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Boundary control synthesis for hyperbolic systems:
a singular perturbation approach

Ying TANG, Christophe PRIEUR and Antoine GIRARD

Abstract— In this paper, we consider the problem of bound-
ary control of a class of linear hyperbolic systems of conser-
vation laws based on the singular perturbation method. The
full hyperbolic system is written as two subsystems, namely
the reduced system representing the slow dynamics and the
boundary-layer system standing for the fast dynamics. By
choosing the boundary conditions for the reduced system as
zero, the slow dynamics is stabilized in finite time. The main
result is illustrated with a design of boundary control for a
linearized Saint-Venant–Exner system. The stabilization of the
full system is achieved with different boundary conditions for
the fast dynamics.

I. INTRODUCTION

Many distributed physical systems are described by hyper-
bolic PDEs. This class of systems with infinite dimensional
dynamics is relevant for a wide range of physical systems
having an engineering interest, for instance, hydraulic net-
works for irrigation or navigation [1], gas flow in pipelines
[2], networks of electrical transmission [3] or road traffic
networks [4]. The significant importance of these applica-
tions motivates many research works on optimal control and
controllability of hyperbolic systems as considered in [5],
[6], [7].

The singular perturbation techniques started at the begin-
ning of the 20th century. A great deal of the early motivation
in this area arose from the studies of physical problems
exhibiting both fast and slow dynamics, for instance DC-
motor model, voltage regulator in [8]. In late 1980s, the
research works in the singularly perturbed partial differential
equations occurred. This kind of systems is interesting for
analysis because of its relevance to many important phe-
nomenon in different domains, as reported in the survey
paper [9] where a comprehensive bibliography is involved.

The present paper focuses on the boundary control of
linear hyperbolic systems. Our main contribution here is to
achieve the boundary control synthesis using singular pertur-
bation method. The full hyperbolic system of conservation
laws is decomposed into two subsystems, the reduced system
and the boundary-layer system. By selecting Kr = 0 as the
boundary conditions matrix for the reduced system, the slow
dynamics converges to the origin in finite time. The boundary
conditions matrix K for the full system can be chosen such
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that the stability condition of the full dynamics is satisfied.
Using Tikhonov theorem in [10], the full system converges
to a small neighborhood of the equilibrium in finite time.

In this paper, the main result is applied to the Saint-
Venant–Exner model for the regulation of the water level in
a channel. This problem has attracted the attention of many
researchers for a long time, for instance in [11], [12] where
the Lyapunov methods are used to stabilize such systems. In
[13] the robust boundary control is designed for Saint-Venant
equations with small perturbations.

The paper is outlined as follows. Section II recalls the class
of singularly perturbed systems of conservation laws and the
Tikhonov theorem for linear hyperbolic systems. In Section
III, the boundary controller established in [10] is synthesized
by the singular perturbation method. More precisely, when
the boundary condition of the reduced system is chosen as
zero, then the slow dynamics of the singularly perturbed
system converges to the equilibrium in finite time. In Section
IV, the main result is illustrated by an application, that is
the design of boundary controls for the Saint-Venant–Exner
equations. Finally, concluding remarks end the paper. Due to
space limitation, some proofs have been omitted.

Notation. Given a matrix G, G−1 and GT represent
the inverse and the transpose matrix of G respectively.
For a symmetric matrix S, the minimum eigenvalue of the
matrix S is denoted by λmin(S). For a positive integer
n, In is the identity matrix in Rn×n. | | denotes the
usual Euclidean norm in Rn and ‖ ‖ is associated with
the matrix norm. ‖ ‖L2 denotes the associated norm in

L2(0, 1) space, defined by ‖f‖L2 =
(∫ 1

0
|f |2dx

) 1
2

for all
functions f ∈ L2(0, 1). Similarly, the associated norm in
H2(0, 1) space is denoted by ‖ ‖H2 , defined for all functions

h ∈ H2(0, 1), by ‖h‖H2 =
(∫ 1

0
|h|2 + |hx|2 + |hxx|2dx

) 1
2

.
Following [14], we introduce the notation, for all matrices
K ∈ R(n+m)×(n+m),

ρ1(K) = inf{‖∆K∆−1‖,∆ ∈ D(n+m),+},

where D(n+m),+ denotes the set of diagonal positive matrix
in R(n+m)×(n+m).

