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I. INTRODUCTION

The dispersion of miscible solutes or tracers in parallel or quasi-parallel laminar flows is of interest in many applications like chemical engineering, microfluidics, chromatography or separation and has been extensively studied in the case of stationary flows since the classical pioneering papers of Taylor 1 and Aris [START_REF] Aris | On the dispersion of a solute in a fluid flowing through a tube[END_REF] . In such flows, the so-called Taylor dispersion corresponds to a balance between molecular diffusion across the flow lines and the convective spreading of the tracer due to velocity gradients transverse to the main flow; the corresponding dispersion coefficient is proportional to the square of the characteristic velocity U unlike for 3D random porous media for which geometrical dispersion proportional to U is dominant. For a flow between two parallel planes at a distance H, Taylor dispersion is the relevant mechanism provided the Péclet number P e = U H/D m is larger than ≃ 30 (D m is the molecular diffusivity); at lower Péclet numbers, pure molecular diffusion is dominant.

Fewer research has been devoted to dispersion in pure (zero mean velocity) oscillatory flows. These are however of significant interest in such applications as pulmonary ventilation flows or flows induced by surface waves (for instance in shallow water in estuaries). On the fundamental side, pure oscillating flows raise important questions in relation to the well known reversibility of the flow fields at low Reynolds numbers when the mean flow is reversed: can this reversibility result in a very low instantaneous dispersion after an integral number of oscillations of the flow velocity? Does spreading remain diffusive? a) Electronic mail: lucreroht@gmail.com b) Electronic mail: Harold.Auradou@u-psud.fr c) Electronic mail: hulin@fast.u-psud.fr d) Electronic mail: salin@fast.u-psud.fr e) Electronic mail: ricardochertcoff@gmail.com f) Electronic mail: i.ippolito@conicet.gov.ar

In a pioneering work, Aris 3 applied his method of moments to longitudinal dispersion induced by a pulsating viscous flow in an infinite tube, but with a non zero time averaged velocity. The transition between the irreversible and reversible regimes in Taylor dispersion was studied experimentally [START_REF] Ippolito | Tracer dispersion in 2D fractures with flat and rough walls in a radial flow geometry[END_REF] by means of a step-like point injection of tracer at the center of two parallel plates (spacing H) followed by a reversal of the flow after a preselected variable time. This same problem was investigated theoretically 5 by an irreversible thermodynamics approach. These studies demonstrated the major influence of the ratio τ m /T of the characteristic time τ m = H 2 /D m for molecular diffusion between the plates to the interval T between the beginning of the injection and its reversal: there is indeed a transition from irreversibility to partial reversibility as τ m /T increases. For oscillating flows, τ m /T will also be a key parameter (T is this time the period of the oscillations).

Watson [START_REF] Watson | Diffusion in oscillatory pipe flow[END_REF] discussed theoretically tracer diffusion for pure oscillating flows in a circular tube or between parallel planes: he determined the relevant characteristic numbers of the problem and predicted the value of the macroscopic diffusion coefficient after a stationary diffusive regime has been reached. Experimental verifications of these predictions were reported by Joshi et al. [START_REF] Joshi | An experimental study of gas exchange in laminar oscillatory flow[END_REF] and Kurzweg et al. [START_REF] Jaeger | Determination of the longitudinal dispersion coefficient in flows subjected to high-frequency oscillations[END_REF][START_REF] Kurzweg | Enhanced dispersion in oscillatory flows[END_REF] for oscillating gas flows in circular tubes with and without a DC component. These latter works are concerned with the macroscopic effective diffusivity averaged over the whole flow section and measured after a stationary diffusive regime is reached. Regarding this last point, several authors considered the variation with time of the dispersion and not just its asymptotic value at long times. Holley 10 showed that, in estuaries, the effective diffusion coefficient is strongly reduced when the width reaches about 200 m, which also is the case for many waterways: a possible explanation is the partial reversibility of dispersion in oscillating flows at high enough frequencies. Chatwin 11 demonstrated the occurrence of second harmonics of the flow frequency in the time dependence of the dispersion. He also suggested that, in the case of blood flow there might be a transition from Taylor to partly reversible dispersion for vessels of internal diameter larger than about 2 mm. Yasuda 12 studied dispersion when an oscillatory boundary layer is present: he compared the results to those obtained for a steady flow and explained why, in the oscillatory case, the apparent dispersion coefficient may appear to decrease when the flow is reversed [START_REF] Smith | Contaminant dispersion in oscillatory flows[END_REF][START_REF] Smith | The contraction of contaminant distributions in reversing flows[END_REF] . For turbulent flows, some results obtained for laminar flows may be transposed by replacing the molecular diffusion coefficient by the eddy diffusivity [START_REF] Bowden | Horizontal mixing in the sea due to a shearing current[END_REF][START_REF] Smith | Dispersion of tracers in the deep ocean[END_REF] .

The above works on oscillatory flows are mostly concerned with the regimes achieved at long times and, in all cases, with the macroscopic dispersion (averaged over the gap of the flow channel). They does not provide information on the local mechanisms of this type of dispersion and its partial reversibility. The objective of the present paper is, therefore, to relate the variations with time of the local concentration to those of the global dispersion. For this purpose, we study experimentally and numerically at both the macroscopic and local scales the different diffusive spreading regimes in oscillating flows between parallel plane walls and determine their domains of existence and their time dependence.

