
HAL Id: hal-01144310
https://hal.science/hal-01144310v1

Submitted on 21 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Task mapping and mesh topology exploration for an
FPGA-based network on chip

Ke Pang, Virginie Fresse, Suying Yao, Otavio Alcantara de Lima

To cite this version:
Ke Pang, Virginie Fresse, Suying Yao, Otavio Alcantara de Lima. Task mapping and mesh topology
exploration for an FPGA-based network on chip. Microprocessors and Microsystems: Embedded
Hardware Design , 2015, 8 p. �10.1016/j.micpro.2015.03.006�. �hal-01144310�

https://hal.science/hal-01144310v1
https://hal.archives-ouvertes.fr

1

Task mapping and mesh topology exploration for an FPGA-based network on chip

Ke Pang12*, Virginie Fresse2, Suying Yao1, Otavio Alcantara De Lima Junior2

1School of Electronic and Information Engineering, Tianjin University, 92 Weijin Road, 300072 Tianjin, China
2Laboratoire Hubert Curien, UMR CNRS 5516 18 rue Benoit Lauras, Jean Monnet University, University de Lyon, 42000

Saint Etienne, France

ABSTRACT

Task mapping strategies on NoC (Network-on-
Chip) have a huge impact on the timing perfor-
mance and power consumption. So does the to-
pology. In this paper, we describe the exploration
flow of task mapping algorithms using different
NoC mesh shapes. The flow is used to evaluate
timing and energy consumption based on a NoC
emulation platform. It is open to any task mapping
algorithms and to any shapes of NoC mesh. A
heterogeneous (PC and FPGA) platform is used to
fully perform each step of the flow. The experi-
ments demonstrate that the most appropriate task
mapping strategy and the most suitable NoC
shape strongly depend on the algorithm used. De-
pending on the timing latency results obtained and
the FPGA resources used, the designer can select
the appropriate task mapping strategy on the suit-
able shape in a short exploration time and with
precise timing evaluation.

Keywords Task mapping exploration flow,
Task mapping strategy, NoC shape, NoC emula-
tion platform, FPGA resources, Timing latency

1. INTRODUCTION

With the mature technology of modern inte-
grated circuit process, System-on-Chip (SoC) with

*Corresponding author.
Email address: cocopang324@hotmail.com (K Pang); vir-
ginie.fresse@univ-st-etienne.fr (V. Fresse); syyao@tju.edu.cn (S.
Yao); otavio.alcantara.de.lima.junior@univ-st-etienne.fr (O. Al-
cantara De Lima Junior)

multi-core has undergone great advances. SoC can
incorporate numerous Intellectual Property (IP)
cores that perform different functions, possibly at
different clock frequencies. With the increasing
number of IPs on SoC, the design of underlying
communication architecture has a major impact on
the performance and energy consumption of the
overall system.

As a promising alternative to the traditional
bus and point-to-point connection, Network-on-
Chip (NoC) is a design paradigm and on-chip ar-
chitecture. NoC can connect all the IP cores to a
router-based network using an appropriate Net-
work Interface. This architecture greatly helps
overcome the design problems of current bus-
based SoC methodologies.

With the development of FPGA technology,
hardware-based emulation using the evaluation
platform has become widely used. Compared with
software simulation, it can accelerate the valida-
tion process as it significantly reduces the system
evaluation time [9]. With shortening of the cycle
of the NoC design, development costs will be re-
duced.

Fig. 1 depicts the traditional application-
specific NoC design flow [1] [2]. One application
can be described as a task graph. The task graph is
mapped on one NoC using one task mapping algo-
rithm. The mapping solution must fulfill specific
requirements (e.g. reduce energy consumption and
congestion) as well as reduce the total communi-
cation delay. Similar to an optimal mapping strat-
egy, the appropriate NoC architecture parameters
can reduce the resources used and further improve
performance. In the generic NoC design flow, the

2

topology and the number of routers are usually
defined in the NoC specification. The topology
mostly used is a regular mesh with the same num-
ber in the X and Y axis. Such design flow does
not explore the topology or the shape of the NoC
and does not consider several task mapping algo-
rithms. The jointly exploration of both the shape
of the NoC and the mapping solutions has not
been yet proposed. The contributions of this paper
are:

• The analysis of the shapes of the NoC and
the impact on the performances according to
the number of tasks in the application.

• The exploration flow developed to jointly
explore the shape of the NoC and the task
mapping algorithms.

• The analysis of the results (timing on
FPGA, energy consumption and the map-
ping time) according to the NoC specifica-
tions and the application.

Fig. 1. Traditional application specific NoC design flow

In this paper, we propose one design flow to
jointly explore task mapping algorithms and mesh
topology on NoC. This exploration flow can eval-
uate timing and dynamic energy consumption
based on the NoC emulation platform. The plat-
form used is a heterogeneous (PC and FPGA)
platform that fully performs the exploration flow.
Timing evaluation is performed on the dedicated
NoC emulation platform on FPGA to fully ex-
plore all task mapping and mesh topology solu-
tions.

This paper is organized in 6 sections. Section 2
presents the related works on task mapping tech-
niques and NoC emulation platforms and discuss-
es the corresponding problems. Section 3 explains
the exploration flow in detail. Section 4 is dedi-
cated to the experimental study of the exploration
flow. Section 5 discusses the implications of the
experimental results in Section 4. Finally Section
6 presents the conclusions and the future outlook
for exploration flow.

