradient step. e preconditioning matrices T and Σ can in turn incorporate information over f following Lemma , equation ( ), recalling in their terms that ∇f is cocoercive with respect to the diagonal matrix L -. We used the parameters γ set = , δ set = , r set = , s set = , and, a er trying di erent ratios, the inertial parameters (α k ) k∈N all equal to one half of the upper bound given by Lemma , equation ( ).

Inertial preconditioned primal-dual algorithm of

Preconditioned generalized forward-backward splitting (Algorithm , PGFB θ ). We use the splitting and preconditioning described along § . . Note that at the very beginning of the optimization process, we initialize the conditioners with a coarse preconditioning, following § . . but where each amplitude x v and each absolute di erence x u -x v are replaced by the average amplitude of the observed values in y.

en, we consider reconditionings taking place when the relative evolution of the iterate at iteration k, i.e. x k -x k-x k-, is below a certain threshold. Within the run of the algorithm, when this threshold is reached, it is then divided by . We denote the resulting method with given initial threshold θ by PGFB θ ; in particular, PGFB means that no reconditioning is performed.

For each dataset, we x reasonable values for the parameters s (δ) and s (ℓ) (corresponding ultimately to some of the illustrations given in § . . ). en, for each algorithm, we monitor rst the computational time needed for completing a thousand iterations, and then the decrease of the objective functional F along these iterations. Finally, an approximate minimum of F is obtained with ve thousands iterations of PGFB. We plot on Figure the values of the objective along the iterations and this minimum on a logarithmic scale, against the corresponding computational time.

All performance results show the same tendency, in spite of the variety of the problems, of the conditionings, and of the data size considered. In all three experiments, we see that PPD and IPPD iterations are faster than PGFB iterations; yet, the coarse initial preconditioning is already enough for PGFB to outperform PPD and IPPD.

e three di erent reconditioning threshold values illustrate well the compromise which must be found for optimal reconditioning-not too early, not too late-evoked at the end of § . . . However in all cases, it is clear that the computational cost of the reconditionings are negligible, and that they allow to drastically outperform PGFB . Interestingly, we can see on the functional values, occurring for the cyan (PGFB -) and blue (PGFB -) curves between and s. ese are due to reconditionings, for reasons explained in § . . ; fortunately, more advantageous functional values are recovered within only a few iterations. Note that the subsequent small uctuations in the functional values are a known side-e ect of the use of overrelaxation (ρ k > ), and should not be confused with reconditionings.

. . Interpretation of the Results

We illustrate and comment brie y on the usefulness of our approach for aggregation of spatial statistics. More substantive discussion should be found elsewhere (Landrieu et al., ). Let us precise here that solving only one convex relaxation of o en leads to undesirable staircasing and bias e ects. To reduce them, we actually solve successively several instances of F as de ned in ( . ), but with coe cients λ (δ ) and λ (ℓ ) depending each time on the previously found solution, following classical reweighting techniques (see in particular the recent review of Ochs et al., ). As long as there is no sparsity-inducing ℓ penalization, our aggregation method can be seen as a lossy compression process, where one simply seeks for a trade-o between data size and loss of information. As already pointed out in the aggregation model, an interesting measure of the complexity of a map is given by the total length of the contours between regions. We thus measure the compression ratio of the aggregation x of the spatial statistics y as

∑ (v,u)∈E µ uv y u -y v ∑ (v,u)∈E µ uv x u -x v .
At the same time, a relevant measure of the relative error is the root (weighted) mean square error between simpli ed and observed map, which we normalize by the (weighted) standard-deviation of the latter, i.e.

∑ v∈V ν v (x v -y v ) ∑ v∈V ν v (y v -ȳ)
, where

ȳ def = ∑ v∈V ν v y v ∑ v∈V ν v . P G F -B
Such measures are reported on Figures and . Note in particular on the former that our model yields nal region sizes that adapt to the local density, overlook di erences between low density area in favors of statistically more signi cant local e ect such as political polarization at the scale of a city.

Because of the presence of the sparsity-inducing penalization term, the aggregations on the revenue dataset are somewhat more di cult to interpret. Note that on Convergence Proof e convergence proof follows the same line as our generalized forward-backward (Raguet et al., , eorem . ), with the appropriate modi cations. We begin by recalling important properties in monotone operators theory. We give useful de nitions and properties over the product space ⨉ n i= i . Finally, we formulate a xed-point equation satis ed by the solutions of ( . ), from which we derive the algorithmic scheme and its convergence.