We discuss first experiments performed in a Hele-Shaw geometry by optical measurements of the average of the concentration of a dye tracer over the gap of the cell. We study whether the spreading of the tracer is diffusive and the variation of the corresponding macroscopic diffusion coefficient D with the amplitude and frequency of the oscillations for fluids of different viscosities: these variations can be collapsed onto a single master curve by using proper dimensionless variables such as the ratio τ m /T . Numerical 2D Monte-Carlo simulations in a parallel planes geometry allow then to study the spatial distribution of the tracer in the gap of the cell and its dependence on time. More specifically, we compare in both regimes the variation with time of the first and second moment of the local concentration distribution along the flow at different distances from the walls. Another important issue is the time necessary to achieve diffusive spreading and its relation to the characteristic diffusion time. In the Appendix to the present paper, we show that the analytical results of Chatwin 11 and Watson 6 can be adapted to the present configuration and provide a basis of comparison for the both the experimental and numerical results obtained at the macroscopic scale. The fluid flows inside a Hele-Shaw cell (fig. 1a-b) made of two transparent glass plates (400 × 70 × 10 mm) separated by a mylar sheet of appropriate geometry providing a gap of thickness H = 0.4 ± 0.02 mm with an internal width of 50 mm in its parallel part.

The oscillating flow is generated for large oscillation periods (25 ≤ T ≤ 250 s) by a digital pump programmable in both the injection and the fill modes; for shorter periods (6 ≤ T ≤ 80 s), we use another device made of a rotating crank driving a rod connected to the piston of a 2 ml syringe.

The fluids used in the experiments are aqueous solutions of glycerol at concentrations equal to 21% and 50% with respective viscosities of 1.8 and 6 mPa.s (at 20 o C). All the experiments were performed at a constant temperature of 20 o C. Water Blue dye 17 at a concentration of 2.0 g/l is added to one of the solutions as a passive tracer. The molecular diffusion coefficient D m of the dye, as determined through independent measurements and results from the litterature [START_REF] Russel | Colloidal Dispersions[END_REF][START_REF] Charette | Influence of the disorder on solute dispersion in a flow channel[END_REF] , is D m = 4.05 × 10 -4 mm 2 /s for the 21% glycerol solution.

The cell is illuminated from below and the concentration field C(x, y, t), is determined from images acquired by a digital CCD camera placed above the set-up (Roper Coolsnap FX): C(x, y, t) is the average, over the gap H of the cell, of the local concentration c(x, y, z, t). Each image contains 1300 × 140 pixels with a depth of 12 bits. The field of view is 289 × 31 mm and the resolution is 4.5 pixels per mm. For each experiment, 650 images are acquired at time intervals from 0.2 to 12.5 s.

Prior to the experiment, reference images are obtained with the cell saturated by the transparent solution and, then, by the pure dyed one. For each experimental image, the intensity of the transmitted light measured for each pixel of coordinates (x, y) is then converted into the corresponding concentration C(x, y, t) with the help of the reference images (for more details on this procedure, see Refs. 19-21).

At the beginning of the experiment (t = 0), each half of the cell length is saturated with one of the fluids with a sharp relative concentration variation at the front (Fig. 2a): this is obtained by injecting simultaneously the two fluids at the ends M and P of the cell and letting them flow out together on the two side ports N and N ′ in the middle (Fig. 1). The initial front coincides with the line N N ′ . The side ports are then shut-off and the injection device is connected to the inlet M . The variations of the flow rate are monitored from the variations of the weight of a beaker connected to the outlet P which are well fitted by a sine wave. This measurement, together with the area of the cell section, gives the amplitude A (averaged over the gap) of the displacement of the fluid in the constant width part of the cell: the values in the present work range from A = 2 to 6 mm. Images of the cell are then acquired at regular intervals. Assuming in the following that the mean displacement of the fluid varies as A sin(ωt) with ω = 2 π/T , the average fluid velocity satisfies:

< v x (z, t) > z = ω A cos (ω t) = U cos (ω t) . (1) 
In the following, U = ωA = 2π A/T is used as the characteristic velocity of the problem. Since, due to the oscillations, the average displacement of the fluid is zero, the total travelled distance x tr is characterized here by the integral of the absolute value |dx o /dt| of the front velocity between times 0 and t; for an integral number N of periods, x tr = 4N A.

III. EXPERIMENTAL RESULTS

A. Time dependence of the mean front profile

Figs. 2a-b display experimental maps of the concentration C(x, y) at times t 0 = 0 and t 1 = 300 s: the width of the front is clearly larger in this latter case. Concentration profiles C(x, y 0 ) corresponding to these times and to y 0 = 15 mm are plotted in Figs. 2c-d: curve (d) is well fitted by the error-like function (continuous black line):

