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Introduction

Self-similar processes are important in probability theory because of their connections with limit theorems and their intensive use in modeling, see for example [START_REF] Taqqu | A bibliographical guide to self-similar processes and long-range dependence[END_REF]. These are processes (X(t)) t∈R that satisfy, for some H > 0, [START_REF] Basrak | Regularly varying multivariate time series[END_REF] (X(λt)) t∈R f dd = λ H (X(t)) t∈R , for all λ > 0, where ' f dd = ' stands for 'equal in finite-dimensional distributions'. It is well known that the only Gaussian processes that are self-similar and have stationary increments are the fractional Brownian motions. Throughout, we let (B H (t)) t∈R denote a fractional Brownian motion with Hurst index H ∈ (0, 1); this is a zero-mean Gaussian process with covariances given by can be viewed as the discrete counterpart of the Brownian motion, the correlated random walks proposed in [START_REF] Hammond | Power law Pólya's urn and fractional Brownian motion[END_REF] can be viewed as the discrete counterparts of the fractional Brownian motions for H > 1/2. In this regime, the fractional Brownian motion is well known to exhibit long-range dependence [START_REF] Samorodnitsky | Long range dependence[END_REF].

In the present paper we introduce a discrete random field model that generalizes the Hammond-Sheffield model to any dimension d ≥ 2 and we study the scaling limits. Based on this model, we establish invariance principles for a new class of operator-scaling Gaussian random fields. The operator-scaling random fields are generalization of self-similar processes [START_REF] Basrak | Regularly varying multivariate time series[END_REF] to random fields, proposed by Biermé et al. [START_REF] Biermé | Operator scaling stable random fields[END_REF]. Namely, for a matrix E with all eigenvalues having positive real parts, the random field (X(t)) t∈R d is said to be (E, H)-operator-scaling for some H > 0, if [START_REF] Benson | Aquifer operator scaling and the effect on solute mixing and dispersion[END_REF] (X(λ E t)) t∈R d f dd

= λ H (X(t)) t∈R d for all λ > 0,

where λ E := k≥0 (log λ) k E k /k!. In this paper, we focus on the case that E is a d × d diagonal matrix with diagonal entries β 1 , . . . , β d , denoted by E = diag(β 1 , . . . , β d ). It is worth mentioning that a simple generalization of the self-similarity would be to take E being the identity matrix in [START_REF] Benson | Aquifer operator scaling and the effect on solute mixing and dispersion[END_REF], and the advantage of taking a general diagonal matrix is to be able to accommodate anisotropic random fields. Examples of operator-scaling Gaussian random fields include fractional Brownian sheets [START_REF] Kamont | On the fractional anisotropic Wiener field[END_REF] and Lévy Brownian sheets [START_REF] Samorodnitsky | Stable non-Gaussian random processes[END_REF]. Here, our results provide a new class to this family with corresponding invariance principles. We also mention that there are other well investigated generalizations of fractional Brownian motions to Gaussian random fields, including distribution-valued ones. See for example [START_REF] Biermé | Self-similar random fields and rescaled random balls models[END_REF][START_REF] Lodhia | Fractional Gaussian fields: A survey[END_REF][START_REF] Sheffield | Gaussian free fields for mathematicians[END_REF].

We now give a brief description of the Hammond-Sheffield model and its generalization to high dimensions. Let us start with the one-dimensional model. Let µ be a probability distribution with support in {1, 2, . . .} that is assumed to be aperiodic (to be defined below). Using the sites of Z as vertices, one defines a random directed graph G µ by sampling independently one directed edge on each site. The edge starting at the site i ∈ Z will point backward to the site i -Z i , where Z i is a random variable with distribution µ. Here, µ is a probability distribution in the form of [START_REF] Bickel | Convergence criteria for multiparameter stochastic processes and some applications[END_REF] µ({n, . .

.}) = n -α L(n),
where L is a slowly varying function and α ∈ (0, 1/2). This choice of α guarantees that the graph G µ has a.s. infinitely many components, each being a tree with infinite vertices. Conditioning on G µ , one then defines (X j ) j∈Z such that • X j = X i if j and i are in the same component of the graph, • X j and X i are independent otherwise, and • marginally each X i has the distribution (1 -p)δ -1 + pδ 1 for some p ∈ (0, 1).

The partial-sum process S n = n i=1 X i , n ≥ 1, can be interpreted as a correlated random walk. Hammond and Sheffield [START_REF] Hammond | Power law Pólya's urn and fractional Brownian motion[END_REF]Theorem 1.1] proved that (4)

S nt -ES nt n α+1/2 L(n) t∈[0,1] ⇒ σ B α+1/2 (t) t∈[0,1]
as n → ∞ in D([0, 1]), with the constant σ explicitly given. Here and in the sequel, we let "⇒" denote convergence in distribution [START_REF] Billingsley | Convergence of probability measures[END_REF]. Hammond and Sheffield [START_REF] Hammond | Power law Pólya's urn and fractional Brownian motion[END_REF] actually established a strong invariance principle for the convergence (4).

To generalize the Hammond-Sheffield model to high dimensions, we start by constructing a random graph G µ with vertices Z d . Similarly, at each vertex i ∈ Z d we first sample independently a random edge of length Z i , according to a probability distribution µ, and connect i to i -Z i . The distribution µ has support within {1, 2, . . . } d , intuitively meaning that all the edges are directed towards the southwest when d = 2. Throughout, we assume that the additive group generated by the support of µ is all Z d , and in short we say that µ is aperiodic. Most importantly, the distribution µ is assumed to be in the strict domain of normal attraction of (E, ν), denoted by µ ∈ D(E, ν), for a matrix E = diag(1/α 1 , . . . , 1/α d ) with α i ∈ (0, 1), i = 1, . . . , d, and an infinitely divisible probability measure ν on R d + . That is, if (ξ i ) i≥1 are i.i.d. copies with distribution µ, then [START_REF] Biermé | Invariance principles for self-similar set-indexed random fields[END_REF] n

-E n i=1 ξ i ⇒ ν.
This assumption is a natural generalization of (3) to high dimensions. We again focus on the case that G µ has infinitely many components, which turns out to be exactly the case that q(E) := trace(E) > 2, and given G µ we define (X j ) j∈Z d similarly as in dimension one. Remark that q(E) > 2 is trivially satisfied for d ≥ 2, due to the restriction on α i ∈ (0, 1). Remark also that when d ≥ 2, sometimes it is more practical to express [START_REF] Biermé | Invariance principles for self-similar set-indexed random fields[END_REF] in terms of non-standard multivariate regular variation, and in this case nothing needs to be assumed in terms of the spectral measure of ν. See Section 2 for detailed descriptions of the measure µ, the random graph G µ , and the model.

The key feature of our model is that the underlying random graph induces a partial order of Z d . Models with such a feature have been considered in literature. In particular, the so-called partially ordered models have been recently introduced by Deveaux and Fernández [START_REF] Deveaux | Partially ordered models[END_REF]. Applications of such models include notably image and texture analysis [START_REF] Cressie | Image analysis with partially ordered Markov models[END_REF]. Our model may be formulated alternatively as a partially ordered model. However, we do not pursue this direction here, as the current setup serves our purpose better.

In this paper, we will investigate the scaling limits of partial sums over increasing rectangles of the random fields described above. For this purpose, we introduce S n (t) := j∈R(n,t)

X j , n = (n 1 , . . . , n d ) ∈ N d , t = (t 1 , . . . , t d ) ∈ [0, 1] d with R(n, t) = d k=1 [0, n k t k -1] ∩ Z d .
Surprisingly, the limit theorems are much more complicated in high dimensions. In order to obtain an invariance principle for S n (t), one cannot simply require min i=1,...,d n i → ∞ as most of the limit theorems for random fields do (see e.g. [START_REF] Biermé | Invariance principles for self-similar set-indexed random fields[END_REF][START_REF] Dedecker | Exponential inequalities and functional central limit theorems for a random fields[END_REF][START_REF] Lavancier | Invariance principles for non-isotropic long memory random fields[END_REF]). Instead, one needs to investigate ( 6)

S E n (t) := j∈R(n E 1,t) X j with a diagonal matrix E = diag(β 1 , . . . , β d ).
The contribution of our main result, Theorem 5, is twofold. First, we establish invariance principles to operator-scaling Gaussian random fields. Such limit theorems, rare in the literature, justify the usage of such Gaussian random fields in various applications, including particularly texture analysis [START_REF] Biermé | Parametric estimation for gaussian operator scaling random fields and anisotropy analysis of bone radiograph textures[END_REF][START_REF] Biermé | Anisotropic texture modeling and applications to medical image analysis[END_REF][START_REF] Roux | Self-similar anisotropic texture analysis: The hyperbolic wavelet transform contribution[END_REF] and hydrology [START_REF] Benson | Aquifer operator scaling and the effect on solute mixing and dispersion[END_REF]. Second, unexpectedly, Theorem 5 reveals the following surprising phenomenon: for different E , the limiting random field may not be the same. Moreover, in the special case with E = cE for some c > 0, the dependence structure of the limiting random field is determined by the measure ν. This case is referred to as the critical regime. For the non-critical regime, one can still obtain invariance principles under different normalizations depending on both E and E , although the limiting random field has degenerate dependence structure (either invariant, i.e. completely dependent, or independent increments) along at least one direction. To the best of our knowledge, the existence of such a critical regime has been rarely seen in the literature, except for the recent results by Puplinskaitė and Surgailis [START_REF] Puplinskaitė | Scaling transition for long-range dependent Gaussian random fields[END_REF][START_REF] Puplinskaitė | Aggregation of autoregressive random fields and anisotropic long-range dependence[END_REF]. They investigated a different model in dimension 2, and referred to the same phenomenon as the scaling-transition phenomenon.

