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We study an ensemble of two-level quantum systems (qubits) interacting with a common electromagnetic field
in the proximity of a dielectric slab whose temperature is held different from that of some far surrounding walls.
We show that the dissipative dynamics of the qubits driven by this stationary and out of thermal equilibrium
field allows the production of steady many-body entangled states, different from the case at thermal equilibrium
where steady states are always nonentangled. By studying up to ten qubits, we point out the role of symmetry in
the entanglement production, which is exalted in the case of permutationally invariant configurations. In the case
of three qubits, we find a strong dependence of tripartite entanglement on the spatial disposition of the qubits,
and in the case of six qubits we find several highly entangled bipartitions where entanglement can, remarkably,
survive for large qubit-qubit distances up to 100 μm.
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I. INTRODUCTION

Entanglement is a central notion in quantum mechanics,
being considered the most nonclassical manifestation of
quantum formalism [1]. It has been recognized as a new
resource for tasks that cannot be performed by means of
classical ones and it can be manipulated, broadcast, controlled,
and distributed [1,2]. In many-body quantum systems different
types of multipartite entanglement can be present, such as
bipartite and genuine entanglement [3], this last being viewed
as a resource for quantum information processing, as, for
example, in measurement-based quantum computation [4].

Due to the rapid development of quantum experiments, it is
now possible to create highly entangled multiqubit states using
photons [5], trapped ions [6], and cold atoms [7]. In particular,
the quantification of multipartite entanglement is simplified
for special classes of states possessing some symmetry such
as permutation invariance [8]. These states can be created and
characterized in multiqubit quantum experiments with efficient
tomographic protocols [9].

However, entanglement typically tends to be very fragile
with respect to the coupling with external degrees of free-
dom [10–12]. A branch of entanglement theory is dedicated
to finding methods to contrast the environment-induced
degradation of entanglement [12–20]. In particular, reservoir
engineering methods have pointed out the possibility to
change the perspective from reducing the coupling with the
environment to modifying the environmental properties in
order to manipulate the system of interest thanks to its proper
dissipative dynamics [18,21–24].

Recently, the dynamics of few atoms driven by reservoirs
at different temperatures has been studied, both in the case
of ideal independent black-body thermal reservoirs [25–30]
and in more realistic out of thermal equilibrium (OTE)
configurations taking into account the scattering properties
of macroscopic bodies held at different temperatures around
one [31,32] or two atoms [33–35]. Similar approaches have
been also considered in the context of heat transfer [36,37]
and Casimir-Lifshits forces [36–43].

In this paper we study if and how the steady state of more
than two atoms can be controlled thanks to the dissipative

dynamics driven by a common OTE field. The attention will
be mainly focused on the creation and control of quantum
correlations among the atoms due to the interaction between
the atomic dipoles induced by the fluctuations of the common
field. We will study the dependence of this control on the spatial
disposition of the atoms with respect to the bodies composing
their environment, on the internal properties of the atoms and
of the bodies, such as the atomic frequencies and the geometry
and the dielectric properties of the bodies, not to mention the
involved temperatures. Permutationally invariant atomic states
will play a fundamental role in this analysis.

II. MODEL

We want to study the dynamics of an open system S made by
an ensemble of N two-level emitters (qubits) interacting with
a common environment which is a stationary electromagnetic
field out of thermal equilibrium (see Fig. 1). This OTE field
is the result of the thermal radiation emitted by a macroscopic
slab M of thickness δ, which is close to the qubits, and by
some far walls W (not shown in the figure). The temperatures
of the slab, TM, and of the walls, TW, are kept constant and
in general different between them. The radiation emitted by
the far walls can be safely treated at the qubits’ position
as blackbody radiation in the absence of the slab. However,
this radiation is eventually reflected and transmitted by the
slab. The local field felt by each qubit is then the result
of four contributions leading to a strong dependence from
all the physical parameters involved. These parameters are
the common frequency of the qubits and their positions
with respect to the slab, the geometrical (thickness δ) and
dielectric (its resonances) properties of the slab M and the two
temperatures TM and TW.

The total Hamiltonian is HT = HS + HE + HI , where HS

and HE are the free Hamiltonians of the system S and of
the environment E and HI represents their interaction. S is
composed by N qubits having two internal levels |g〉i and |e〉i
with the same transition frequency ω0. The free Hamiltonian
of the qubits is HS = ∑

i �ω0σ
+
i σ−

i , σ+
i (σ−

i ) being the raising
(lowering) operator of the ith qubit. The interaction between
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FIG. 1. (Color online) The N qubits are placed in the same
plane x-y at a distance z from a dielectric slab of thickness δ

whose temperature TM is kept constant and different from that of
the surrounding blackbody radiation, TW , which is also constant.
At the bottom of the figure we show the case when the qubits occupy
the vertices of regular polygons inscribed in a circle of radius r , for
N = 2,3,6.

S and E is given in the multipolar coupling and in dipole
approximation by HI = −∑

i Di · E(Ri) [44], where Di is
the electric-dipole operator of the ith qubit (di = i〈g|Di |e〉i
being its transition matrix element) and E(Ri) is the electric
field at its position Ri .