C(x, y 0 ) = 1 2   1 -erf   x -x o (y 0 , t) 2∆x 2 (y 0 , t)     , (2) 
(x o = mean coordinate of the front, 2∆x 2 = mean square width). the drift from dark to light shades) with an additional modulation also indicated by vertical stripes but fainter than for x o . Since there is not definite trend of variation with y we use a 1D description and replace implicitly, in the following, the local values of x o and ∆x 2 by their averages over y. Moreover, since the end of the cell has no special physical relevance, we study, instead of x o (t), its deviation x o (t)-< x o > t from the time average < x o > t (omitted in the equations). If the spreading process is diffusive, ∆x 2 must increase linearly with time: more precisely, it should be related to the coefficient D for 1D diffusion along x by: D = (1/2)d∆x 2 /dt. The inserts of Figs. 4 compare the variations with time of ∆x 2 (t) and x o (t) during one period T of the flow oscillations for T = 250 and T = 33 s. In both cases, the variation of ∆x 2 (t) combines a global linear increasing trend and a periodic variation at a frequency equal to twice that of the flow. For T = 250 s (a), ∆x 2 increases continuously, but at a rate varying with time and going to zero, like the velocity, at the extremal values of x o (t) (vertical dotted lines in the insert). The modulation is less apparent and the linear trend more clear when ∆x 2 is plotted (main graph) as a function of the travelled distance x tr . For T = 33 s (b), ∆x 2 decreases instead when the flow direction is reversed before increasing again (insert). This modulation at twice the frequency of the flow is, this time, also very visible in the variation of ∆x 2 with x tr (main graph in Fig. 4b). Experimental, numerical and analytical results on the amplitude and phase of these modulations will be discussed in Sec. V B (see Fig. 13).

These results show that tracer spreading is fully irreversible for oscillations of large periods T (it always increases with time), but partly reversible for shorter periods T (it decreases during a fraction of the period). Over time lapses longer than T , ∆x 2 increases linearly in both regimes both with time and x tr : this demonstrates the diffusive character of the spreading. The corresponding 1D diffusion coefficient is then equal to D = ∆(∆x 2 )/(2∆t), where ∆(∆x 2 ) is the variation during a time lapse ∆t ≫ T .

B. Dimensionless variables characterizing the front diffusion

In an homogeneous medium, assuming a uniform flow of velocity U parallel to x and a macroscopic concentration C constant in the perpendicular directions y and z, C satisfies the 1D Gaussian dispersion relation:

∂C ∂t = U ∂C ∂x + D ∂ 2 C ∂x 2 . ( 3 
)
For a constant mean flow velocity < v x > z = U , solutions of this equation are given by Eq. ( 2) with: x o = U t and ∆x 2 = 2D t.

In the case of a stationary plane Poiseuille flow between parallel plates at a distance H of velocity v x (z) = (3U/2)(1 -4z 2 /H 2 ), front spreading becomes diffusive at the macroscopic scale for t ≫ τ m (τ m = H 2 /D m ). Then, the concentration C(x, t) satisfies Eq. ( 3) and the coefficient D is given by 1,2 :

D = U 2 H 2 210 D m + D m = U 2 τ m 210 + D m . (4) 
Eq. ( 4) is a macroscopic relation and C(x, y) is the average of the local microscopic concentration c(x, z) over the distance z inside the cell gap; the local concentration c(x, z) satisfies instead the local microscopic equation:

∂c ∂t = v x (z) ∂c ∂x + D m ∆c. (5) 
The term proportional to U 2 in Eq. ( 4) corresponds to Taylor dispersion already mentioned in Sec. I. Physically, it represents the diffusion coefficient associated to a random walk with individual steps of duration ∼ τ m and velocity ∼ U : the transverse diffusion time τ m characterizes indeed the Lagrangian decorrelation of the velocity of the tracer particles as they diffuse across the streamlines. The term D m of Eq. ( 4) corresponds to pure molecular diffusion parallel to the flow: The ratio of the first and second term is P e 2 /210 in which the Péclet number is P e = U H/D m : the influence of pure molecular diffusion is therefore only significant at low Péclet numbers (typically below 30).

In the present experiments, for very large oscillation periods such that T τ m , we can assume that Eq. ( 4) is satisfied for a velocity U (t) =< v x (z, t) > z equal to U cos(ω t) (Eq. ( 1)). The mean square width of the front satisfies the relation: d∆x 2 /dt = 2 D (U (t)) which, using Eqs. ( 1) and ( 4) and integrating with respect to time leads to:

∆x 2 (t) A 2 = π 210 τ m T (sin (2ω t) + 2ω t) + 2 t τ m H A 2 ; (6) 
This result agrees with the predictions of Refs. 6 and 11 (see Eq. (A9)). The last term on the right corresponds to pure molecular diffusion and the others to Taylor dispersion.

This expression predicts a variation ∆x 2 (t) globally linear with time with a modulation of the slope at a frequency equal to twice that of the flow; this slope is always positive and has a minimum close to zero for t/T = n/2 + 1/4. All these features are visible on the experimental curve of Fig. 4a (insert).

The mean global dispersion coefficient D given by the linear increasing trend of Eq. ( 6) over time lapses ∆t ≫ T is:

D = π 2 A 2 τ m 105 T 2 + D m . (7) 
The normalized dispersivity l D /A = D /U A has then the dimensionless form:

l D A = π 210 
τ m T + 1 2π H A 2 T τ m . ( 8 
)
The second, pure molecular diffusion term is only important at very low Péclet numbers U H/D m and we show in Sec. IV that it is negligible in the present experiments. Eq. ( 8) involves then only the dimensionless variables l D /A = D/(U A) and t/τ m .