II. LINEAR SINGULARLY PERTURBED SYSTEM OF
CONSERVATION LAWS

We consider the following singularly perturbed system of
conservation laws for a small positive perturbation parameter
ε

yt(x, t) + Λ1yx(x, t) = 0,
εzt(x, t) + Λ2zx(x, t) = 0,

(1)



where x ∈ [0, 1], t ∈ [0,+∞), y : [0, 1] × [0,+∞) → Rn,
z : [0, 1]× [0,+∞)→ Rm, Λ1 and Λ2 are diagonal positive
matrices in Rn×n and Rm×m respectively.
The boundary conditions for system (1) are written as
follows, (

y(0, t)
z(0, t)

)
= K

(
y(1, t)
z(1, t)

)
, t ∈ [0,+∞), (2)

where K =

(
K11 K12

K21 K22

)
is a constant matrix in (n+m)×

(n+m), with K11 in Rn×n, K12 in Rn×m, K21 in Rm×n,
K22 in Rm×m.
Given two functions y0 : [0, 1]→ Rn and z0 : [0, 1]→ Rm,
the initial conditions are:(

y(x, 0)
z(x, 0)

)
=

(
y0(x)
z0(x)

)
, x ∈ [0, 1]. (3)

Remark 1: According to Proposition 2.1 in [14], for all(
y0

z0

)
∈ L2(0, 1), there exists a unique solution

(
y
z

)
∈

C0([0,+∞), L2(0, 1)) for the Cauchy problem (1)-(3). By

Proposition 2.1 in [15], for every
(
y0

z0

)
∈ H2(0, 1) satisfy-

ing the following compatibility conditions:(
y0(0)
z0(0)

)
= K

(
y0(1)
z0(1)

)
, (4)(

Λ1y
0
x(0)

ε−1Λ2z
0
x(0)

)
= K

(
Λ1y

0
x(1)

ε−1Λ2z
0
x(1)

)
, (5)

the Cauchy problem (1)-(3) has a unique maximal classical

solution
(
y
z

)
∈ C0([0,+∞), H2(0, 1)). ◦

Let us compute the reduced and boundary-layer subsystems
for (1)-(2) adapting the approach of [8] to the infinite
dimensional case. By setting ε = 0 in system (1), the reduced
system is computed from:

yt(x, t) + Λ1yx(x, t) = 0, (6a)
zx(x, t) = 0. (6b)

Substituting (6b) into the boundary conditions (2) and as-
suming (Im −K22) invertible yields:

y(0, t) = (K11 +K12(Im −K22)−1K21)y(1, t),

z(., t) = (Im −K22)−1K21y(1, t).

The reduced system in Rn is defined as

ȳt(x, t) + Λ1ȳx(x, t) = 0, x ∈ [0, 1], t ∈ [0,+∞), (7)

with the boundary condition

ȳ(0, t) = Krȳ(1, t), t ∈ [0,+∞), (8)

where Kr = K11+K12(Im−K22)−1K21, whereas the initial
condition is given as

ȳ(x, 0) = y0(x), x ∈ [0, 1]. (9)

To define the boundary-layer system, let us first perform a
change of variable

z̄ = z − (Im −K22)−1K21y(1, t), (10)

this shifts the equilibrium of z to the origin.
The boundary-layer system in Rm is defined as

z̄τ (x, τ) + Λ2z̄x(x, τ) = 0, x ∈ [0, 1], τ ∈ [0,+∞),
(11)

with the boundary condition:

z̄(0, τ) = K22z̄(1, τ), τ ∈ [0,+∞), (12)

where τ = t
ε is a stretching time scale. In τ time scale,

y(1, t) in (10) is handled as a fixed parameter with respect
to time.
The initial condition of the boundary-layer system is

z̄(x, 0) = z0(x)− (Im −K22)−1K21y
0(1), x ∈ [0, 1].

