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GLOBAL LIPSCHITZ CONTINUITY

FOR MINIMA OF DEGENERATE PROBLEMS

PIERRE BOUSQUET AND LORENZO BRASCO

Abstract. We consider the problem of minimizing the Lagrangian
∫

[F (∇u)+f u] among functions

on Ω ⊂ RN with given boundary datum ϕ. We prove Lipschitz regularity up to the boundary for
solutions of this problem, provided Ω is convex and ϕ satisfies the bounded slope condition. The
convex function F is required to satisfy a qualified form of uniform convexity only outside a ball
and no growth assumptions are made.
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2 BOUSQUET AND BRASCO

1. Introduction

1.1. Aim of the paper. Consider the following variational problem arising in the study of optimal
thin torsion rods (see [1])

min
u∈W 1,2

0 (Ω)

∫
Ω

[
F (∇u)− λu

]
dx.

Here Ω is a bounded open set of R2, λ ∈ R+ and the function F is given by

(1.1) F (z) =


|z|, if |z| ≤ 1,

1

2
|z|2 +

1

2
, if |z| > 1.

By the direct methods in the Calculus of Variations, this problem admits at least a solution u.
The regularity of u is obviously limited by the singularities and degeneracy of F . In this respect,
observe that F is non differentiable at 0 and the Hessian of F degenerates at any point of the unit
ball.

When Ω is a disc centered at the origin, one can prove that this solution is unique, radial and
Lipschitz continuous, but not C1. The main purpose of this paper is to establish that such a
regularity property remains true in a more general framework. Notably, we merely assume that
the domain Ω ⊂ RN is convex (here N ≥ 2) and we replace the parameter λ by a generic function
f ∈ L∞(Ω). We also allow for more general boundary conditions. Most importantly, we consider
singular and degenerate Lagrangians, which may have a wild growth at infinity. Given such a
convex function F which may be singular and/or degenerate inside a ball, we thus consider more
generally the following problem:

(P0) min

{
F(u) :=

∫
Ω

[
F (∇u) + f u

]
dx : u− ϕ ∈W 1,1

0 (Ω)

}
.

1.2. A glimpse of BSC condition. In order to neatly motivate the study of this paper and
explain some of the difficulties we have to face, let us start by recalling some known facts about
Lipschitz regularity. One of the simplest instances of problem (P0) is when f ≡ 0 and F is strictly
convex. This substantially simplifies the situation since then:

(1) a comparison principle holds true, i.e. if u and v are two solutions of (P0) in ϕ+W 1,1
0 (Ω)

and ψ +W 1,1
0 (Ω) respectively and ϕ ≤ ψ on ∂Ω, then u ≤ v on Ω as well. This statement

can be generalized to the case when F is merely convex but superlinear, see [9, 32].

(2) an affine map v : x 7→ 〈ζ, x〉+ a is a minimum.

The strict convexity of F also implies the uniqueness of the minimum. From the second observation
above, it thus follows that when the boundary datum ϕ is affine, ϕ is the unique minimum. In
particular, it is Lipschitz continuous. In contrast, when ϕ is assumed to be merely Lipschitz
continuous, such a regularity property can not be deduced for a minimizer: even if F (∇u) = |∇u|2
and Ω is a ball, the harmonic extension of a Lipschitz function ϕ : ∂Ω → R is not Lipschitz in
general (see [8] for a counterexample), but only Hölder continuous (see e.g. [2, 5]).

These observations led to consider boundary data satisfying the so-called bounded slope condition.
We say that ϕ : RN → R satisfies the bounded slope condition (see also Section 2) if ϕ|∂Ω coincides
with the restriction to ∂Ω of a convex function ϕ− and a concave function ϕ+. Equivalently, ϕ|∂Ω

can be written as the supremum of a family of affine maps and also as the infimum of another family
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of affine maps. When F is convex and f ≡ 0, the bounded slope condition implies the existence
of a Lipschitz solution to (P0), see [29, Teorema 1.2] or [22, Theorem 1.2]. The proof relies in an
essential way on the two properties (1) and (2).

When f 6≡ 0, these two properties are false in general and the above approach must be supple-
mented with new ideas. Stampacchia [34] considered Lagrangians of the form F (∇u) +G(x, u) for
some function G : Ω × R → R satisfying suitable growth conditions (see also [25]). For bounded
minima, there is no loss of generality in assuming that G(x, u) has the form f(x)u, see Section 5.
In the following, we shall thus make this restriction.

In this case the bounded slope condition can still be exploited to obtain a Lipschitz regularity
result when F is uniformly convex, in the following sense: F is C2 and there exists µ > 0, τ > −1/2
such that for every z, ξ ∈ RN ,

(1.2) 〈D2F (z) ξ, ξ〉 ≥ µ (1 + |z|2)τ |ξ|2.
In this framework, if Ω is uniformly convex and f ∈ C0(Ω), then in [34] it is proven that every
solution of (P0) is Lipschitz continuous. In Stampacchia’s proof, the uniform convexity of F is used
in a crucial way to compensate the pertubation caused by the lower order term f(x)u. In this
respect, we point out that when f is a constant map and F is isotropic1, it is possible to consider
a more general class of functions F , see [18].

1.3. Main results. We now describe our contribution to the regularity theory for degenerate and
singular Lagrangians which are uniformly convex at infinity. We first detail the uniform convexity
property that will be considered in this paper. In what follows, we note by BR the N−dimensional
open ball of radius R > 0 centered at the origin.

Definition 1.1. Let Φ : (0,+∞)→ (0,+∞) be a continuous function such that

(1.3) lim
t→+∞

tΦ(t) = +∞.

We say that a map F : RN → R is Φ−uniformly convex outside the ball BR ⊂ RN if for every
z, z′ ∈ RN such that the segment [z, z′] does not intersect BR and for every θ ∈ [0, 1]

(1.4) F (θ z + (1− θ) z′) ≤ θ F (z) + (1− θ)F (z′)− 1

2
θ (1− θ) Φ

(
|z|+ |z′|

)
|z − z′|2.

If the previous property holds with Φ ≡ µ > 0, we simply say that F is µ−uniformly convex outside
the ball BR ⊂ RN .

The following is the main result of the paper:

Main Theorem. Let Ω ⊂ RN be a bounded convex open set, ϕ : RN → R a Lipschitz continuous
function, F : RN → R a convex function and f ∈ L∞(Ω). We consider the following problem

(PΦ) inf

{
F(u) :=

∫
Ω

[
F (∇u) + f u

]
dx : u− ϕ ∈W 1,1

0 (Ω)

}
.

Assume that ϕ|∂Ω satisfies the bounded slope condition of rank K ≥ 0 and that F is Φ−uniformly
convex outside the ball BR, for some R > 0. Then problem (PΦ) admits at least a solution and
every such a solution is Lipschitz continuous. More precisely, we have

‖u‖L∞(Ω) + ‖∇u‖L∞(Ω) ≤ L = L(N,Φ,K,R, ‖f‖L∞(Ω), diam(Ω)) > 0,

for every solution u.

1By this, we mean that F (z) = h(|z|) for some convex function h.
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Some comments on the assumptions of the previous result are in order.

Remark 1.2. Observe in particular that we allow for Lagrangians which are not necessarily C1.
Moreover, we do not assume any growth condition from above on F at infinity. For example, the
previous result covers the case of

(1.5) F (z) = µ (|z|p − δ)+ +
N∑
i=1

|zi|pi or F (z) = µ (|z| − δ)p+ +
N∑
i=1

|zi|pi ,

where µ > 0, δ ≥ 0, p > 1 and 1 < p1 ≤ · · · ≤ pN without any further restriction. On the contrary,
the case µ = 0 is not covered by our result, not even when p1 = p2 = · · · = pN (see the recent paper
[3] for some results in this case). Of course, many more general functions F can be considered, not
necessarily of power-type: for example

F (z) = (|z| − δ)+

[
log(1 + |z|)

]p
,

with δ ≥ 0 and p > 1 fulfills our hypothesis. The case p = 1 is ruled out by condition (1.3).
Finally, the domain Ω is convex (this is implicitly implied by the bounded slope condition), but

not necessarily uniformly convex nor smooth.

1.4. Steps of the proof. The first step of the proof is an approximation lemma which is new in
several respects. Given a bounded open convex set Ω and a function ϕ : RN → R which satisfies
the bounded slope condition of rank K for some K > 0, we construct

• a sequence of smooth bounded open convex sets Ωk ⊃ Ω converging to Ω (for the Hausdorff
metric);

• a sequence of smooth functions ϕk which satisfy the bounded slope condition of rank K+ 1
on Ωk, such that ϕk = ϕ on ∂Ω.

This construction relies on some properties of the bounded slope condition that were initially dis-
covered by Hartman [23, 24]. In addition, we approximate the function F satisfying the Φ−uniform
convexity assumption (3.1) by a sequence of smooth functions which are uniformly convex on the
whole RN . We are thus reduced to consider a variational problem (Pk) for which the existence of
a smooth solution uk is well-known. The goal is to establish regularity estimates on uk, which are
independent of k.

The second step is the construction of suitable barriers for the regularized problem (Pk). Here
the bounded slope condition plays a key role. This approach is quite standard but we have to
overcome a new difficulty with respect to [34]: the stronger degeneracy of the Lagrangian. This is
handled by introducing new explicit barriers adapted to this setting. From this construction, we
deduce a uniform bound on

‖uk‖L∞(Ωk) + ‖∇uk‖L∞(∂Ωk).

In the third step of the proof, we obtain an estimate on the Lipschitz constant of uk. The method
that we follow is classical in the setting of nonsmooth Lagrangians, which do not admit an Euler-
Lagrange equation. We compare a minimum u with its translations, namely functions of the form
u(·+ τ), τ ∈ RN . Once again, we have to cope with the degeneracy of the higher order part F of
the Lagrangian, in presence of a term depending on x and u. The main idea in [34] was that the
uniform convexity of F could be used to neutralize the lower order term f(x)u. In our situation,
this is only possible when |∇u| > R. On the set where |∇u| ≤ R instead, the gradient is obviously
bounded almost everywhere, but this does not imply that the function u is Lipschitz continuous
there, since we have no information on the regularity of this set.
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Once a Lipschitz estimate independent of k is established, it remains to pass to the limit when
k goes to ∞ in order to establish the existence of a Lipschitz solution to the original problem
(PΦ). Since F is not strictly convex in general, this is not sufficient to infer that every minimizer
is a Lipschitz function. In order to conclude the proof, we use that the lack of strict convexity is
“confined” in the ball BR, thus the Lipschitz regularity of a minimizer can be “propagated” to all
the others (see Lemma 2.9).

1.5. Comparison with previous results. In order to handle the Lagrangian F given by (1.1), an
entirely different approach could have been followed. Indeed, such an F has a Laplacian structure
at infinity, i.e. for every ξ ∈ RN

〈D2F (z) ξ, ξ〉 ' |ξ|2, for |z| � 1.

Instead of exploiting the properties of the boundary condition ϕ, one can rely on the specific
growth property satisfied by F and prove a Lipschitz estimate by using test functions arguments
and Caccioppoli-type inequalities.

It is impossible to give a detailed account of all the contributions to the regularity theory of
(local) minimizers of Lagrangians having more generally a p−Laplacian structure at infinity, i.e.
such that for every ξ ∈ RN

〈D2F (z) ξ, ξ〉 ' |z|p−2 |ξ|2, for |z| � 1.

We cite the pioneering papers [10, 20, 31]. More recently, many studies have been devoted to this
subject, see for example [6, 12, 7, 14, 15, 17, 27] and [33]. Among the many contributions on the
topic, we wish to mention the paper [19, Theorem 2.7] by Fonseca, Fusco and Marcellini. Here
the Lagrangian has the form F (x,∇u) and is assumed to be p−uniformly convex at infinity in the
following sense: there exist p > 1, µ > 0 and R > 0 such that for every ξ, ξ′ ∈ RN \ BR and for
every θ ∈ [0, 1],

(1.6) F (x, θ z + (1− θ) z′) ≤ θ F (x, z) + (1− θ)F (x, z′)− µ

2
θ (1− θ) (|z|+ |z′|)p−2|ξ − ξ′|2.