C. Experimental variation and scaling law for the dimensionless dispersivity. The experimental values of l D /A = D /U A are plotted in Fig. 5 as a function of τ m /T . We note first the good collapse of the different experimental points for all values of A, µ and T : this confirms the relevance of the choice of dimensionless variables. For τ m /T ≤ 3, the trend of the data is compatible with the variation l D /A ∝ τ m /T predicted by Eq. 8 for the Taylor dispersion regime. When τ m /T increases, l D /A reaches a maximum and decreases then roughly as (τ m /T ) -1 for τ m /T ≥ 15 (dashed line). This latter scaling law can be retrieved as follows. Consider a half period T /2 during which the flow keeps a same orientation (Fig. 6); the characteristic diffusion distance of tracer particles along z is: (D m T ) 1/2 U T /H. In Taylor dispersion at a constant flow, the transition from convective to macroscopically diffusive spreading takes place at a time of the order of τ m representing the characteristic Lagrangian decorrelation time (see Sec. III B). For τ m /T 20, τ m must be replaced by T (decorrelation is induced in this case by the flow reversal instead of molecular diffusion across the gap H). We must have then also: |∆x c | ≃ (D T ) 1/2 . Equating the two expressions of |∆x c | and taking again A ∼ U T leads to the scaling relations:

∆z d ∼ (D m T ) 1/2 ≪ H.
D D m ∼ A H 2 , (9) or 
:

l D A ∼ τ m T -1 . (10) 
Eq. 10 predicts well the experimental variation for τ m /T 15 (Fig. 5). Analytical results from Ref. 6 (see appendix) are also plotted in Fig. 5 (continuous line): the transition between the limiting regimes occurs at the same value of τ m /T as experimentally. The experimental and analytical values of l D /A are similar for 8 ≤ τ m /T ≤ 50; the experimental values are slightly larger above and below this range, possibly because the hypothesis of a distribution of the tracer invariant along y is not fully satisfied (Fig. 3b).

IV. 2D MONTE-CARLO SIMULATIONS OF DISPERSION IN OSCILLATING FLOWS BETWEEN PARALLEL PLATES

A. Physical hypothesis and procedure of the Monte-Carlo simulation.

Both the experiments and the analytical predictions [START_REF] Watson | Diffusion in oscillatory pipe flow[END_REF][START_REF] Chatwin | On the longitudinal dispersion of passive contaminant in oscillatory flows in tubes[END_REF] deal with averages of the concentration over the gap: this is adequate in low frequency regimes (τ m /T 1), for which the concentration distribution in the gap is homogenized by molecular diffusion at all times during the period T , but not in the high frequency one. Numerical simulations are needed to visualize the distribution of the 'tracer particles' inside the gap and determine the variations of dispersion with the distance z: this allows us to understand the local mechanisms of the dispersion process. These simulations determine, in addition, the time necessary to reach a stationary dispersion regime, as well as the prefactors in the expression of the dispersivity.

Here we use Monte-Carlo simulations considering a set of "particles" moving independently under the combined effects of convection and molecular diffusion [START_REF] Bugliarello | Random walk study of convective diffusion[END_REF] . We assume that the period T is large enough so that the characteristic thickness of the oscillating viscous boundary layer is larger than the gap H and the flow profile remains the Poiseuille one. From Ref. 24, the thickness of this layer is δ ν = (νT /π) 1/2 so that:

δ ν H = T πτ m ν D m . (11) 
The thickness δ ν is therefore of the order of H if τ m /T ≃ ν/3D m . Here, ν/3D m is of the other of 1000 for the less viscous solution and still larger for the higher viscosity one; the maximum value of τ m /T is 1000, so that δ ν /H > 1 and the Poiseuille profile is valid. At t = 0, all particles are released on the line x = 0 and are distributed uniformly in the gap. This corresponds to a pulse injection of the tracer instead of a step-like one in the experiments but profiles corresponding to a step-like injection might be computed by an additional integration over x. The coordinates of the particles are updated after each time step (duration δt). Their location is first displaced in the direction x by an amount l conv = v x (z, t) δt corresponding to convection by the instantaneous Poiseuille flow (Fig. 6). In addition, one applies a displacement of amplitude l dif = (6D m δt) 1/2 distributed uniformly in all directions and of orientation varying at random from one particle or one time step to another: this models the random Brownian motion due to molecular diffusion [START_REF] Bugliarello | Random walk study of convective diffusion[END_REF] . The value of δt is chosen so that l dif is small compared to the gap H (the robustness of the results with respect to variations of l dif has been checked). Zero flux boundary conditions on the the upper and lower surfaces of the cell are implemented by reflecting on the walls particles moving outside the fluid volume. The sequence of convective and diffusive displacements is repeated for a minimum of 30 periods in order to check the stationarity of the spreading process (generally a smaller number of periods is displayed for better visibility).