(13)
Assuming ρ1(K) < 1 which implies in particular Im −
K22 invertible, we next state Tikhonov theorem for linear
singularly perturbed system of conservation laws:

Theorem 1: [10] Consider the linear singularly per-
turbed system of conservation laws (1)-(2). Assume that
the boundary conditions matrix K satisfies ρ1(K) < 1,
then, for all initial conditions y0 ∈ H2(0, 1) satisfying the
compatibility conditions for the reduced system y0(0) =
Kry

0(1), Λ1y
0
x(0) = KrΛ1y

0
x(1), and z0 ∈ L2(0, 1), there

exist positive values ε∗, C, C
′

and ω such that for all
0 < ε < ε∗ and for all t > 0,

‖y(., t)− ȳ(., t)‖2L2 6 Cεe−ωt, (14)∫ ∞
0

‖z(., t)− (Im −K22)−1K21ȳ(1, t)‖2L2dt 6 C
′
ε. (15)

Proof: The full proof can be seen in [10] and it is based
on the analysis of a Lyapunov function for the system which
contains the error of slow dynamics between the full system
and the reduced system, and the error of the fast dynamics
between the full system and its equilibrium point.

III. BOUNDARY CONTROL SYNTHESIS BASED ON THE
SINGULAR PERTURBATION METHOD

The boundary control synthesis method used in this paper
relies on the singular perturbation technique. In the previous
section, we have recalled the linear singularly perturbed
system (1)-(2). Obviously, the ideal choice of the boundary
conditions for the full system is K = 0. Such boundary
conditions make the solutions converge to the equilibrium
in finite time. However, in the actual physical problems, the
boundary conditions are not always free to be chosen, for
instance see the example in Section IV where the structure
of boundary conditions matrix is prescribed by physical
constraint.
In this section, we consider a singular perturbation approach
for the boundary condition synthesis. More precisely, we first
choose the boundary conditions matrix Kr for the reduced
system (7)-(8) as 0, it makes the slow dynamics converge to
the equilibrium in finite time, and the fast dynamics are not
modified. For example in Section IV the boundary conditions
matrix Kr = 0 for the reduced system is achieved by a
suitable choice of the control actions. Then the boundary
conditions matrix K for the full system (1)-(2) can be chosen



based on the boundary conditions for the slow dynamics such
that the stability condition ρ1(K) < 1 for the full system is
satisfied.
Before introducing the stability result, let us first give the
following definition:

Definition 1: The reduced system (7)-(8) is convergent in
finite time if there exists positive value T such that for every
initial condition ȳ0 ∈ H2(0, 1) satisfying the compatibility
conditions y0(0) = Kry

0(1), Λ1y
0
x(0) = KrΛ1y

0
x(1), the

solution to the system (7)-(8) equals zero for all t > T :

ȳ(., t) = 0, t ∈ [T,+∞).

Proposition 1: If the boundary conditions matrix Kr =
0, then the reduced system (7)-(8) is convergent in finite time
T , where T is given by

T =
1

λmin(Λ1)
. (16)

Corollary 1: If the boundary conditions matrix Kr for
the reduced system (7)-(8) is 0 and if the boundary conditions
matrix K for the linear singularly perturbed system of
conservation laws (1)-(2) satisfies ρ1(K) < 1, then, for every
initial condition y0 ∈ H2(0, 1) satisfying the compatibility
conditions y0(0) = 0 and y0

x(0) = 0, and for all z0 ∈
L2(0, 1), there exist positive values ε∗, C, C

′
, ω and T =

1
λmin(Λ1) , such that for all 0 < ε < ε∗ and for all t > T ,

‖y(., t)‖2L2 6 Cεe−ωt, (17)∫ ∞
T

‖z(., t)‖2L2dt 6 C
′
ε. (18)

Proof: The proof of this corollary is based on Theorem
1 and Proposition 1. Using Proposition 1 it follows that
ȳ(x, t) converges to the origin within time T , and using (14)
in Theorem 1, we get that (17) holds. Moreover it is deduced
from (15)∫ T

0

‖z(., t)− (Im −K22)−1K21ȳ(1, t)‖2L2dt

+

∫ ∞
T

‖z(., t)− (Im −K22)−1K21ȳ(1, t)‖2L2dt 6 C
′
ε,

and thus∫ ∞
T

‖z(., t)− (I −K22)−1K21ȳ(1, t)‖2L2dt 6 C
′
ε.