Under Born, Markovian, and rotating wave approximations,
a microscopic derivation for the master equation describing the
dynamics of the N qubits gives [10,34]

d

dt
ρ = − i

�
[HS + δS,ρ] − i

∑
i �=j

�ij [σ+
i σ−

j ,ρ]

+
∑
i,j

�+
ij

(
σ−

j ρσ+
i − 1

2
{σ+

i σ−
j ,ρ}

)

+
∑
i,j

�−
ij

(
σ+

j ρσ−
i − 1

2
{σ−

i σ+
j ,ρ}

)
, (1)

where δS = ∑
i �[S+

i − S−
i ]σ+

i σ−
i . The functions S±

i , �±
ij , and

�±
ij depend on qubits’ dipoles and on frequency (their explicit

dependence on ω is omitted); they are evaluated at ω0 and are

given by [33,34]

S+
i =

∑
l,l′

sii
ll′(ω)[di]∗l [di]l′ , S−

i =
∑
l,l′

sii
ll′(−ω)[di]l[di]∗l′,

�ij =
∑
l,l′

[di]∗l [dj ]l′
[
s
ij

ll′(ω) + s
ji

l′l (−ω)
]
, (2)

�+
ij =

∑
l,l′

γ
ij

ll′ (ω)[di]∗l [dj ]l′ , �−
ij =

∑
l,l′

γ
ij

ll′ (−ω)[di]l[dj ]∗l′ ,

where l and l′ ∈ {x,y,z} and the functions s
ij

ll′(±ω) and
γ

ij

ll′ (±ω) are connected to the field correlation functions
through the following relations:

γ
ij

ll′ (ω) = 	
ij

ll′(ω) + 	
ji ∗
l′l (ω), s

ij

ll′(ω) = 	
ij

ll′(ω) − 	
ji ∗
l′l (ω)

2i
,

	
ij

ll′(ω) = 1

�2

∫ ∞

0
ds eiωs〈El(Ri ,s)El′ (Rj ,0)〉. (3)

A. Master equation parameters out of thermal equilibrium

The functions S±
i , �±

ij , and �±
ij appearing in the master

equation (1) are then connected to the field correlation
functions, 〈El(Ri ,s)El′(Rj ,0)〉, which depend on all the
physical parameters such as δ, the qubits’ positions, and
the temperatures TM and TW. The explicit form of these
functions in the absence of thermal equilibrium has been
derived in [33,34]. In particular, the transition rates �+

ij and
�−

ij are given by

�+
ij =

√
�i

0(ω)�j

0 (ω)
{
[1 + n(ω,TW)]αij

W(ω)

+ [1 + n(ω,TM)]αij

M(ω)
}
,

�−
ij =

√
�i

0(ω)�j

0 (ω)
{
n(ω,TW)αij

W(ω)∗ + n(ω,TM)]αij

M(ω)∗
}
,

(4)

where α
ij

W(ω)=∑
l,l′ [d̃

i]∗l [d̃j ]l′[α
ij

W(ω)]ll′ , α
ij

M(ω)= ∑
l,l′ [d̃

i]∗l
[d̃j ]l′[α

ij

M(ω)]ll′ , where [d̃i]l = [di]l/|di |, and �i
0(ω) =

|di |2ω3/3�πε0c
3 is the vacuum spontaneous-emission rate

of the ith qubit. The functions [αij

M(ω)]ll′ and [αij ′
W (ω)]ii ′ do

not depend on temperatures, but they depend on all the other
system parameters. In the general case in which the body close
to the qubits has an arbitrary shape, by indicating the position
of the ith qubit as Ri = (ri ,zi), the α functions can be cast
under the form

[
α

ij

W(ω)
]
ll′ = 3πc

2ω

∑
p,p′

∫
d2k

(2π )2

∫
d2k′

(2π )2
ei(k·ri−k′ ·rj )〈p,k|{ei(kzzi−k

′∗
z zj )[ε̂+

p (k,ω)]l[ε̂
+
p′(k′,ω)]∗l′

(
T P (pw)

−1 T † + RP (pw)
−1 R†)

+ ei(kzzi+k
′∗
z zj )[ε̂+

p (k,ω)]l[ε̂
−
p′ (k′,ω)]∗l′RP (pw)

−1 + e−i(kzzi+k
′∗
z zj )[ε̂−

p (k,ω)]l[ε̂
+
p′ (k′,ω)]∗l′P

(pw)
−1 R†

+ e−i(kzzi−k
′∗
z zj )[ε̂−

p (k,ω)]l[ε̂
−
p′(k′,ω)]∗l′P

(pw)
−1

}|p′,k′〉,
[
α

ij

M(ω)
]
ll′ = 3πc

2ω

∑
p,p′

∫
d2k

(2π )2

∫
d2k′

(2π )2
ei(k·ri−k′ ·rj )〈p,k|{ei(kzzi−k

′∗
z zj )[ε̂+

p (k,ω)]l[ε̂
+
p′(k′,ω)]∗l′

×[(
P (pw)

−1 + RP (ew)
−1 − P (ew)

−1 R† − RP (pw)
−1 R† − T P (pw)

−1 T †)}|p′,k′〉, (5)
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where the operators R and T are the standard reflection and
transmission scattering operators associated to the right side of
the body, whose explicit definition can be found, for example,
in [37]. They connect any outgoing (reflected or transmitted)
mode of the field to the entire set of incoming modes.