At each time step, we compute, from the distribution of the particles (Figs. 9a-b), the histograms of their coordinates x (Figs. 9c-d). These histograms are either computed for all particles (upper curves) or separately for 10 different slices of thickness ∆y = a/10; the two histograms corresponding to same absolute values of |y| are then combined with indices i (Fig. 6). The global mean square width ∆x 2 and mean distance x o are determined by fitting the global histogram by the Gaussian law:

P (x) = C 2π∆x 2 e -(x-xo ) 2 2∆x 2 , (12) 
in which C is a constant. The variations of ∆x 2 with x tr and t are shown in Fig. 7a-b and display the same features as the experimental curves of Fig. 4a-b. In the Taylor regime (case (a) with τ m /T = 0.8), dispersion always increases with time and the variation levels off when the flow velocity goes to zero (insert of Fig. 7a). In the partly reversible dispersion regime, ∆x 2 decreases instead when the flow direction changes (insert of Fig. 7b). These features are interpreted in Sec. V B. The variation of ∆x 2 with x tr displays only a weak modulation in the first regime but a clear one in the second. Over long time lapses ≫ T , ∆x 2 increases linearly with time: a linear regression provides, like in the experiments, D and l D . At the lowest values of τ m /T , the numerical/analytical variations corresponding to different values of A/H do not coincide any more. This range corresponds to low velocities for which pure longitudinal molecular diffusion is dominant (this domain was not explored in the experiments). Eq. 8 reduces then to: [START_REF] Aris | On the dispersion of a solute in a fluid flowing through a tube[END_REF] . In this regime, l D /A is therefore proportional to (τ m /T ) -1 and to (A/H) -2 (see Fig. 8). The transition between the pure molecular diffusion and Taylor regimes takes place when the two terms of Eq. ( 8) are equal, i.e. for τ m /T = (H/A)( √ 105/π): the value of τ m /T at the transition varies then as H/A (Fig. 8).

l d /A = (T /2πτ m )(H/A)
For τ m /T ≃ 2, the value of l d /A for A/H = 5.6 still falls on the common trend corresponding to Taylor dispersion: since these are the lowest values of τ m /T and A/H in our experiments, this justifies, a posteriori, the hypothesis of a negligible longitudinal molecular diffusion.

We explain now the above results (particularly regarding the oscillations of the dispersion) by comparing the motion and dispersion of tracer particles in several slices at different transverse distances z. In a first step, we compare the variations of the dispersion in the different slices over time lapses long compared to the period T and for an integer (or half-integer) number of oscillations: this removes asymmetries induced by the fluid displacement (see Figs. 10a-c). Figs. 9a-b displays distributions in partial reversibility regime (τ m /T = 200) at two different times equal respectively to 0.04 τ m and 0.3 τ m (i.e. 8T and 60T ).

At the shorter time, the distribution of the coordinates x of the particles is broader near the walls than in the middle of the gap: this agrees with the discussion of Sec. III C since the velocity gradients are larger near the walls. This is confirmed by comparing the local histograms of the values of x (lower curves in Fig. 9c): they are narrower for slice 0 in the middle of the gap (black curve) than for slice 4 near the walls (grey curve). As a result, the global distribution (upper black curve) is not well fitted by a Gaussian variation (dotted line). At the longer time, instead, the histograms corresponding to the different slices nearly coincide and both the local and global histograms are Gaussian (Figs. 9b-d).

This explains the variations of ∆x 2 with x tr for different slices in Fig. 7b: while ∆x 2 is initially much larger near the walls (like in Figs. 9a-c), the variations of ∆x 2 for the different slices become then linear and parallel so that their relative difference gets small (Figs. 9b-d). The transition towards the linear regime occurs after a time t ∼ τ m /4, roughly independent of τ m /T for τ m /T 20. The relevance of τ m as the proper characteristic time is checked by increasing D m which reduces, as expected, the transition time by the same factor.

In the Taylor-like regime (τ m /T 2), the distributions of the particles in all slices become Gaussian and identical after a time t ≪ T (they look then like those of Figs. 9bd): this accounts for the coincidence, in Fig. 7a, of the curves corresponding to different slices. For τ m /T = 0.8 (Taylor-like regime) (a), the variation with time of the global mean distance x o (t) and those of x i o (t) practically coincide for all slices. The amplitude of these oscillations are constant with time and identical to within 1 %; the phase shift with respect to the oscillations of the fluid is zero within measurement error (∼ 3 o ). For τ m /T = 60 (partial reversibility regime) (b), the oscillations reach a constant amplitude after a time of the order of τ m /10. Unlike for the Taylor regime, the amplitudes of the local displacements x i o differ from x o and decrease as one moves away from the center of the gap (from slice 0 to slice 4). For all slices and for x o (t), the phase shift of x o and x i o with respect to the oscillations of the fluid is zero within experimental error, except for the slice nearest to the walls for which the phase lag is ≃ 16 o . The two regimes and the transition between them are characterized quantitatively by Fig. 12 displaying the variations of the normalized amplitudes x o /A and x i o /A as a function of τ m /T . The transition takes place essentially over the same range of values 2 ≤ τ m /T ≤ 20 as for l D /A in Fig. 5.

In the Taylor regime, for τ m /T ≤ 1, all the values of x o /A and x i o /A are equal to 1 showing that all parts of the the front move at the mean velocity < v x (z) > z of the fluid (corresponding to the displacement A) and not at the local velocity v x (z).

In the partial reversibility regime, for τ m /T ≥ 20, x o /A remains equal to 1 but the local displacements x i o decrease with the distance z of the slice i from the center of the gap: this variation corresponds to that of the local amplitude A(z) of the displacement of the fluid which is proportional to the local fluid velocity and satisfies:

A(z) = 3A 2 1 -4 z 2 H 2 . ( 13 
)
The horizontal dotted lines correspond to the normalized averages < A(z) > i /A of this amplitude over the range of z values occupied by each slice: these averages are practically equal to the corresponding values of x i o in the limit of large ratios τ m /T (except for slice 4 for which these values coincide only for τ m /T 100). For instance, for slice 0, x 0 o = 3A/2 which corresponds to a displacement at the maximum velocity of the Poiseuille profile. Therefore, in this regime, the local motion of the front at a given distance z follows exactly the local displacement of the fluid.