. Preliminaries on Monotone Operators eory

e following lemma is useful for manipulating averaged and cocoercive operators. (ii) T is α-averaged in , if, and only if, for all (x, y) ∈ , Ogura and Yamada ( , eorem ). ese authors actually allow α ∈ [ , [; the above result is derived from theirs with α

( -α)⟨Tx -Ty x -y⟩ ≥ Tx -Ty + ( -α) x -y ; (iii) If T ∈ (α, ) and T ′ ∈ (α ′ , ), then T T ′ ∈ ( α+α ′ -αα ′ -αα ′ , ); (iv) T is β-cocoercive in if, and only if, Id -γT is γ β -averaged in . Proof. (i)-(ii). See Combettes ( , Lemma . (i) ⇔ (ii) (i) ⇔ (iii)). (iii). See
+ α ′ ≥ min {α, α ′ } > αα ′ , ensuring α+α ′ -αα ′ -αα ′ > . (iv). βT = (R + Id) ⇔ Id -γT = Id - γ β (R + Id) = γ β (-R) + - γ β Id.
∎ e following lemma is useful for characterizing rmly nonexpansive operators.

Lemma . . e following statements are equivalent:

(i) T is rmly nonexpansive in with full domain (i.e. dom T = );

(ii) T -Id is nonexpansive in and T has full domain;

(iii) ∀ (x, y) ∈ , Tx -Ty ≤ ⟨Tx -Ty x -y⟩;

(iv) T is the resolvent of a maximally monotone operator A, i.e. T = J A . = Id , and with the de nitions from § . , we de ne the following linear operators → , W∶ x ↦ (W i x i ) ≤i≤n and Γ∶ x ↦ (Γx i ) ≤i≤n , whose respective inverses are W -∶ x ↦ (W i -x i ) ≤i≤n and Γ -∶ x ↦ (Γ -x i ) ≤i≤n . Moreover, we also introduce

Σ∶ → ∶ x ↦ n i= W i x i and Σ * ∶ → ∶ x ↦ x i ≤i≤n ,
together with the set def = ran Σ * = x ∈ ∃x ∈ , ∀ i ∈ { , . . . , n}, x i = x i . Finally, we de ne A∶ → and B∶ → by

A def = n ⨉ i= A i i and B def = Σ * BΣ ; that is, the graph of A is gra A def = ⨉ n i= gra A i i = (x, y) ∈ ∀ i ∈ { , .
. . , n}, y i ∈ A i x i . e following proposition sums up the main properties of the above operators.

Lemma . . With the above de nition, let s ∈ , x ∈ , and x ∈ . en,

(i) ΣΣ * x = x, (ii) Σ * Σs = s (iii) Γs = Σ * ΓΣs. (iv) ⟨ ⟨ ⟨s x⟩ ⟩ ⟩ Γ -W = ⟨Γ -Σs Σx⟩. Proof. (i). ΣΣ * x def = ∑ n i= W i x i = ∑ n i= W i x =
x, where we used (P ) (i) and (iv). (ii). By de nition, there exists s ∈ such that s = Σ * s. Using (i), Σs = s, and the result follows. (iii). With (P ) (ii), we have ΓΣ * = Σ * Γ, and thus using (ii), Γs = ΓΣ * Σs = Σ * ΓΣs. (iv). Take s = Σs as above, and using the properties (P )-(P ), develop

⟨ ⟨ ⟨ s x ⟩ ⟩ ⟩ Γ -W = ⟨ ⟨ ⟨Γ -W Σ * s x⟩ ⟩ ⟩ = n i= ⟨Γ -W i s i x i ⟩ = n i= ⟨Γ -W i s x i ⟩ , = n i= ⟨W i Γ -s x i ⟩ = n i= ⟨Γ -s W i x i ⟩ = ⟨Γ -s ∑ n i= W i x i ⟩ = ⟨Γ -Σs Σx⟩ . ∎
Proposition . . With the above de nitions, the following statements hold.

(i) Γ ∈ S ++ ( ), W ∈ S ++ ( ), and Γ -W ∈ S ++ ( ).

(ii) is a closed subspace of Γ -W , and Σ * Σ = P Γ -W .