Observe that when F is C2(RN ), condition (1.6) coincides with (1.2) for every z ∈ RN \ BR. In
addition, F is assumed to have p−growth, i.e.

(1.7) 0 ≤ F (x, ξ) ≤ L (1 + |ξ|)p, ξ ∈ RN .
Then [19, Theorem 2.7] shows that every local minimizer is locally Lipschitz continuous. Observe
that this holds for local minimizers, thus no regular boundary conditions ϕ are needed. In particular,
this kind of result can not be deduced from our Main Theorem.

On the other hand, such a result is less general for two reasons: first of all, condition (1.6) is
more restrictive than our (1.4), since it corresponds to the particular case Φ(t) = µ tp−2; more
importantly, we do not assume any growth condition of the type (1.7) on F .

It should be pointed out that the technique of [19] can be pushed further, by weakening (1.7)
and replacing it by a q−growth assumption, i.e.

0 ≤ F (x, ξ) ≤ L (1 + |ξ|)q, ξ ∈ RN ,
with q > p, see for example [13, Theorem 1.1]. But still in this case, some restrictions are necessary:
namely a condition like q ≤ (1 + CN ) p is required. Indeed, for q and p too far away, well-known
examples show that local minimizers could be even unbounded (see [26] for a counterexample and
[11, 17, 28] for some regularity results on so-called (p, q) growth problems). In particular, with
these methods it is not possible to consider Lagrangians like (1.5). As for global regularity, though
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not explicitely stated in [19] or [13], we point out that the results of [13, 19] can be extended (as
done in [6] for the Neumann case) to Lagrangians of the form F (∇u) + f(x)u, provided Ω and the
boundary datum are smooth enough.

1.6. Plan of the paper. In Section 2 we introduce the required notation and definitions. We recall
some basic regularity results that will be needed throughout the whole paper. We also establish
a new approximation lemma for a function ϕ which satisfies the bounded slope condition (this is
Lemma 2.6). Then in Section 3 for the sake of completeness we show that problem (PΦ) admits
solutions. The proof of the Main Theorem is then contained in Sections 4 & 5 : at first we show the
result under the stronger assumption that F is µ−uniformly convex everywhere; then we deduce
the general result by an approximation argument. Finally, Section 6 considers the case of more
general functionals, where the lower order term f(x)u is replaced by terms of the form G(x, u). A
(long) Appendix containing some results on uniformly convex functions complements the paper.

Acknowledgements. We warmly thank Guido De Philippis for pointing out a flaw in a preliminary
version of this paper. Part of this work has been written during a visit of the first author to Marseille
and of the second author to Toulouse. The IMT and I2M institutions and their facilities are kindly
acknowledged.

2. Preliminaries

2.1. The bounded slope condition and approximation of convex sets.

Definition 2.1. Let Ω be a bounded open set in RN and K > 0. We say that a map ϕ : ∂Ω→ R
satisfies the bounded slope condition of rank K if for every y ∈ ∂Ω, there exist ζ−y , ζ

+
y ∈ RN such

that |ζ−y |, |ζ+
y | ≤ K and

(2.1) ϕ(y) + 〈ζ−y , x− y〉 ≤ ϕ(x) ≤ ϕ(y) + 〈ζ+
y , x− y〉, for every x ∈ ∂Ω.

Remark 2.2. We recall that whenever there exists a non affine function ϕ : ∂Ω → R satisfying
the bounded slope condition, the set Ω is necessarily convex (see [22, Chapter 1, Section 1.2]).

As observed by Miranda [29] and Hartman [23], there is a close relationship between this condition
and the regularity of ϕ. For example, we recall the following result contained in [23, Corollaries
4.2 & 4.3].

Proposition 2.3 ([23]). If Ω ⊂ RN is a C1,1 open bounded convex set and ϕ satisfies the bounded
slope condition, then ϕ is C1,1. If in addition Ω is assumed to be uniformly convex, then the
converse is true as well, i.e. if ϕ is C1,1, then it satisfies the bounded slope condition.

In this section, we indicate how one can approximate a convex set Ω by a sequence of smooth
convex sets while preserving the bounded slope condition of a boundary map ϕ : ∂Ω→ R. We first
introduce some notation: given an open and bounded convex set Ω ⊂ RN , we introduce the normal
cone at a point x ∈ ∂Ω by

NΩ(x) =

{
ξ ∈ RN : sup

y∈Ω
〈ξ, y − x〉 ≤ 0〉

}
.

We also set

SΩ(x) = {ξ ∈ NΩ(x) : |ξ| = 1} .
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Finally, given x0 ∈ Ω we introduce the gauge function of Ω centered at x0 by

jx0,Ω(x) = inf{λ > 0 : x− x0 ∈ λ (Ω− x0)}.
This is a convex positively 1−homogeneous function such that jx0,Ω(x0) = 0 and jx0,Ω ≡ 1 on ∂Ω.
Moreover, this is a globally Lipschitz function, with Lipschitz constant given by

1

dist(x0, ∂Ω)
.

We present a characterization of functions satisfying the bounded slope condition.

Lemma 2.4. Let Ω ⊂ RN be an open bounded convex set. If ϕ : ∂Ω → R satisfies the bounded
slope condition of rank K, then there exist two maps ϕ− : RN → R , ϕ+ : RN → R such that:

(1) ϕ− and ϕ+ are (K + 1)−Lipschitz continuous, ϕ− is convex, ϕ+ is concave and

ϕ−|∂Ω = ϕ+|∂Ω = ϕ;

(2) Ω = {x ∈ RN : ϕ+(x) > ϕ−(x)} , ∂Ω = {x ∈ RN : ϕ+(x) = ϕ−(x)} and there exists βΩ > 0
depending on Ω only (see Remark 2.5 below) such that for every s > 0,

(2.2) {x ∈ RN : ϕ−(x) ≤ ϕ+(x) + s} ⊂ {x ∈ RN : dist (x,Ω) ≤ βΩ s}.

Conversely, if a convex map ϕ− : RN → R agrees with a concave map ϕ+ : RN → R on the
boundary of Ω, then ϕ := ϕ−|∂Ω = ϕ+

|∂Ω satisfies the bounded slope condition of rank K, where K

is a common Lipschitz rank for ϕ− and ϕ+ on Ω.

Proof. Assume first that ϕ : ∂Ω → R satisfies the bounded slope condition of rank K. For every
y ∈ ∂Ω, there exist ζ−y , ζ

+
y ∈ RN as in Definition 2.1. We then define

ϕ−0 (x) = sup
y∈∂Ω

[
ϕ(y) + 〈ζ−y , x− y〉

]
, and ϕ+

0 (x) = inf
y∈∂Ω

[
ϕ(y) + 〈ζ+

y , x− y〉
]
.

Then ϕ−0 and ϕ+
0 are K−Lipschitz continuous, the former is convex, the latter is concave and they

agree with ϕ on ∂Ω. This implies that

ϕ+
0 ≥ ϕ

−
0 on Ω, and ϕ+

0 ≤ ϕ
−
0 on RN \ Ω.

If we now define

ϕ−(x) = ϕ−0 (x) + dist(x0, ∂Ω)
(
jx0,Ω(x)− 1

)
,

and

ϕ+(x) = ϕ+
0 (x) + dist(x0, ∂Ω)

(
1− jx0,Ω(x)

)
,

these two functions have the required properties, thanks to the properties of the gauge function
(see Figure 1 below).

We proceed to prove2 (2.2). Let x ∈ RN \ Ω be such that

ϕ−(x) ≤ ϕ+(x) + s,

that is

ϕ−0 (x) + dist(x0, ∂Ω)
(
jx0,Ω(x)− 1

)
≤ ϕ+

0 (x) + dist(x0, ∂Ω)
(

1− jx0,Ω(x)
)

+ s.

2We point out that the gauge functions are used to guarantee property (2.2).
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Figure 1. The construction of the functions ϕ+ and ϕ−: we simply add the two
cones to the functions ϕ+

0 and ϕ−0 , respectively.

Since on RN \ Ω we have ϕ−0 ≥ ϕ
+
0 , then from the previous inequality we get

dist(x0, ∂Ω)
(
jx0,Ω(x)− 1

)
≤ dist(x0, ∂Ω)

(
1− jx0,Ω(x)

)
+ s,

that is

jx0,Ω(x) ≤ 1 +
s

2 dist(x0, ∂Ω)
.

Then we observe

dist(x, ∂Ω) ≤
∣∣∣∣ x− x0

jx0,Ω(x)
− (x− x0)

∣∣∣∣ =
|x− x0|
jx0,Ω(x)

|1− jx0,Ω(x)|

≤
(

max
y∈∂Ω

|x0 − y|
)

s

2 dist(x0, ∂Ω)
=: βΩ s,

which gives (2.2).

We now prove the converse. Assume that there exist a convex function ϕ− : RN → R and a
concave function ϕ+ : RN → R agreeing on ∂Ω and let ϕ := ϕ−|∂Ω = ϕ+|∂Ω. For every y ∈ ∂Ω, let
ζ−y ∈ ∂ϕ−(y) and ζ+

y ∈ −∂(−ϕ+)(y). Then for every x ∈ ∂Ω,

ϕ(y) + 〈ζ−y , x− y〉 ≤ ϕ(x) ≤ ϕ(y) + 〈ζ+
y , x− y〉.

Moreover, if ϕ− and ϕ+ are K−Lipschitz on Ω, then |ζ−y | ≤ K and |ζ+
y | ≤ K. �

Remark 2.5. In view of the above proof, in the previous result, one can take

βΩ =
1

2

maxy∈∂Ω |x0 − y|
miny∈∂Ω |x0 − y|

.

By suitably choosing the point x0 ∈ Ω, we can then suppose that βΩ depends on Ω only through
the ratio between its diameter and inradius (this quantity is sometimes called eccentricity).

We proceed to describe the approximation of a bounded convex set by a sequence of smooth
bounded convex sets that we will use in the sequel. Actually, the approximating sets can be chosen
uniformly convex.
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Lemma 2.6. Let Ω ⊂ RN be a convex bounded open set and let ϕ : ∂Ω → R satisfy the bounded
slope condition of rank K.

Then there exists a sequence {Ωk}k∈N ⊂ RN of smooth bounded uniformly convex open sets, a
sequence of (K + 1)−Lipschitz functions ϕk : RN → R such that

i) Ω b Ωk for every k ∈ N and we have the following

diam Ωk ≤ diam Ω +
8βΩ

k
, lim

k→+∞
|Ωk \ Ω| = 0,

and

(2.3) lim
k→+∞

[
max
y∈∂Ω

min
y′∈∂Ωk

|y − y′|
]

= 0;

ii) ϕk|∂Ωk is smooth and satisfies the bounded slope condition of rank K + 2;

iii) ϕk coincides with ϕ on ∂Ω.

Proof. Let ϕ−, ϕ+ : RN → R be the two functions given by Lemma 2.4. We consider {ρε}ε>0 ⊂
C∞0 (Bε) a sequence of standard mollifiers. We define

ψ−k := ϕ− ∗ ρεk −
1

k
, and ψ+

k := ϕ+ ∗ ρεk +
1

k
, where εk =

1

2 (K + 1) k
.

Of course, the first function is convex, while the second is concave. Since ϕ−, ϕ+ are (K +
1)−Lipschitz, for every x ∈ RN ,

(2.4) ψ−k (x) +
1

2k
≤ ϕ−(x) ≤ ψ−k (x) +

3

2k
and ψ+

k (x)− 3

2k
≤ ϕ+(x) ≤ ψ+

k (x)− 1

2k
.

Let x0 ∈ Ω. By Sard Lemma, for every k ∈ N \ {0} there exists αk ∈ (0, 1/k) such that the set

Ωk :=

{
x ∈ RN : ψ+

k (x) + αk > ψ−k (x) +
1

2k diam(Ω)2
|x− x0|2

}
,

is smooth. This set is uniformly convex, since the function

x 7→ ψ−k (x)− ψ+
k (x) +

1

2k diam(Ω)2
|x− x0|2,

is uniformly convex. By (2.4) and the fact that ϕ+ ≥ ϕ− on Ω, we have for every x ∈ Ω

ψ−k (x) +
1

2k diam(Ω)2
|x− x0|2 ≤ ψ+

k (x)− 1

k
+

1

2k diam(Ω)2
|x− x0|2 ≤ ψ+

k (x),

and thus Ω ⊂ Ωk. Moreover,

(2.5) Ωk ⊂
{
x ∈ RN : ϕ−(x) < ϕ+(x) +

4

k

}
.