2. RELATED WORK

In recent years, several studies have been con-
ducted on mapping the tasks of the application on
NoC architecture [3] [4] [5] [6] [7]. Their task
mapping algorithms use either dynamic or static
mapping. Run-time incremental mapping [3] and
congestion aware algorithms [4] are the most
widely used dynamic mapping techniques. They
are performed during the execution of the applica-
tion. They can regulate the mapping strategy
online according to the systemic feedback. The
two-step genetic algorithm (GA) [5], the Branch-
and-Bound Algorithm (BB) [6] and the template-
based efficient mapping algorithm (TEM) [7] are
typical static mapping techniques. These tech-
niques are implemented offline before the applica-
tion runs. Static mapping solutions are generally
recommended as the computational overhead of
dynamic mapping algorithms increases the overall
delay and the energy consumption of the system
[2].

Some authors have reviewed the different NoC
task mapping techniques. In [2], the authors re-
view most task mapping strategies. They compare
studies and give the communication cost and the
execution time using a set of benchmarks (VOPD,
MPEG 4, PIP and task graphs generated by the
TGFF tool [18]). The communication cost corre-
sponds to the absolute communication cost (hops
× bandwidth). The CPU time required to generate
the task mapping solution is also given for each
algorithm. Experiments are based on the 8×8
mesh NoC for 64-core applications and the 8 × 16
mesh NoC for 128 core applications. In [8], an
evaluation of dynamic mapping and static map-
ping based on MPSoC architecture is described. In

3

the simulations of single application mapping and
multiple application mapping, the latency, conges-
tion and energy consumption performances of the
task mapping algorithms are given.

In all the above papers, the results of these
techniques are only simulated. The results are
based on NoCs using the regular N×N mesh to-
pology. No studies explore the shape of the NoC
(shape meaning the X and Y number of routers in
the mesh topology).

Hardware-based emulation using the evaluation
platform is widely used to accelerate the valida-
tion process [9]. Emulation based on FPGA tech-
nology provides a rational way for the NoC. Many
emulation platforms are designed for exploration
of the NoC [10] [11] [12] [13]. Most emulation
platforms aim to explore NoC topology or NoC
interconnections. The exploration selects the most
appropriate topology from several available to-
pologies, but does not consider task mapping.
XNoC [14] is an emulation platform for the eval-
uation of the mapping algorithm. This evaluation
environment can support both static and dynamic
application mapping for performance evaluation
and cost metrics. But this tool cannot adequately
evaluate and compare different task mapping
techniques directly.

We propose an exploration flow based on the
NoC emulation platform for the NoC designer.
We focus on evaluating different task mapping
techniques with different shaped NoC router ar-
rays for the NoC implementation of the specific
application. In this way, the most appropriate task
mapping solution and the FPGA resources used
for NoC design can be obtained.

3. EXPLORATION FLOW

Fig. 2 shows the system architecture of the
task mapping exploration flow. It combines NoC
configuration parameters and application commu-
nication parameters with the task mapping algo-
rithms. It explores the most appropriate task map-
ping algorithm combined with the most suitable
shape of the NoC for one specific application.

The exploration flow is implemented on a PC
and FPGA-based NoC emulation platform. Many
existing task mapping algorithms are described in

C/C++ so that task mapping scenarios can be con-
veniently generated with PC. The FPGA-based
emulation platform can accelerate the emulation
process and provides the real-time timing results
for analytical purposes.

Fig. 2. The system architecture of the task mapping ex-
ploration flow

The inputs of the exploration flow are the fol-
lowing: the NoC configuration parameters (sever-
al shapes of the NoC), the communication param-
eters of the application, and several task mapping
algorithms for the NoC. The system generates the
task mapping scenarios using all the input pa-
rameters and the mapping strategies generated by
the task mapping algorithms. These task scenarios
configure the NoC emulation platform to imple-
ment the application on the FPGA. The FPGA-
based emulation platform emulates the application
and gives the emulating results. In this case, the
result is the timing latency needed to complete the
data transmission between the routers.

The output of the exploration flow is the best
task mapping solution for the specific application
on the specific NoC shape.

Details of the inputs and output of the flow are
discussed in the following subsections.

4

3.1 NoC configurations
The NoC configuration parameters are used to

configure NoC to generate the required NoC
communication architecture.

Here, the NoC architecture is designed with
the mesh topology, which is the most suitable
topology for FPGA implementation. Based on the
mesh topology, the size of the NoC is defined as
X×Y: the router number of each line – X and the
router number of each column – Y. X×Y repre-
sents the shape of NoC structure used in the gen-
eration of the task mapping scenario. Fig. 3 shows
an example with 4×4 NoC architecture. The only
constraint linked to the NoC size configuration is
the total number of routers – X×Y – has to be
higher than the number of tasks in the specific
application required to map the application on
NoC. Here we specify several shapes as a function
of the structure of the task graph concerned.

Fig. 3. Example of 4x4 NoC architecture

3.2 Task Graph Configuration
One application can be described as one set of

tasks, called a task graph. Each task graph defines
the relationship between the task nodes and gives
the parameters needed to describe the communica-
tion [10] between the task nodes. The communica-
tion parameters are defined according to the re-
quirements of the FPGA-based NoC emulation
platform [20] and the parameter values depend on
the requirements of the specific application.

Based on the emulation platform, data trans-
mission from the source router to the destination
router is imitated by the message. A message con-
sists of a set of packets (defined by the number of
packets), and a packet is a set of Flits (Flow con-

trol Units) (defined by the size of the packet).
Here, the size of flit is defined as 16 bits. Packets
are sent according to the data injection charge.
The data injection charge is defined as the idle
time between two packets of one message. It indi-
cates the ratio of the bandwidth to the packets
used. In Fig. 4, the data injection charge (or load)
is 100% for the first case (a), and 50% for the sec-
ond case (b).