.
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(iii) J W -ΓA = ⨉ n i= J W i -ΓA i i , and W -ΓA is maximally monotone in Γ -W .

(iv) If B is uniformly monotone in with modulus ϕ, then

∀ (x, y) ∈ , ⟨ ⟨ ⟨ΓBx -ΓBy x -y⟩ ⟩ ⟩ Γ -W ≥ ϕ( Σx -Σy ) . (v) ΓB is L ΓL - -cocoercive in Γ -W . Proof. Let (x, y) ∈ , x def = Σx = ∑ n i= W i x i and y def = Σy = ∑ n i= W i y i . (i).
Immediate with, respectively, (P ) (ii), (P ) (ii) and (P ) (iii) with Remark . . (ii). For all i ∈ { , . . . , n}, P i is linear and continuous, hence so is Σ * , and = Σ * ( ) is thus a closed subspace of , hence of Γ -W . Now by de nition, Σ * Σx = Σ * x ∈ , and using successively Lemma . (iv) (i), we have for all s ∈ , ⟨

⟨ ⟨ s x -Σ * Σx ⟩ ⟩ ⟩ Γ -W = ⟨Γ -Σs x -x⟩ = . Altogether, this characterizes Σ * Σx = P Γ -W x. (iii). Let moreover (u, v) ∈ . Supposing that x ∈ Id + W -ΓA -u, then by de nition u -x ∈ W -ΓAx, that is to say for all i ∈ { , . . . , n}, u i -x i ∈ W i -ΓA i x i . We deduce that x ∈ J W -ΓA u ⇔ ∀ i ∈ { , . . . , n}, x i ∈ J W i -ΓA i u i . ( . )
Now, for all i ∈ { , . . . , n}, recall from Remark . that A i i is maximally monotone in i and from Remark . that Γ -W i ∈ S ++ ( i ); we deduce with Combettes and Vũ ( , Lemma . (i)) that W i -ΓA i i is maximally monotone in i Γ -W i . By Lemma . (i)⇔(iv), J W i -ΓA i i has full domain, and with ( . ), so has J W -ΓA . Now, supposing moreover y ∈ J W -ΓA v, calling on ( . ), and summing Lemma . (iii)⇔(iv) over i ∈ { , . . . , n}, we get

∑ n i= ⟨u i -v i x i -y i ⟩ Γ -W i ≥ ∑ n i= x i -y i Γ -W i , thus ⟨ ⟨ ⟨u -v x -y⟩ ⟩ ⟩ Γ -W ≥ x -y Γ -W .
Again with Lemma . , J W -ΓA is also rmly nonexpansive. It is thus the resolvent of a maximally monotone operator in Γ -W ; but the latter is uniquely de ned by J W -ΓA --Id = W -ΓA. (iv). Since ran B ⊆ , developing B and using successively Lemma . (iii) (iv) (ii) leads to ⟨ ⟨ ⟨ΓBx -ΓBy x -y⟩ ⟩ ⟩ Γ -W = ⟨ ⟨ ⟨Γ -ΣΣ * Γ(BΣx -BΣy) Σx -Σy⟩ ⟩ ⟩ = ⟨Bx -By x -y⟩. us, if B is uniformly monotone with modulus ϕ, we get ⟨ ⟨ ⟨ΓBx -ΓBy x -y⟩ ⟩ ⟩ Γ -W ≥ ϕ( xy ). (v). Let β ∈ R ++ . First, using assumption (H ) in the inner product developed above, we get ⟨ ⟨ ⟨βΓBx -βΓBy x -y⟩ ⟩ ⟩ Γ -W ≥ β⟨L -(Bx -By) Bx -By⟩. Developing again the inner product as above, we also get βΓBx -βΓBy Γ -W = β ⟨Bx -By Γ(Bx -By)⟩. Altogether, denoting .

z def = L -(Bx -By), we obtain ⟨ ⟨ ⟨βΓBx -βΓBy x -y⟩ ⟩ ⟩ Γ -W -βΓBx -βΓBy Γ -W ≥ β z -β ⟨z L ΓL z⟩ .