Below we briefly summarize the phenomenon of critical regime.

Critical regime: Here we refer to the case of taking E = E in (6).

Theorem 1. Assume that µ ∈ D(E, ν) for some E = diag(1/α 1 , . . . , 1/α d ) with α i ∈ (0, 1), i = 1, . . . , d, and a probability measure

ν on R d + . Assume α 1 < 1/2 if d = 1. Let ψ be the characteristic function of ν. Then, S E n (t) -ES E n (t) n 1+q(E)/2 t∈[0,1] d ⇒ (W (t)) t∈[0,1] d ,
in the space D([0, 1] d ), where the limit Gaussian random field (W (t)) t∈R d has zero-mean and covariance function

Cov(W (t), W (s)) = σ 2 X R d d k=1 e it k y k -1 (e is k y k -1) 2π|y k | 2 | log ψ(y)| -2 dy, t, s ∈ R d ,
where an explicit expression of σ 2 X is given in (21) below. The limit Gaussian random field is easily seen to be (E, H)-operator-scaling with H = 1 + q(E)/2. For this new class of random fields, we study its increments and the Hölder regularity of the sample paths in Section 5.

Non-critical regime: For the case E in [START_REF] Biermé | Self-similar random fields and rescaled random balls models[END_REF] is not a multiple of E, the situation becomes much more subtle. One can still obtain invariance principles with appropriate normalization depending on both E and E . However, in the non-critical regime the limiting random fields no longer reflects fully the long-range dependence inherited from G µ . In particular, the covariance function of the limiting random field becomes degenerate in certain directions: along these directions, the covariance function becomes the one of a fractional Brownian motion with either H = 1/2 (the standard Brownian motion, which is memoryless) or H = 1 (the case of complete dependence with W (t) = tZ, t ≥ 0 for a common standard Gaussian random variable Z). Accordingly, along these directions the increments of the Gaussian random fields are independent or translation invariant, respectively. A general invariance principle is established in Section 4, and properties of the limiting random fields are investigated in Section 5. Here we only state the invariance principle for d = 2. In the non-critical regime, the limit Gaussian random field is a fractional Brownian sheet with Hurst indices H 1 and H 2 . However, we do not see a fractional Brownian sheet in the limit in high dimensions most of the time: a complete characterization of when it appears is given in Proposition 6 below.

Theorem 2. Assume d = 2. Let µ ∈ D(E, ν) with E = diag(1/α 1 , 1/α 2 ) and set E = diag(1/α 1 , 1/α 2 ) with α 1 , α 2 ∈ (0, 1), α 2 = α 2 .
Then, depending on the relation between α 1 , α 2 and α 2 , the following weak convergence holds:

S E n (t) -ES E n (t) n β t∈[0,1] 2 ⇒ (W (t)) t∈[0,1] 2 ,
in the space D([0, 1] 2 ), where the limit Gaussian random field (W (t)) t∈R 2 has zero-mean and covariance function in the form of

Cov(W (t), W (s)) = σ 2 X σ 2 Cov(B H 1 (t 1 ), B H 1 (s 1 )) Cov(B H 2 (t 2 ), B H 2 (s 2 )
). Here, β, σ 2 , H 1 , H 2 and hence {W (t)} t∈[0,1] 2 all depend on α 1 , α 2 and α 2 . In particular, there are four different possibilities as follows:

(i)

α 2 > α 2 , α 2 ∈ (0, 1/2): β = α 2 α 2 + 1 2 ( 1 α 1 + 1 α 2 ), H 1 = 1 2 , H 2 = 1 2 + α 2 . (ii) α 2 > α 2 , α 2 ∈ (1/2, 1): β = 1 + 1 2α 1 + 1 α 2 -1 2α 2 , H 1 = 1 2 + α 1 (1 -1 2α 2 ), H 2 = 1. (iii) α 2 < α 2 , α 1 ∈ (0, 1/2): β = 1 + 1 2 ( 1 α 1 + 1 α 2 ), H 1 = 1 2 + α 1 , H 2 = 1 2 . (iv) α 2 < α 2 , α 1 ∈ (1/2, 1): β = α 2 α 2 (1 -1 2α 1 ) + 1 α 1 + 1 2α 2 , H 1 = 1, H 2 = 1 2 + α 2 (1 -1 2α 1 ).
Explicit expressions of σ 2 in these cases can be found in the proof of Theorem 2 in Section 5.

The main result of the paper, Theorem 5, is a unified version of invariance principles for general d ∈ N, E = diag(1/α 1 , . . . , 1/α d ) and arbitrary E , from which both Theorems 1 and 2 follow as immediate corollaries. Theorem 5 also provides a general principle to determine the correct normalization order, the limit covariance function, and hence the directions of degenerate dependence. We have just seen that in dimension 2 there are already 4 different non-critical regimes. For general d ≥ 3, the situation becomes more complicated.

The core of the proofs is an application of the martingale central limit theorem, thanks to the key observation that the random field of interest can be represented as a linear random field in the form of ( 7)

X i = j∈Z d q j X * i-j , i ∈ Z d ,
of which the innovations (X * j ) j∈Z d are multiparameter martingale differences. Hammond and Sheffield [START_REF] Hammond | Power law Pólya's urn and fractional Brownian motion[END_REF] also made essential use of the martingale central limit theorem, although the representation as a linear process as in [START_REF] Biermé | Hölder regularity for operator scaling stable random fields[END_REF] was not explicit. This representation plays a key role in our proofs, as from there when verifying conditions in the martingale central limit theorem, thanks to the structure of the linear process, we can deal with the coefficients q j and innovations X * j separately. This framework, or more generally the martingale approximation method, has been carried out successfully in dimension one to establish invariance principles for fractional Brownian motions for general stationary processes [START_REF] Dedecker | Invariance principles for linear processes with application to isotonic regression[END_REF]. To extend this framework to high dimensions, a notorious difficulty is to find a convenient multiparameter martingale to work with. It is well known that the martingale approximation method applied to stationary random fields is not as powerful as to stationary sequences, as pointed out a long time ago by Bolthausen [START_REF] Bolthausen | On the central limit theorem for stationary mixing random fields[END_REF]. Fortunately, our specific model can be represented exactly as a simple linear random field with martingale-difference innovations as in [START_REF] Biermé | Hölder regularity for operator scaling stable random fields[END_REF].

Once the representation of linear random fields in [START_REF] Biermé | Hölder regularity for operator scaling stable random fields[END_REF] is established, the main work lies in the computation of the limit of the covariance functions. This step is heavily based on the analysis of Fourier transforms of the linear coefficients (q i ) i∈Z d , the asymptotic property of which is essentially determined by ν. Analyzing the Fourier transforms is a standard tool to compute the covariance functions for stationary linear random fields, see for example [START_REF] Lavancier | Invariance principles for non-isotropic long memory random fields[END_REF][START_REF] Puplinskaitė | Scaling transition for long-range dependent Gaussian random fields[END_REF][START_REF] Puplinskaitė | Aggregation of autoregressive random fields and anisotropic long-range dependence[END_REF]. To complete the invariance principle, the tightness is established. At last, to develop the sample-path properties we apply recent results in Biermé and Lacaux [START_REF] Biermé | Hölder regularity for operator scaling stable random fields[END_REF].