(19)

Similarly, using Proposition 1 in (19), we get that (18) holds.
This concludes the proof of Corollary 1.
This new method for boundary control synthesis is effective.
Instead of choosing K = 0 for the full system, the boundary
conditions matrix Kr for the reduced system is selected as
0. The slow dynamics converges to the equilibrium in finite
time. The boundary conditions for the full system can be
chosen based on that for the reduced system, such that the
stability condition ρ1(K) < 1 is satisfied. Then the full
system converges to a small neighborhood of the origin in
finite time.

IV. DESIGN OF BOUNDARY CONTROL FOR THE
SAINT-VENANT–EXNER MODEL

In this section, we apply the main result of the previous
section to the Saint-Venant–Exner equation which is an ex-
ample of a singularly perturbed system of conservation laws.
We consider a prismatic open channel with a rectangular
cross-section and a unit width, where all the friction losses
are neglected. The effect of the sediment on the flow is
handled in this model. The dynamics of the system are
described by the Saint-Venant equation in [16] and Exner
equation in [17], [18], [19]:

Ht + V Hx +HVx = 0, (20a)
Vt + V Vx + gHx + gBx = 0, x ∈ [0, 1], t > 0, (20b)

Bt + aV 2Vx = 0, (20c)

where the state variables are the water level H(x, t), the
water velocity V (x, t), the bathymetry B(x, t) which is
the sediment layer above the channel bottom. The gravity
constant is g and the constant parameter which represents
the porosity and viscosity effects on the sediment dynamics
is denoted by a. The space variable is x ∈ [0, 1] and the time
variable is t > 0.

A. System linearization

Let us consider a constant in space steady-state H∗, V ∗,
B∗. More precisely, (20c) gives V ∗x = 0, and we get
successively H∗x = 0 and B∗x = 0 from (20a) and (20b).
Let us define the deviations of the state H , V and B with
respect to the steady-state, for all x ∈ [0, 1] and t > 0,

h = H −H∗,
v = V − V ∗,
b = B −B∗.

The linearization of system (20) around the steady-state
yields

ht + V ∗hx +H∗vx = 0,
vt + ghx + gbx + V ∗vx = 0,

bt + aV ∗2vx = 0.
(21)

B. Dynamics in Riemann coordinates

Let us perform a change of variable for the linearized
system (21). More precisely, following [18], [19], the char-
acteristic coordinates are defined for each k = 1, 2, 3 by

Wk =

(
(V ∗−λi)(V

∗−λj)+gH∗
)
h+H∗λkv+gH∗b

(λk−λi)(λk−λj) ,

k 6= i 6= j ∈ {1, 2, 3}.
(22)

Using the new variables Wk, system (21) can be rewritten
as

Wt + ΛWx = 0 (23)

where W = (W1 W2 W3)T and Λ =
diag(λ1 λ2 λ3), for all x ∈ [0, 1], t ∈ [0,+∞).
According to [18], [19], the three eigenvalues of Λ are such
that

λ1 < 0 < λ2 < λ3. (24)



In [18], [19], λ1 and λ3 represent the velocities of the water
flow and λ2 represents the velocity of the sediment motion.
The sediment motion is much slower than the water flow,
then we get that λ2 << |λ1| and λ2 << λ3. In this case
by performing the change of spatial variable W ′1(1−x, t) =
W1(x, t), we may assume without loss of generality that
λ1 > 0, thus Λ is diagonal positive.
Let us define a small positive value ε = λ2

λ3
, and a new time

scale t̃ = λ2t, the system (23) is rewritten as the following
singularly perturbed system, for all x ∈ [0, 1] and for all
t̃ > 0,

εW ′
1t̃

+ λ1

λ3
W ′1x = 0,

W2t̃ +W2x = 0,
εW3t̃ +W3x = 0.

(25)

C. Boundary conditions

We assume that the channel is equipped with hydraulic
control devices such as pumps, valves, spillways, gates, etc.
The water levels at upstream and downstream of the channel
are assumed to be measured. The control action is provided
by the control devices. In the present paper, we introduce
the following three boundary conditions (these are the same
boundary conditions as in [20]):
1) The first boundary condition describes the value of the
channel inflow rate which is denoted by c0(t̃). Here we
consider c0(t̃) as a control input (see [21]):

H(0, t̃)V (0, t̃) = c0(t̃).