Fixed-Point Equation

Now that we have all necessary notions, let us characterize the solutions of ( . ) with the following xed-point equation. 

i = R W i -ΓA i ( x -ΓBx) i -z i -(ΓBx) i . ( . )
Proof. Let x ∈ . We have the equivalence

∈ n i= A i x + Bx ⇔ ∃(z i ) ≤i≤n ∈ n ⨉ i= i , ∀ i ∈ { , . . . , n}, W i (x -ΓBx -z i ) ∈ ΓA i x , and x = ∑ n i= W i z i . ( . )
Indeed, suppose that for all i ∈ { , . . . , n}, y i ∈ A i x, such that = ∑ n i= y i + Bx. For all i ∈ { , . . . , n}, (H ) shows that y i ∈ i , and thanks to (P ) (ii) and (P ) (ii) we can de ne z i

def = (x -ΓBx) i -W i -Γ y i ∈ i . Using (P ) (i), we get for all i ∈ { , . . . , n}, W i (x -ΓBx -z i ) = W i (x -ΓBx) i + W i -Γ y i = Γ y i ∈ ΓA i x
, and using in addition (P ) (iv), we get

∑ n i= W i z i = ∑ n i= W i (x -ΓBx) i -W i -Γ y i = ∑ n i= W i (x -ΓBx) -∑ n i= Γ y i = x -Γ(Bx + ∑ n i= y i ) = x.
Conversely, summing the right-hand side of ( . ) gives ∑ n i= W i (x -ΓBxz i ) ∈ ∑ n i= ΓA i x, and using (P ) (iv), we get x -ΓBxx ∈ ∑ n i= ΓA i x, and invertibility of Γ leads to ∈ ∑ n i= A i x + Bx. Now thanks to (H ) and (P ) (i), for all i ∈ { , . . . , n},

W i (x -ΓBx -z i ) ∈ ΓA i x ⇔ W i (x -ΓBx) i -z i ∈ ΓA i x i , using (P ) (ii) and (P ) (ii), ⇔ (x -ΓBx) i -z i + x i ∈ W i -ΓA i x i + x i , ⇔ x i = J W i -ΓA i ( x -ΓBx) i -z i , ⇔ z i = J W i -ΓA i ( x -ΓBx) i -z i -( x -ΓBx) i -z i -(ΓBx) i , ⇔ z i = R W i -ΓA i ( x -ΓBx) i -z i -(ΓBx) i . ∎
e following proposition describes how this translates on the product space .

Proposition . . Under assumptions (H ) and (P )-(P ), x ∈ is a solution of ( . ) if, and only if, there exists z ∈ such that x = Σz, and z is a xed point of the operator T∶ → de ned by

T def = R W -ΓA R Γ -W + Id Id -ΓB . Proof. Let z def = (z i ) ≤i≤n ∈ and x def = Σz = ∑ n i= W i z i . Since ΓBz = (ΓBx) i ≤i≤n ∈ , and with Proposition . (ii), P Γ -W z = (x i ) ≤i≤n , we obtain R Γ -W Id -ΓB z = P Γ -W z -z -ΓBz = ( x -ΓBx) i -z i ≤i≤n .
en, Proposition . (iii) shows that 

∀ i ∈ { , . . . , n}, z i satis es ( . ) ⇔ z = R W -ΓA R Γ -W Id -ΓB z -ΓBz , ⇔ z = R W -ΓA R Γ -W Id -ΓB z + Id -ΓB z , ⇔ z = R W -ΓA R Γ -W + Id 

. Convergence

We are now ready to prove our main result. > . We proceed now by case analysis. Supposing rst that ρ k ≤ , we have ( -ρ k )ρ k ≥ . us by Cauchy-Schwartz inequality and nonexpansivity of T, ( . ) becomes

z k+ -z -ρ k c k Γ -W ≤ ( -ρ k ) z k -z Γ -W + ρ k Tz k -Tz Γ -W + ( -ρ k )ρ k z k -z Γ -W , ≤ z k -z Γ -W -ρ k θ ΓBz k -ΓBz Γ -W , ( . 
)
where we used ( . ) and ( -ρ k ) + ρ k + ( -ρ k )ρ k = ( -ρ k + ρ k ) = . Supposing now that ρ k > , we have ( -ρ k )ρ k < . We use then Lemma . (ii) in ( . ) to get

z k+ -z -ρ k c k Γ -W ≤ ( -ρ k ) z k -z Γ -W + ρ k Tz k -Tz Γ -W + ( -ρ k )ρ k -α Tz k -Tz Γ -W + ( -α) z k -z Γ -W .
In the right-hand side, the factor in front of Tz k -Tz Γ -W is ρ k +