The rest of the paper is organized as follows. In Section 2 we describe in details the randomfield model. Section 3 provides a general central limit theorem that serves our purpose. Section 4 establishes a general invariance principle that applies to both critical and noncritical regimes. Some properties of the limit random fields are provided in Section 5.
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The model

In this section, we will give a detailed description of our random field model {X i } i∈Z d , of which the dependence structure is determined by an underlying random graph G µ . The asymptotic properties of the random graph are determined by a probability measure µ on {1, 2, . . . } d , which is assumed to be in the strict domain of normal attraction of an E-operator stable measure ν on R d + . Some simple properties of the model will be derived. In particular, we show that the random field of interest can be represented as a linear random field, of which the innovations are stationary multiparameter martingale differences.

Throughout the paper we use the following usual notations. Let d ≥ 1 be an integer. On R d , we consider the partial order (also denoted by <) defined by t < s if t j < s j for all j = 1, . . . , d, where t = (t 1 , . . . , t d ) and s = (s 1 , . . . , s d ). In the same way, we use the notations >, ≤, ≥. We write t ≮ s as soon as t j ≥ s j for at least one j = 1, . . . , d, and in the same way, we use ≯, , . We denote by [ On Z d , we consider the random directed graph G µ , associated to µ, defined as follows:

• Let (Z n ) n∈Z d be i.i.d. random variables with distribution µ.

• For each n ∈ Z d , let e n be the outward edge from n to n -Z n .

• G µ is the graph with all sites of Z d as vertices and random directed edges {e n , n ∈ Z d }.

The graph G µ is then composed of (possibly) several disconnected components and each component is a tree. The upcoming Proposition 1 shows that, almost surely, the number of components of G µ is one or is infinite.

We first introduce the following notations. For n ∈ Z d , we denote by A n the ancestral line of n, that is the set of all elements k ∈ Z d for which there exists a directed connection from n to k (taking the orientations of the edges into account). Note that, in distribution, A n can be described by the range of the random walk (n -S k ) k≥0 where (S k ) k≥0 is the random walk starting at 0 with step distribution µ. In particular, since µ is supported by N d * , any element k in A n satisfies k < n. Observe that the condition that the support of µ generates the group Z d is equivalent to the fact that P(A n ∩ A m = ∅) > 0 for all n, m ∈ Z d .

For n ∈ Z d , we set q n = P(0 ∈ A n ). We clearly have q n = 0 as soon as 0 ≮ n, except for q 0 = 1. Further, since each edge is generated independently at each site, for any n, k ∈ Z d ,

P(k ∈ A n ) = q n-k . Proposition 1. If k∈N d q 2
k converges, then G µ has almost surely infinitely many components whereas if k∈N d q 2 k diverges, then G µ has almost surely only one component. We start by proving the following lemma.

Lemma 1. (i) If k∈N d q 2
k converges then for all n ∈ Z d ,

P(A 0 ∩ A n = ∅) =   k∈N d q 2 k   -1   k∈Z d q k q k+n   . (ii) If k∈N d q 2 k diverges then P(A 0 ∩ A n = ∅) = 1 for all n ∈ Z d . Proof.
The proof follows an idea developed in [START_REF] Hammond | Power law Pólya's urn and fractional Brownian motion[END_REF]Lemma 3.1] for the dimension 1. Let G µ be an independent copy of G µ . We denote by A n the ancestral line of n with respect to G µ . On one hand, one has

E|A 0 ∩ A n | = k∈Z d P(k ∈ A 0 )P(k ∈ A n ) = k∈Z d q k q k+n .
On the other hand,

E|A 0 ∩ A n | = P(A 0 ∩ A n = ∅)E|A 0 ∩ A 0 | = P(A 0 ∩ A n = ∅) k∈N d q 2
k and thus (i) follows.

If

k∈N d q 2 k = ∞, then E|A 0 ∩ A 0 | = ∞. But E|A 0 ∩ A 0 | can also be computed as (8) E|A 0 ∩ A 0 | = k≥0 P(|A 0 ∩ A 0 | > k) = k≥0 P(A 0 ∩ A 0 = {0}) k = 1 1 -P(A 0 ∩ A 0 = {0})
.

Thus E|A 0 ∩A 0 | = ∞ if and only if P(A 0 ∩A 0 = {0}) = 1, and in this situation |A 0 ∩A 0 | = ∞ almost surely. Now, since the group generated by the support of µ covers Z d , we know that, for all n ∈ Z d , there exists k 0 ∈ Z d such that

P(k 0 ∈ A 0 and k 0 -n ∈ A 0 ) = P(k 0 ∈ A 0 ∩ A n ) > 0. But, since |A 0 ∩ A 0 | = ∞ a.s., we infer that |A k 0 ∩ A k 0 -n | = ∞ also a.s.,

and thus

P(A 0 ∩ A n = ∅) = P(A k 0 ∩ A k 0 -n = ∅) ≥ P(|A k 0 ∩ A k 0 -n | = ∞) = 1, which proves (ii). Proof of Proposition 1. If C := k∈N d q 2
k < ∞, from Lemma 1 (i), we get

P(A 0 ∩ A n = ∅) = C -1 k∈Z d q k q k+n ≤ C -1   k∈Z d ,k+n≥0 q 2 k   1/2   k∈Z d ,k≥0 q 2 k+n   1/2 = C -1   k∈Z d , k≥-n q 2 k   1 2   k∈Z d , k≥n q 2 k   1 2
, which goes to 0 as |n| ∞ → ∞. Thus, P(A 0 ∩ A n = ∅) → 0 as |n| ∞ → ∞, and we can build a sequence (n k ) k∈N ⊂ Z d , iteratively, such that for each k ∈ N,

P A n k ∩ (∪ k-1 j=0 A n j ) = ∅ ≤ 1 k 2 .
By the Borel-Cantelli lemma, we see that, almost surely, the ancestral lines A n k , for all k large enough, are disjoint from each other. This proves the first part of the proposition. The second part of the proposition is clear from Lemma 1 (ii).

The measure.

From now on, we always consider a probability measure µ on N d * which is aperiodic (the additive group generated by the support of µ is all Z d ) and such that µ ∈ D(E, ν) for an infinitely divisible full probability measure ν on R d + and a matrix

E = diag(1/α 1 , . . . , 1/α d ) with α i ∈ (0, 1) for all i = 1, . . . , d. Recall that we mean by µ ∈ D(E, ν) that if (ξ i ) i≥1 are i.i.d. copies with distribution µ, then (9) n -E n i=1 ξ i ⇒ ν.
Note that, since the distribution of each coordinate is in the strict domain of normal attraction of a positive stable law and since positive α-stable laws only exist for α ∈ (0, 1), the condition

α i ∈ (0, 1) for all i = 1, . . . , d is necessary. Consider the characteristic function ψ(t) = R d + e it•x dν(x) of ν.
It follows from ( 9) that the log-characteristic function log ψ is then an E-homogeneous function, that is for all t > 0 and x ∈ R d , log ψ(t E x) = t log ψ(x).

(See (12) below.) Further, log ψ(0) = 0 and for all x = 0, | log ψ(x)| > 0.

One can also describe µ in the framework of multivariate regular variation. Consider the triplet representation of ν as an infinitely divisible distribution [START_REF] Meerschaert | Limit distributions for sums of independent random vectors[END_REF]Eq. (3.17)]. Then, [START_REF] Meerschaert | Limit distributions for sums of independent random vectors[END_REF]Corollary 8.2.11] tells that [START_REF] Biermé | Anisotropic texture modeling and applications to medical image analysis[END_REF] implies that the triplet has the form (0, 0, φ), with φ satisfying [START_REF] Billingsley | Convergence of probability measures[END_REF] lim

n→∞ nµ(n E A) = φ(A) for all A ∈ B(R d ) bounded away from 0 and φ(∂A) = 0.
Conversely, [START_REF] Meerschaert | Limit distributions for sums of independent random vectors[END_REF]Corollary 8.2.11] also shows that ( 10) implies ( 9) with a possibly centering on the left-hand side and ν determined by the triplet (a, 0, φ) with a possible drift term a. However, under the assumption α i ∈ (0, 1), it follows from [34, Theorem 8.2.7] that a = 0 and the centering can be set as zero.

In view of [START_REF] Billingsley | Convergence of probability measures[END_REF], µ is said to have non-standard multivariate regular variation with exponent E and exponent measure φ. Most of the applications in the literature of multivariate regular variation, however, focus on the case that 10) is referred to as multivariate regular variation in the literature. Standard references on (standard) multivariate regular variation include [START_REF] Resnick | Extreme values, regular variation, and point processes, volume 4 of Applied Probability[END_REF][START_REF] Resnick | Heavy-tail Springer Series in Operations Research and Financial Engineering[END_REF]. References on non-standard multivariate regular variation include [START_REF] Resnick | A bivariate stable characterization and domains of attraction[END_REF], [START_REF] Resnick | Heavy-tail Springer Series in Operations Research and Financial Engineering[END_REF]Chapter 6]. See also some recent development in [START_REF] Resnick | Tauberian theory for multivariate regularly varying distributions with application to preferential attachment networks[END_REF]. Some examples are given at the end of the subsection.