(a) Load 100% (injCharge = 0)

(b) Load 50% (injCharge = 10)

Fig. 4. The examples of data injection charge

 Usually one message is transferred in several
batches [20] (the number of batches is defined by
the designer and here we set the number of batch-
es as 10). Each batch consists of several packets.
This is to avoid one message occupying the
transmission channel for too long.

The application task parameter file provides
all the parameters required for communicating
between task nodes. These communication pa-
rameters [10] are used to configure the transmis-
sion of the data on the NoC emulation platform.
One task graph file usually includes the three sec-
tions shown in Table 1.

Table 1 Three sections of the application task graph file

Keyword Definition Type Value1 Value2

TASK
task

number
task
type

(reserved) (reserved)

ARC
arc

number
Arc
type

SRC_TASK DEST_TASK

PARA
parameter

name
type

number
parameter

value
(reserved)

For each application task graph, there are three
sections in the file, as depicted in Fig. 5. The
‘TASK’ section lists all the tasks with their task

5

types. The ‘ARC’ section describes the connec-
tions between task nodes with their arc types. The
‘PARA’ section gives the tables of the required
five parameters corresponding to the task or arc
type:
1) The size of each packet of each transmission

between two tasks corresponds to the arc type
(‘packetSize’). For example, in Fig. 5 from
TASK0 to TASK1, the size of the packet is 21
flits;

2) The number of packets to be sent between two
tasks, corresponds to the arc type (‘pack-
etNum’). For example, from TASK0 to
TASK1, the number of packets is 36;

3) The data injection charge between two flits of
every transmission between two tasks, corre-
sponds to the arc type (‘injCharge’). For ex-
ample, from TASK0 to TASK1, the injection
charge is 76 clock cycles;

4) The period between two batches, correspond-
ing to the task type (‘period’). For example,
from TASK0 to TASK1, the period is 1171
clock cycles;

5) The latency constraint (hop number) between
two tasks, corresponds to the arc type (‘laten-
cy’). The latency constraint for NoC mapping
represents the number of hops between two
communication routers corresponding to two
tasks. It shows the maximum distance between
two task nodes when they are mapped. For ex-
ample, from TASK0 to TASK1, the latency
constraint is 4 hops.

Fig. 5. One example of an application task graph

All the communication parameters of the ap-
plication task graph in the file will be extracted by

the system as inputs for the generation of the task
scenario.

3.3 Task mapping algorithm
There are many task mapping algorithms for

NoC as mentioned in Section 2. The exploration
flow is open to all static mapping algorithms.
Among static mapping algorithms, the determinis-
tic mapping algorithms [6] [7] [16] [17] do not
depend to a too great an extent on the setting of
convergence condition (like GA [5]) or the expe-
rience of the designer (like ILP [15]). It is highly
optimized for general use to validate the explora-
tion flow.

The Branch and Bound (BB) mapping algo-
rithm [6] is a typical deterministic mapping algo-
rithm. It is a systematic search algorithm that top-
ologically finds the optimal mapping by searching
for the solution in tree branches and bounding
unallowable solutions. The traditional BB algo-
rithm for NoC takes the minimum possible
amount of energy consumption as the bounding
and traversals all possible mapping patterns. It
leads to the best solution at the cost of CPU time
and memory depth. Based on the traditional BB
algorithm, M. Reshadi [16] added the bandwidth
constraint to intensify the bounds to shorten CPU
time.

The template-based efficient mapping (TEM)
algorithm [7] takes the constraints of bandwidth
and latency into account. Depending on the struc-
ture of the task graph, it takes advantage of two
templates to generate the mapping solution in only
one turn. Compared with the BB algorithm, TEM
obtains the mapping solution faster but the quality
is not as high.

The bandwidth-constraint and latency-
constraint branch-and-bound algorithm (BBL)
was developed for the validation of the explora-
tion flow. This algorithm is based on the original
branch-and-bound algorithm considering the la-
tency constraint between two tasks [17].

The latency constraint is defined as the router
hop numbers between two communication routers
that correspond to two task nodes. It indicates the
maximum distance allowed between two task
nodes when they are mapped. In the same way as

6

the traditional BB algorithm, the BBL algorithm is
executed by alternating two steps: Branch and
Bound. Starting from the root node, Branch
traverses all the routing paths to map each un-
mapped node onto the unoccupied router of the
array, one by one. A new possible routing path is
allocated to generate a new possible mapping pat-
tern and its energy consumption is calculated so it
can be compared with the minimum energy cost.
The new possible routing path must be deadlock-
free. The Bound step uses three bounds to esti-
mate every search path and abort the impossible
paths without further trials. These three bounds
include the bandwidth requirement, the latency
constraint, and energy consumption minimization.
Once the search violates the constraints, the at-
tempt to explore this data path is immediately
terminated. These bounds trim away the unprom-
ising mapping patterns early in the search and
hence speed up the mapping process with less
computation time and less memory depth. This
new algorithm was developed for this work and is
easily inserted in the design flow. Like the tradi-
tional BB algorithm, the BBL algorithm is more
suitable for small problems on small FPGAs, for
example, the image processing application. This is
because the implementation time of the algorithm
increases considerably with an increase in the size
of the NoC. For mapping N tasks to N tiles, the
original timing complexity is O(N!). Although the
bounds help shorten the implementation, when the
NoC is bigger than for example, 7×7 NoC, the
mapping solution requires several hours. The de-
tails of this algorithm are beyond the scope of this
paper.