( -ρ k )ρ k -α = ρ k -σ k -α .
Recalling that σ k < , this factor is strictly positive, and we can call on ( . ) to get ) since the factor in front of z k -z Γ -W simpli es as ( -

z k+ -z -ρ k c k Γ -W ≤ z k -z Γ -W - -σ k -α ρ k θ ΓBz k -ΓBz Γ -W , ( . 
ρ k ) + ρ k + ( -ρ k )ρ k -α + ( -ρ k )ρ k
-α ( -α) = ( -ρ k ) + ρ k + ( -ρ k )ρ k = . Altogether, we can combine ( . ) and ( . ), and again Cauchy-Schwartz inequality, to conclude that

τ k ΓBz k -ΓBz Γ -W ≤ z k -z Γ -W -z k+ -z Γ -W -ρ k c k Γ -W + ρ k c k Γ -W z k+ -z Γ -W .
where τ k def = min -σ k -α , ρ k ρ k θ. Recall that (z k ) k∈N converges weakly to z and is therefore bounded (Riesz and Sz.-Nagy, , § ). Also, (ρ k c k ) n∈N is summable by (ii), and inf k∈N {τ k } > by (iii). We nally obtain that ∑ k∈N ΓBz k -ΓBz Γ -W < +∞, and in particular (ΓBz k ) k∈N converges strongly to ΓBz, hence lim k→∞ ⟨ ⟨ ⟨ΓBz k -ΓBz z k -z⟩ ⟩ ⟩ Γ -W = . If now B is uniformly monotone with modulus ϕ, it follows from Proposition . (iv) that lim k→∞ ϕ( Σz k -Σz ) = , and the result follows from the property of ϕ. ∎ Remark . . Since T A ∈ , Γ -W , there exists an operator A ′ ∶ → maximally monotone in Γ -W such that T A = J A ′ . We can then show that x T = zer {A ′ + ΓB}, so that our algorithm actually reduces to a forward-backward splitting on the product space. Following this idea, we discussed in a previous work other conditions of strong convergence (Raguet et al., , Remark . ) derived from known results for the forward-backward splitting. Moreover, it is easy to use this formulation to write an inertial version of our preconditioned generalized forwardbackward algorithm from the work of Lorenz and Pock (

). However, the resulting algorithm requires some more computations and more than twice as much memory load in comparison to Algorithm , whereas numerical experiments showed no improvement in the convergence speed (data not shown).

At last, we can now derive the convergence conditions given in § . .

Corollary . .

eorem . and Corollary . hold.

Proof. Skipping some calculations, recursion ( . ) is a speci c instance of ( . ), leading to the rst claim. Suppose now that assumptions (h )-(h ) are in force, and set B set = ∇f and for all i ∈ { , . . . , n}, A i set = ∂ i . (h )⇒(H ). e functional f ○L -is also convex and everywhere di erentiable, and for all (x, y) ∈ , ⟨L -∇f L -x y -x⟩ = ⟨∇f L -x L -y -L -x⟩ ≥ f (L -y) -f (L -x), showing that ∇( f ○ L -) = L -∇f L -. According to Remark . , ∇( f ○ L -) is -Lipschitz continuous in , hence by the theorem of Baillon and Haddad ( , Corollaire ) it is -cocoercive in . For 

⟨∇( f ○ L - )u -∇( f ○ L - )v u -v⟩ ≥ ∇( f ○ L - )u -∇( f ○ L - )v , so that ⟨∇f x -∇f y x -y⟩ ≥ L - ∇f x -L - ∇f y , ≥ ∇f x -∇f y L -. ( 
) i = J W i -Γ∂ i i = prox Γ -W i i i
. At last for the strong convergence, consider that uniform convexity of f implies uniform monotonicity of ∇f (see Bauschke and Combettes, , Example . (iii)). ∎

  i). Let x ∈ R. en, prox m (x) = argmin y∈R { m (x -y) + λ y }; we do not change the minimizer by dividing the objective by m, and we obtain the so -thresholding. (ii). Let x ∈ R . If x = x , then x = x = x and the result obviously holds. Suppose now x ≠ x . By de nition, prox M h (x) = argmin y∈R {H(y)} where for all y ∈ R , H(y) def = m (x -y ) + m (x -y ) + µ yy . For all y ∈ R such that y ≠ y , H is di erentiable in y, rst-order optimality conditions that y ∈ R such that y ≠ y is equal to prox M h (x) if, and only if, y = xµ m yy yy , and y = xµ m yy yy .