In Eq. (5), each mode of the field is identified by the
frequency ω, the transverse wave vector k = (kx,ky), the
polarization index p (taking the values p = 1,2 corresponding
to TE and TM polarizations, respectively), and the direction of
propagation φ = ±1 (shorthand notation φ = ±) along the z

axis. The total wave vector takes then the form Kφ = (k,φkz),
where the z component of the wave vector kz is a dependent

variable given by kz =
√

ω2

c2 − k2, where k = |k|. The polar-
ization vectors appearing in Eq. (5) are defined in a standard
way by ε̂

φ

TE(k,ω) = ẑ × k̂ = (−ky x̂ + kx ŷ)/k,ε̂
φ

TM(k,ω) =
c ε̂

φ

TE(k,ω) × Kφ/ω = c (−kẑ + φkzk̂)/ω, where x̂, ŷ, and
ẑ are the unit vectors along the three axes and k̂ =
k/k. In Eq. (5) we have also used 〈p,k|P (pw/ew)

n |p′,k′〉 =
kn
z 〈p,k|�(pw/ew)|p′,k′〉, �(pw) and �(ew) being the projectors

on the propagative (ck < ω, corresponding to a real kz) and
evanescent (ck > ω, corresponding to a purely imaginary kz)
sectors, respectively.

Expressions more explicit for the α functions appearing in
Eq. (5) have been derived in [34] (see Sec. IV therein) by using
the explicit form for the reflection and transmission operators
in the case treated in this paper, that is, when the body close to
the qubits is a slab. In particular, because of the translational
invariance of a planar slab with respect to the x-y plane, R and
T are diagonal and given by

〈p,k|R|p′,k′〉 = (2π )2δ(k − k′)δpp′ρp(k,ω),
(6)

〈p,k|T |p′,k′〉 = (2π )2δ(k − k′)δpp′τp(k,ω),

where the Fresnel reflection and transmission coefficients
modified by the finite thickness δ have the form

ρp(k,ω) = rp(k,ω)
1 − e2ikzmδ

1 − r2
p(k,ω)e2ikzmδ

,

(7)

τp(k,ω) = tp(k,ω)t̄p(k,ω)ei(kzm−kz)δ

1 − r2
p(k,ω)e2ikzmδ

,

where kzm is the z component of the K vector inside
the medium, kzm =

√
ε(ω)ω2

c2 − k2, ε(ω) being the dielectric
permittivity of the slab. In the above equations we have also
introduced the ordinary vacuum-medium Fresnel reflection
coefficients

rTE = kz − kzm

kz + kzm

, rTM = ε(ω)kz − kzm

ε(ω)kz + kzm

, (8)

as well as both the vacuum-medium (noted with t) and
medium-vacuum (noted with t̄) transmission coefficients

tTE = 2kz

kz + kzm

, tTM = 2
√

ε(ω)kz

ε(ω)kz + kzm

,

(9)

t̄TE = 2kzm

kz + kzm

, t̄TM = 2
√

ε(ω)kzm

ε(ω)kz + kzm

.

With regards to the �ij function appearing in Eq. (1), it can
be also expressed in terms of α functions as

�ij =
√

�i
0(ω)�j

0 (ω)

ω3
P

∫ +∞

−∞

ω′3dω′

2π

α
ij

W(ω′) + α
ij

M(ω′)
ω − ω′ .

(10)

Concerning the operator δS in Eq.(1), it is responsible for
the shifts of energy levels such that the renormalized transition
frequency of the ith qubit is equal to ωi = ω0 + S+

i − S−
i . It is

possible to show that only the differences between the shifts
of each qubit influence the steady state. In the case when the
body is a slab, their influence disappears when identical qubits
are placed at the same distance from the slab, all the shifts
being equal between them. In the following we will always be
in this case with z the common distance from the slab and with
ω̃0 the common renormalized transition frequency.

B. Choice of the basis

To give a simple interpretation of the qubits’ dynamics
we consider a basis obtained by extending the approach used
in [45] at zero temperature. We first recast master equation (1)
under the form

d

dt
ρ = i

�
(ρ Heff − H

†
eff ρ) +

∑
i,j

[�+
ij σ

−
j ρσ+

i + �−
ij σ

+
j ρσ−

i ],

(11)

where Heff is a non-Hermitian effective Hamiltonian,

Heff = �

∑
i

[(
ωi + 1

2
i �+

ii

)
σ+

i σ−
i + 1

2
i �−

ii σ
−
i σ+

i

]