As already mentioned, the three mapping algo-
rithms are selected with respect to the actual ap-
plications or the desired performances. All these
algorithms are used to generate the corresponding
task mapping strategies and accordingly, to devel-
op the task mapping scenarios with the emulation
libraries.

3.4 NoC emulation platform
In this paper, the exploration flow uses one

FPGA-based NoC emulation platform with a 7×7
NoC to evaluate the resulting task mapping sce-

narios. The FPGA-based emulation platform [20]
is designed using the SNMP protocol concepts to
explore the design space as well as to evaluate the
performance of any NoC. This platform enable an
easy configuration of emulation blocks and de-
fines an interoperability model based on the MIB
description.

The emulation platform connects the emula-
tion blocks (traffic generator and traffic receiver
[10]) with the existing Hermes NoC to allow the
designer enough space to evaluate different NoC
shapes. The Hermes NoC [19] is a packet-
switching-based NoC architecture designed by the
Pontifical University Catolica do Rio Grande do
Sul, Brazil. The emulation blocks are designed by
the Hubert Curien Laboratory, France. The emula-
tion blocks generate traffic for one directed task
graph to trace the communication between the
task nodes that are mapped on NoC. They are the
specific blocks to insert packets of (Traffic Gen-
erators) into and to extract packets of (Traffic Re-
ceptors) and from the network [10]. The number
of traffic generators (TGs) and traffic receptors
(TRs) depends on the size of the NoC. These emu-
lation blocks are managed by the manager. The
manager [20] is an agent between the PC and the
emulation platform that is implemented in both
hardware and software components. Firstly, it
transfers the information of task mapping scenari-
os to the emulation blocks. Secondly, the manager
decodes and executes the commands to guide and
monitor the behavior of the emulation blocks.
Finally, the manager extracts and deals with the
emulation results from the emulation blocks and
then transfers them to the PC. It should be noted
that this emulation platform only emulates the
communication between routers of NoC. The pro-
cessing elements (PEs) and the memories are not
connected with the NoC emulation platform.

This platform is a heterogeneous (PC and
FPGA) platform that can fully perform the explo-
ration flow. It can retrieve the performance of the
communication tasks before implementing the
real application code.

Based on the emulation platform, the generat-
ed task mapping scenarios are used as the inputs
and the timing latency of data transmission be-

7

tween any two routers can be emulated as the out-
puts. The timing latency between two routers is
expressed as the effective amount of clock cycles
needed to complete all data transmission from one
router to another. The clock cycles of the idle time
between two transmissions are not excluded. The
timing latency reflects the actual time required for
data transmission according to the task graph pa-
rameters. Several latency measures are one refer-
ence of the timing performance.

The objective of the task mapping exploration
described in the paper is to evaluate task mapping
algorithms for NoC and NoC shapes. It is open to
any emulation methods.

3. 5 Analysis of results
The last stage of the exploration flow is per-

formance evaluation. The timing results from the
emulation platform, the FPGA resources used
during the emulation, and the total execution time
of task scenarios are analyzed.

For one benchmark, various indexes of timing
evaluation are analyzed, for example, the total
latency of all data transmission, the average laten-
cy of the data path, the latency of the longest data
path, and the standard deviation of all the data
paths. The unit of measure for latency is the num-
ber of clock cycles.

At the same time, the FPGA resources used to
implement the application are given according to
different task mapping scenarios to evaluate the
FPGA resources consumption.

The total execution time of the task scenarios
consists of two parts: the implementation time of
task mapping algorithm on PC, and the configura-
tion and running time on the FPGA emulation
platform.

All the results are assessed according to the
different task mapping algorithms and the differ-
ent NoC sizes, respectively.

For different applications, different design re-
quirements have to be met. The task mapping ex-
ploration flow provides the performance analysis
for different mapping algorithms and NoC shapes,
such as transmission efficiency, dynamic energy
consumption, FPGA resources use, and execution
time. By comparing these analyzed results, the

designer can choose the most appropriate task
mapping algorithm and the most suitable shape of
NoC to meet the specific requirements of a partic-
ular application.

In the following section, we detail the steps of
the exploration flow. Three task mapping algo-
rithms and four kinds of NoC size were selected
to illustrate the flow. Although the example used
is a homogeneous architecture, it also works for
heterogeneous architecture.

4. EXPERIMENTS

Several task mapping algorithms and mesh to-
pology shapes were selected for the experiments.

For the applications, one random benchmark
generated by TGFF [18] (a) and one benchmark of
real image applications (multispectral imaging
(b)) are selected. The only constraint for the ap-
plications is the maximum number of tasks, which
needs to be less than 14 to fit to the shapes of the
NoC. These two benchmarks are selected to check
the validity and feasibility of the task mapping
exploration flow.

Fig. 6(a) shows the task graphs of application
randomly generated by the TGFF tool. This task
graph is a directed acyclic task graph. The maxi-
mum number of inputs or outputs of one task node
is four. The values of all the necessary communi-
cation parameters concerning the transmission
between task nodes are randomly generated by the
TGFF. Fig. 6(b) shows the task graph extracted
from a real image processing application – multi-
spectral imaging. The values of the communica-
tion parameters between task nodes are given ac-
cording to the requirements of the real data trans-
mission. This image application was selected be-
cause it has distinct structural features in the con-
necting relations between task nodes. These two
task graphs are implemented on different NoC
shapes to check the effects of NoC shape.