Hence, by using property (2.2) of Lemma 2.4 with s = 4/k we have

diam Ωk ≤ diam Ω +
8βΩ

k
,

where βΩ is the same constant as before. We now estimate |Ωk \ Ω|. By (2.5),

Ωk \ Ω ⊂
{
x ∈ RN : ϕ+(x) ≤ ϕ−(x) < ϕ+(x) +

4

k

}
.
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It follows that

lim sup
k→+∞

|Ωk \ Ω| ≤ |{x ∈ RN : ϕ+(x) = ϕ−(x)}| = |∂Ω|,

and the last quantity is 0, by convexity of Ω. Hence, limk→+∞ |Ωk \ Ω| = 0 as desired.

In order to prove (2.3), let us argue by contradiction. Then there exist r > 0, a subsequence
{kn}n∈N diverging to ∞ and yn ∈ ∂Ω such that for every n ∈ N

min
y′∈∂Ωkn

|yn − y′| ≥ r,

that is, such that for every n ∈ N

|yn − y′| ≥ r, for every y′ ∈ ∂Ωkn .

The previous implies that Br(yn) ⊂ Ωkn for every n ∈ N, thus we have3

|Ωnk \ Ω| ≥ |Br(yn) \ Ω| ≥ ωN
2
rN .

where in the last estimate we used the convexity of Ω. The previous estimate clearly contradicts
the fact that |Ωk \ Ω| converges to 0.

We now define ϕk by

ϕk = max{ϕ+, ψ−k }.
Of course, ϕk is (K + 1)−Lipschitz on RN . Since ϕ+ = ϕ = ϕ− ≥ ψ−k on ∂Ω, we have ϕk = ϕ on
∂Ω. For x ∈ ∂Ωk, we use the fact that

ϕ+(x) ≤ ψ+
k (x)− 1

2k
= ψ−k (x)− αk +

1

2k diam(Ω)2
|x− x0|2 −

1

2k
< ψ−k (x),

to get ϕk = ψ−k on ∂Ωk. In particular, ϕk|∂Ωk is smooth and satisfies the bounded slope condition
of rank K + 2 for k sufficiently large. Indeed, we have

ϕk|∂Ωk = ψ−k |∂Ωk =

(
ψ+
k + αk −

1

2k diam(Ω)2
|x− x0|2

)
|∂Ωk ,

thus can we use the second part of Lemma 2.4 with the last two functions. This completes the
proof. �

Remark 2.7. Since Ωk ⊃ Ω, it is not difficult to see that (2.3) is equivalent to say that Ωk is
converging to Ω with respect to the Hausdorff metric. Indeed, we recall that for every E1, E2 ⊂ RN
the latter is given by

dH(E1, E2) = max

{
sup
x∈E1

dist (x,E2), sup
y∈E2

dist(y,E1)

}
.

If E2 ⊂ E1, the previous reduces to

dH(E1, E2) = sup
x∈E1

dist (x,E2) = sup
x∈E1

inf
x′∈E2

|x− x′|.

Moreover, if both E1 and E2 are bounded and convex, we can equivalently perform the sup / inf
on their respective boundaries.

3We denote by ωN the volume of the N−dimensional ball of radius 1.
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2.2. Some auxiliary regularity results. The following standard result will be used in the sequel.

Theorem 2.8. Let O ⊂ RN be a smooth bounded uniformly convex open set, H : RN → R a
smooth uniformly convex function and h : O → R a smooth bounded function. Let ψ : ∂O → R be
a smooth map. Then there exists a unique minimizer u of

v 7→
∫
O

[
H(∇v) + h v

]
dx,

on ψ +W 1,2
0 (O). Moreover, u is smooth on O.

Proof. We first observe that by Proposition 2.3, the function ψ satisfies the bounded slope condition.
Then by [34, Theorem 9.2], we have that the problem

min

{∫
O
H(∇v) dx+

∫
O
h v dx : v − ψ ∈W 1,∞

0 (O)

}
,

admits a solution u ∈ W 1,∞(O), which is also unique by strict convexity of the Lagrangian in the
gradient variable. Then u satisfies the Euler-Lagrange equation

(2.6)

∫
O
〈∇H(∇u),∇ϕ〉 dx+

∫
O
hϕdx = 0, for every ϕ ∈W 1,∞

0 (O).

Thanks to the hypotheses on H and h and to the fact that ∇u ∈ L∞(O), equation (2.6) still holds

with test functions ϕ ∈W 1,1
0 (O). Thus by convexity, u solves the original problem as well.

By using (2.6), a standard difference quotient argument and the Lipschitz continuity of u, one
can prove that u ∈W 2,2(O) and that any partial derivative uxi is a solution of a uniformly elliptic
equation with bounded measurable coefficients, i.e.

−div
(
D2H(∇u)∇uxi

)
= hxi .

By the De Giorgi-Nash-Moser Theorem, it thus follows that uxi ∈ C0,α(O). By appealing to
Schauder theory, this implies that u is smooth on O, see [21, Theorem 9.19]. �

Finally, in the proof of the Main Theorem we will also need the following simple result.

Lemma 2.9 (Propagation of regularity). Under the assumptions of the Main Theorem, if u1 and
u2 are two solutions of (PΦ), then

|∇u1 −∇u2| ≤ 2R, almost everywhere in Ω.

Proof. From the identity F(u1) = F(u2) and the convexity of F we easily infer that

F(u1) = F
(
u1 + u2

2

)
.

Hence, for almost every x ∈ Ω,

F

(
∇u1(x) +∇u2(x)

2

)
=

1

2
F (∇u1(x)) +

1

2
F (∇u2(x)).

Since F is strictly convex outside BR, this implies that either ∇u1(x) = ∇u2(x) or ∇u1(x) and
∇u2(x) both belong to BR. In any case, |∇u1(x) − ∇u2(x)| ≤ 2R for almost every x ∈ Ω. This
concludes the proof. �
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3. Existence of minimizers

In this section, we prove that the minimum in (PΦ) is attained, under the standing assumptions.
We begin by remarking a consequence of Φ−uniform convexity.

Remark 3.1. Observe that if F is Φ−uniformly convex outside BR, then for every ξ, ξ′ ∈ RN such
that the segment [ξ, ξ′] does not intersect BR and every ζ ∈ ∂F (ξ), we also have

(3.1) F (ξ′) ≥ F (ξ) + 〈ζ, ξ′ − ξ〉+
1

2
Φ(|ξ|+ |ξ′|) |ξ − ξ′|2.

Indeed, from (1.4) we get for 0 < θ < 1

F (ξ + θ (ξ′ − ξ))− F (ξ) ≤ θ
(
F (ξ′)− F (ξ)

)
− 1

2
θ (1− θ) Φ(|ξ|+ |ξ′|) |ξ − ξ′|2,

then if ζ ∈ ∂F (ξ), by convexity of F we have

θ 〈ζ, ξ′ − ξ〉 ≤ θ
(
F (ξ′)− F (ξ)

)
− 1

2
θ (1− θ) Φ(|ξ|+ |ξ′|) |ξ − ξ′|2.

By dividing by θ and taking the limit as θ goes to 0, we get (3.1).

We can now establish that F is superlinear.

Lemma 3.2. Let F : RN → R be a continuous function, such that F is Φ−uniformly convex
outside the ball BR. Then F is superlinear.

Proof. We recall that by hypothesis F satisfies (3.1), i.e. for every ξ, ξ′ ∈ RN such that [ξ, ξ′] does
not intersect BR, we have

F (ξ) ≥ F (ξ′) + 〈ζ, ξ − ξ′〉+
1

2
Φ(|ξ|+ |ξ′|) |ξ − ξ′|2,

where ζ ∈ ∂F (ξ′). Let ξ ∈ RN \ B2R and ξ′ = 2Rξ/|ξ|, by using the previous property, Cauchy-
Schwarz inequality and continuity of F we get

F (ξ)

|ξ|
≥ 1

|ξ|

[
min

ω∈SN−1
F (2Rω)− |ζ| (|ξ| − 2R)

]
+

1

2
Φ(|ξ|+ 2R)

(|ξ| − 2R)2

|ξ|
,

where the norm of ζ ∈ ∂F (2Rξ/|ξ|) can be bounded by ‖∇F‖L∞(B2R). If we now use the assump-
tion (1.3) on Φ, from the previous estimate we get that

lim
|ξ|→+∞

F (ξ)

|ξ|
= +∞,

which is the desired conclusion. �

We now prove an existence result for a problem having a slightly more general form than (PΦ),
namely we consider functionals of the form

F(u) =

∫
Ω

[
F (∇u) +G(x, u)

]
dx,

where G : Ω×R→ R is a measurable function which satisfies the following assumption: there exist
two functions g1 ∈ LN (Ω) and g2 ∈ L1(Ω) such that

(3.2) G(x, u) ≥ −|u| |g1(x)| − |g2(x)|, for a. e. x ∈ Ω and every u ∈ R.
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We further assume that there exists u∗ ∈ ϕ+W 1,1
0 (Ω) such that

(3.3)

∫
Ω

∣∣∣F (∇u∗) +G(x, u∗)
∣∣∣ dx < +∞.

We have the following existence result.

Proposition 3.3. Let Ω ⊂ RN be a bounded convex open set and ϕ : RN → R a Lipschitz
continuous function. Let F : RN → R be a convex function, which is Φ−uniformly convex outside
the ball BR and G : Ω → R a measurable function satisfying (3.2) and (3.3). Then the following
problem

(3.4) inf

{
F(u) :=

∫
Ω

[
F (∇u) +G(x, u)

]
dx : u− ϕ ∈W 1,1

0 (Ω)

}
,

admits a solution.

Proof. By Lemma 3.2 we know that F is superlinear. In particular, we get that for every M > 0,
there exists r = r(M) > 0 such that for every ξ ∈ RN \Br
(3.5) F (ξ) ≥M |ξ|.

For every u ∈W 1,1(Ω) we thus get

F (∇u) ≥ min
(
M |∇u|,min

Br
F
)
.

From (3.2), it also follows that

G(x, u) ≥ −|u| |g1(x)| − |g2(x)|.

Hence, we get that F (∇u) + G(x, u) is greater than or equal to an L1(Ω) function. This proves

that the functional F is well-defined on the class ϕ+W 1,1
0 (Ω).

In order to prove that (PΦ) admits a solution, we first observe that the functional is not constantly
+∞, since by (3.3), F(u∗) < +∞. By using Hölder and Sobolev inequalities we get∫

Ω
|u| |g1| dx ≤ ‖g1‖LN (Ω)

(
SN ‖∇u‖L1(Ω) + SN ‖∇ϕ‖L1(Ω) + ‖ϕ‖LN′ (Ω)

)
≤ C ′1 ‖g1‖LN (Ω) ‖∇u‖L1(Ω) + C ′2,

for some C ′1 = C ′1(N) > 0 and C ′2 = C ′2(N, ‖g1‖LN (Ω), ‖ϕ‖W 1,1(Ω)) > 0. In conclusion, we obtain∫
Ω
F (∇u) dx+

∫
Ω
G(x, u) dx ≥

∫
Ω
F (∇u) dx− C ′1 ‖g1‖LN (Ω)

∫
Ω
|∇u| dx− C ′′2 .(3.6)

with C ′′2 = C ′′2 (N, ‖g1‖LN (Ω), ‖g2‖L1(Ω), ‖ϕ‖W 1,1(Ω)) > 0.

We now take a minimizing sequence {un}n∈N ⊂ ϕ+W 1,1
0 (Ω), thanks to the previous discussion

we can suppose that ∫
Ω

[
F (∇un) +G(x, un)

]
dx ≤ C, for every n ∈ N.