Figure :

 : Figure : Optimization comparisons. e top row shows the performance over the smallest datasets population and revenue, while the last graphic shows the performance over the signi cantly larger dataset election.

  Figure : Close-up on the election dataset: results of the second round of the French presidential election, broken down by constituencies in French Brittany. Two candidates are opposed, the colormap goes thus from blue to red, representing respectively the regions where one candidate achieve its highest score, respectively its lowest score. (a). Original map. (b). Number of voters per surface unit over constituencies, from low density in pale orange to high density in dark red. (c). Aggregation; compression ratio , relative error . .

  Figure (b) to (d), local areas without population can still be distinguished, in spite of high degrees of simpli cation.en, as can be seen on Figure (e) and (f), even larger penalizations can be used to suppress scarcely distributed information instead of averaging it.

  Lemma . . Let (α, α ′ ) ∈ ] , [ , β ∈ ] , +∞[, γ ∈ ] , β[, and T, T ′ ∶ → .(i) T is α-averaged in , if, and only if, for all (x, y) ∈ , Tx -Ty ≤ xy --α α (Id -T)x -(Id -T)y ;

  Figure

Figure :

 : Figure : Aggregation of the population density in the greater Paris area for increasing values of s (δ) . e colormap represents high density areas in dark red and low density areas in pale orange.e table below presents the evolution of the compression and error.

Figure :

 : Figure : Aggregation of the average yearly revenue density in the greater Paris area for increasing values of s (δ) and s(ℓ) . e colormap represents areas of high revenues in dark blue and areas of low revenues in cyan.

  By Cauchy-Schwartz inequality, ⟨z L ΓL z⟩ ≤ L ΓL z , so that with β set ⟨ ⟨ ⟨βΓBx -βΓBy x -y⟩ ⟩ ⟩ Γ -W ≥ βΓBx -βΓBy Γ -W , and Lemma . (i)⇔(iii) terminates the proof. ∎

  Id -ΓB z ; Proposition . terminates the proof. ∎ . C e following proposition gives the crucial properties of the above xed-point operator. Proposition . . De ne the operator T A ∶ → and T B ∶ → by L ΓL , Γ -W , and (iii) T ∈ ( -L ΓL ) -, Γ -W . Proof. (i). With Proposition . (iii) and Lemma . (ii)⇔(iv), R W -ΓA and R Γ -W are both nonexpansive in Γ -W , and so is their composition. e result follows by de nition. (ii). With Proposition . (v) and thanks to (P ) (i), Lemma . (iv) can be applied with β set = L ΓL and γ set = . (iii). From T = T A T B , combine (i), (ii) and Lemma . (iii) with α set = and α ′ set = L ΓL . ∎