+ �

∑
i �=j

[(
�ij + 1

2
i �+

ij

)
σ+

i σ−
j + 1

2
i �−

ij σ
−
i σ+

j

]
,

(12)

and where we used [�ij ]∗ = �ji and [�±
ij ]∗ = �±

ji .
The HS operator permits us to partition the state vector

space W as W = ⊗N
n=0W

n, where the N + 1 sectors Wn are
spanned by the decoupled eigenstates of HS having eigenvalue
n�ω0 (n qubits in the excited state and the N − n remaining
ones in the ground state) having a degeneracy (giving the
dimensionality of Wn) equal to dn = N !/[(N − n)!n!]. The
interaction terms in the second line of Eq. (12) split this
degeneracy. Under the action of Heff the number of excitations
is preserved because Heff commutes with nexc = ∑N

i=1 σ+
i σ−

i ,
representing the number of excited qubits in the system
([Heff,nexc] = 0). For each number of excitations n, Wn can
thus be spanned in terms of the collective eigenstates of Heff .
These states can be found for each n by solving the eigenvalue
equation of the (dn × dn) matrix representing Heff in the space
spanned by the corresponding dn decoupled eigenstates of
HS . Because this matrix is not Hermitian its eigenvalues and
eigenvectors are in general complex (right and left eigenvectors
in general do not coincide). For the extremal cases n = 0 and
N the dimensionality is d0 = dN = 1 and the eigenstates of
Heff correspond to the case when all the qubits are either in the
ground or in the excited state.
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In the Appendix we show that the projection of master
equation (1) on the basis of eigenstates of Heff leads to
the simplification that each density-matrix element in Wn

is connected to all the populations and coherences of Wn+1

and Wn−1 but not to the other elements of Wn. One can
further simplify the problem by using a secular approxima-
tion [44,45] to decouple populations and coherences between
nondegenerate eigenstates. Following [45], the real part of the
complex eigenvalue of Heff/� gives the frequency shift of the
collective state while twice the imaginary part gives the total
decay constant of the state (or inverse lifetime), that is, the
sum of the individual decay constants toward all the states in
the energy manifolds below and above.

In the following, we investigate in the coupled basis the
steady correlations built up between the N qubits during the
dissipative dynamics. To this purpose we numerically integrate
the master equation in the decoupled basis, where the only
block of coupled equations involving density-matrix elements
which can be steadily different from zero concerns all the
populations and all the coherences between states having the
same number of excitations.

III. CORRELATIONS AND THEIR QUANTIFICATION

In the case of a dissipative dynamics one unavoidably
deals with mixed states which still can contain some entan-
glement. Its quantification is considered to be completely
solved only in the simplest case of a two-qubit system. For
higher-dimensional nonpure states, in general, the problem of
characterization of the set of separable mixed states appears to
be extremely complex [1].

As the main quantifier of entanglement we will make use
of negativity. This quantity is strictly related to the Peres-
Horodecki criterion [46], which gives a necessary condition
for an arbitrary bipartite state ρAB to be separable. This
separability condition is also sufficient in the 2 × 2- and
2 × 3-dimensional cases and is given by the positivity of the
partial transpose, which is obtained from any given bipartite
quantum state by transposing the variables of only one of the
two subsystems.

The negativity N associated to an arbitrary state ρAB is
defined as

N (ρAB) = −2
∑

i

σi(ρ
T A), (13)

where σi(ρT A) are the negative eigenvalues of the partial
transpose ρT A of ρAB with respect to the subsystem A, defined
as 〈iA,jB |ρT A|kA,lB〉 = 〈kA,jB |ρAB |iA,lB〉 (note that the def-
inition of N is independent of the part that is transposed).
We use here as negativity twice the original definition, so
that it ranges from zero for a separable state to one for
a maximally entangled state. Negativity is an entanglement
monotone (including convexity) and thus can be considered a
useful measure of entanglement [48].

In this paper we consider different forms of entanglement
associated to a state of N qubits. First, we quantify the
entanglement between two qubits i and j by tracing out the
remaining qubits and by using the two-qubit negativity Ni−j .
We will then compare its value with another entanglement
quantifier, the concurrence Ci−j [47]. Concurrence is also

an entanglement monotone, with a direct physical meaning
due to its connection with the entanglement of formation [1].
Second, we quantify entanglement between groups of qubits
by analyzing the negativity associated to all the possible
bipartitions (. . . ijk . . . / . . . lmn . . . ) obtained without tracing
out any qubits (N...ijk.../...lmn...).

Finally, in the case of three qubits (N = 3) we make use of
the tripartite negativity defined as [49]

N123 = (N1/23N2/13N3/12)
1
3 . (14)

Indeed, a three-qubit nonpure state ρ may be fully separable
(ρ = ∑

i piρ
A
i ⊗ ρB

i ⊗ ρC
i ), biseparable (ρ = ∑

iJ piJ ρJ
i ⊗

ρKL
i , where J runs from A to C and KL runs from BC to

AB, and at least one ρKL
i is entangled), or fully inseparable

(not fully separable nor biseparable). In particular, simply
biseparable states have piJ = 0 only for a single value of J ,
corresponding to the case where one single qubit is separable
from the other two, that are entangled. Differently, in the
case of generalized biseparable states there are nonvanishing
coefficients piJ for more than one J . Fully inseparable states
have fully tripartite (genuine) entanglement which may be
quantified by N123 of Eq. (14), as shown in [49]. However, it is
known that N123 could be nonzero for generalized biseparable
states so that for a finite value of the tripartite negativity for a
given state, even if it assures that this state is not biseparable
with respect to any bipartition, the possibility is not excluded
of the state being a convex mixture of states that are biseparable
with respect to different bipartitions.

IV. ENTANGLEMENT OUT OF THERMAL EQUILIBRIUM

Recently, we have shown that two qubits interacting with
a common OTE field may thermalize into entangled states,
differently from the case at thermal equilibrium where the
entanglement induced by the common environment vanishes
asymptotically [50]. In the following, we investigate the
entanglement properties of N -qubit steady states for fixed
N = 3,6 (chosen as illustrative cases) and their functional
dependence on N . We compare the amount of entanglement
generated with more than two qubits with respect to the case
when only two qubits are present.