In particular, by using (3.6), for every n ∈ N we get

(3.7)

∫
Ω
F (∇un) dx ≤ C + C ′1 ‖g1‖LN (Ω)

∫
Ω
|∇un| dx+ C ′′2 .
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We now claim that the previous estimate implies

(3.8)

∫
Ω
F (∇un) dx ≤ C, for every n ∈ N,

for a different constant C = C(N, |Ω|, ‖g1‖LN (Ω), ‖g2‖L1(Ω), ‖ϕ‖W 1,1(Ω), F ) > 0. Indeed, if g1 ≡ 0,

then there is nothing to prove. Let us suppose ‖g1‖LN (Ω) > 0. We now take

M = 2C ′1 ‖g1‖LN (Ω),

we get

C ′1 ‖g1‖LN (Ω)

∫
Ω
|∇un| dx =

M

2

∫
Ω
|∇un| dx ≤

1

2

∫
Ω
F (∇un) dx+

M

2
r |Ω|.

By using this information into (3.7), we get the claimed estimate (3.8). Since F is superlinear,
estimate (3.8) implies that {∇un}n∈N is equi-integrable ([30, Lemma 1.9.1]). Then Dunford-Pettis
Theorem implies that a subsequence of {∇un}n∈N (we do not relabel) weakly converges in L1 to
φ ∈ L1(Ω;RN ). By Rellich Theorem, we may also assume that the sequence {un}n∈N is strongly
converging in L1(Ω) to a function u. It is easy to see that u ∈W 1,1(Ω) and ∇u = φ, since for every
ψ ∈ C∞0 (Ω;RN ) we have∫

Ω
udivψ dx = lim

n→∞

∫
Ω
un divψ dx = − lim

n→∞

∫
Ω
〈∇un, ψ〉 dx = −

∫
Ω
〈φ, ψ〉 dx.

Then u is admissible for the variational problem. By lower semicontinuity of the functional we get
the desired result. �

4. A weaker result: the case of µ−uniformly convex problems

In this section, as an intermediate result we prove the following weaker version of the Main
Theorem. This will be used in the next section. The form of the Lipschitz estimate (4.1) below
will play an important role.

Theorem 4.1. Let Ω ⊂ RN be a bounded convex open set, ϕ : RN → R a Lipschitz continuous
function, F : RN → R a convex function and f ∈ L∞(Ω). We consider the following problem

(Pµ) min

{
F(u) :=

∫
Ω

[
F (∇u) + f u

]
dx : u− ϕ ∈W 1,1

0 (Ω)

}
.

Assume that ϕ|∂Ω satisfies the bounded slope condition of rank K > 0 and that F is µ−uniformly
convex outside some ball BR for some 0 < µ ≤ 1.

Then every solution u of (Pµ) is Lipschitz continuous. More precisely, there exists a constant
L0 = L0(N,K,R, ‖f‖L∞(Ω),diam(Ω)) > 0 such that

(4.1) ‖∇u‖L∞(Ω) ≤
L0

µ
,

for every solution u.

In order to neatly present the proof of this result, we divide this section into subsections, each
one corresponding to a step of the proof.
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4.1. Step 0: a regularized problem. We will proceed by approximation. We consider a non-
decreasing sequence of smooth convex functions {Fk}k∈N on RN which converges uniformly on
bounded sets to F and such that for every k ∈ N

(4.2) 〈D2Fk(x) η, η〉 ≥ µ

36
|η|2, for every x ∈ RN \BR+1 and every η ∈ RN .

See Lemma A.4 in Appendix A.

We also introduce a sequence {fk}k∈N ⊂ C∞0 (RN ) which converges ∗−weakly to f in L∞(Ω) and
such that for every k ∈ N
(4.3) ‖fk‖L∞(RN ) ≤ (‖f‖L∞(Ω) + 1) =: Λ.

Finally, let {Ωk}k∈N and {ϕk}k∈N be as in Lemma 2.6. We then define

Fk(v) =

∫
Ωk

Fk(∇v) dx+
1

k

∫
Ωk

|∇v|2 dx+

∫
Ωk

fk v dx,

and consider the following problem

(Pµ,k) min
{
Fk(u) : u− ϕk ∈W 1,1

0 (Ωk)
}
.

Existence of a solution to (Pµ,k) follows from Proposition 3.3. Moreover, since the Lagrangian
is strictly convex in the gradient variable, such a solution is unique. We will denote it by uk ∈
ϕk + W 1,1

0 (Ωk). Observe that by Theorem 2.8, we know that uk is smooth on Ωk. We aim at
proving a global Lipschitz estimate independent of k.

Notation. In what follows, in order to simplify the notation, we denote the function uk by U and
the set Ωk by O.

4.2. Step 1: construction of uniform barriers. Without loss of generality, we can assume
that K + 2 (the rank given by the bounded slope condition, see Lemma 2.6) is also the Lipschitz
constant of ϕk on the whole RN (we only need to redefine ϕk outside ∂O if necessary).

The proof of Theorem 4.1 is based on the method of barriers that we now construct explicitly.
In passing, we will also prove that minimizers of (Pµ,k) are bounded, uniformly in k.

Proposition 4.2. With the previous notation, there exist a constant

L0 = L0

(
N,K,R, ‖f‖L∞(Ω), diam(Ω)

)
> 0,

and two (L0/µ)−Lipschitz maps `−, `+ : RN → R with the following properties:

(i) for the solution U of (Pµ,k), for every x ∈ O,

`−(x) ≤ U(x) ≤ `+(x),

so that in particular U ∈ L∞(O), with an estimate independent of k;

(ii) `− = `+ = ϕk on RN \ O.

Proof. We only give the construction for `−, since the one for `+ is completely analogous. Let
y ∈ ∂O, we then take νO(y) the unit outer normal to O at y. Recall that by convexity of O
(4.4) 〈νO(y), x− y〉 ≤ 0, for every x ∈ O.
We introduce the function ak,y defined by

ak,y(x) =
[

(2 diam(O) + 〈νO(y), x− y〉)2 − 4 diam(O)2
]
.
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Observe that this is a convex function such that

(4.5) ∆ak,y = 2, in O, ak,y ≤ 0 in O and ak,y(y) = 0.

We also observe that by Lemma 2.6, up to choosing k sufficiently large, we can suppose that

(4.6) diam(Ω) ≤ diam(O) ≤ diam(Ω) + 1.

Finally, we define for x ∈ RN ,

ψ−y (x) = ϕk(y) + 〈ζ−y , x− y〉+ T ak,y(x),

where ζ−y is chosen as in (2.1) and

T :=
18

µ

(
R+K + 3

diam(Ω)
+ Λ + 1

)
.

Recall that Λ is the constant defined by (4.3) and that 0 < µ ≤ 1, by hypothesis. By construction
we have ψ−y (y) = ϕk(y) and ψ−y is (L0/µ)−Lipschitz on O, with

(4.7) L0 = 18

[
4

(
R+K + 3

diam(Ω)
+ Λ + 1

)
(diam(Ω) + 1) +K + 2

]
.

In order to compute L0, we also used that

(4.8) diam(Ω) ≤ |∇ak,y(x)| = 2
∣∣∣2 diam(O) + 〈νO(y), x− y〉

∣∣∣ ≤ 4 diam(Ω) + 4,

which follows from the convexity of O and (4.6). Moreover, by (2.1) and (4.5), we have

ψ−y ≤ ϕk, on ∂O.

Let U be the minimum of (Pµ,k). By testing the minimality of U against the function max{U,ψ−y }
we get ∫

{U<ψ−y }

[
Fk(∇U)− Fk(∇ψ−y )

]
dx+

1

k

∫
{U<ψ−y }

[
|∇U |2 − |∇ψ−y |2

]
dx

≤
∫
{U<ψ−y }

fk (ψ−y − U) dx ≤
∫
{U<ψ−y }

f+
k (ψ−y − U) dx.

(4.9)

By using convexity in the left-hand side of (4.9), we can estimate∫
{U<ψ−y }

[
Fk(∇U)− Fk(∇ψ−y )

]
dx+

1

k

∫
{U<ψ−y }

[
|∇U |2 − |∇ψ−y |2

]
dx

≥
∫
{U<ψ−y }

〈∇Fk(∇ψ−y ),∇U −∇ψ−y 〉 dx

+
2

k

∫
{U<ψ−y }

〈∇ψ−y ,∇U −∇ψ−y 〉 dx.

(4.10)
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By integration by parts,∫
{U<ψ−y }

〈∇Fk(∇ψ−y ),∇U −∇ψ−y 〉 dx+
2

k

∫
{U<ψ−y }

〈∇ψ−y ,∇U −∇ψ−y 〉 dx

=

∫
{U<ψ−y }

div(∇Fk(∇ψ−y )) (ψ−y − U) dx

+
2

k

∫
{U<ψ−y }

∆ψ−y (ψ−y − U) dx.

By noticing that ∇ψ−y = ζ−y + T ∇ak,y with |ζ−y | ≤ K + 2, the definition of T and the lower bound
in (4.8) imply

R+ 1 < T |∇ak,y| − (K + 2) ≤
∣∣∇ψ−y ∣∣ .

As a consequence of4 (4.2) and by construction of ψ−y , we have

div(∇Fk(∇ψ−y )) =
N∑

i,j=1

∂xixjFk(∇ψ−y (x)) ∂xixjψ
−
y ≥

µ

36
∆ψ−y

=
µ

36
T ∆ak,y =

µ

18
T ≥ Λ + 1 ≥ f+

k + 1.

Hence, ∫
{U<ψ−y }

div(∇Fk(∇ψ−y )) (ψ−y − U) dx+
2

k

∫
{U<ψ−y }

∆ψ−y (ψ−y − U) dx

≥
∫
{U<ψ−y }

(f+
k + 1) (ψ−y − U) dx.

In view of (4.10), we thus obtain∫
{U<ψ−y }

[
Fk(∇U)− Fk(∇ψ−y )

]
dx+

1

k

∫
{U<ψ−y }

[
|∇U |2 − |∇ψ−y |2

]
dx

≥
∫
{U<ψ−y }

(f+
k + 1) (ψ−y − U) dx.

But (4.9) then implies∣∣{U < ψ−y }
∣∣ = 0, namely, for a.e. x ∈ O, U(x) ≥ ψ−y (x).

We now define the map `− as follows

`−(x) =


sup
y∈∂O

ψ−y (x), if x ∈ O,

ϕk(x), otherwise.

Since `− coincides with ϕk on RN \ O, is (L0/µ)−Lipschitz and satisfies `−(x) ≤ U(x) for every
x ∈ O, this map has the desired properties. �

4If S1 and S2 are nonnegative symmetric matrices and λ is the lowest eigenvalue of S1, then tr (S1 S2) ≥ λ tr (S2).



18 BOUSQUET AND BRASCO

4.3. Step 2: construction of competitors. We still denote by U a solution of (Pµ,k) and we
extend it by ϕk outsideO. Let L0 be the constant appearing in Proposition 4.2. We pick α ≥ (L0/µ)
and τ ∈ RN \ {0} such that O ∩ (O − τ) 6= ∅. For every function ψ, we denote

ψτ (x) = ψ(x+ τ), x ∈ RN ,
and we set

ψτ,α(x) = ψτ (x)− α |τ |, x ∈ RN .
Finally, we introduce the notation Oτ := O − τ and consider the functional

Fk,τ (w) =

∫
Oτ

[
Fk(∇w(x)) + fk,τ (x)w(x)

]
dx, w ∈W 1,1(Oτ ).

By a change of variables, we have the following.

Lemma 4.3. The map Uτ,α minimizes Fk,τ on Uτ,α +W 1,1
0 (Oτ ).

In order to compare U and Uτ,α on O ∩Oτ , we will use the following result.

Lemma 4.4. With the previous notation, we have

Uτ,α(x) ≤ U(x), for a.e. x ∈ RN \ (O ∩Oτ ).

Proof. Let x ∈ RN \ (O ∩Oτ ) be a Lebesgue point of U and Uτ .
We first consider the case x 6∈ O. By using U ≤ `+ on RN , α ≥ (L0/µ) and the (L0/µ)−Lipschitz

continuity of `+, we get

U(x) = ϕk(x) = `+(x) ≥ `+τ (x)− L0

µ
|τ | ≥ Uτ (x)− L0

µ
|τ | ≥ Uτ,α(x).