The three task algorithms selected are the
bandwidth constraint Branch-and-Bound algo-
rithm (BB) [16], bandwidth- constraint and laten-
cy constraint Branch-and-Bound algorithm (BBL)
and Template-based Efficient Mapping algorithm
(TEM) [7]. The BB and TEM are the typical de-

8

terministic task mapping algorithms. The BBL
algorithm was specially designed for this work.

(a) Random benchmark (b) multispectral image

Fig. 6. Directed task graph of a random benchmark and a
real application

For the NoC specifications, four shapes of the
mesh topology are used on which the application
is implemented: 3×3 (only for random bench-
mark), 4×4, 3×5 and 2×7 respectively. The XY
routing algorithm is adopted.

The task mapping scenarios for these bench-
marks are generated using PC. The scenarios are
then emulated on the ML605 FPGA platform
(with the Virtex 6 FPGA). The advantages of such
a platform are not only providing logic resources
to emulate real communications but also to carry
out the performance evaluation in a short time.
The main clock frequency of the platform is
66MHz. Its maximum bandwidth can reach
62.94MByte/s.
4.1 The impact of using several algorithms on the
3×3 NoC for a random benchmark

Experiment #1 is focused on the random
benchmark in Fig. 6(a). One task node of the
benchmark is mapped onto one router of NoC.
This task graph has 9 task nodes so NoC shape 3
×3 is used in this experiment. With three map-
ping algorithms, three mapping strategies can be
obtained, as shown in Fig. 7.

(a) BB (b) BBL

(c) TEM

Fig. 7. The mapping strategies of the random benchmark
on a 3×3 NoC

The squares denoted by ‘Rx’ in Fig. 7 are the
NoC routers and all the circles with the numbers
represent the task nodes of the application. The
figure depicts the one-to-one relationship between
the task node and the router. For example, with
the BB algorithm, task node ‘T4’ is assigned to
the router ‘R8’.

According to the task mapping solutions for
the 3×3 NoC, the total latency time of data
transmission, the longest data path latency, and
the time needed to implement the task mapping
algorithms obtained are listed in Table 2.

Table 2. The results of the experiment of the random
benchmark on the 3×3 NoC

 BB BBL TEM

Total latency (clock cycles) 38954 43864 42251

Longest path latency
 (clock cycles) 87935 93609 92569

Mapping time (ms) 911808 227952 4749

From the point of the shortest value of total
data transmission and the longest data path trans-
mission, the best solution for random benchmark

9

mapped on 3×3 NoC is the BB algorithm. When
the implementation time (mapping time) of the
algorithm is taken into consideration, the TEM
algorithm is the best solution.

4.2 Oversize mapping of random benchmarks on a
4×4 NoC.

Experiment #2 is still focused on the random
benchmark, but this time on mapping it on the
oversize 4×4 NoC using different task mapping
algorithms.

(a) BB (b) BBL

(c) TEM

Fig. 8. Mapping strategies for the random benchmark on
the 4×4 NoC

The results of the total latency and the longest
path latency of data transmission with different
algorithms on the 4×4 NoC and the 3×3 NoC
are shown in Fig. 9.

(a)

(b)

Fig. 9. Total latency and the longest path latency of the
random benchmark on the 4×4 and the 3×3 NoC with

several task mapping algorithms

Diagram (a) in Fig. 9 shows the total data
transmission latency. Diagram (b) shows the
longest data path latency of data transmission. As
can be seen, the total latency of data transmission
on the 4×4 NoC can be considerable lower than
on the 3×3 NoC. The largest proportion of the
decrease can reach 9% with the BBL algorithm. In
contrast, the timing latency of the longest data
path is only slightly reduced when the 4×4 NoC
is used. The trends of the total latency and the
longest latency are completely different.

The resources used on the FPGA consist of the
number of slices of registers and LUTs listed in
Table 3. For example, TEM (3×4) means that the
mapping solution is implemented with TEM algo-
rithm on a 4×4 NoC, but the actual NoC used is 3
×4. Thereby the resources used (actual resources
used compared with configured resources) de-

10

crease by about 28%. Compared with the strategy
for the 3×3 NoC (REG: 1375; LUT: 4640), the
ratio of increased resources used is about 28%.

Table 3. The resources used by the random benchmark
on 4×4 NoC

Resources
configured

Resources
used

Saving
ratio (%)

Increasing
ratio (%)

REG LUT REG LUT REG LUT REG LUT

BB
(4×4) 2660 9176 2660 9176 0% 0% 48% 49%

BBL
(3×4) 2660 9176 2660 9176 0% 0% 48% 49%

TEM
(3×4) 2660 9176 1914 6537 28% 29% 28% 29%

As can be seen by the above analysis, the task
mapping solutions with 4×4 NoC have better
timing for this random benchmark. However, the
3×3 NoC uses only half the FPGA resources with
any task mapping algorithms.

4.3 General mapping experiments with a random
benchmark

Experiment #3 is still focused on the random
benchmark but maps it on different NoC shapes
with different task mapping algorithms. The re-
sults of the longest path latency of data transmis-
sion, the execution time and the resources used
with different algorithms on different shaped
NoCs are shown in Fig. 10.

(a)

 (b)

(c)

1-TEM4×4(3×4) 2-TEM3×5(3×4) 3-TEM2×7(2×5) 4-TEM3×3(3×3)
5-BB4×4(4×4) 6-BB3×5(3×4) 7-BB2×7(2×5) 8-BB3×3(3×3)
9-BBL4×4(3×4) 10-BBL3×5(3×4) 11-BBL2×7(2×5) 12-BBL3×3(3×3)

Fig. 10. The longest path latency, execution time, and
resources used for the random benchmark

Diagram (a) in Fig. 10 shows the latency of
the longest data path with different algorithms on
different shapes. Diagram (b) shows the execution
time of the task scenarios. Diagram (c) shows the
number of slices of registers and LUTs used on
the FPGA according to the different algorithms on
different shapes. For example, TEM4×4 (3×4)
means that the mapping solution is implemented
with the TEM algorithm on 4×4 NoC, but the
actual router array used is 3×4.