α 1 = • • • = α d . In this case, (
We denote by P the Fourier transform of the measure µ, that is

P (t) = k∈N d µ({k})e it•k , t ∈ R d .
Note that the assumption that the additive group generated by the support of µ is all Z d is equivalent to: Let G µ be the random graph associated to µ as defined in Section 2.1. The asymptotic behavior of {q k } k∈N d will play a key role in our analysis. It is essentially determined by the measure µ ∈ D(E, ν). We denote by Q the Fourier series with coefficients q k = P(0

P (t) = 1 if
∈ A k ), that is Q(t) = k∈N d q k e it•k .
Using that q k = j∈N d * µ({j})q k-j for k > 0, we see that both Fourier series are linked by the relation

Q(t) = 1 1 -P (t)
.

From Lemma 1, we see that

P(A 0 ∩ A n = ∅) = c n (|Q| 2 ) c 0 (|Q| 2 ) ,
where c k (|Q| 2 ) denotes the Fourier coefficient of index k of |Q| 2 = QQ. This relation explains why the Fourier series Q plays a crucial role in the study of the random graph.

The two following lemmas are key results concerning the behavior of Q at 0. Lemma 2. Let µ ∈ D(E, ν) be as described above and ψ the characteristic function of ν. Then

|Q(x)| = |1 -P (x)| -1 = g(x) | log ψ(x)| , x ∈ [-π, π] d ,
where g is continuous and positive with g(0) = 1.

Proof. Let us use a change of variables in polar coordinates. As in [START_REF] Meerschaert | Limit distributions for sums of independent random vectors[END_REF]Chapter 6], we define a new norm on R d , related to the matrix E, by ( 11)

x E = 1 0 |r E x| 1 r dr,
where here | • | denotes the Euclidean norm. The unit ball

S E = {x ∈ R d | x E = 1} associated to this norm is a compact set of R d \ {0}
and every vector in R d \ {0} can be uniquely written as r E θ with r > 0 and θ ∈ S E , since for any x = 0, the map t → t E x E is strictly increasing on (0, ∞).

Since µ ∈ D(E, ν), we have

P (n -E θ) n → ψ(θ), as n → ∞, uniformly in θ ∈ S E ,
from which we infer that (12)

t log P (t -E θ) → log ψ(θ), as t → ∞, uniformly in θ ∈ S E ,
see [31, p.159]. Using that log(1 + x) ∼ x as x → 0 and that P is continuous at 0, we obtain

t(P (t -E θ) -1) → log ψ(θ), as t → ∞, uniformly in θ ∈ S E .
Thus, for all ε > 0, there exists T > 0 such that for all t > T ,

| log ψ(t -E θ)| |P (t -E θ) -1| -1 = | log ψ(θ)| t|P (t -E θ) -1| -1 ≤ ε, uniformly in θ ∈ S E . Now, set g(•) = | log ψ(•)(P (•) -1) -1 |. The function g is clearly continuous and positive on [-π, π] d \ {0}. Set δ = inf θ∈S E T -E θ E > 0.
Then for all x such that x E < δ, x = t -E 0 θ 0 with θ 0 ∈ S E and t 0 > T and thus

|g(x) -1| = |g(t -E 0 θ 0 ) -1| ≤ ε. Thus g is continuous at 0 and g(0) = 1.
We are thus interested by the function x → log ψ(x), which is a continuous E-homogeneous function that only vanishes at 0. Recall that q(E) = trace(E).

Lemma 3. If φ : R d → R is a continuous E-homogeneous function that only vanishes at 0, then for any p > 0, x → |φ(x)| -p is locally integrable in R d if and only if q(E) > p.
Proof. There exists a unique finite Radon measure σ E on S E which allows the change of variable [START_REF] Biermé | Operator scaling stable random fields[END_REF], Proposition 2.3). Thus, using the E-homogeneity of φ, one has

R d f (t)dt = +∞ 0 S E f (r E θ)r q(E)-1 dσ E (θ)dr, for all f ∈ L 1 (R d ) (see
{ x E ≤1} |φ(x)| -p dx = 1 0 S E r q(E)-1 |φ(r E θ)| -p dσ E (θ)dr = 1 0 r q(E)-1-p dr S E |φ(θ)| -p dσ E (θ).
The second integral is finite because |φ| is continuous and positive on the compact set S E , and the first integral is finite if and only if q(E) > p.

As a first consequence, we get the following proposition.

Proposition 2. Let µ ∈ D(E, ν). The random graph G µ has almost surely infinitely many components if and only if q(E) > 2.

Note that, when d = 1, the condition q(E) > 2 becomes α 1 < 1 2 , which corresponds to the condition assumed in [START_REF] Hammond | Power law Pólya's urn and fractional Brownian motion[END_REF]. When d ≥ 2, since α i ∈ (0, 1) for all i = 1, . . . , d, then the conditon q(E) > 2 is always satisfied.

Proof. As a consequence of Lemma 2, using Parseval identity, we get

k∈N d q 2 k = 1 (2π) d [-π,π] d |Q(x)| 2 dx = 1 (2π) d [-π,π] d |g(x)| 2 | log ψ(x)| -2 dx.
Since g is bounded and bounded away from 0 on any compact set, we see that Lemma 3, it is the case if and only if q(E) > 2 and the result follows from Proposition 1.

k∈N d q 2 k < +∞ if and only if x → | log ψ(x)| -2 is integrable on [-π, π] d . The function x → log ψ(x) being E-homogeneous, by
To conclude the section, we give few examples of possible probability measure µ ∈ D(E, ν).

Example 1 (Product measure). Let µ be the product measure µ 1 ⊗ • • • ⊗ µ d , where each µ i is a regularly varying measure on N * with index α i ∈ (0, 1) such that

µ i ([n, ∞)) ∼ c i n -α i ,
for some c i > 0. Then, each µ i belongs to the strict domain of normal attraction (with normalization n -1/α i ) of a positive α i -stable law ν i , see [START_REF] Bingham | Regular variation, volume 27 of Encyclopedia of Mathematics and its Applications[END_REF]Theorem 8.3.1]. Positive α-stable laws only exist for α ∈ (0, 1), and then, their characteristic functions are given by

ϕ(t) = exp -γ|t| α 1 -isgn(t) tan π 2 α ,
for some γ > 0. See [START_REF] Bingham | Regular variation, volume 27 of Encyclopedia of Mathematics and its Applications[END_REF]Theorem 8.3.2]. In this situation, the measure µ belongs to the strict domain of normal attraction of the measure

ν = ν 1 ⊗ • • • ⊗ ν d which is a full E-operator stable distribution, with E = diag(1/α 1 , . . . , 1/α d ). The characteristic function ψ of ν is such that log ψ(x) = d j=1 γ j |x j | α j 1 -isgn(x j ) tan π 2 α j ,
for some γ j > 0.

Example 2 (Standard multivariate regular variation). For the standard multivariate regular variation, that is when

α 1 = • • • = α d = α,
many examples have been known from the studies of heavy-tailed random vector X = (X 1 , . . . , X d ) ∈ R d , in the literature of heavy-tailed time series. An extensively investigated condition for multivariate regular variation is ( 13)

P (|X| > ux, X/|X| ∈ •) P(|X| > u) ⇒ x -α σ(•) as u → ∞, for all x > 0,
for | • | a norm on R d and σ a probability measure on B(S) for S = {x ∈ R d : |x| = 1}. See for example [START_REF] Basrak | Regularly varying multivariate time series[END_REF]. It is known that [START_REF] Billingsley | Convergence of probability measures[END_REF] implies [START_REF] Clausel | Explicit construction of operator scaling Gaussian random fields[END_REF] (see e.g. [START_REF] Lindskog | Multivariate extremes and regular variation for stochastic processes[END_REF]Theorem 1.15]). The measure σ is often referred to as the spectral measure, which captures the dependence of extremes. For example, the case that σ concentrates on the d-axis with equal mass means that, in view of [START_REF] Clausel | Explicit construction of operator scaling Gaussian random fields[END_REF], the extremes of the stationary processes are asymptotically independent. For more theory and examples on spectral measures reflecting asymptotic dependence of the extremes, we refer to [START_REF] Resnick | Extreme values, regular variation, and point processes, volume 4 of Applied Probability[END_REF]Chapter 5].