eorem . . =

 . Set z ∈ and de ne (z k ) k∈N the sequence in such that for all k ∈ N,z k+ = z k + ρ k T A T B z k + b k + a k -z k , ( . )where (a k , b k ) ∈ and ρ k ∈ ] , -L ΓL [. Under assumptions (H )-(H ) and (P )-(P ), if(i) ∑ k∈N ρ k -L ΓL ρ k = +∞,and(ii) ∑ k∈N ρ k a k < +∞ and ∑ k∈N ρ k b k < +∞,then there exists z ∈ x T such that xdef Σz is a solution of ( . ) and that (a) (z k ) k∈N converges weakly to z, and(b) (Σz k ) k∈N converges weakly to x.If moreover(iii) < inf k∈N {ρ k } ≤ sup k∈N {ρ k } ≤ -L ΓL , and(iv) B is uniformly monotone, then (c) (Σz k ) k∈N converges strongly to x. -(b). We know from Proposition . (iii) that there exists R∶ → nonexpansive in Γ -W such that T = T A T B = αR + ( -α)Id. en, recurrence ( . ) reads for all k ∈ N asz k+ = z k + ρ k (αRz k + ( -α)z k + c k -z k ) , = z k + σ k (Rz k + d k -z k ) ,wherec k def = T A (T B z k + b k )+a k -T A T B z k , σ k def = αρ k and d k def = α -c k .By the triangular inequality and nonexpansivity of the involved operators, we have for all k ∈ N,c k Γ -W ≤ a k Γ -W + T B z k + b k -T B z k Γ -W ≤ a k Γ -W + b k Γ -W . us, (ii) provides that ∑ k∈N σ k d k Γ -W = ∑ k∈N ρ k c k Γ -W < +∞ by norms equivalence. Moreover, for all k ∈ N, σ k < and thanks to (i), ∑ k∈N σ k ( -σ k ) = α ∑ k∈N ρ k (α --ρ k ) = +∞.Finally, Proposition . and assumption (H ) ensures x T ≠ ; but x T = x R, and the results follows from Combettes ( , Lemma . ) together with Proposition . and the continuity of Σ. (c). Let now z ∈ x T be the weak limit of the sequence (z k ) k∈N . Let k ∈ N; we have from the recursion ( . ) thatz k+ -z = ( -ρ k )(z k -z) + ρ k (T A (T B z k + b k ) + a k -z) , = ( -ρ k )(z k -z) + ρ k (Tz k -Tz) + ρ k c k , and we can develop z k+ -zρ k c k Γ -W = ( -ρ k ) z k -z Γ -W + ρ k Tz k -Tz Γ -W + ( -ρ k )ρ k ⟨ ⟨ ⟨z k -z Tz k -Tz⟩ ⟩ ⟩ Γ -W .( . )At this point, observe that by nonexpansivity of T A , Proposition . (iii) and Lemma . (i),Tz k -Tz Γ -W ≤ T B z k -T B z Γ -W ≤ z k -z Γ -W -θ ΓBz k -ΓBz Γ -

=

  L y, and use Lemma . (i)⇔(iii) to get

  ). A is uniformly monotone in with modulus ϕ∶ R Now if ⊆ is a closed convex subset of , we denote P the orthogonal projector onto ; orthogonal projector are themselves particular cases of proximity operators. If moreover ⊆ is a closed subspace of , recall that P is linear, idempotent and self-adjoint (see for instanceRiesz and Sz.-Nagy, , § ); in that case, for any x ∈ , we use the convenient notation x
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	De nition . (nonexpansive, α-averaged and rmly nonexpansive operators). T is nonexpansive
	over if		
			∀ (x, y) ∈ (dom T) ,	Tx -Ty ≤ x -y ;
	for α ∈] , [, it is moreover α-averaged if there exists R nonexpansive such that T = αR +( -α) Id.
	We denote (α, ) the set of all α-averaged operators in . In particular, ( , ) is the set of
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		Following for instance Minty (	) and Zarantonello (	), we know that an operator A
	is maximally monotone over if and only if its resolvent J A is rmly nonexpansive with full
	domain. According to Moreau (	, Proposition .b), a particular case of interest of a maximally
	monotone operator is the subdi erential ∂ of a proper, convex and lower semicontinuous
	∶ → ]-∞, +∞]; Moreau (	, Proposition .a) shows then that the resolvent J ∂ corresponds
	to the proximity operator prox ∶ → ∶ x ↦ argmin y∈	x -y + (y).
					def
					= P x.
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  Under assumptions (H ) and (P )-(P ), x ∈ is a solution of ( . ) if, and only if, there exists (z i ) ≤i≤n ∈ ⨉ n i= i such that x = ∑ n i= W i z i , and for all i ∈ { , . . . , n} z
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	Proposition . .			

  h )⇒(H ). Let i ∈ { , . . . , n}.Moreau ( , Proposition .b) shows that ∂ i is maximally monotone in . Moreover, since i = i ○ P i is proper, we know that dom i ∩ i ≠ ; since ran P i = i is a closed subspace, Bauschke and Combettes ( , Corollary . ) show that∂ i = ∂( i ○ P (h )⇒(H ). (h ) (i) together withBauschke and Combettes ( , Corollary . ) show that∂( f + ∑ n i= i ) = ∇f + ∑ n i= ∂ i . But zer {∂( f + ∑ n i= i )} = argmin { f + ∑ n i= i }, according to Fermat principle.To obtain the nal formulation of Corollary . , we follow Hiriart-Urruty and Lemaréchal ( , § XV. ) with Remark . to get for all i ∈ { , . . . , n}, (J W i -Γ∂ i
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i ) = P i ∂ i P i .