2) The second boundary condition is given by gate operation
at outflow of the reach. A gate model can be expressed as
follows (see [21]):

H(1, t̃)V (1, t̃) = α

√
[H(1, t̃)− c1(t̃)]3,

where α is a positive constant coefficient. The control input
is denoted by c1(t̃).
3) The third boundary condition is a physical constraint on
the bathymetry (see [19]):

B(0, t̃) = B,

where B is a constant value.
After the linearization of these boundary conditions, we
derive the following boundary conditions for system (21):

H∗v(0, t̃) + V ∗h(0, t̃) = c0(t̃)− c∗0, (26)

H∗v(1, t̃) + V ∗h(1, t̃) =
3α(h(1, t̃) + c∗1 − c1(t̃))

√
H∗ − c∗1

2
,

(27)

b(0, t̃) = 0, (28)

where c∗0 and c∗1 are constant control actions at the steady-
state

(
H∗ V ∗ B∗

)T
.

The boundary conditions for system (25) are given as fol-
lows:

W ′1(0, t̃) = k12W2(1, t̃) + k13W3(1, t̃), (29)

W2(0, t̃) = k21W
′
1(1, t̃), (30)

W3(0, t̃) = ξ(k21)W ′1(1, t̃), (31)

with

ξ(k21) = − [(λ1 − V ∗)2 − gH∗] + k21[(λ2 − V ∗)2 − gH∗]
(λ3 − V ∗)2 − gH∗

.

(32)
Proposition 2: The boundary conditions (26)-(28) for the

system (21) are equivalent to the boundary conditions (29)-
(31) for the system (25) with the following boundary control
inputs, for all t̃ > 0,

c0(t̃) = c∗0 + h(0, t̃)

[
V ∗ +

gH∗(k21φ1 − φ2)

φ2λ2 − k21φ1λ1

+
k21φ1(V ∗ − λ2)(V ∗ − λ3)− φ2(V ∗ − λ1)(V ∗ − λ3)

φ2λ2 − k21φ1λ1

]
,

(33)

c1(t̃) = c∗1 + h(1, t̃)

[
1− 2V ∗

3α
√
H∗ − c∗1

− 2H∗

3α
√
H∗ − c∗1

×
(

gH∗(−φ1 + k12φ2 + k13φ3)

H∗(λ1φ1 − k12λ2φ2 − k13λ3φ3)

−φ1(V ∗ − λ2)(V ∗ − λ3)− k12φ2(V ∗ − λ1)(V ∗ − λ3)

H∗(λ1φ1 − k12λ2φ2 − k13λ3φ3)

+
k13φ3(V ∗ − λ1)(V ∗ − λ2)

H∗(λ1φ1 − k12λ2φ2 − k13λ3φ3)

)]
−b(1, t̃)

[
2H∗

3α
√
H∗ − c∗1

g(−φ1 + k12φ2 + k13φ3)

λ1φ1 − k12λ2φ2 − k13λ3φ3

]
,

(34)

where H∗− c∗1 6= 0 and φk = 1
(λk−λi)(λk−λj) for (i, j, k) in

{1, 2, 3}3.
Adopting the definitions of the reduced system and the

boundary-layer system in Section II, the two subsystems are
computed as follows. The reduced system is

W̄2t̃ + W̄2x = 0, (35)

with the boundary condition

W̄2(0, t̃) = KrW̄2(1, t̃), (36)

where Kr = k12k21
1−k13ξ(k21) .

Let us perform the following change of variables:

W̄ ′1 = W ′1 − k12
1−k13ξ(k21)W2(1, t̃),

W̄3 = W3 − k12ξ(k21)
1−k13ξ(k21)W2(1, t̃).

(37)

The boundary-layer system is(
W̄ ′1
W̄3

)
τ̃

+

(
λ1

λ3
0

0 1

)(
W̄ ′1
W̄3

)
x

= 0, (38)

with the boundary conditions(
W̄ ′1(0, τ̃)
W̄3(0, τ̃)

)
= K22

(
W̄ ′1(1, τ̃)
W̄3(1, τ̃)

)
, (39)

where K22 =

(
0 k13

ξ(k21) 0

)
, τ̃ = t̃

ε .



D. Boundary control synthesis

The boundary conditions matrix Kr for the reduced
system (35)-(36) need to be chosen as 0. Assuming that
1 − k13ξ(k21) 6= 0, Kr = 0 holds as soon as k12 = 0
or k21 = 0.