Example 3 (Polar coordinate). A standard procedure to obtain non-standard regularly varying random vectors is via the representation using polar coordinates. We use the norm

• E introduced in (11) to identify R d \ {0} with (0, ∞) × S E for the unit ball S E = {x ∈ R d | x E =
1} such that every vector in R d \ {0} can be uniquely written as r E θ with r > 0 and θ ∈ S E . By [START_REF] Meerschaert | Limit distributions for sums of independent random vectors[END_REF]Theorem 6.1.7], in case of (9) (equivalently [START_REF] Billingsley | Convergence of probability measures[END_REF]), φ can be taken to have the polar coordinate representation

φ(A) = ∞ 0 S E 1 {t E θ∈A} σ(dθ) dt t 2 ,
for some finite Borel measure σ on S E . In our case, since µ has support contained in N d * , φ is a measure on R d + , and σ is a finite measure on

S + E = S E ∩ R d + . Identifying R d + \ {0} with (0, ∞) × S +
E , to obtain a multivariate regular varying measure as in [START_REF] Billingsley | Convergence of probability measures[END_REF], it suffices to show [START_REF] Cressie | Image analysis with partially ordered Markov models[END_REF] µ((r, ∞) × Γ) ∼ r -1 σ(Γ) as r → ∞, for all Γ ∈ B(S + E ). This follows from a standard argument showing that {(r, ∞)×Γ} r>0,Γ∈B(S + E ) are a convergence determining class.

A standard procedure to construct a random vector of which the distribution µ satisfies ( 14) is the following. Let R be a non-negative random variable with P(R > r) ∼ σ(S + E )r -1 as r → ∞. Let Θ be a random element in S + E with probability σ/σ(S + E ). Assume that R and Θ are independent. Then, R E Θ is regularly varying in R d + in the sense of [START_REF] Cressie | Image analysis with partially ordered Markov models[END_REF]. Indeed,

P(R E Θ ∈ (r, ∞) × Γ) = P(R > r, Θ ∈ Γ) ∼ r -1 σ(Γ) as r → ∞.
The so-obtained distributions can then be modified to become distributions on N d * with the same regular-variation property. We omit the details.

Remark 1. For our main results to hold, we do not impose any assumption on the spectral measures σ in Examples 2 and 3. The only assumption is the non-standard multivariate regular variation with indices α 1 , . . . , α d ∈ (0, 1), and α 1 < 1/2 when d = 1.

The random field.

We now associate a random field (X j ) j∈Z d to the random graph G µ . Assume that µ ∈ D(E, ν) as in the preceding section, with the diagonal matrix E satisfying q(E) > 2, and let p ∈ (0, 1). We proceed as follows:

First, generate the random directed graph G µ as described in previous sections, which has almost surely infinitely many connected components in this situation. Let {C i | i ≥ 1} denote the collection of disjoint components and associate to each component C i a random variable ε i such that (ε i ) i≥1 are i.i.d. with distribution given by P(ε i = 1) = p and P(ε i = -1) = 1 -p. Finally, for all j ∈ Z d , set X j = ε i where i is such that j ∈ C i . This construction implies that X j = X k as soon as j and k belong to the same component of G µ , and they are independent otherwise.

Remark 2. The one-dimensional Hammond-Sheffield model can also be formulated as an example of the so-called chains with complete connections [START_REF] Hammond | Power law Pólya's urn and fractional Brownian motion[END_REF]. This general class of models has a long history with different names, and is very similar to but not the same as the Gibbs measures on Z; see [START_REF] Fernández | Chains with complete connections and onedimensional Gibbs measures[END_REF][START_REF] Fernández | Chains with complete connections: general theory, uniqueness, loss of memory and mixing properties[END_REF] for more references. Recently, Deveaux and Fernández [START_REF] Deveaux | Partially ordered models[END_REF] extended chains with complete connections to the so-called partially ordered models. It would be interesting to formulate our model in their framework. For all n ∈ N d , we introduce the partial sum

S n = j∈[0,n-1] X j .
Our aim is to establish a functional central limit theorem (invariance principle) for the partial sums S n (with centering and appropriate normalization) when n goes to infinity with a specific relative speed in each direction. We will distinguish different regimes. We first show, in this section, that (X j ) j∈Z d can be seen as a linear random field with martingale differences innovations, and thus, S n is a partial sum of a linear random field. For all j ∈ Z d , we define the σ-fields σ j = σ{X k | k < j} and σ j = σ{X k | k j}. Note that, for j < n, the value of X n conditioned on σ j is obtained by sampling the ancestral line A n and taking the value of X k where k is the first site of the ancestral line A n which is strictly smaller than j. We denote (15)

X * j = X j -E(X j | σ j ) = X j -E(X j | σ j ).
The equality E(X j | σ j ) = E(X j | σ j ) comes from the fact that starting from j, the next site in the ancestral line A j is necessarily strictly smaller than j. Then for all j ∈ Z d , E(X * j | σ j ) = 0 and X * j is measurable with respect to σ j+eq for all q = 1, . . . , d, where e q is the q-th canonical unit vector of R d . In particular, the random variables X * j are orthogonal to each other, that is, E(X * j X * k ) = 0 as soon as j = k. Lemma 4. In the above setting,

Var(X * 0 ) =   k∈N d q 2 k   -1
Var(X 0 ).

Proof. Let Z 0 be the random variable with distribution µ that gives the first ancestor of 0.

We have

X 0 = k>0 1 {Z 0 =k} X -k and E(X 0 |σ 0 ) = k>0 p k X -k , where p k = µ({k}) for all k > 0. Therefore, E(X * 2 0 ) = E   k>0 (1 {Z 0 =k} -p k )X -k 2   = k>0 >0 E((1 {Z 0 =k} -p k )(1 {Z 0 = } -p ))E(X -k X -). (16) But, (17) E(X -k X -) = P(A -k ∩ A -= ∅)E(X 2 0 ) + P(A -k ∩ A -= ∅)E(X 0 ) 2 . and (18) E((1 {Z 0 =k} -p k )(1 {Z 0 = } -p )) = 1 {k= } p k -p k p .
Combining ( 16), [START_REF] Dedecker | Invariance principles for linear processes with application to isotonic regression[END_REF], and (18), we get

E(X * 2 0 ) = E(X 2 0 ) 1 - k>0 >0 p k p P(A -k ∩ A -= ∅) - k>0 >0 p k p P(A -k ∩ A -= ∅)E(X 0 ) 2 = (E(X 2 0 ) -E(X 0 ) 2 ) k>0 >0 p k p P(A -k ∩ A -= ∅) = Var(X 0 )P(A 0 ∩ A 0 = {0}),
where A 0 is an independent copy of A 0 . Finally, as we saw in [START_REF] Biermé | Operator scaling stable random fields[END_REF] in the proof of Lemma 1,

k∈N d q 2 k = E|A 0 ∩ A 0 | = P(A 0 ∩ A 0 = {0}) -1
and the proof is complete.

Now, for all j ∈ Z d , we introduce

∆ j (X) = ε∈{0,1} d (-1) d-|ε| 1 E(X | σ j+ε ),
where

|ε| 1 = ε 1 + . . . + ε d . Remark that, since E(X j | σ j+ε ) = E(X j | σ j ) for all ε ∈ {0, 1} d with the exception of ε = 1 for which E(X j | σ j+1 ) = X j , we have (19) ∆ j (X j ) = X j -E(X j | σ j ) = X * j .
More generally, we have the following lemma.

Lemma 5. For all j, k ∈ Z d , ∆ j (X k ) = q k-j X * j , which vanishes when k ≯ j.

Proof. The result is clear when k = j (see [START_REF] Enriquez | A simple construction of the fractional Brownian motion[END_REF]). In the case k ≤ j, k = j, we easily see that ∆ j (X k ) = 0. Now, assume k j. By linearity, we have

∆ j (X k ) = ∆ j (X k 1 {j∈A k } ) + ∆ j (X k 1 {j / ∈A k } ). Using first that X k 1 {j∈A k } = X j 1 {j∈A k } , and then that {j ∈ A k } is independent of σ j+1 , we obtain ∆ j (X k 1 {j∈A k } ) = ∆ j (X j )P(j ∈ A k ) = q k-j X * j .
Denote by a(k, j) the first element of the ancestral line A k that is ≤ j and remark that a(k, j) is independent of σ j+1 . Then,

∆ j (X k 1 {j / ∈A k } ) = ≤j, =j ∆ j (X k 1 {a(k,j)= } ) = ≤j, =j ∆ j (X )P(a(k, j) = ).
But, ∆ j (X ) = 0 for all ≤ j, = j, and we finally have

∆ j (X k 1 {j / ∈A k } ) = 0, which completes the proof. Lemma 6. For all k ∈ Z d , the series j∈Z d ∆ j (X k ) converges in L 2 and X k -E(X k ) = j∈Z d ∆ j (X k ).
Proof. First, remark that by stationarity we may only consider the case where k = 0. The sum in the statement can be written as j∈N d ∆ -j (X 0 ) since the other terms vanish. We denote by n1 the vector (n, . . . , n) where n ∈ N. By Lemma 5, we have