If x 6∈ Oτ , we use U ≥ `− on RN to get

U(x) ≥ `−(x) ≥ `−τ (x)− L0

µ
|τ | = (ϕk)τ (x)− L0

µ
|τ | = Uτ (x)− L0

µ
|τ | ≥ Uτ,α(x).

This completes the proof. �

We now introduce the two functions

(4.11) V =

{
max{U, Uτ,α}, on O ∩Oτ ,

U, on O \ Oτ ,
W =

{
min{U, Uτ,α} on O ∩Oτ ,

Uτ,α, on Oτ \ O.

Then by Lemma 4.4, we have V ∈ U+W 1,1
0 (O) and W ∈ Uτ,α+W 1,1

0 (Oτ ). By using the minimality
of U , we have

Fk(U) ≤ Fk(θ V + (1− θ)U), for every θ ∈ [0, 1].

Analogously, by Lemma 4.3 we get

Fk,τ (Uτ,α) ≤ Fk,τ (θW + (1− θ)Uτ,α), for every θ ∈ [0, 1].

By summing these two inequalities, and taking into account the definitions of V and W , with
elementary manipulations we finally obtain∫

Aτ (α)

[
Fk(∇Uτ,α) + Fk(∇U)− Fk(θ∇Uτ,α + (1− θ)∇U)− Fk(θ∇U + (1− θ)∇Uτ,α)

]
dx

≤ θ
∫
Aτ (α)

(fk − (fk)τ ) (Uτ,α − U) dx,

(4.12)
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where

Aτ (α) =

{
x ∈ O ∩Oτ :

Uτ,α(x)− U(x)

|τ |
≥ 0

}
.

4.4. Step 3: a uniform Lipschitz estimate. In this part we prove the following.

Proposition 4.5. With the previous notation, we have

‖∇U‖L∞(O) ≤
L
µ
,

for some constant L = L(N,R,K, ‖f‖L∞(Ω), diam(Ω)) > 0. In particular, the estimate is indepen-
dent of k ∈ N.

Proof. Let us fix k ∈ N. We define the set

Aτ (α,R) = {x ∈ Aτ (α) : |∇Uτ,α(x)| ≥ 2R and |∇U(x)| ≥ 2R}.
By using equation (A.8) from Lemma A.3 in inequality (4.12), and then dividing by θ and letting
θ go 0, we get

c µ

∫
Aτ (α,R)

|∇U −∇Uτ,α|2 dx ≤
∫
Aτ (α)

(fk − (fk)τ ) (Uτ,α − U) dx,

for some universal constant c > 0. We now assume that τ = h e1 where h > 0 and e1 is the first
vector of the canonical basis of RN . Remember that fk is compactly supported and define for
almost every x = (x1, . . . , xN ) ∈ RN

gk,h(x1, . . . , xN ) =

∫ x1+h

x1

fk(t, x2, . . . , xN ) dt.

Observe that gk,h is a smooth compactly supported function. Moreover, we have that gk,h/h
converges uniformly to fk, since∣∣∣∣gk,h(x)

h
− fk(x)

∣∣∣∣ ≤ 1

h

∫ x1+h

x1

|fk(t, x2, . . . , xN )− f(x1, x2, . . . , xN )| dt,

and fk is smooth and compactly supported. By Fubini theorem, we also have for every η ∈
W 1,1(RN ) ∫

RN
gk,h ηx1 dx =

∫
RN

(
fk − (fk)h e1

)
η dx.

We apply this observation to the map η = V −U (extended by 0 outside O) where V is defined in
(4.11). Since η coincides with Uh e1,α − U on the set Ah e1(α), we obtain∫

Ah e1 (α)
(fk − (fk)h e1) (Uh e1,α − U) dx =

∫
RN

gk,h ((Uh e1,α − U)+)x1 dx

=

∫
Ah e1 (α)

gk,h (Uh e1,α − U)x1 dx.

Observe that (Uh e1,α)x1 = (Uh e1)x1 . If we commute the derivative and the translation, by dividing
by a factor h2 we then get

(4.13)

∫
Ah e1 (α,R)

∣∣∣∣∇Uh e1,α −∇Uh

∣∣∣∣2 dx ≤ C

µ

∫
Ah e1(α)

gk,h
h

(Ux1)h e1 − Ux1
h

dx.
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Now, since α ≥ L0/µ > 2R (by definition of L0 in (4.7) and the fact that 0 < µ ≤ 1),

1{Ux1>α} ≤ lim inf
h→0

1Ah e1 (α,R) ≤ lim sup
h→0

1Ah e1 (α) ≤ 1{Ux1≥α}.

Here, we also use the fact that U is smooth on O. This implies that we can apply the dominated
convergence theorem and let h go to 0 in (4.13), so to get∫

{Ux1>α}
|∇Ux1 |2 dx2 dx ≤ C

µ

∫
{Ux1≥α}

fk Ux1 x1 dx.

From this and the fact that ∇Ux1 = 0 almost everywhere on {Ux1 = α}, we get∫
{Ux1>α}

|∇Ux1 |2 dx ≤
CΛ

µ

(∫
{Ux1>α}

|Ux1x1 | dx

)
,

which implies by Hölder inequality

(4.14) ‖∇Ux1‖L2({Ux1>α}) ≤ C
Λ

µ
|{Ux1 > α}|

1
2 .

We denote Θ(α) = |{x ∈ O : Ux1 > α}| the distribution function of Ux1 . By Cavalieri principle,
we have

‖Ux1 − α‖L1({Ux1>α}) =

∫ +∞

α
|{x ∈ O : Ux1 > s}| ds =:

∫ +∞

α
Θ(s) ds.

By Hölder and Sobolev inequalities and using (4.14), we obtain the following inequality for almost
every α ≥ L0/µ, ∫ +∞

α
Θ(s) ds ≤ C

µ
Θ(α)γ ,

with γ = (N + 1)/N > 1 and C = C(N,Λ) > 0. In other words, the nonnegative nonincreasing

function χ(α) =
∫ +∞
α Θ(s) ds satisfies the following differential inequality

χ(α) ≤ C

µ

(
−χ′(α)

)γ
, for a. e. α ≥ L0

µ
,

where C = C(N,Λ) > 0. This easily implies (as in Gronwall Lemma) that χ(α) = 0 for every
α ≥ α0 where

α0 =
L0

µ
+

γ

γ − 1

(
C

µ

) 1
γ

(∫ +∞

L0/µ
Θ(s) ds

) γ−1
γ

.

Since χ (L0/µ) ≤ (C/µ) Θ (L0/µ)γ ≤ (C/µ) |O|γ , we get

α0 ≤
L0

µ
+
C

µ

γ

γ − 1
|O|γ−1.

Observe that by definition we have |O| = |Ωk|. Then by Lemma 2.6 and the isodiametric inequality,
up to choosing k sufficiently large we can suppose that |O| = |Ωk| ≤ C (diam(Ω)+1)N , for a constant
C = C(N) > 0. We thus have

α0 ≤
L0

µ
+
C

µ

γ

γ − 1

(
diam(Ω) + 1

)(γ−1)N
=:
L
µ
,
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possibly for a different constant C = C(N,Λ) > 0. Observe that L = L(N,K,R,Λ,diam(Ω)) > 0.
Thus we have Θ(L/µ) = 0 and hence

Ux1 ≤
L
µ

for a. e. x ∈ O.

By reproducing the previous proof with h < 0, we can show that Ux1 ≥ −L/µ as well. In the end

|Ux1 | ≤ L/µ and of course this is true for every partial derivative, thus ‖∇U‖L∞(O) ≤
√
NL/µ. �

4.5. Step 4: passage to the limit. Since we have to pass to the limit as k goes to ∞, it is now
convenient to come back to the original notation uk and Ωk. Let us set

ũk := uk |Ω, k ∈ N.

By Lemma 4.5 and Ascoli-Arzelà Theorem, there exists a subsequence of {ũk}k∈N (we do not
relabel) which uniformly converges to some map v on Ω. Moreover, v is still (L/µ)−Lipschitz
continuous on Ω.

Lemma 4.6. The limit function v solves (Pµ).

Proof. We first prove that v agrees with ϕ on ∂Ω. Let y ∈ ∂Ω, by Lemma 2.6 there exists a
sequence of points yk ∈ ∂Ωk converging to y. Then

|v(y)− ϕ(y)| ≤ |v(y)− uk(y)|+ |uk(y)− uk(yk)|+ |ϕk(yk)− ϕk(y)|.

Here, we have used the fact that uk|∂Ωk = ϕk|∂Ωk and ϕk|∂Ω = ϕ. Since the Lipschitz constants of
uk and ϕk can be bounded independently of k, this implies v(y) = ϕ(y). Hence, v = ϕ on ∂Ω.

We now prove that v minimizes F in ϕ + W 1,2
0 (Ω). Let w ∈ ϕ + W 1,2

0 (Ω), we denote by wk the

extension of w by ϕk out of Ω. Observe that we have wk ∈ ϕk +W 1,2
0 (Ωk). Then for every k ∈ N

we have Fk(uk) ≤ Fk(wk), which gives∫
Ωk

Fk(∇uk) dx+

∫
Ωk

fk uk dx ≤
∫

Ωk

Fk(∇wk) dx+
1

k

∫
Ωk

|∇wk|2 dx+

∫
Ωk

fk wk dx.(4.15)

By definition of wk and the fact that Fk ≤ F , we get∫
Ωk

Fk(∇wk) dx ≤
∫

Ω
F (∇w) dx+

∫
Ωk\Ω

F (∇ϕk) dx.

Since ϕk is (K + 1)−Lipschitz , this gives∫
Ωk

Fk(∇wk) dx ≤
∫

Ω
F (∇w) dx+ |Ωk \ Ω| max

ξ∈BK+1

F (ξ).

By using Lemma 2.6, we thus obtain

lim sup
k→+∞

∫
Ωk

Fk(∇wk) dx ≤
∫

Ω
F (∇w) dx.

We also observe that

Fk(∇uk(x)) ≥ F (∇uk(x))− |Fk(∇uk(x))− F (∇uk(x))|
≥ F (∇uk(x))− max

{ξ : |ξ|≤L/µ}
|Fk(ξ)− F (ξ)|.(4.16)
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where we used Proposition 4.5. The sequence {Fk}k∈N uniformly converges to F on bounded sets,
thus using (4.16) we get

lim inf
k→+∞

∫
Ωk

Fk(∇uk) dx ≥ lim inf
k→+∞

(∫
Ω
F (∇uk) dx− |Ωk| ‖Fk − F‖L∞(BL/µ)

)
≥ lim inf

k→+∞

∫
Ω
F (∇uk) dx ≥

∫
Ω
F (∇v) dx.

(4.17)

In the last inequality we used the weak lower semicontinuity of the functional w 7→
∫

Ω F (∇w) on

W 1,1(Ω). Clearly,

(4.18) lim
k→∞

1

k

∫
Ωk

|∇wk|2 dx = lim
k→+∞

[
1

k

∫
Ω
|∇w|2 dx+

1

k

∫
Ωk\Ω

|∇ϕk|2 dx

]
= 0.

By recalling (4.3) and that |Ωk \ Ω| converges to 0, we have

lim
k→∞

∣∣∣∣∣
∫

Ωk\Ω
fk wk dx

∣∣∣∣∣ ≤ Λ lim
k→∞

‖ϕk‖L1(Ωk\Ω) = 0.

By using this fact, the ∗−weak convergence of fk to f in L∞(Ω) and that wk = w on Ω, we get

lim
k→∞

∫
Ωk

fk wk dx = lim
k→∞

∫
Ω
fk w dx =

∫
Ω
f w dx.(4.19)

Moreover, since {ũk}k∈N converges to v in L1(Ω), with a similar argument we also have

(4.20) lim
k→∞

∫
Ωk

fk uk dx =

∫
Ω
f v dx.