Proposition 3: Consider the boundary conditions matrix

K1 =

 0 k12 k13

0 0 0
ξ(0) 0 0

 , (40)

with k12, k13 in R, assume that k13ξ(0) 6= 1 and that there
exist positive values d2, d3 such that

1 0 0 0 0 d3ξ(0)
0 d2 0 k12 0 0
0 0 d3 k13 0 0
0 k12 k13 1 0 0
0 0 0 0 d2 0
ξ(0) 0 0 0 0 d3

 > 0 (41)

is satisfied. Consider the boundary conditions matrix

K2 =

 0 0 k13

k21 0 0
ξ(k21) 0 0

 , (42)

with k21, k13 in R, assume that k13ξ(k21) 6= 1 and that there
exist positive values d2, d3 such that

1 0 0 0 k21d2 ξ(k21)d3

0 d2 0 0 0 0
0 0 d3 k13 0 0
0 0 k13 1 0 0

k21d2 0 0 0 d2 0
ξ(k21)d3 0 0 0 0 d3

 > 0 (43)

is satisfied. Then Corollary 1 can be applied to system (25)
with either boundary conditions matrix K1 or K2 defining
the boundary conditions (29)-(31).

To solve (41), we can compute ξ(0) from (32), then (41)
is a linear matrix inequality (LMI) which can be solved.
Similarly, by choosing ξ(k21) = 0 in (43), k21 is computed
from (32), then LMI (43) can be solved.

E. Numerical simulation

Using the numerical values in [22], the equilibrium is
chosen as H∗ = 0.1365, V ∗ = 14.65, B∗ = 0. We take
the gravity constant g = 9.81. The eigenvalues of matrix
Λ are also given in [22] as λ1 = −10, λ2 = 7.72 × 10−4,
λ3 = 13. Using Yalmip toolbox [23] on Matlab to solve LMI
(41) and (43). The obtained boundary conditions matrix K1

is

K1 =

 0 1 0
0 0 0
−14 0 0

 , (44)

and K2 is

K2 =

 0 0 0
0.095 0 0

0 0 0

 . (45)

To numerically compute the solutions of system (25) with the
boundary conditions matrix (44) or (45), we discretize them
by using a two-step variant of the Lax-Wendroff method (see
[24] and [25]). Precisely, the space domain [0,1] is divided
into 100 intervals of identical length, the final time is chosen
as 2000. We take a time-step that satisfies the CFL condition
and select the initial conditions as follows, for all x ∈ [0, 1],

W ′01 (x) = −1 + cos(4πx),

W 0
2 (x) = −1 + cos(2πx),

W 0
3 (x) = 1− cos(4πx).

Fig. 1 shows the dynamics W̄2 for the reduced system (35).
It converges to the origin within time T ' 1300s for the
boundary condition matrix Kr = 0. The finite time of
convergence obtained in Proposition 1 is T = 1

λ2
which

is close to the numerically computed finite time T ' 1300s.
The slow dynamics W2 for system (25) with the boundary
conditions matrix K1 given by (44) in Fig. 2 is roughly
the same graph as W̄2 in Fig. 1. Fig. 3-4 show the time
evolutions of the fast dynamics for system (25) with the
boundary conditions matrix K1. It is observed that the
solutions converge to 0 as time increases and that they
depend on the evolution of the slow dynamics.

Fig. 1: Time evolution of W̄2 for system (35) with Kr = 0

Fig. 2: Time evolution of the slow dynamics W2 for system
(25) with K1



Fig. 3: Time evolution of the fast dynamics W ′1 for system
(25) with K1

Fig. 4: Time evolution of the fast dynamics W3 for system
(25) with K1

Similar results are obtained for system (25) with the
boundary conditions matrix K2 by numerical simulations.

V. CONCLUSIONS
In this paper, the boundary control synthesis of a class

of linear hyperbolic systems has been studied based on
the singular perturbation method. The slow dynamics is
stabilized within time T by choosing the boundary conditions
for the reduced system as zero. The main result is applied to a
boundary control design for a hyperbolic system represented
by the Saint-Venant–Exner equation. The simulation example
shows the effectiveness of the contribution of this work.

This work could be applied to different kinds of phys-
ical systems governed by singularly perturbed systems of
conservation laws, such as the flow control in [26]. These
applications will be considered in the future works.
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