E     j∈[0,n1] ∆ -j (X 0 )   2   = E(X * 2 0 )   j∈[0,n1] q 2 j  
and the right hand side converges to Var(X 0 ) as n → ∞ thanks to Lemma 4. Now, by construction, the random variables j∈[0,n1] ∆ -j (X 0 ) and X 0 -j∈[0,n1] ∆ -j (X 0 ) are orthogonal. To see this last fact, note that for all l ≤ 0 and j ≤ 0,

E (E(X 0 | σ l ) | σ j ) = E X 0 | σ min{l,j}
, where the minimum is taken on each coordinate. Thus, we get

E     X 0 -E(X 0 ) - j∈[0,n1] ∆ -j (X 0 )   2   = Var(X 0 ) -E     j∈[0,n1] ∆ -j (X 0 )   2   → 0, as n → ∞.
From Lemma 6 and Lemma 5, we get that (X j -E(X j )) j∈Z d is the linear random field given by the innovations (X * j ) j∈Z d and the filter (

q j ) j∈Z d . That is, for all k ∈ Z d , X k -E(X k ) = j∈Z d q k-j X * j .
Hence, we proved the following proposition.

Proposition 3. For all n ∈ N d , S n -E(S n ) = j∈Z d b n,j X * j .
where b n,j = k∈[0,n-1] q k-j . Further, for any

n ∈ N d , b n = (b n,j ) j∈Z d belongs to 2 (Z d ), that is b n 2 := j∈Z d b 2 n,j < ∞.

A central limit theorem

We still assume µ ∈ D(E, ν), where ν is a full E-operator stable law on R d + with E = diag(1/α 1 , . . . , 1/α d ), with α i ∈ (0, 1) and α 1 ∈ (0, 1/2) if d = 1. The random field (X j ) j∈Z d is the random field defined in Section 2.3. In view of Proposition 3, we want to establish central limit theorems for the sequences of L 2 random variables

j∈Z d c n,j X * j , n ≥ 1 with general coefficients c n = (c n,j ) j∈Z d ∈ 2 (Z d ).
Recall the definition of X * j in [START_REF] Davydov | The invariance principle for stationary processes[END_REF]. It turns out that a simple assumption on c n for a central limit theorem is given by [START_REF] Fernández | Chains with complete connections and onedimensional Gibbs measures[END_REF] lim

n→∞ sup j∈Z d |c n,j | c n = 0.
The aim of this section is to prove the following central limit theorem.

Theorem 3. Let c n = (c n,j ) j∈Z d be a sequence in 2 (Z d ) satisfying [START_REF] Fernández | Chains with complete connections and onedimensional Gibbs measures[END_REF]. Then

1 c n j∈Z d c n,j X * j ⇒ N (0, σ 2 X ) as n → ∞, where (21) 
σ 2 X := Var(X * 0 ) = Var(X 0 ) k∈N d q 2 k .
As a preparation, we prove the following theorem which is an adaptation of a theorem of McLeish [START_REF] Mcleish | Dependent central limit theorems and invariance principles[END_REF]. McLeish's result applies to triangular arrays of Z-indexed martingale differences, and here we need a version for Z d -indexed martingale differences in the lexicographical order. Recall that in the lexicographical order, for i, j ∈ Z d , i = j, we write i ≺ j if, with m := min{q = 1, . . . , d : i q = j q }, i m < j m . A collection of σ-fields {F i } i∈Z d is called a filtration in the lexicographical order, if F i ⊂ F j for all i ≺ j. In this case, we say that integrable random variables (ξ i ) i∈Z d are martingale differences with respect to

{F i } i∈Z d if ξ i ∈ F i+e d and E(ξ i | F i ) = 0 for all i ∈ Z d ,
where e d = (0, . . . , 0, 1) ∈ Z d . Theorem 4 (McLeish [START_REF] Mcleish | Dependent central limit theorems and invariance principles[END_REF]). Let (ξ n,j ) n∈N,j∈Z d be a collection of random variables satisfying j∈Z d ξ n,j ∈ L 2 for all n ∈ N. Assume that for each n ∈ N, (ξ n,j ) j∈Z d are martingale differences with respect to a filtration {F n,j } j∈Z d in the lexicographical order. If (i)

lim n→∞ max j∈Z d |ξ n,j | = 0 in probability, (ii) sup n∈N E max j∈Z d ξ 2 n,j < ∞, (iii) lim n→∞ j∈Z d ξ 2 n,j = σ 2 > 0 in probability, then j∈Z d ξ n,j ⇒ N (0, σ 2 ) as n → ∞.
Proof. Let us explain how one can derive this theorem from Theorem 2.3 in [START_REF] Mcleish | Dependent central limit theorems and invariance principles[END_REF] which is stated for finite sets of random variables at each n. First, since j∈Z d ξ n,j ∈ L 2 , one can find a sequence of finite rectangles Γ n in Z d such that j∈Z d \Γn ξ n,j converges to 0 in L 2 as n → ∞. Thus, the conclusion of Theorem 4 holds as soon as j∈Γn ξ n,j ⇒ N (0, σ 2 ) as n → ∞.

Furthermore, for each n, using the lexicographical order on the finite set Γ n , one can re-index the random variables (ξ n,j ) j∈Γn and the σ-fields {F n,j } j∈Γn in order to fit with the statement of [START_REF] Mcleish | Dependent central limit theorems and invariance principles[END_REF]Theorem 2.3]. Now, it suffices to observe that conditions (i), (ii), and (iii) imply those of [START_REF] Mcleish | Dependent central limit theorems and invariance principles[END_REF]Theorem 2.3].

We also need the following lemma.

Lemma 7. Let c n = (c n,j ) j∈Z d be a sequence in 2 (Z d ) such that (20) holds. Then, lim n→∞ 1 c n 2 j∈Z d c 2 n,j X * 2 j = E(X * 2 0 ) in L 2 ,
Proof. We start by showing that ( 22) Cov(X * 2 i , X * 2 j ) → 0, as |i -j| ∞ → ∞. Observe that X * j = X j ->0 p X j-and let X * j,k = X j -∈{1,...,k} d p X j-. For any j ∈ Z d , using that |X * j | ≤ 2, we get

X * 2 j -X * 2 j,k ≤ 4 X * j -X * j,k = 4 ∈[1,∞) d \[1,k] d p X j- Thus, since |X j | = 1 for all j ∈ Z d , (23) 
sup

j∈Z d X * 2 j -X * 2 j,k ≤ 4 µ [1, ∞) d \ [1, k] d a.s., for all k > 0. Now, introduce R i,j,k =      ∈i-[0,k] d A   ∩   m∈j-[0,k] d A m   = ∅    .
We have

P(R c i,j,k ) ≤ ∈i-[0,k] d m∈j-[0,k] d P(A ∩ A m = ∅).
But, from Lemma 1 (i), we see that P(A ∩ A m = ∅) → 0 as | -m| ∞ → ∞ and thus, for any k ≥ 1, (24)

P(R c i,j,k ) → 0, as |i -j| ∞ → ∞.
Fix ε > 0 and, using [START_REF] Kamont | On the fractional anisotropic Wiener field[END_REF], let k ∈ N be such that sup j∈Z d |X * 2 j -X * 2 j,k | < ε. From ( 24), for |i -j| ∞ large enough, we have P(R c i,j,k ) < ε and we obtain

E(X * 2 i X * 2 j ) = E(X * 2 i,k X * 2 j,k ) + O(ε) = E(X * 2 i,k X * 2 j,k | R i,j,k ) + O(ε) = E(X * 2 i,k | R i,j,k )E(X * 2 j,k | R i,j,k ) + O(ε) = E(X * 2 i,k )E(X * 2 j,k ) + O(ε) = E(X * 2 i )E(X * 2 j ) + O(ε)
. This proves [START_REF] Hammond | Power law Pólya's urn and fractional Brownian motion[END_REF].

To prove the lemma, fix ε > 0 and let

K > 0 be such that | Cov(X * 2 j , X * 2 i )| ≤ ε as soon as |i -j| ∞ > K. One has, E   1 c n 2 j∈Z d c 2 n,j X * 2 j -E(X * 2 0 )   2 = j∈Z d c 2 n,j c n 2 i∈Z d c 2 n,i c n 2 Cov(X * 2 j , X * 2 i ) ≤ j∈Z d c 2 n,j c n 2 |i-j|∞≤K c 2 n,i c n 2 | Cov(X * 2 j , X * 2 i )| + ε j∈Z d c 2 n,j c n 2 |i-j|∞>K c 2 n,i c n 2 ≤ sup k∈Z d c 2 n,k c n 2 |i-0|∞≤K | Cov(X * 2 0 , X * 2 i )| + ε,
and the first term of the right hand side goes to 0 as n → ∞ because | Cov(X * 2 0 , X * 2 i )| is bounded and sup k∈Z d c 2 n,k = o( c n 2 ) by assumption.