In all the following numerical analysis we choose the sap-
phire, characterized by a first resonance at 0.81 × 1014 rad/s,
as material for the slab close to the qubits. This allows us
to obtain the necessary average number of thermal photons
setting one of the two temperatures equal to 300 K. The optical
data for the sapphire dielectric permittivity are taken from [51].
All the qubits are considered identical with dipole moments
oriented along the z direction.

The results obtained in the following strongly depend on
the choice of the two temperatures TW and TM. While all the
forms of steady entanglement disappear when TW = TM, we
will choose out of equilibrium configurations maximizing the
entanglement in the limit case of only two qubits.

A. Three qubits

We start our analysis by considering the case of three
qubits (N = 3), as shown in Fig. 2. Our reference case is
when qubit 2 is absent, which is characterized by a steady
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FIG. 2. (Color online) The three qubits lie on a plane parallel to
the slab of δ = 0.01 μm at a distance z = 8 μm. The qubits frequency
is fixed at ω0 = 0.05 × 1014 rad/s, and the two temperatures are
fixed at TW = 5 K and TM = 300 K. (a) Qubits 1 and 3 are kept
fixed at a distance d13 = 2 μm. Qubit 2 is moved along the line
passing from O and A. When qubit 2 is in O, the three qubits are
aligned and l = 1 μm (l/d13 = 0.5). When qubit 2 is in A, the three
qubits form an equilateral triangle of side l = 2 μm (l/d13 = 1). The
steady global negativity, N123, and the steady negativity between the
external qubits 1 and 3 after tracing out qubit 2, N1−3, are plotted as
a function of l/d13. (b) For the case l = d13, we report populations
and scaled eigenvalues of the collective states. The real part of the
eigenvalues gives the position with respect to the various frequencies
n ω̃0, while the imaginary part is connected to the lifetime of the
different eigenstates, whose inverse is also depicted in a scaled way.

negativity and concurrence indicated by N1/3 and C1/3. The
main aim of this section is to discuss the strong dependence of
the steady entanglement production on the spatial disposition
of the qubits.

We plot in panel (a) of Fig. 2 the tripartite negativity N123

and the two-qubit negativity N1−3, obtained after tracing out
qubit 2, as a function of the ratio l/d13, where l is the distance
between the second qubit and the external qubits 1 and 3,
and d13 is the distance between qubits 1 and 3. The three
qubits are initially aligned (l/d13 = 0.5) and then qubit 2 is
moved along the vertical to the line. The plot shows that
tripartite genuine correlations measured byN123 rapidly switch
on when the equilateral triangle configuration is approached
(l = d13). In this case, the symmetry in the steady state imposes
that the bipartite negativities between qubit i and the other
two qubits jk (Ni/jk) are all equal for any choice i and
jk so that each bipartite negativity Ni/jk coincides with the
tripartite negativity N123 [see Eq. (14)]. When one moves from
this configuration, correlations are mainly shared between
external qubits, as shown by the behavior of the two-qubit

negativity N1−3 which falls down for l = d13, showing that
steady states may present more tripartite entanglement than
the two-qubit one. In general, the presence of qubit 2 implies
a reduction of the two-qubit negativity shared by the external
qubits. If we only consider qubits 1 and 3, we obtain for the
two-qubit negativity the value N1/3 ≈ 0.055, corresponding
to a concurrence C1/3 ≈ 0.258, comparable with the highest
values found in [33,34].

Panel (b) shows for the case l = d13, i.e., when the three
qubits form an equilateral triangle, the energy positions of the
collective states for each sector at a fixed number of excitations,
Wn, n ∈ {0,1,2,3}. The values of the steady populations in
the collective basis are also reported (note that in this basis
the steady state is diagonal and that the degenerate states in
each sector are equally populated). Total decay constants of
the collective states are also depicted, showing that typically
the states with a larger lifetime are the ones steadily more
populated. At thermal equilibrium, the collective states of a
given sector are always equally populated (qubits thermalize
in their free Hamiltonian eigenbasis), leading to steady thermal
nonentangled states. Out of equilibrium, remarkably, collective
states of the same Wn can have different steady populations
implying the emergence of steady quantum correlations.

Hence, the presence and the amount of steady entanglement
depend on two simultaneous mechanisms: on the one hand
the absence of equilibrium allows us to differently populate
collective states which, on the other hand, present an amount
of entanglement strongly dependent on the spatial disposition
of the qubits. In particular, the regular polygon configurations
lead to strongly entangled collective states offering the best
scenario for entanglement production as discussed below in
the case of an equilateral triangle.