These different results will allow us to explain the oscillations with time (or x tr ) of the global mean square width ∆x 2 at twice the frequency of the flow observed experimentally (Fig. 4) and numerically (Fig. 7). 6) and (15).

We have determined, from the numerical simulations, the normalized amplitude ∆x 2 osc /A 2 of these oscillations and their phase shift ∆ϕ with respect to sin(2ω t) (the mean fluid displacement is A sin(ω t)). These values are plotted as a function of τ m /T in Fig. 13 ((+) symbols): this variation is in excellent agreement with the predictions obtained in the appendix with the approach of Ref. 11 (continuous line). The experimental measurements also follow the same variation in the range investigated (△ symbols).

In Fig. 13b, the transition between the Taylor and partial reversibility regimes is marked by a variation of the phase by π/2. Moreover, while the amplitude of the oscillations is proportional to τ m /T in the first case, it is about constant in the second.

In the Taylor-like regime (τ m /T 2), the variation of ∆x 2 with time results exclusively from the variations of Taylor dispersion with those of the flow velocity: it satisfies Eq. ( 6) as shown in Sec. III C. The values of ∆x 2i follow exactly the same variation in all individual slices: this is due to the constant amplitude and phase of the oscillations of x i o : D is therefore the same for all individual slices, which explains why all the corresponding curves in Fig. 7a coincide. Eq. ( 6) predicts a normalized amplitude of the oscillations proportional to τ m /T and a phase ∆ϕ = 0, both in agreement, for τ m /T ≤ 2, with the variations displayed in Fig. 13a-b.

In the partial reversibility regime (τ m /T > 20), Eq. 9 shows that D /D m no longer depends on the velocity. The mechanism discussed above for the Taylor-like regime no longer contributes therefore to the oscillations of ∆x 2 /A 2 : they are due, in this case, to the periodic distortions of the geometry of the front which, as shown above, follows the local motion of the fluid. The corresponding contribution ∆x c to the front width is purely convective and reversible with respect to a change of the flow direction: this mechanism does not influence, therefore the global increase of ∆x 2 over time lapses ≫ T . The latter is purely due to the diffusive component estimated in Sec. III B.

Assume that the local mean displacement x o (z, t) of the tracer is equal to the displacement A(z) sin(ωt) of the fluid (Eq. 13); the variation of ∆x 2 with time in the partial reversibility regime will satisfy:

∆x 2 (t) = < A 2 (z) > z -< A(z) > 2 z sin 2 (ω t). (14) 
Then:

∆x 2 (t) A 2 = 1 5 sin 2 (ω t) = 1 10 (1cos (2ω t)) ;

Eq. ( 15) predicts a phase shift ∆ϕ = π/2 and an amplitude constant with τ m /T with a value in agreement with the high frequency limit of the curves in Fig. 13 (see Eq. (A11)).

As shown by Fig. 7, the values ∆x 2 i /A 2 for individual slices do not display oscillations like those of ∆x 2 /A 2 , or much weaker ones: this is due to the variations with z of the local displacement x o (z) which are much smaller across single slices than across the whole gap.

VI. CONCLUSION

The present experiments and simulations have demonstrated that, except at low Péclet numbers (P e 30), the stationary regimes of dispersion in oscillating flows between parallel walls are controlled by the ratio τ m /T (transverse diffusion time/oscillating period): this ratio takes care of the influences of the different characteristic lengths (A and H), of T and of D m . While, for τ m /T 2, one has a Taylor-like dispersion with a front width increasing monotonously with time, a new regime appears above τ m /T ≃ 20: spreading remains diffusive but is partly reversible during the oscillations. In this latter case, the normalized dispersivity l D /A decreases as (τ m /T ) -1 instead of increasing like (τ m /T ). The time necessary for achieving a Gaussian spreading with a local front width ∆x 2 uniform across the cell gap remains proportional to the diffusion time τ m across it.

The physical origin of these differences is that, when τ m /T 2, the characteristic velocity contrast determining the amount of spreading is the mean velocity; if τ m /T 20, it is instead the velocity difference ∂v x /∂z between points separated by the distance ∆z ∼ (D m T ) 1/2 across which the tracer diffuses during the period T . In both regimes, the variation with time of the mean square width ∆x 2 of the diffusion front has an oscillatory component of frequency twice that of the flow oscillations: its origin is however different in the two cases.

For τ m /T 2, the oscillations are due to the modulation of the instantaneous dispersion coefficient which is proportional to the square of the velocity: such oscillations are in phase with the absolute value of the fluid displacement and increase linearly with τ m /T . Moreover, all parts of the front oscillate at the same velocity independent of z and the front remains flat during the oscillations.

For τ m /T 20, D is independent of the velocity and ∆x 2 oscillates because of the periodic stretching of the front by the oscillating Poiseuille velocity profile in the gap: the location x o (z) of the local center of gravity of the tracer follows indeed the oscillations of the local fluid velocity v x (z, t). These two different mechanisms result in a π/2 phase shift between the oscillations in the two regimes. Still for τ m /T 20, the oscillatory convective component of the variation of ∆x 2 with the time t is reversible and does not contribute to the globally linear increase of ∆x 2 with t.