Proof of Theorem 3. Recall that we write σ j = σ{X k | k < j} and σ j = σ{X k | k j}, and we already have seen for all j ∈ Z d ,

E(X j | σ j ) = E(X j | σ j ).
We now consider the σ-fields

F j = σ{X k | k ≺ j}.
We have σ j ⊂ F j ⊂ σ j for all j ∈ Z d and thus, for all j ∈ Z d , we also have

E(X j | F j ) = E(X j | σ j ).
Thus, by definition (see [START_REF] Davydov | The invariance principle for stationary processes[END_REF]), the random field (X * j ) j∈Z d is composed of martingale differences with respect to the filtration {F j } j∈Z d defined above in the lexicographical order. Now in order to establish Theorem 3, we apply Theorem 4 to

ξ n,j := c n,j c n X * j and F n,j := F j = σ{X k | k ≺ j}.
Note that |X * j | ≤ 2, and by Lemma 4 the conditions (i), (ii), and (iii) are satisfied with

σ 2 X = σ 2 = E(X * 2 0 ) = Var(X * 0 ) = ( k∈N d q 2 k ) -1
Var(X 0 ). The proof is thus completed.

The following lemma gives another useful condition on the coefficients (c n,j ) j∈Z d for Theorem 3.

Lemma 8. If (c n,j ) j∈Z d is a sequence in 2 (Z d ) that satisfies, for all q = 1, . . . , d, [START_REF] Kolmogorov | Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum[END_REF] lim

n→∞ 1 c n 2 j∈Z d |c 2 n,j -c 2 n,j+eq | = 0,
where e q is the q-th vector of the canonical basis of R d , then (20) holds.

Proof. We use an idea of [START_REF] Peligrad | Central limit theorem for linear processes[END_REF]. Assume that (20) does not hold. Then, there exist ε > 0, a sequence (n k ) k≥1 such that n k → ∞ as k → ∞, and a sequence (

j k ) k≥1 such that c n k ,j k > ε c n k for all k ∈ N. Choose M > 0 such that M d ε 2 > 1. One has, for all k ∈ N, c n k 2 ≥ j∈[0,M -1] d c 2 n k ,j k +j ≥ M d c 2 n k ,j k - j∈[0,M -1] d |c 2 n k ,j k +j -c 2 n k ,j k |. Hence, ( 26 
) (M d ε 2 -1) c n k 2 ≤ j∈[0,M -1] d |c 2 n k ,j k +j -c 2 n k ,j k |. But, if j ∈ [0, M -1] d , then |c 2 n k ,j k -c 2 n k ,j k +j | ≤ (λ) i=1 |c 2 n k ,λ i -c 2 n k ,λ i+1 |,
where λ = (λ 0 , λ 1 , . . . , λ ) is any path from λ 0 = j k to λ = j k + j, with |λ i -λ i+1 | 1 = 1. Since j ∈ [0, M -1] d , we can always choose the path λ of length = (λ) smaller than dM . Thus, we get

|c 2 n k ,j k -c 2 n k ,j k +j | ≤ dM sup q=1,...,d sup k∈Z d |c 2 n k ,k -c 2 n k ,k+eq | ≤ dM d q=1 k∈Z d |c 2 n k ,k -c 2 n k ,k+eq |.
Together with [START_REF] Lacaux | From invariance principles to a class of multifractional fields related to fractional sheets[END_REF], this contradicts [START_REF] Kolmogorov | Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum[END_REF].

Remark 3. Using Cauchy-Schwarz inequality, we also see that the condition

(27) lim n→∞ 1 c n 2 j∈Z d
(c n,j -c n,j+eq ) 2 = 0, for all q = 1, . . . , d, implies [START_REF] Kolmogorov | Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum[END_REF] and thus by Lemma 8,implies (20). This last observation leads to an improvement in Theorem 3.1 in Biermé and Durieu [START_REF] Biermé | Invariance principles for self-similar set-indexed random fields[END_REF]. The conditions (i) and (ii) of this theorem are equivalent to our conditions [START_REF] Fernández | Chains with complete connections and onedimensional Gibbs measures[END_REF] and [START_REF] Lavancier | Processus empirique de fonctionnelles de champs gaussiens à longue mémoire[END_REF], respectively. Thus, the condition (i) in [5, Theorem 3.1] is unnecessary.

An invariance principle

The aim of the section is to establish a general invariance principle for partial sums of the random field (X j ) j∈Z d defined in Section 2.

Main result.

Recall that (X j ) j∈Z d are associated to the random graph G µ , with µ ∈ D(E, ν). We consider partial sums on finite rectangular subsets of Z d . As we will see, the growth of the rectangles will be determinant in the invariance principle and different limit random fields appear at different regimes. For the general case, consider a matrix E = diag(1/α 1 , . . . , 1/α d ) with α i > 0, i = 1, . . . , d and the partial-sum process

S E n (t) = j∈[0,n E t-1] X j , n ≥ 1 and t = (t 1 , . . . , t d ) ∈ [0, 1] d .
The result will depend on both E and E.

We introduce several parameters. First, for all k = 1, . . . , d, set ρ k := α k /α k , and consider ( 28)

γ 0 = γ 0 (E, E ) := min    γ ∈ {ρ 1 , . . . , ρ d } k:γ≥ρ k 1 α k > 2, k:γ>ρ k 1 α k ≤ 2    .
Note that γ 0 is well defined by the assumption q(E) > 2, and is completely determined by E and E . Given γ 0 > 0, define the sets

I < := {k ∈ {1, . . . , d} | γ 0 < ρ k }, I = := {k ∈ {1, . . . , d} | γ 0 = ρ k }, I > := {k ∈ {1, . . . , d} | γ 0 > ρ k }.
This gives a partition of {1, . . . , d}. We also write I ≤ := I < ∪ I = and I ≥ := I = ∪ I > . The sets I > and I < consist of the directions in which the limit random field exhibit degenerate dependence structure. Remark that by construction,

|I = | ≥ 1 and |I > | ≤ 1.
According to these subsets of {1, . . . , d}, we consider subspaces of R d given by

H < := {x ∈ R d | x k = 0 for k / ∈ I < },
and similarly H = , H > , H ≤ , H ≥ . Let π < , π = , π > , π ≤ , and π ≥ denote orthogonal projections to the corresponding subspaces, and let λ < , λ = , λ > , λ ≤ , and λ ≥ denote the Lebesgue measures on the corresponding subspaces. For π of any proceeding projection, πE is a linear operator on R d ; accordingly there is a corresponding diagonal matrix, which we also denote by πE with a slight abuse of notation. Next, we define another diagonal matrix E (that only depends on E and E ) by:

E := diag(γ 1 /α 1 , . . . , γ d /α d ), with γ k := γ 0 ρ k ∨ 1, k = 1, . . . , d.
By definition of E , one has

(29) π ≤ E = π ≤ E and π ≥ E = γ 0 π ≥ E.
Further, E -γ 0 E is strictly positive on H < . We can now state our main result.

Theorem 5. Assume µ ∈ D(E, ν) with E = diag(1/α 1 , . . . , 1/α d ) with α i ∈ (0, 1), i = 1, . . . , d, and

α 1 ∈ (0, 1/2) if d = 1. Let E = diag(1/α 1 , . . . , 1/α d ), with α i > 0, i = 1, . . . , d,
and γ 0 defined as in [START_REF] Lavancier | Invariance principles for non-isotropic long memory random fields[END_REF]. If q(π > E) < 2, then

S E n (t) -E(S E n (t)) n γ 0 +q(E )-q(E )/2 t∈[0,1] d ⇒ (W (t)) t∈[0,1] d ,
as n → ∞, in the Skorohod space D([0, 1] d ), where (W (t)) t∈R d is a zero-mean Gaussian process with covariances given by

Cov(W (t), W (s)) = σ 2 X   k∈I< Cov(B 1/2 (t k ), B 1/2 (s k ))   ×   k∈I> t k s k 2π   H ≥ | log ψ(y)| -2 k∈I= (e it k y k -1)(e is k y k -1) 2π|y k | 2 dλ ≥ (y),
with B 1/2 a standard Brownian motion on R, ψ is the characteristic function of ν, and σ 2 X is given in [START_REF] Fernández | Chains with complete connections: general theory, uniqueness, loss of memory and mixing properties[END_REF].