By passing to the limit in (4.15) and using (4.17), (4.18), (4.19) and (4.20), we get F(v) ≤ F(w).
By arbitrariness of w, this shows that v is a solution of (Pµ). �

4.6. Step 5: conclusion. Since v is a (L/µ)−Lipschitz solution of (Pµ), we use Lemma 2.9 to
conclude that every solution u of (Pµ) is Lipschitz continuous. More precisely, we have the following
estimate

‖∇u‖L∞(Ω) ≤ 2R+ ‖∇v‖L∞(Ω) ≤
(2R+ L)

µ
=:
L0

µ
,

where we used again that 0 < µ ≤ 1. This completes the proof of Theorem 4.1.

5. Proof of the Main Theorem

Finally, we come to the proof of the Main Theorem. We will need the following “density in
energy” result, whose proof can be found in [4, Theorem 4.1]. The original statement is indeed
fairly more general, we give a version adapted to our needs.

Lemma 5.1 ([4]). Let Ω ⊂ RN be an open bounded convex set. Let F : RN → R be a convex
function, f ∈ LN (Ω) and ϕ : RN → R a Lipschitz continuous function. Then for every u ∈
ϕ+W 1,1

0 (Ω) such that ∫
Ω
|F (∇u)| dx < +∞,
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there exists a sequence {uk}k∈N ⊂ ϕ+W 1,∞
0 (Ω) such that

(5.1) lim
k→∞

‖uk−u‖W 1,1(Ω) = 0 and lim
k→∞

∫
Ω

[
F (∇uk)+f uk

]
dx =

∫
Ω

[
F (∇u) +f u

]
dx.

Proof. For the case f ≡ 0, the proof is contained in [4]. In order to cover the case f ∈ LN (Ω), it is
sufficient to observe that by Sobolev embedding and strong convergence in W 1,1(Ω), the sequence

{uk}k∈N also converges weakly in LN
′
(Ω). Then the result easily follows. �

5.1. Step 1: reduction to µ−uniformly convex problems. For every Q > R, we consider the
minimization problem

(PQ) min

{∫
Ω

[
FQ(∇u) + f u

]
dx : u− ϕ ∈W 1,1

0 (Ω)

}
,

where FQ : RN → R is a convex function such that

i) FQ ≡ F in BQ;

ii) F is µQ−uniformly convex outside the ball BR, with

µQ = min

{
1, min
t∈[2R,4Q]

Φ(t)

}
.

see Lemma A.5 below. Observe that 0 < µQ ≤ 1. By Theorem 4.1 and (4.1), we get that every
minimizer uQ of (PQ) is such that

‖∇uQ‖L∞(Ω) ≤
L0

µQ
,

with L0 independent of Q. We now take Q� R sufficiently large so that

L0

µQ
≤ Q− 1.

Observe that this is possible, thanks to the definition of µQ and property (1.3) of the function Φ.
Thanks to this choice and the construction of the function FQ, we thus get

(5.2) FQ(∇uQ) = F (∇u).

Let us take v ∈ ϕ+W 1,∞
0 (Ω) and θ ∈ (0, 1) such that

θ
(
Q− 1− ‖∇v‖L∞(Ω)

)
+ ‖∇v‖L∞(Ω) ≤ Q.

Then the function θ uQ + (1− θ) v is such that

‖θ∇uQ + (1− θ)∇v‖L∞(Ω) ≤ Q,

so that by using again F ≡ FQ in the ball BQ and the convexity of F , we get

FQ(θ∇uQ + (1− θ)∇v) = F (θ∇uQ + (1− θ)∇v)

≤ θ F (∇uQ) + (1− θ)F (∇v).
(5.3)

We observe that θ uQ + (1− θ) v is admissible for (PQ), then by using the minimality of uQ, (5.2)
and (5.3), we obtain∫

Ω
F (∇uQ) + f uQ dx ≤ θ

∫
Ω

[
F (∇uQ) + f uQ

]
dx+ (1− θ)

∫
Ω

[
F (∇v) + f v

]
dx,
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which finally shows that uQ minimizes the original Lagrangian F among Lipschitz functions, i.e.
uQ is a solution of

min

{∫
Ω

[
F (∇u) + f u

]
dx : u− ϕ ∈W 1,∞

0 (Ω)

}
.

5.2. Step 2: conclusion by density. In order to complete the proof, it is only left to prove that
uQ minimizes F among W 1,1 functions as well. At this aim, let v ∈ ϕ+W 1,1

0 (Ω) be such that∫
Ω

[
F (∇v) + f v

]
dx < +∞.

Since f v ∈ L1(Ω), this implies that
∫

Ω F (∇v) < +∞. By noting F+ and F− the positive and
negative parts of F , we observe that by (3.5), we can infer∫

Ω
F−(∇v) dx ≤ max

Br
|F | |Ω|.

This and the fact that

+∞ >

∫
Ω
F (∇v) dx =

∫
Ω
F+(∇v) dx−

∫
Ω
F−(∇v) dx,

imply F (∇v) ∈ L1(Ω). By Lemma 5.1, then there exists a sequence {vk}k∈N ⊂ ϕ+W 1,∞
0 (Ω) such

that (5.1) holds. By using the minimality of uQ in ϕ+W 1,∞
0 (Ω), we get∫

Ω

[
F (∇uQ) + f uQ

]
dx ≤

∫
Ω

[
F (∇vk) + f vk

]
dx.

If we now pass to the limit and use (5.1), we obtain that uQ is a Lipschitz solution of (PΦ). By
appealing again to Lemma 2.9, we finally obtain that every solution of (PΦ) is globally Lipschitz
continuous. This concludes the proof of the Main Theorem.

6. More general lower order terms

In this section, we consider more general functionals of the form

F(u) =

∫
Ω

[
F (∇u) +G(x, u)

]
dx,

where G : Ω× R→ R is a measurable function which satisfies the following assumption:

(HG) • there exists a positive g ∈ L∞(Ω) such that

|G(x, u)−G(x, v)| ≤ g(x) |u− v|, for a. e. x ∈ Ω, every u, v ∈ R;

• there exists b ∈ LN ′(Ω) such that∫
Ω
|G(x, b(x))| dx < +∞.

Remark 6.1. As a consequence of (HG), we have that for every v ∈ LN
′
(Ω) (in particular for

every v ∈ ϕ+W 1,1
0 (Ω)), the map x 7→ G(x, v(x)) is in L1(Ω).

We then have the following generalization of the Main Theorem.
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Theorem 6.2. Let Ω ⊂ RN be a bounded convex open set, ϕ : RN → R a Lipschitz function,
F : RN → R a convex function and G : Ω → R a map satisfying (HG). We consider the following
problem

(PG) min

{∫
Ω

[
F (∇u) +G(x, u)

]
dx : u− ϕ ∈W 1,1

0 (Ω)

}
.

We assume that ϕ|∂Ω satisfies the bounded slope condition of rank K > 0 and that F is Φ−uniformly
convex outside some ball BR. Then problem (PG) admits a solution and every such solution is
Lipschitz continuous.

Proof. Assumption (HG) implies that for almost every x ∈ Ω and every v ∈ R,

G(x, v) ≥ G(x, b(x))− g(x) |v − b(x)| ≥
[
G(x, b(x))− g(x) |b(x)|

]
− g(x) |v|

and the function into square brackets is in L1(Ω). Thus we can apply Proposition 3.3 and deduce

existence of a solution u ∈W 1,1
0 (Ω) + ϕ. We now divide the proof in two parts.

Part I. Let us first assume that for almost every x ∈ Ω, v 7→ G(x, v) is differentiable. We denote
by f the measurable map

f(x) = Gu(x, u(x)).

Observe that |f | ≤ g almost everywhere on Ω. For every v ∈ ϕ+W 1,1
0 (Ω) and every θ ∈ (0, 1), the

minimality of u implies
F(u) ≤ F((1− θ)u+ θ v).

Hence, by convexity of F ,∫
Ω
F (∇u) dx ≤

∫
Ω
F (∇v) dx+

∫
Ω

[
G(x, u+ θ (v − u))−G(x, u)

θ

]
dx.

Thanks to (HG), we can apply the dominated convergence theorem in the right hand side to get∫
Ω

[
F (∇u) + f u

]
dx ≤

∫
Ω

[
F (∇v) + f v

]
dx.

This proves that u is a minimum of the initial problem (PΦ) to which the Main Theorem applies.
In particular, u is L−Lipschitz continuous, where L depends on N,Φ,K,R, diam(Ω) and ‖g‖L∞(Ω).
This proves the statement under the additional assumption that G is differentiable with respect to
u.

Part II. In the general case, we introduce the sequence

Gε(x, u) =

∫
R
G(x, u− v) ρε(v) dv,

where ρε is a smooth convolution kernel. Observe that Gε satisfies (HG) with the same functions g
and b and is differentiable with respect to u. Hence, we can apply Proposition 3.3 again to obtain
a solution uε to

min

{∫
Ω

[
F (∇u) +Gε(x, u)

]
dx : u− ϕ ∈W 1,1

0 (Ω)

}
.

By Part I of the proof, we know that uε is α1−Lipschitz continuous, with α1 independent of ε. Up
to a subsequence, this net of minimizers thus converges to a Lipschitz continuous function, which
solves (PG). This last assertion can be established as in Lemma 4.6. In view of Lemma 2.9, this
completes the proof of Theorem 6.2. �
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When Ω is a uniformly convex set, every C1,1 map ϕ : ∂Ω → R satisfies the bounded slope
condition. In contrast, this condition becomes more restrictive when ∂Ω contains affine faces. For
instance, if Ω is a convex polytope, the bounded slope condition requires ϕ to be affine on each
face of ∂Ω. In [8], Clarke has introduced the lower bounded slope condition, which can be seen as
one half of the full two sided bounded slope condition.

Definition 6.3. Let Ω be a bounded open set in RN and K > 0. We say that a map ϕ : ∂Ω→ R
satisfies the lower bounded slope condition of rank K if for every y ∈ ∂Ω, there exists ζ−y ∈ RN such

that |ζ−y | ≤ K and

(6.1) ϕ(y) + 〈ζ−y , x− y〉 ≤ ϕ(x), for every x ∈ ∂Ω.

It follows from the proof of Lemma 2.4 that a function ϕ : ∂Ω → R satisfies the lower bounded
slope condition if and only if it is the restriction to ∂Ω of a convex function defined on RN . The
Main Theorem has the following variant when the bounded slope condition is replaced by the
weaker lower bounded slope condition:

Theorem 6.4. Let Ω be a bounded convex open set in RN , ϕ : RN → R a Lipschitz continuous
function, F : RN → R a convex function and f ∈ L∞(Ω). We assume that ϕ|∂Ω satisfies the lower
bounded slope condition of rank K ≥ 0 and that F is µ−uniformly convex outside some ball BR.
Then every solution u of (PΦ) is locally Lipschitz continuous on Ω.

The proof follows the lines of the proof of the Main Theorem except that the translation technique
in Step 2 of the proof of Theorem 4.1 must be replaced by the dilation technique introduced in [8].
We omit the details.

Appendix A. Uniformly convex functions outside a ball

A.1. Basic properties. We first present a characterization of uniformly convex functions outside
a ball in terms of second order derivatives.

Lemma A.1. Let F : RN → R be a convex function and {ρε}ε>0 ⊂ C∞0 (Bε) be a sequence of
standard mollifiers.

(i) Assume that F is Φ−uniformly convex outside some ball BR. Then for every ε > 0, for
every R′ > R+ ε, for every ξ ∈ BR′ \BR+ε and η ∈ RN ,

(A.1) 〈∇2(F ∗ ρε)(ξ) η, η〉 ≥
(

min
t∈[2R,2 (R′+ε)]

Φ(t)

)
|η|2.

(ii) Assume that there exist µ > 0 and R > 0 such that for every ε > 0, for every |x| ≥ R + ε,
for every η ∈ RN ,

(A.2) 〈∇2(F ∗ ρε)(x) η, η〉 ≥ µ |η|2.
Then F is µ−uniformly convex outside BR.