Table 4 lists dynamic energy consumption and
total latency of all task mapping solutions for the
random benchmark. From this table, we found
that the trend of timing latency is not the same as
that of dynamic energy consumption. The design-
er cannot deduce the timing performance of map-

11

ping solutions just from the estimation of the dy-
namic energy consumption, and vice versa.

Table 4. Estimated dynamic energy consumption and the
total latency of all task mapping solutions for the random

benchmark

 Total latency
(clock cycles)

Dynamic energy

BB

4x4 85395 3101

3x5 86139 3231

2x7 87139 3335

3x3 87935 3465

BBL

4x4 86237 3204

3x5 86237 3204

2x7 88230 3646

3x3 93609 4273

TEM

4x4 87314 3965

3x5 87314 3965

2x7 91268 4579

3x3 92569 4343

The experiments show that each of the differ-
ent mapping algorithms used for the different
shaped NoCs has its own advantages and disad-
vantages depending on the case concerned. From
the different requirement points, different solu-
tions for the random benchmarks can be chosen
based on the different requirements. In the sight of
the dynamic energy consumption and the total
latency, the BB algorithm with 4×4 is the opti-
mal solution. Considering the longest data path
latency, the BB algorithm with 2×7 is the best
solution; but considering the execution time, the
TEM algorithm with 4×4 is the best solution;
whereas the 3×3 NoC uses the least FPGA re-
sources for any task mapping algorithm. There-
fore, the appropriate mapping algorithm with the
appropriate NoC shape needs to be carefully in-
vestigated.

4.4 Experiment with an image processing applica-
tion

In this experiment, the benchmark from the re-
al image processing application – multispectral
imaging – is implemented and evaluated. It is
evaluated on the FPGA platform with three task

mapping algorithms on three shapes: 4×4, 3×5
and 2×7.

First, the total dynamic energy consumption of
data transmission is estimated with formula (1).
The dynamic energy consumption of one specific
application is defined as the sum of the dynamic
energy consumption (DE) of all its data paths. It is
just the relative statistics for different strategies.

(() () ())
dataPaths

DE packetSize d packetNum d hopNum d= ∗ ∗∑

 (1)
Based on the platform, the data from one rout-

er to the destination router is transmitted through
the message. One message is a set of packets (de-
fined by the number of packets (packetNum)) and
one packet is a set of flits (Flow control bits) (de-
fined by the size of the packet (packetSize)) [10].
The dynamic energy consumed on one data path is
defined as the product of the amounts of data
transmission and the number of hops (hopNum)
between the topology nodes of the data path. The
amount of data transmission is the number of
packets transferred on the data path multiplied by
the size of the packet.

Table 5 lists the estimated dynamic energy
consumption of each task mapping solution. The
solutions using the BB and BBL algorithms on the
3×5 shape use the least dynamic energy.

Table 5. Estimated dynamic energy consumption of all
task mapping solutions for multispectral imaging

 4x4 3x5 2x7

BB 5873212 5873089 5873212

BBL 5873156 5873089 6083033

TEM 6083156 6292743 5873436

At the same time, the timing latency of each
task mapping solution with different algorithms
on different shapes is emulated on the platform.
Table 6 lists the total latency and the longest path
latency of all the task mapping solutions of the
multispectral imaging application.

12

Table 6. Timing latency of all task mapping solutions for
multispectral imaging

Total latency
(clock cycles)

Longest path latency
(clock cycles)

BB

4x4 12178847300 2673824330

3x5 12110906458 2606284822

2x7 5863850013 3200143801

BBL

4x4 12178685731 2673789617

3x5 12178487399 2673870982

2x7 5864067418 3200181877

TEM

4x4 5910408782 3433031213

3x5 8693999935 3394092353

2x7 9214319094 3625959437

When the timing results in Table 6 are com-
pared with the estimated energy in Table 5, it can
be seen that the tendency of timing results is not
as same as that of the estimated dynamic energy
consumption. Therefore, the designer cannot de-
termine the appropriate task mapping strategy
only depending on estimated dynamic energy con-
sumption.

Table 7. Execution time of all task mapping solutions
for multispectral imaging

Mapping

time on PC
(ms)

Running time
on FPGA

(ms)

Execution
time (ms)

BB

4x4 5435424 5974 5441398

3x5 3830401 5990 3836391

2x7 1034352 5974 1040326

BBL

4x4 5435359 5974 5441333

3x5 3830297 5990 3836287

2x7 1034332 5974 1040306

TEM

4x4 4789 5943 10732

3x5 4433 6021 10454

2x7 4194 5990 10184

Table 7 lists the execution time of all the solu-
tions. It includes the task mapping time on PC and
the configuration and running time on the FPGA
platform. The mapping time of the TEM algo-
rithm is shorter than that of the other two algo-
rithms, but the running times of three algorithms
are similar.

By analyzing the results of the exploration
flow based on the emulation platform, the best

solutions for this application for different cases
can be easily selected according to the different
requirements.

5. DISCUSSION

Based on all experimental results of random
benchmark and multispectral imaging applications,
the best task mapping solutions can be summa-
rized as a function of the different requirements.