Equilateral triangle

We treat here the case when the three qubits form an
equilateral triangle (l = d13), by adding the condition that all
the �±

ij are real (this occurs when the dipole moments of the
qubits are real and have components either only along the z
axis or only along the plane x-y). This geometrical disposition
implies that �±

11 = �±
22 = �±

33 ≡ �± and �±
12(21) = �±

13(31) =
�±

23(32) ≡ �±
q and �12(21) = �13(31) = �23(32) ≡ �. As shown

in panel (b), the eigenstates of Heff/� mainly involved in the
steady state are the ones with zero or one excitations. These
eigenstates, λ, and their eigenvalues, �, are∣∣λ(0)

1

〉 = |000〉, ∣∣λ(1)
1

〉 = (|001〉 + |010〉 + |100〉)/
√

3,

∣∣λ(1)
2

〉 = |010〉 − |001〉√
2

,
∣∣λ(1)

3

〉 = |100〉 − |001〉√
2

,

�
(0)
1 = i

3

2
�−, �

(1)
1 = ω̃0 + 2� + i

�++2(�−+�−
q + �+

q )

2
,

�
(1)
2 = ω̃0 − � + i

2�− + �+ − �−
q − �+

q

2
, �

(1)
3 = �

(1)
2 .

(15)

Equation (15) shows that collective states may be strongly
entangled as a consequence of the permutational invariance of
the qubits’ configuration (|λ(1)

1 〉 is, for example, a maximally
entangled state). In Fig. 2, for l = d13, entanglement derives
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1 3 1 23456

14 2356 124 356
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21
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r
3

FIG. 3. (Color online) The six qubits form a regular hexagon
parallel to the slab and inscribed in a circle of radius r . The values
of δ,z,ω0,TW, and TM are the same as Fig. 2. The maximal negativity
among two-qubit negativities (N1−3) and among each type of bipartite
negativities (N1/23456, N14/2356, and N124/356) are plotted as a function
of the circle radius r .

essentially by a classical mixing of the degenerate eigenstates
|λ(1)

2 〉 and |λ(1)
3 〉 (equal populations ≈0.266) which have a

smaller decay constant than |λ(1)
1 〉, which is then much less

populated (≈ 0.008). We note that the amount of entanglement
produced is strongly limited by the large population of the
ground state |λ(0)

1 〉 (≈0.449).
It is easy to show that when the three qubits are aligned

(l/d13 = 0.5) collective states in W 1 do not include the
maximally entangled state |λ(1)

1 〉, and that the eigenstate more
populated in this sector has the form of a product state between
the ground state of qubit 2 and a maximally entangled state
between qubits 1 and 3, i.e., (|100〉 − |001〉/√2). This is the
reason why N1−3 (taking into account the presence of qubit
2, which is then traced out) is close to N1/3 (obtained in the
absence of qubit 2).

We finally remark that, in Fig. 2, by keeping fixed TM and by
increasing TW up to ≈19 K the tripartite negativity N123 goes
to zero. The different forms of steady entanglement found in
the next sections will share a similar dependence on TW.

B. Six qubits

Here we consider the case of six qubits (N = 6) forming a
regular hexagon parallel to the slab. The aim is to discuss the
different forms of entanglement present in the steady state of
the qubits. We focus on all the two-qubit negativities obtained
tracing out four of the six qubits and the negativities of all
the possible bipartitions obtained by dividing the six qubits
in two groups made of, respectively, n and 6 − n qubits (n ∈
{1,2,3}). The symmetry in the total state makes many between
these negativities equal. For example, there are only three not
equivalent two-qubit negativities, i.e., N1−2, N1−3, and N1−4,
the choice of the first qubit being free and since there are only
three different qubit-qubit distances. Similar considerations
hold for the bipartite negativities.

Among the two-qubit and the bipartite negativities for any
n, we plot in Fig. 3 the maximal values as a function of

1 3

1 23456

14 2356

124 356

00.1 0.10.050.05
0

0.04

0.08

0.12

0.16

x r

21

6

5 4

rx
3

FIG. 4. (Color online) The six qubits almost form a regular
hexagon parallel to the slab and inscribed in a circle of radius
r ≈ 0.33 μm. The values of δ,z,ω0,TW, and TM are the same as Fig. 3.
The same negativities of Fig. 3 (N1−3,N1/23456,N14/2356, andN124/356)
are plotted as a function of the ratio x/r . For x = 0, a regular hexagon
is formed and the corresponding maxima of negativities coincide with
the values found in Fig. 3 for r ≈ 0.33 μm

the radius of the circle circumscribing the hexagon. The plot
evidences an increasing of negativity for larger values of n with
values up to around 0.16, much larger than the ones obtained
in the case of three qubits. A second important feature is a
strong resistance of negativity with respect to the increase of
distances between qubits. Negativity is still larger than zero
up to a radius of 100 μm. We also note the presence of a
large plateau at large r where negativity remains stable even
if at small values. This plateau appears to be connected to
the behavior of the decay rates �−

ij . For r ranging between 15
and 35 μm, we numerically find that �−

12, �−
13, and �−

14 are
almost equal even if the distance between these couples of
qubits varies. This differs from what typically occurs for other
values of r and for �+

ij . The origin of this behavior of �−
ij can

be found in the peculiar dependence on the distance between
qubits of the integral describing the effects of the evanescing
field emitted by the slab on the qubits’ dynamics [34].

In order to investigate how a deviation from the symmetric
configuration of a regular hexagon affects the above results,
we plot in Fig. 4 the same negativities selected in Fig. 3
as a function of the ratio x/r , where r is the radius of
the circle depicted in the inset of this figure and x is the
distance of the sixth qubit from the position it should have
to form a regular hexagon. This plot shows that negativities
rapidly decrease when the symmetric configuration is lost,
highlighting the fundamental role played by symmetry in the
generation of multipartite steady entanglement out of thermal
equilibrium. We remark that the entanglement reduction when
one moves away from symmetric configurations appears to be
more pronounced of what was already observed in Fig. 2 in
the case of three qubits.