Proof. Assume first that F is Φ−uniformly convex outside BR. For every ξ ∈ BR′ \BR+ε, for every
y ∈ Bε, η ∈ RN and every h > 0 sufficiently small, the segment [ξ + h η − y, ξ − h η − y] does not
intersect BR. Hence

F (ξ − y) ≤ 1

2
F (ξ + h η − y) +

1

2
F (ξ − h η − y)− 1

2
h2 |η|2 Φ(|ξ + h η − y|+ |ξ − h η − y|)

≤ 1

2
F (ξ + h η − y) +

1

2
F (ξ − h η − y)− 1

2
h2 |η|2

(
min

t∈[2R,2 (R′+ε+h |η|)]
Φ(t)

)
.
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By multiplying by ρε(y) and integrating, this gives

F ∗ ρε(ξ) ≤
1

2
F ∗ ρε(ξ + h η) +

1

2
F ∗ ρε(ξ − h η)− 1

2
h2 |η|2

(
min

t∈[2R,2 (R′+ε+h |η|)]
Φ(t)

)
.

Hence, we get

〈∇2(F ∗ ρε)(ξ) η, η〉 = lim
h→0

F ∗ ρε(ξ + h η) + F ∗ ρε(ξ − h η)− 2F ∗ ρε(ξ)
h2

≥
(

min
t∈[2R,2 (R′+ε)]

Φ(t)

)
|η|2.

This completes the first part of the statement.

Assume now that (A.2) holds true. Let θ ∈ [0, 1] and ξ, ξ′ ∈ RN be such that [ξ, ξ′] ∩BR = ∅. For
every ε > 0, we take ξε, ξ

′
ε ∈ RN such that [ξε, ξ

′
ε] ∩BR+ε = ∅ and

lim
ε→0
|ξε − ξ| = 0 and lim

ε→0
|ξ′ε − ξ′| = 0.

We have

F ∗ ρε(ξε) = F ∗ ρε(θ ξε + (1− θ) ξ′ε) + (1− θ) 〈∇(F ∗ ρε)(θ ξε + (1− θ) ξ′ε), ξε − ξ′ε〉

+ (1− θ)2

∫ 1

0
(1− t) 〈D2(F ∗ ρε)

(
t ξε + (1− t) (θ ξε + (1− θ) ξ′ε)

)
(ξε − ξ′ε), ξε − ξ′ε〉 dt.

Since the segment [ξε, θ ξε + (1− θ) ξ′ε] does not intersect BR+ε, assumption (A.2) implies

F ∗ ρε(ξε) ≥ F ∗ ρε(θ ξε + (1− θ) ξ′ε) + (1− θ) 〈∇(F ∗ ρε)(θ ξε + (1− θ) ξ′ε), ξε − ξ′ε〉

+
µ

2
(1− θ)2 |ξε − ξ′ε|2.

Similarly, we get

F ∗ ρε(ξ′ε) ≥ F ∗ ρε(θ ξε + (1− θ) ξ′ε) + θ 〈∇(F ∗ ρε)(θ ξε + (1− θ) ξ′ε), ξ′ε − ξε〉

+
µ

2
θ2 |ξε − ξ′ε|2.

We multiply the first inequality by θ and the second one by (1− θ). By summing them, we get

θ F ∗ ρε(ξε) + (1− θ)F ∗ ρε(ξ′ε) ≥ F ∗ ρε(θ ξε + (1− θ) ξ′ε) +
µ

2
θ (1− θ) |ξε − ξ′ε|2.

We then let ε go to 0 to obtain (1.4). This completes the proof. �

We will also need the following technical result. Here H1 denotes the 1−dimensional Hausdorff
measure.

Lemma A.2. Let F be a convex function which is µ−uniformly convex outside a ball BR = BR(0) ⊂
RN . For every ξ, ξ′ ∈ RN and every ζ ∈ ∂F (ξ), we have

(A.3) F (ξ′) ≥ F (ξ) + 〈ζ, ξ′ − ξ〉+
µ

4
H1
(
[ξ, ξ′] \BR

)2
.

Proof. We can assume that ξ 6= ξ′. We have several possible cases:

Case A. H1([ξ, ξ′]\BR) = H1([ξ, ξ′]). In this case, the segment [ξ, ξ′] does not intersect BR and thus
(A.6) follows directly from (3.1).

Case B. H1([ξ, ξ′] \BR) = 0. Then (A.6) follows from the convexity of F .
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Case C. 0 < H1([ξ, ξ′] \ BR) < H1([ξ, ξ′]). Without loss of generality, we may assume that ξ 6∈ BR
and that the half-line {ξ + t(ξ′ − ξ); t ≥ 0} intersects the sphere ∂BR at two points ξ1, ξ2

such that ξ1 ∈ [ξ2, ξ]. We now in turn have to consider two cases:

ξ′ ∈ [ξ1, ξ2] or ξ2 ∈ [ξ′, ξ1],

(see Figure 2 below).

Figure 2. The two possibilities for Case C in the proof of Lemma A.2.

When ξ′ ∈ [ξ1, ξ2], we use the fact that the segment [ξ1, ξ] lies outside the ball BR. It
follows from (3.1) that for every ζ1 ∈ ∂F (ξ1),

(A.4) F (ξ) ≥ F (ξ1) + 〈ζ1, ξ − ξ1〉+
µ

2
|ξ − ξ1|2.

Let ζ ′ ∈ ∂F (ξ′). By convexity of F , we also have

(A.5) F (ξ1) ≥ F (ξ′) + 〈ζ ′, ξ1 − ξ′〉,
and

〈ζ1 − ζ ′, ξ1 − ξ′〉 ≥ 0,

since the subdifferential of F is a monotone map. The latter inequality implies that

〈ζ1 − ζ ′, ξ − ξ1〉 ≥ 0.

Together with (A.4) and (A.5), this yields

F (ξ) ≥ F (ξ′) + 〈ζ ′, ξ − ξ′〉+
µ

2
|ξ − ξ1|2

= F (ξ′) + 〈ζ ′, ξ − ξ′〉+
µ

2
H1([ξ, ξ′] \BR)2,

which settles the first case.
In the second case, in addition to (A.4), we also use the fact that for every ζ2 ∈ ∂F (ξ2),

F (ξ1) ≥ F (ξ2) + 〈ζ2, ξ1 − ξ2〉,
and for every ζ ′ ∈ ∂F (ξ′)

F (ξ2) ≥ F (ξ′) + 〈ζ ′, ξ2 − ξ′〉+
µ

2
|ξ2 − ξ′|2,
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again by (3.1). By using as in the first case that 〈ζ1−ζ ′, ξ−ξ1〉 ≥ 0 and 〈ζ2−ζ ′, ξ1−ξ2〉 ≥ 0,
we thus obtain

F (ξ) ≥ F (ξ′) + 〈ζ ′, ξ − ξ′〉+
µ

2
(|ξ − ξ1|2 + |ξ′ − ξ2|2)

≥ F (ξ′) + 〈ζ ′, ξ − ξ′〉+
µ

4
H1
(
[ξ, ξ′] \BR

)2
.

This completes the proof of (A.3). �

Thanks to the previous result, we can detail some consequences of the uniform convexity that
we used in the proof of the Main Theorem.

Lemma A.3. Let F be a convex function which is µ−uniformly convex outside a ball BR = BR(0) ⊂
RN . Then we have:

i) for every ξ, ξ′ ∈ RN , and every ζ ∈ ∂F (ξ), if |ξ| ≥ 2R or |ξ′| ≥ 2R, then there holds

(A.6) F (ξ′) ≥ F (ξ) + 〈ζ, ξ′ − ξ〉+
µ

36
|ξ′ − ξ|2;

ii) for every ξ, ξ′ ∈ RN , and every ζ ∈ ∂F (ξ), ζ ′ ∈ ∂F (ξ′), if |ξ| ≥ 2R or |ξ′| ≥ 2R we have

(A.7) 〈ζ − ζ ′, ξ − ξ′〉 ≥ µ

18
|ξ − ξ′|2;

iii) for every ξ, ξ′ ∈ RN \B2R and for every θ ∈ [0, 1],

(A.8) F (θ ξ + (1− θ) ξ′) ≤ θ F (ξ) + (1− θ)F (ξ′)− µ

36
θ (1− θ) |ξ − ξ′|2;

iv) for every ξ ∈ RN ,

(A.9) F (ξ) ≥ µ

72
|ξ|2 −

(
|F (0)|+ 18

µ
|∂oF (0)|2

)
,

where ∂oF (0) denotes the element of ∂F (0) having minimal Euclidean norm.

Proof. We claim that for every ξ ∈ RN and every ξ′ ∈ RN \B2R,

(A.10) H1
(
[ξ, ξ′] \BR

)
≥ 1

3
|ξ − ξ′|.

Let us fix ξ′ ∈ RN \ B2R and let ξ ∈ RN . We set r = |ξ′ − ξ|. Then we see that among all ξ such
that |ξ − ξ′| = r, the length of the set [ξ, ξ′] \BR is minimal for the vector

ξ′′ := t ξ′, with t < 1 such that (1− t) =
r

|ξ′|
.

Then we have

H1([ξ′, ξ′′] \BR) =

 r, if r ≤ |ξ′| −R,
|ξ′| −R if |ξ′| −R < r < |ξ′|+R,
r − 2R, if |ξ′|+R ≤ r.

Observe that

|ξ′| −R ≥ |ξ
′|

2
,

and for |ξ′| −R < r < |ξ′|+R we have

r <
3

2
|ξ′| ≤ 3 (|ξ′| −R) = 3H1([ξ′, ξ′′] \BR).
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Similarly, for |ξ′|+R ≤ r, we have

H1([ξ′, ξ′′] \BR) = r − 2R =
r

3
+

(
2

3
r − 2R

)
≥ r

3
+

(
2

3
|ξ′| − 4

3
R

)
≥ r

3
.

By recalling that r = |ξ − ξ′|, the claim (A.10) follows. The inequality (A.6) can now be easily
deduced from (A.3) and (A.10).

Inequality (A.7) can be easily obtained from (A.6). Indeed, by exchanging the role of ξ and ξ′ in
(A.6) we get

F (ξ′)− F (ξ) ≥ 〈ζ, ξ′ − ξ〉+
µ

36
|ξ − ξ′|2,

and

F (ξ)− F (ξ′) ≥ 〈ζ ′, ξ − ξ′〉+
µ

36
|ξ − ξ′|2.

By combining these two inequalities we get (A.7).

Let us take ξ, ξ′ ∈ RN \B2R. For every θ ∈ [0, 1] and every ζ ∈ ∂F (θ ξ+ (1− θ) ξ′) by (A.6) we get

F (ξ) ≥ F (θ ξ + (1− θ) ξ′) + (1− θ) 〈ζ, ξ − ξ′〉+
µ

36
(1− θ)2|ξ′ − ξ|2,

and

F (ξ′) ≥ F (θ ξ + (1− θ) ξ′) + θ 〈ζ, ξ′ − ξ〉+
µ

36
θ2 |ξ′ − ξ|2.

Then (A.8) can be obtained by multipliying the first inequality by θ, the second one by (1− θ) and
then summing up.

Finally, we use (A.6) with ξ′ ∈ RN \B2R, ξ = 0 and ζ = ∂oF (0) as in the statement, then we obtain

F (ξ′) ≥ F (0) + 〈ζ, ξ′〉+
µ

36
|ξ′|2 ≥ µ

72
|ξ′|2 −

(
|F (0)|+ 18

µ
|ζ|2
)
.

where we used Young inequality in the last passage. This proves (A.9). �

A.2. Approximation issues. This section is devoted to prove some approximation results we
used in the proof of the Main Theorem.

Lemma A.4. Let F : RN → R be a convex function, which is µ−uniformly convex outside the
ball BR. Then there exists a nondecreasing sequence {Fk}k∈N of smooth convex functions which
converges to F uniformly on bounded sets. Moreover, for every k ≥ 2R, Fk is (µ/36)−uniformly
convex outside the ball BR+1.

Proof. Let us set for simplicity µ′ = µ/36. For every k ∈ N, we define at first

F̃k(x) := sup
|y|≤k

ζ∈∂F (y)

[
F (y) + 〈ζ, x− y〉+

µ′

2
|x− y|2 1RN\B2R

(y)

]
, x ∈ RN .