Table 8 gives the appropriate task mapping al-
gorithm with the suitable NoC shape for two ap-
plication benchmarks. The standard used to
choose the best solution will differ depending on
the case concerned.

Table 8. The best solutions according to different re-
quirements

Random benchmark Multispectral imaging

algorithm shape algorithm shape

Dynamic
energy

BB 4×4 BB/BBL 3×5

Longest
path

latency
BB 4×4 BB 3×5

Total
latency

BB 4×4 BB 2×7

Average
latency

BB 4×4 BB 2×7

STDEV
of latency

BB 3×3 BBL 2×7

Execution
time

TEM 4×4 TEM 2×7

FPGA
resources

BB/BBL/TEM 3×3 BB/BBL/TEM 2×7

The results of the experiments show that the
best timing latency result is usually obtained with
BB task mapping. This is because this mapping
algorithm does not consider the latency con-
straints and traverses nearly all mapping possibili-
ties to achieve the minimum energy consumption.
For the same reason, its computation complexity
is enormous and the implementation time of the
algorithm is often far longer than with the other
algorithms. Compared with BB, the TEM task
mapping algorithm executes only one turn to get
the mapping solution according to the bandwidth

13

and latency constraints. Its implementation time
decreases dramatically but the timing latency of
the corresponding task mapping scenarios will
also be longer. The BBL task mapping algorithm
is based on BB. Its implementation time is less
than BB because it takes the latency constraints
into account. The latency constraints provide
more bounds to trim away the impossible patterns
in advance. Compared with the BB and the TEM
algorithms, the timing performance and the im-
plementation time of BBL algorithm lie some-
where in between.

Like in the analysis of experiment #2, the 4×4
NoC offers more task mapping choices. The tim-
ing of the scenarios on the 4×4 NoC is usually
better than on the other shapes. Its disadvantage is
that it uses more FPGA resources. From the best
solutions for multispectral imaging, the different
results can be observed. The best solution with
minimum dynamic energy consumption and the
longest path latency is based on the 3×5 shape.
The best solution for other requirements is based
on the 2×7 shape. This result is mainly due to the
task connection structure of this specific applica-
tion.

As explained in the above discussion, the pro-
posed task mapping exploration flow is vital for
the designer, as it helps identify the appropriate
task mapping technique on the suitable NoC shape
for the specific application concerned. With the
best task mapping strategy and the most suitable
NoC shape, it is easier for the NoC designer to
achieve good timing performance and low energy
consumption.

For different real applications, especially image
processing applications, an optimal mapping strat-
egy can improve both timing performance and
energy consumption. Likewise the appropriate
NoC shape can reduce the resources used and fur-
ther improve performance. Before the real imple-
mentation of a NoC design, selecting the appro-
priate task mapping algorithm and the NoC shape
are vital for the design.

6. CONCLUSION AND PERSPECTIVES

This paper addresses an important issue in the
NoC design: exploring the best possible task
mapping and mesh topology. An exploration flow
is proposed to help NoC designers to choose an
appropriate task mapping technique on an appro-
priate NoC shape for a particular application. By
combining the NoC configuration parameters,
application communication parameters, and task
mapping techniques, the flow generates different
task mapping scenarios. By emulating these sce-
narios on the NoC emulation platform and analyz-
ing the emulation results, the best solution can be
found for a specific requirement. The complete
exploration space is required for each algorithm.
The experiments show that the exploration flow
can help the designer to explore the best task
mapping strategy to meet the design requirements
of a particular application.

In this work, the latency constraints of the ap-
plication task graph are used randomly. Our next
task will be to explore the definition of the latency
constraints of specific application. The adaptive
definition of the latency constraints of specific
application will help improve timing performance.
It also will accelerate the task mapping execution
time of BBL algorithm.

ACKNOWLEDGEMENTS

The research of this paper was supported by
National High-tech Research and Development
Projects (863) under Grant 2012AA012705, Inter-
national Cooperation in Science and Technology
Special Project of Ministry of Science and Tech-
nology of China under Grant 2012DFB10170, and
China Scholarship Council under Grant
201306250116. And funding for this project was
partly provided by a grant from la Région Rhône-
Alpes as well as by the CNPq (process
245340/2012-2).

14

REFERENCES

[1] Ruxandra Pop and Shashi Kumar. A Survey of
Techniques for Mapping and Scheduling Applica-
tions to Network on Chip Systems, Research Re-
port, School of Engineering, Jönköping Universi-
ty, Sweden, 2004, pp. 1-9.
[2] Pradip Kumar Sahu and Santanu Chattopadh-
yay. A survey on application mapping strategies
for Network-on-Chip design, Journal of System
Achitecture 59(2013), 60-76.
[3] C.L. Chou, U.Y. Ogras and R. Marculescu.
Energy- and performance-aware incremental
mapping for NoCs with multiple voltage levels,
IEEE Transactions on Computer-Aided design of
Integrated Circuits and Systems 27 (10) (2008),
1866–1879.
[4] Carvalho, E. and Moraes, F.. Congestion
aware Task Mapping in Heterogeneous MPSoCs,
International Symposium on System-on-Chip,
2008. SOC, Tampere, Finland (2008), 1-4.
[5] T. Lei and S. Kumar. A two-step genetic algo-
rithm for mapping task graphs to a network on
chip architecture, Proceedings of the Euromicro
Symposium on Digital System Design (DSD),
Belek-Antalya, Turkey (2003), 180–187.
[6] J. Hu and R. Marculescu. Energy- and perfor-
mance-aware mapping for regular NoC architec-
tures, IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems 24 (4)
(2005), 551–562.
[7] X. Wang, M. Yang, Y. Jiang and P. Liu. Pow-
er-aware mapping for Network-on-Chip architec-
tures under bandwidth and latency constraints,
International Conference on Embedded and Mul-
timedia Computing (EM-COM), Jeju, Korea
(2009), 1–6.
[8] Carvalho, E., C. Marcon, N. Calazans and F.
Moraes. Evaluation of Static and Dynamic Task
Mapping Algorithms in NoC-Based MPSoCs,
International Symposium on System-on-Chip,
2009. SOC, Tampere, Finland (2009), 87–90.
[9] Yangfan Liu, Peng Liu and Yingtao Jiang.
Building a multi-FPGA-based emulation frame-
work to support networks-on-chip design and ver-
ification, International Journal of Electronics -