C. Arbitrary N

Here we let the number of qubits N vary, while being always
placed at the vertices of regular polygons. In Fig. 5, we plot as a
function of the number of qubits the maximal negativity among
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2 4 6 8 10
0.05

0.10

0.15

Number of qubits N

N Negmax

2 1 2

3 1 23

4 12 34

5 13 245

6 124 356

7 135 2467

8 1256 3478

9 1357 24689

10 1267 3458910

N Negmaxgg

2 1 2

3 1 23

4 122 34

5 13 245

6 12444 356

7 1355 2467

8 125666 3478

9 135777 24689

10 126777 3458910

FIG. 5. (Color online) For each N , the qubits form a regular
polygon inscribed in a circle of radius 0.5 μm, parallel to the slab.
The values of δ,z,ω0,TW, and TM are the same as Fig. 2. The maximal
negativity is plotted as a function of the number of qubits N , which
varies between 2 and 10. For each N the maximal negativity is found
between all the two-qubit negativities and all the bipartite negativities.

all the possible two-qubit negativities obtained by tracing out
N − 2 qubits and among all the possible bipartite negativities.
By increasing the number of qubits we find large values of
negativities which seem to remain quite stable with a peak
in the case of the hexagon (N = 6). These values represent a
lower threshold to the maximal negativity obtainable for each
configuration, leaving open the possibility to improve them
by optimizing the various parameters involved in the system
[we use here the values of the parameters optimizing in the
three-qubit configuration the two-qubit negativity N1/3 (see
Fig. 2)].

V. CONCLUSIONS

We studied the dynamics of an ensemble of qubits in-
teracting with a common stationary field out of thermal
equilibrium resulting from a rich yet simple configuration
involving macroscopic bodies held at different temperatures,
which is within experimental reach.

We pointed out the possibility to generate steady entangled
multipartite states giving a simple interpretation of the dynam-
ics in a particular collective basis. The absence of equilibrium
permits us to differently populate collective states which at
thermal equilibrium would be steadily equally populated. This
leads to the creation of different forms of steady many-body
entanglement strongly dependent on the characteristics of the
collective states and on how they are populated. In the case of
permutationally invariant qubit configurations, the collective
states present the most entanglement, offering thus the ideal
case to be exploited out of equilibrium.

In the case of three qubits we then showed how to
switch on and off genuine tripartite entanglement by slightly
moving one of the three qubits. For six qubits, we found a
large amount of entanglement under different bipartite forms,
produced during the dissipative dynamics. Finally, by varying
the number of qubits from 2 to 10, we showed that stable
values of entanglement occur in the more strongly correlated
bipartitions.

Our analysis pointed out that simple OTE configurations
may permit the production and manipulation of steady mul-
tipartite entanglement, resistant for large interqubit distances
(up to 100 μm in Fig. 3), offering then new tools possibly ex-
ploitable for quantum computational tasks. These phenomena
could be observed, for example, in configurations similar to
the one considered in [41], where trapped atoms are placed in
proximity to a substrate held at a temperature different from
that of the cell surrounding the emitters and the substrate. The
atomiclike systems of our study could be implemented, for
example, with cold atoms trapped near surfaces [52], possibly
in symmetric configurations [53], or with quantum dots.

ACKNOWLEDGMENTS

The authors thank N. Bartolo and B. Leggio for useful
discussions and acknowledge financial support from the Julian
Schwinger Foundation.

APPENDIX: PROJECTION OF THE
MASTER EQUATION

Here we project the master equation of Eq. (1) on the basis
of eigenstates of Heff/�, given in Eq. (12).

In the following the eigenstates of HS/� spanning the sector
Wn are indicated as |k(n)

β 〉 = |{k1,....,kn}β〉, being 1 � k1 �
... � kn � N . For each number of excitations n, we can span
Wn in terms of the right eigenstates of Heff/�:

(Heff/�)
∣∣λ(n)

α

〉 = �(n)
α

∣∣λ(n)
α

〉 = (
G(n)

α + iF (n)
α

)∣∣λ(n)
α

〉
, (A1)

where, for each n, α runs from 1 to dn = N !/[(N − n)!n!].
Now we write

∣∣λ(n)
α

〉 =
∑

β

C
(n)
α,β

∣∣k(n)
β

〉
, (A2)

where, for each n, C(n) is the matrix allowing the change of
basis. We now invert the above relationship to get

∣∣k(n)
β

〉 =
∑

α

[
C

(n)
β,α

]−1∣∣λ(n)
α

〉
, (A3)

where the matrix [C(n)]−1 is the inverse of C(n) (we indicate its
elements with [C(n)

β,α]−1). In order to project the master equation
in the basis of the right eigenstates of Heff/� we write down
the following expressions:

σ−
i

∣∣λ(n)
α

〉 =
∑

β∈�
(n)
i

C
(n)
α,β

∣∣k(n−1)
β−i

〉

=
∑

ᾱ

∑
β∈�

(n)
i

C
(n)
α,β

[
C

(n−1)
β−i ,ᾱ

]−1∣∣λ(n−1)
ᾱ

〉
(A4)