Of course, this is a nondecreasing sequence of convex functions. If k ≤ 2R, then by convexity of F
for every |y| ≤ k, every ζ ∈ ∂F (y) and every x ∈ RN we get

(A.11) F (y) + 〈ζ, x− y〉+
µ′

2
|x− y|2 1RN\B2R

(y) ≤ F (x).
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If k > 2R and |y| ≤ k, we have two possibilities: either |y| ≤ 2R or |y| > 2R. In the first case we
still have (A.11) for every ζ ∈ ∂F (y) and x ∈ RN , simply by convexity of F . In the second case,
we can appeal to Lemma A.3: indeed, for every x ∈ RN and every ζ ∈ ∂F (y), we have

F (x) ≥ F (y) + 〈ζ, x− y〉+ µ′ |x− y|2.

In any case, we obtain that for every x ∈ RN

F̃k(x) ≤ F (x),

and the equality holds when x ∈ Bk. In particular, for every k ≥ R the function F̃k is µ−uniformly
convex on Bk \BR.

When k ≥ 2R and |x| ≥ 2R, we claim that

(A.12) F̃k(x) = sup
2R≤|y|≤k
ζ∈∂F (y)

[
F (y) + 〈ζ, x− y〉+

µ′

2
|x− y|2

]
.

This follows from the fact that for every y0 ∈ B2R and ζ0 ∈ ∂F (y0), there exists y ∈ Bk \B2R and
ζ ∈ ∂F (y) such that

(A.13) F (y) + 〈ζ, x− y〉 ≥ F (y0) + 〈ζ0, x− y0〉.

Indeed, take any y ∈ [y0, x] ∩ (Bk \B2R). Then, by convexity of F ,

F (y) ≥ F (y0) + 〈ζ0, y − y0〉.

Hence, by using this and the fact that y − x = t (y0 − y) for some t ≥ 0, we can infer

F (y) + 〈ζ, x− y〉 ≥ F (y0) + 〈ζ0, y − y0〉+ 〈ζ, x− y〉
= F (y0) + 〈ζ0, x− y0〉+ 〈ζ0 − ζ, y − x〉
= F (y0) + 〈ζ0, x− y0〉+ t 〈ζ0 − ζ, y0 − y〉
≥ F (y0) + 〈ζ0, x− y0〉.

In the last line, we have used

〈ζ0 − ζ, y0 − y〉 ≥ 0,

which follows from the convexity of F , by recalling that ζ ∈ ∂F (y) and ζ0 ∈ ∂F (y0). This proves
(A.13) and thus (A.12).

It follows that F̃k is µ′−uniformly convex on RN \B2R as the supremum of µ′−uniformly convex

functions on RN \ B2R. Since µ′ < µ, on the whole we get that F̃k is µ′−uniformly convex on
RN \BR.

In the remaining part of the proof, we fix some k ≥ 2R. We claim that for every x ∈ RN ,

(A.14) F̃k+1(x) ≥ F̃k(x) + µ′ (|x| − k − 1)+.

If |x| ≤ k + 1 this is immediate, thus let us assume that |x| > k + 1. Let y0 ∈ Bk and ζ0 ∈ ∂F (y0)

achieving the supremum in the definition of F̃k, i.e.

(A.15) F̃k(x) = F (y0) + 〈ζ0, x− y0〉+
µ′

2
|x− y0|2 1RN\B2R

(y0).

Let y ∈ ∂Bk+1 ∩ [x, y0] be such that [y, x] ∩ BR = ∅. Then by definition of F̃k+1 and Lemma A.3,
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Figure 3. The construction for the proof of (A.14).

we get for every ζ ∈ ∂F (y) and every ζ0 ∈ ∂F (y0)

F̃k+1(x) ≥ F (y) + 〈ζ, x− y〉+
µ′

2
|x− y|2,

and

F (y) ≥ F (y0) + 〈ζ0, y − y0〉+ µ′ |y − y0|2.
Combining these two inequalities, we get

(A.16) F̃k+1(x) ≥ F (y0) + 〈ζ0, x− y0〉+
µ′

2
|x− y0|2 +A,

where

(A.17) A = 〈ζ0 − ζ, y − x〉+
µ′

2
|x− y|2 + µ′ |y − y0|2 −

µ′

2
|x− y0|2.

If we now use (A.7), we obtain

〈ζ0 − ζ, y0 − y〉 ≥ 2µ′ |y0 − y|2.

Since y − x = (y0 − y) |y − x|/|y0 − y|, this implies

〈ζ0 − ζ, y − x〉 ≥ 2µ′ |y0 − y| |y − x|.

By inserting this into (A.17) and observing that |x− y0| = |x− y|+ |y − y0|, we obtain

A ≥ µ′ |y0 − y| |y − x|+
µ′

2
|y − y0|2.

In view of (A.16), (A.15) and also using the fact that

|y0 − y| ≥ 1 and |y − x| ≥ |x| − |y| ≥ |x| − (k + 1),

this finally implies

F̃k+1(x) ≥ F̃k(x) + µ′ (|x| − k − 1),

and (A.14) is proved.
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We now establish the following Lipschitz estimate for F̃k: for every x, x′ ∈ RN ,

(A.18)
∣∣∣F̃k(x)− F̃k(x′)

∣∣∣ ≤ (Lk +
µ′

2
(|x|+ |x′|+ 2 k)

)
|x− x′|,

where Lk is the Lipschitz constant of F on Bk. Indeed, for every y ∈ Bk and every ζ ∈ ∂F (y), we
have5

F (y) + 〈ζ, x− y〉+
µ′

2
|x− y|2 1RN\B2R

(y) ≤ F (y) + 〈ζ, x′ − y〉+
µ′

2
|x′ − y|2 1RN\B2R

(y)

+ |ζ| |x− x′|+ µ′

2
|x− x′|

(
|x|+ |x′|+ 2 |y|

)
≤ F̃k(x′) +

(
Lk +

µ′

2
(|x|+ |x′|+ 2 k)

)
|x− x′|.

By exchanging the role of x and x′ we get (A.18).
Let us introduce a family {ρε}ε>0 ⊂ C∞0 (Bε) of smooth mollifiers. For some sequence {εk}k∈N ⊂

(0, 1/2) to be specified later, let us consider

Fk(x) := F̃k ∗ ρεk −
1

k
.

By Lemma A.1, every Fk is a smooth µ′−uniformly convex function outside BR+1 and the se-
quence {Fk}k∈N uniformly converges on bounded sets to F . It remains to prove that {Fk}k∈N is
nondecreasing. By (A.18), for every x ∈ RN ,

Fk(x) ≤ F̃k(x) +

(
Lk +

µ′

2
(2 |x|+ εk + 2 k)

)
εk −

1

k
.

Moreover, by (A.14) we have

F̃k(x) ≤ F̃k+1(x)− µ′ (|x| − k − 1)+.

Since F̃k+1 is convex, by Jensen inequality we also have

F̃k+1(x) ≤ F̃k+1 ∗ ρεk+1
(x).

Hence in order to have Fk(x) ≤ Fk+1(x) it is sufficient that for every x ∈ RN

(A.19)

(
Lk +

µ′

2
(2 |x|+ εk + 2k)

)
εk −

1

k
≤ µ′ (|x| − k − 1)+ −

1

k + 1
.

When |x| ≤ 2 (k + 1), by recalling that εk < 1/2 we have(
Lk +

µ′

2
(2 |x|+ εk + 2 k)

)
εk −

1

k
≤
(
Lk +

µ′

2
(6 k + 5)

)
εk −

1

k
,

5We use the following elementary manipulations

|x− y|2 = |x′ − y|2 + (|x|2 − |x′|2) + 2 〈x′ − x, y〉,

and

(|x|2 − |x′|2) + 2 〈x′ − x, y〉 ≤ (|x| − |x′|) (|x|+ |x′|) + 2 |x− x′| |y|
≤ |x− x′| (|x|+ |x′|+ 2 |y|).
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while for the right-hand side of (A.19)

µ′ (|x| − k − 1)+ −
1

k + 1
≥ − 1

k + 1
.

Hence (A.19) holds true provided

(A.20) εk ≤ Γ−k :=

(
1

k
− 1

k + 1

)
1

Lk + (6 k + 5)µ′/2
.

When |x| > 2 (k + 1), the left-hand side of (A.19) can be estimated by(
Lk +

µ′

2
(2 |x|+ εk + 2 k)

)
εk −

1

k
≤ εk µ′ |x|+ εk

(
Lk + µ′ (k + 1)

)
− 1

k

while for the right-hand side we have

µ′ (|x| − k − 1)+ −
1

k + 1
≥ µ′

2
|x| − 1

k + 1
.

In that case, by recalling that εk < 1/2 we only need to take

(A.21) εk ≤ Γ+
k :=

(
1

k
− 1

k + 1

)
1

Lk + µ′ (k + 1)
.

Observe that both {Γ+
k }k∈N and {Γ−k }k∈N converge to 0 as k goes to ∞. Hence, by choosing the

decreasing sequence

ε1 = min

{
Γ−1 , Γ+

1 ,
1

2

}
, εk+1 = min{Γ−k , Γ+

k , εk}, k ∈ N,

this satisfies both (A.20) and (A.21) and thus {Fk}k∈N satisfies all the required properties. �

Lemma A.5. Let F : RN → R be a convex function, which is Φ−uniformly convex outside the
ball BR. Then for every Q > R there exists a convex function FQ : RN → R with the following
properties:

i) FQ ≡ F in BQ;

ii) F is µQ−uniformly convex outside the ball BR, where6

(A.22) µQ = min

{
1, min
t∈[2R,4Q]

Φ(t)

}
.

Proof. For every Q > R, we define the function FQ : RN → R by

FQ(x) = F (x) + µQ JQ(x), where JQ(x) := (|x| −Q)2
+.

Of course, this is a convex function such that FQ ≡ F in BQ.

In order to verify property ii), we first observe that µQ JQ is µQ−uniformly convex outside B2Q

(see Lemma A.6 below). We consider again a sequence {ρε}ε>0 ⊂ C∞0 (Bε) of standard mollifiers.
Then for every η ∈ RN and every ξ ∈ RN \BR+ε, we have

〈D2(FQ ∗ ρε)(ξ) η, η〉 = 〈D2(F ∗ ρε)(ξ) η, η〉+ 〈D2(JQ ∗ ρε(ξ)) η, η〉.

6Observe that µQ > 0 thanks to fact that Φ is continuous and Φ(t) > 0 for t > 0.
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Since F is Φ−uniformly convex outside BR, the first part of Lemma A.1 implies that when ξ ∈
B2Q+ε \BR+ε,

〈D2(F ∗ ρε)(ξ)η, η〉 ≥
(

min
t∈[2R,4(Q+ε)]

Φ(t)

)
|η|2.

Since µQ JQ is µQ−uniformly convex outside B2Q, we get similarly when ξ ∈ RN \B2Q+ε,

〈D2(µQJQ ∗ ρε)(ξ) η, η〉 ≥ µQ |η|2.

In any case, we thus have for every ξ ∈ RN \BR+ε

〈D2(FQ ∗ ρε)(ξ) η, η〉 ≥ µQ |η|2.
By the second part of Lemma A.1, this proves that FQ is µQ uniformly convex outside BR. �

Lemma A.6 (A useful function). The function

JQ(x) = (|x| −Q)2
+,

is 1−uniformly convex outside the ball B2Q.

Proof. We first observe that JQ is C2 outside BQ. Thus it is sufficient to compute the Hessian of

JQ in RN \B2Q. Let x ∈ RN \B2Q, we have

D2JQ(x) = 2
|x| −Q
|x|

IdN + 2
x⊗ x
|x|2

− 2 (|x| −Q)
x⊗ x
|x|3

.

For every η ∈ RN we get

〈D2JQ(x) η, η〉 = 2
|x| −Q
|x|

|η|2 + 2

[
1− |x| −Q

|x|

] (
〈x, η〉
|x|

)2

≥ 2

(
1− Q

|x|

)
|η|2,

and thus the conclusion follows, by using that |x| ≥ 2Q. �
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