For still higher values of τ m /T , when the ratio τ ν /T becomes large compared to one, one must take into account the influence of the oscillating boundary layers near the walls. This regime was not studied in the present work which deals with dispersion in liquids, for which the Schmidt number ν/D m is large; such effects occur also generally only at high frequencies.

In addition to applications to heat and solute exchange in natural and industrial oscillating flows, such processes suggest an interesting alternative method for measuring molecular diffusion coefficients: using oscillatory flows allows indeed to achieve large travelled lengths (and therefore large font widths ∆x 2 ) without requiring very long tubes.

FIG. 1 .

 1 FIG. 1. Schematic views of the cell and of the experimental set-up. a) Side view of the global experimental setup; b) top view of the Hele Shaw cell.

FIG. 2 .

 2 FIG. 2. Left: Images of the cell and corresponding tracer concentration map after image processing a) at t0 = 0 b) at t1 = 300 sec. The fluid oscillates with a period T = 9 s and an amplitude (averaged over the gap) A = 2 mm. Right: Profiles of the variation of the concentration C(x, yo, t) with the distance x at the same time t as the image in front and at a same transverse distance yo = 15 mm. Fits by Eq. (2) are superimposed as continuous lines onto the experimental curves ( xo(t1) = 157 mm and ∆x 2 (t1) = 55 mm 2 ).

Figs. 3 FIG. 3 .

 33 FIG. 3. Spatiotemporal diagrams of (a) xo(y, t) (grayscale) and (b) ∆x 2 (grayscale) of the front as a function of the time t (horizontal scale) and of the transverse distance y (vertical scale); T = 250 s, A = 3.5 mm.

FIG. 4 .

 4 FIG. 4. Variations of the mean square width ∆x 2 of the front and of the mean distance xo. Main graphs: variation as a function of the travelled distance xtr of ∆x 2 (continuous line) and linear fit of this variation (dashed line). Inserts: variations as a function of time of xo (curved dotted line), ∆x 2 (continuous line) and linear fit (dashed line); vertical dotted lines: extrema of xo. (a) T = 250 s, A = 3.5 mm; (b) T = 33 s, A = 3.5 mm. H = 0.4 mm, τm = 395 s .

FIG. 5 .

 5 FIG. 5. Experimental variation in log-log coordinates of the normalized dispersivity lD/A as a function of the normalized inverse oscillation period τm/T for different oscillation amplitudes and fluid viscosities. µ = 1.8 Pa.s: ( ) A = 3.5 mm; ( ) A = 5 mm; (•): A = 6 mm. ( ): µ = 6 Pa.s, A = 5 mm. Continuous line: predictions from Ref. 6 (see Appendix); dotted line: prediction from Eq. 8; dashed line: slope -1.

FIG. 6 .

 6 FIG.6. Schematic view of the fluid velocity field vx(z) and of the motion of the tracer particles. ∆zD: transverse diffusion distance during a half-period T /2; ∆xc: corresponding spreading distance presulting from the velocity gradient ∂vx/∂z. Numerical Monte-Carlo simulation: lconv = deterministic convective displacement during one time step δt; l dif = random diffusive displacement during one time step. At the right: numbering of the different slices used in the simulations.

FIG. 7 .

 7 FIG. 7. Variation of ∆x 2 and xo (insert) with the travelled distance xtr (main graph) and with time (insert) for the distribution of particles in 2D numerical simulations. Thick black lines: widths of histograms computed over the gap of thickness H of the cell. Thinner grey lines: widths of histograms computed over 5 pairs of slices of index i increasing from the lower to the upper grey curves (Fig. (b)). Dashed line: linear fit for the variation of ∆x 2 with time; curved dotted line: variation of xo; vertical dotted lines: extrema of xo. (a) T = 500 s, τm/T = 0.8; (b) T = 6.66 s, τm/T = 60; (a) and (b): A = 20 mm, Dm = 4 10 -4 mm 2 s -1 .

FIG. 8 .

 8 FIG. 8. Numerical and analytical variations of the normalized dispersivity lD/A with the ratio τm/T for different oscillation amplitudes. Numerical simulations (open symbols): ( ) A = 2.25 mm (A/H = 5.6); (•) A = 6 mm (A/H = 15); (△) A = 20 mm (A/H = 50); H = 0.4 mm, Dm = 4 × 10 -4 mm 2 s -1 . Continuous line: predictions from Ref. 6. Dotted lines l d /A ∝ τm/T or (τm/T ) -1 .

Fig. 8

 8 Fig. 8 compares, for three values of A/H, the variations of l D /A with τ m /T obtained in this way (open symbols) to analytical results from Ref. 6 (continuous lines). The numerical values corresponding to different amplitudes A collapse perfectly for τ m /T ≥ 1 (like for the experimental data) and there is a perfect agreement between these values and the predictions from Ref. 6 (continuous lines).

FIG. 9 .