=
∑

ᾱ

B
(n,−i)
α,ᾱ

∣∣λ(n−1)
ᾱ

〉
,

where the action of σ−
i is such that in the expression of |λ(n)

α 〉
in terms of |k(n)

β 〉 only the n-tuples {k1,....,kn} (individuated by

β) containing i survive [we name this ensemble �
(n)
i and β−i ,
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the index individuating the eigenvector in W (n−1) obtained by
applying σ−

i to the eigenvector in W (n) individuated by β].
With k(n−1)

β−i
we indicate the resulting (n − 1)-tuple after the

element i is erased by the action of σ−
i (qubit i passes from

the excited to the ground state). We have also defined

B
(n,−i)
α,ᾱ =

∑
β∈�

(n)
i

C
(n)
α,β

[
C

(n−1)
β−i ,ᾱ

]−1
. (A5)

Concerning the action of σ+
i , it is

σ+
i

∣∣λ(n)
α

〉 =
∑

β∈�
(n)
−i

C
(n)
α,β

∣∣k(n+1)
β+i

〉

=
∑

ᾱ

∑
β∈�

(n)
−i

C
(n)
α,β

[
C

(n+1)
β+i ,ᾱ

]−1∣∣λ(n+1)
ᾱ

〉
(A6)

=
∑

ᾱ

B
(n,+i)
α,ᾱ

∣∣λ(n+1)
ᾱ

〉
,

where the action of σ+
i is such that in the expansion of |λ(n)

α 〉 in
terms of |k(n)

β 〉 only the n-tuples {k1, . . . ,kn}β not containing
i survive (that is, only if qubit i is in the ground state) [we
name this ensemble �

(n)
−i ]. With k(n+1)

β+i
we indicate the resulting

(n + 1)-tuple after the element i is added by the action of σ+
i

(qubit i passes from the ground to the excited state). We have
also defined

B
(n,+i)
α,ᾱ =

∑
β∈�

(n)
−i

C
(n)
α,β

[
C

(n+1)
β+i ,ᾱ

]−1
. (A7)

In particular, for the cases n = 0 and N the dimensionality
is d0 = dN = 1 (the indices α and β take only the value 1).
Thus,

σ−
i

∣∣λ(N)
1

〉 = ∣∣k(N−1)
1−i

〉 =
∑

ᾱ

[
C

(N−1)
1−i ,ᾱ

]−1∣∣λ(N−1)
ᾱ

〉

=
∑

ᾱ

B
(N,−i)
1,ᾱ

∣∣λ(N−1)
ᾱ

〉
,

σ−
i |λ(0)

1 〉 = 0,

σ+
i |λ(N)

1 〉 = 0,

σ+
i

∣∣λ(0)
1

〉 = ∣∣k(1)
1+i

〉 = |{i}〉 =
∑

ᾱ

[
C

(1)
1+i ,ᾱ

]−1∣∣λ(1)
ᾱ

〉

=
∑

ᾱ

B
(0,+i)
1,ᾱ

∣∣λ(n−1)
ᾱ

〉
. (A8)

Using Eqs. (11), (A4), (A6), and (A8) it is then easy to write
the projection of master equation (1) on the basis of eigenstates
of Heff/�:〈

λ
(m)
β

∣∣ρ̇∣∣λ(n)
α

〉 = ρ̇βm,αn
= −i

(
�

(m) ∗
β − �(n)

α

)
ρβm,αn

+
∑
β̄,ᾱ

⎡
⎣∑

i,j

�+
ij B

(m,+j ) ∗
β,β̄

B
(n,+i)
α,ᾱ

⎤
⎦ ρβ̄m+1,ᾱn+1

+
∑
β̄,ᾱ

⎡
⎣∑

i,j

�−
ij B

(m,−j ) ∗
β,β̄

B
(n,−i)
α,ᾱ

⎤
⎦ ρβ̄m−1,ᾱn−1

.

(A9)
We define the new functions

βm

αn
P

β̄m+1
ᾱn+1

=
∑
i,j

�+
ij B

(m,+j ) ∗
β,β̄

B
(n,+i)
α,ᾱ ,

(A10)
βm

αn
M

β̄m−1
ᾱn−1

=
∑
i,j

�−
ij B

(m,−j ) ∗
β,β̄

B
(n,−i)
α,ᾱ ,

and we rewrite Eq. (A9) as

ρ̇βm,αn
= −i

(
�

(m) ∗
β − �(n)

α

)
ρβm,αn

+
∑
β̄,ᾱ

βm

αn
P

β̄m+1
ᾱn+1

ρβ̄m+1,ᾱn+1

+
∑
β̄,ᾱ

βm

αn
M

β̄m−1
ᾱn−1

ρβ̄m−1,ᾱn−1
. (A11)

We observe that the choice of the right eigenstates of Heff/�

as a basis from which to project the master equation leads to
the relevant simplification that each density-matrix element
belonging to Wn is not connected to the other elements of Wn

and is only connected to all the populations and coherences
of Wn+1 and Wn−1. We finally remark that one can further
simplify the problem by using the secular approximation if
for each number of excitations n there are not degenerate
eigenstates in the spectrum of Heff/� [44,45].
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