INT J ELECTRON 01/2010, 97(10) (2010), 1241-
1262.
[10] J. Tan, V. Fresse and F. Rousseau. Genera-
tion of emulation platforms for NoC exploration
on FPGA, 22nd IEEE International Symposium
on Rapid System Prototyping (RSP), Karlsruhe
(2011), 186-192.
[11] S. Lotlikar, V. Pai and P. Gratz.
AcENoCs: a configurable HW/SW platform for
FPGA accelerated NoC emulation. 24th Int. Conf.
on VLSI Design, Chennai, India (2011), 147-152.
[12] D. Wang, N. E. Jerger and J. G. Steffan.
DART: a programmable architecture for NoC
simulation on FPGAs. Proc. of the Fifth
ACM/IEEE Int. Symp. on NoC, NOCS ’11, New
York, NY, USA (2011), 145–152.
[13] Y. Krasteva, F. Criado, E. de la Torre and
T. Riesgo. A fast emulation based NoC prototyp-
ing framework. Int. Conf. on Reconfigurable
Computing and FPGAs, Cancun, Mexico (2008),
211–216.
[14] J. Joven, O.F. Bach, D.C. Rufas, R. Mar-
tinez, L. Teres and J. Carrabina. xENoC – an ex-
perimental Network-on-Chip environment for
parallel distributed computing on NoC-based
MPSoC architecture, Euromicro Conference on
Parallel, Distributed and Network-based Pro-
cessing, Toulous, France (2008), 141–148.
[15] C. Ostler and K.S. Chatha. An ILP formu-
lation for system-level application mapping on
network processor architecture. Proceedings of
Design, Automation and Test in Europe (DATE),
ACM, Nice, France (2007), 1-6.
[16] M. Reshadi, A. Khademzadeh and A. Re-
za. Elixir: a new bandwidth-constrained mapping
for networks-on-chip, IEICE Electronics Express
7 (2) (2010), 73–79.
[17] Krishnan Srinivasan and Karam S. Chatha.
A Technique for Low Energy Mapping and Rout-
ing in Network-on-Chip Architectures, Proc. 2005
Int’l Symp. Low Power Electronics and Design
(2005), 896-901.
[18] R. P. Dick, D. L. Rhodes and W. Wolf.
TGFF: task graphs for free, Proc. Intl. Workshop
on Hardware/Software Codesign (1998), 1-9.
[19] Carara, E. A.; Oliveira, R. P.; Calazans, N.
L.V. and Moraes, F. G.. HeMPS - a framework

15

for NoC - based MPSoC generation, 2009 IEEE
International Symposium on Circuit and Systems,
ISCAS 2009, Taipei, Taiwan (2009), 1345- 1348.
[20] Otávio Alcântara de Lima Junior, Virginie
Fresse and Frédéric Rousseau. Evaluation of
SNMP-like protocol to manage a NoC emulation
platform. International Conférence on Field Pro-
grammable Technology, 10-12 December 2014,
Shanghai, China (2014).

AUTHORS

Ke Pang is a PhD student at Tianjin
University, China. She obtained her
B.Ss. and M.Sc. degrees at the School
of Electronic Information and Engi-
neering, Tianjin University. She stud-
ied at the Huber Curien Laboratory,
Jean Monnet Univesity in Saint
Etienne, France from 2013 to 2014.
Her research interests include Net-
work on Chip on FPGA, NoC design,

embedded systems, image processing applications and the
design of digital integrated circuits.

Dr. Virginie Fresse obtained her PhD
in Electrical Engineering at
INSA Rennes, France, in 2001. Dr
Virginie Fresse was in the Depart-
ment Communication Division of the
University of Strathclyde, Glasgow,
from 2001 to 2003. She is currently
associate professor at Jean Monnet
University in Saint Etienne, France.
Her research interests include Net-

work OnChip on FPGA, emulation platforms, design space
exploration and real time systems for image processing
applications. She collaborates with French research labs
(TIMA and GIPSA in Grenoble), and international labs
(University of Tianjin, Pontifical Catholic University of Rio
Grande do Sul (PUCRS) and Fortaleza and the University of
Monastir).

Professor Suying YAO, professor and
PhD. supervisor, is in charge of Tian-
jin University the key disciplines of
Microelectronics and Solid State Elec-
tronics at Tianjin University, is direc-
tor of Tianjin University ASIC Design
Center, a committee member of Semi-
conductor and Integrated technology
at the Chinese Institute of Electronics,
and a member of IEEE.

Otavio Alcantara de Lima Jr. is assis-
tant professor at the Federal Institute
of Technology of Ceara, Brazil. He is
also a PhD student in Micro-eletronics
at Jean Monnet University, France. He
received his MSc degree in Te-
leinformatics Engineering at the Fed-
eral University of Ceara, Brazil. His
research interest includes embedded
systems, MPSoCs and NoCs.