 9 FIG. 9. (a,b): Distribution of the tracer particles in the gap between the cell walls after two different numbers of oscillations N = 7.5 (a) and N = 60 (b). τm/T = 200; A = 20 mm; H = 0.4 mm; Dm = 4 10 -4 mm 2 s -1 . (c,d) Corresponding histograms of the number of particles as a function of the distance x, in the whole gap (upper black curve) and in slices 0 (lower black curve) and 4 (grey curve) (see Fig.6). Dotted lines are Gaussian fits.

BFIG. 10 .FIG. 11 .

 1011 FIG. 10. Distribution of the particles in the gap at three different times for τm/T = 60 (a,b,c) and τm/T = 0.8 (c,d,e): (a) t = 19.75 T ; (b) t = 20 T ; (c) t = 20.25 T ; (c) t = 4.75 T ; (b) t = 5 T ; (c) t = 5.25 T . A = 20 mm; H = 0.4 mm; Dm = 4.05 10 -4 mm 2 s -1 .

1 FIG. 12 .

 112 FIG. 12. Variations as a function of τm/T of the normalized amplitudes xo/A and x i o /A of the oscillations xo(t) and x i o (t) of the mean displacement of the tracer respectively in the full gap (▽) and in the slices i ( , △, ×, ♦, •). Dotted horizontal lines: normalized amplitude Ai of fluid displacement averaged over the corresponding slice. Continuous (dashed) lines: qualitative trends of global (local) the variations. A = 20 mm; H = 0.4 mm; Dm = 4 10 -4 mm 2 s -1 .

FIG. 13 .

 13 FIG.13. Variations with τm/T of the peak to peak normalized amplitude ∆x 2 osc/A 2 (a) and phase ∆ϕ (b) of the oscillations of period T /2 of ∆x 2 . The phase reference for ∆ϕ is the oscillations of the liquid. (+) symbols: values computed from the numerical simulations; △: experimental values; continuous lines: variations predicted analytically by adapting the results of Ref. 11 (see appendix); dotted line: variation of the amplitude from Eqs. (6) and(15).
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Appendix A

In order to predict, in the whole range of values of τ m /T of the present work, the macroscopic dispersion for an oscillating flow in a Hele-Shaw cell (HS), we use the results of Watson 6 on the average diffusion coefficient D in the HS geometry; we also extend to this geometry the work of Chatwin 11 on the time dependence of the diffusion coefficient in a tube or an estuary (shear flow). Chatwin was actually aware of Watson's work on the average macroscopic diffusion coefficient D which was published seven years later.

In the 2D geometry of Fig. 6, we assume that the flow is generated by a harmonic pressure gradient -G cos(ωt) in the x direction giving rise to a velocity v x (z, t) = ℜ(f (z)e iωt ) along the x axis in which f (z) is given by the Navier-Stokes equation:

ρ is the fluid density, ν its kinematic viscosity and f = 0 on the boundary. The local concentration of contaminant c(x, z, t) is governed by Eq. ( 5) with impermeable boundary conditions leading to a solution of the form c(x, z, t) = -γx + ℜ(γg(z, t)e iωt ) such that:

γ is a constant and dg/dz = 0 on the boundaries. We determine the dispersion coefficient D 1 by upscaling Eq. ( 5) to Eq. (3), i.e. we compute the rate of flux of the contaminant across a x plane. D is then the coefficient of -∂C/∂x where C = c is the average of c across the gap H:

We obtain a time dependent dispersion coefficient with an average value given by Watson 6 and oscillatory components of frequency 2ω given by Chatwin [START_REF] Chatwin | On the longitudinal dispersion of passive contaminant in oscillatory flows in tubes[END_REF] for a tube and a shear flow. For a Hele-Shaw cell, we obtained using our own notation, the diffusion coefficient and the mean square width:

the expression of R is given in Ref. 6 , and we have computed A 0 , A 1 and A 2 from Eqs. (A3). These four coefficient function depend on β = H ω/2ν, the ratio of the gap to the thickness of the viscous boundary layer and β √ Sc = H ω/2D m , the ratio of the gap to the thickness of the mass boundary layer. In the above experiments and simulations, the flow oscillations are controlled by the imposed fluid displacement, X = A sin ωt and velocity u = Aω cos ωt (U = Aω) rather than the harmonic pressure gradient. Therefore, the expression of R involved the 2D tidal volume per unit width along y, V t = 2AH and

This is the expression used to draw the continuous line in Figs 5. A 0 , A 1 and A 2 are written using the following compact expressions with h = (1 + i)β/2:

Interesting enough are the limiting cases depending of the frequency. At low frequencies such that, β = H ω/2ν ≪ 1 and β √ Sc = H ω/2D m ≪ 1, we do recover the Taylor-like regime, A 0 = A 1 = 1/2, A 2 ≪ 1:

For liquids, the Schmidt number is large (here, Sc = 4000) and there exists an intermediate regime where β ≪ 1, and β √ Sc ≫ 1, R ≃ 6A 2 /H 2 and A 0 ≪ A 1 , A 2 . This latter regime is referred to as the 'high frequency' or 'partial reversibility' regime in the present paper (where the condition β √ Sc ≫ 1 is always assumed to be fulfilled). In this case: The oscillatory term in the last equation is identical to that estimated in Eq. (15). At intermediate values of τ m /T , the phase shift ∆ϕ = arctan(A 2 /A 1 ) varies continuously from 0 to π/2 and is plotted on Fig. 13 in good agreement with experiments and simulations.