In the expression of covariance above and in the sequel, it is understood that when I < or I > is empty, the corresponding product equals 1.

This theorem reveals that taking different summing rectangles may lead to different limits, under different normalizations. To the best of our knowledge, such a phenomenon has not been noticed in the literature until very recently [START_REF] Puplinskaitė | Scaling transition for long-range dependent Gaussian random fields[END_REF][START_REF] Puplinskaitė | Aggregation of autoregressive random fields and anisotropic long-range dependence[END_REF] for a different model. We elaborate on this phenomenon of scaling transition in Section 5. 

R (e ity -1)(e isy -1)

2π|y| 1+2H dy = C H Cov (B H (t), B H (s)) , t, s ∈ R, H ∈ (0, 1)
with

C H = π HΓ(2H) sin(Hπ) .
Both Theorems 1 and 2 follow directly from Theorem 5.

Proof of Theorem 1. In the critical regime corresponding to Theorem 1, E = E and I < = I > = ∅. In addition to I < = I > = ∅, it also follows that H ≥ = R d and λ ≥ is the Lebesgue measure on R d . Theorem 1 now follows immediately.

The proof of Theorem 2 is slightly more computational. As it corresponds to a special case that the limit W is a fractional Brownian sheet, which will be discussed in Section 5.2, the proof is postponed there.

Remark 5. By definition [START_REF] Lavancier | Invariance principles for non-isotropic long memory random fields[END_REF], q(π > E) ≤ 2. The condition q(π > E) < 2 in Theorem 5 cannot be dropped. It is easy to construct an example with q(π > E) = 2, and as can be seen at the end of the proof of Lemma 9, in this case the asymptotic estimate of the covariance no longer holds. Moreover, in view of results for d = 2 (Theorem 2), this corresponds to the cases α 2 > α 2 , α 2 = 1/2 or α 2 < α 2 , α 1 = 1/2. In these cases, we conjecture that the limiting random fields are still fractional Brownian sheets with (H 1 , H 2 ) = (1/2, 1) and (H 1 , H 2 ) = (1, 1/2) respectively: that is, the dependence is degenerate in both directions. So q(π > E) = 2 may be viewed as another critical regime in the non-critical regime. Since the paper is already quite involved, and this regime seems to preserve the least dependence, we do not pursue the investigation of this case here. Remark 6. As we will see below in the proof, essentially we establish an invariance principle for linear random field (X j ) j∈Z d with

X j = i∈Z d q j-i X * i , j ∈ Z d ,
where (X * i ) i∈Z d are stationary martingale-difference innovations, and (q i ) i∈Z d are real Fourier coefficients of certain function Q(t). This is a standard framework to obtain linear random fields in the literature, and we comment briefly on connections between our results and others.

(i) First, the same invariance principle should hold if the innovations are replaced by other weakly dependent random fields (weakly dependent in the sense of e.g. [START_REF] Biermé | Invariance principles for self-similar set-indexed random fields[END_REF][START_REF] Lavancier | Invariance principles for non-isotropic long memory random fields[END_REF][START_REF] Wang | An invariance principle for fractional Brownian sheets[END_REF]). These results can be viewed as generalizations of the seminal work of Davydov [START_REF] Davydov | The invariance principle for stationary processes[END_REF] on invariance principles for linear processes. (ii) Second, from the modeling point of view, the specific choices of Q(t) (in terms of µ ∈ D(E, ν)) and hence (q j ) j∈Z d are new. However, although our assumption on Q(t) is very general, not all possible operator-scaling Gaussian random fields can show up in the limit; in particular the Hammond-Sheffield model in high dimensions does not scale to fractional Brownian sheets except for a few cases in terms of Hurst indices shown in Proposition 6. The aforementioned results [START_REF] Biermé | Invariance principles for self-similar set-indexed random fields[END_REF][START_REF] Lavancier | Invariance principles for non-isotropic long memory random fields[END_REF][START_REF] Wang | An invariance principle for fractional Brownian sheets[END_REF] all include linear random-field models scaling to fractional Brownian sheets, for flexible choices of Hurst indices. (iii) At last, when the innovation random fields exhibit strong dependence, the limiting object could be more complicated ( [START_REF] Lavancier | Invariance principles for non-isotropic long memory random fields[END_REF]).

Proof of the main result.

The rest of the section is devoted to the proof of Theorem 5. Using Proposition 3, we get ( 32)

S E n (t) -E(S E n (t)) = j∈Z d b n,j (t)X * j , with b n (t) = (b n,j (t)) j∈Z d ∈ 2 (Z d ) and (33) b n,j (t) = k∈[0,n E t-1]
q k-j .

Recall that (X * j ) j∈Z d are stationary martingale differences. The proof of Theorem 5 is now divided into three steps. The key step is to compute the covariance, which is done in Section 4.2.1. Then, we proceed with the standard argument to show the weak convergence by first establishing finite-dimensional convergence in Section 4.2.2 and then the tightness in Section 4.2.3. The matrices E and E , and thus γ 0 and E , are fixed as in the assumptions of the theorem.

Covariances.

From [START_REF] Mandelbrot | Fractional Brownian motions, fractional noises and applications[END_REF], we obtain for t, s

∈ [0, 1] d , Cov(S E n (t), S E n (s)) = σ 2 X b n (t), b n (s) , where, b n (t), b n (s) := k∈Z d b n,k (t)b n,k (s).
The asymptotic behavior of the covariances are given in the following lemma where u n ∼ n→∞ v n stands for lim n→∞ u n /v n = 1.

Lemma 9. For all t, s ∈ [0, 1] d , σ 2 X b n (t), b n (s) ∼ n→∞ n 2γ 0 +2q(E )-q(E ) Cov(W (t), W (s)).
Proof. Define for m ∈ N and x ∈ R,

D m (x) = m l=0 e ilx = e i(m+1)x -1 e ix -1 ,
and for x ∈ R d , the trigonometric polynomial

K n (t, x) = j∈Z d 1 j∈[0,n E t-1] e ij•x = d k=1 D n 1/α k t k -1 (x k ),
where • stands for the integer part. Recall that since

Q(x) = j∈Z d q j e ij•x ,
the sequence b n (t) (defined in [START_REF] Mcleish | Dependent central limit theorems and invariance principles[END_REF]) is obtained by the convolution product of the Fourier coefficients of K n (t, •) and Q with Q(x) = Q(-x) since (q j ) j∈Z d is a real sequence. It follows that b n,k (t) is the k-th Fourier coefficient of QK n (t, •). Therefore, using Bessel-Parseval identity, we get

b n (t), b n (s) = 1 (2π) d [-π,π] d Q(x)K n (t, x)Q(x)K n (s, x)dx = 1 (2π) d [-π,π] d |Q(x)| 2 d k=1 D n 1/α k t k -1 (x k )D n 1/α k s k -1 (x k )dx = n -q(E ) (2π) d n E [-π,π] d Φ n (y, t, s) dy, (34) 
where

Φ n (y, t, s) := Q(n -E y) 2 d k=1 D n 1/α k t k -1 (n -γ k /α k y k )D n 1/α k s k -1 (n -γ k /α k y k ).
According to Lemma 2 and the E-homogeneity of log ψ, one has

n -2γ 0 Q(n -E y) 2 = n -2γ 0 g(n -E y) 2 log ψ(n -γ 0 E n -(E -γ 0 E) y) -2 = g(n -E y) 2 log ψ(n -(E -γ 0 E) y) -2
.

Thus,

lim n→∞ n -2γ 0 Q(n -E y) 2 = |log ψ(π ≥ y)| -2 ,
because E -γ 0 E is null on H ≥ and strictly positive on H < and g(0) = 1. Further, for all

n ∈ N * , y ∈ n E [-π, π] d , (35) n 
-2γ 0 Q(n -E y) 2 ≤ max x∈[-π,π] d |g(x)| 2 sup z∈H< | log ψ(z + π ≥ y)| -2 .
Now, remark that for all t ∈ [0, 1] and y ∈ R,

lim n→∞ n -1 D nt-1 (n -γ y) =    e ity -1 iy if γ = 1 t if γ > 1
,

and if |n -γ y| ≤ π, then n -1 D nt-1 (n -γ y) = sin ( nt n -γ y/2) n sin (n -γ y/2) ≤      π min 1, 1 |y| if γ = 1 π 2 if γ > 1 ,
where we have used that

2 π |x| ≤ | sin(x)| ≤ |x| ∧ 1 for x ∈ [-π/2, π/2] and that |t| ≤ 1. Since γ k > 1 if and only if k ∈ I > , we infer (36) Φ n (y, t, s) ∼ n 2γ 0 +2q(E ) |log ψ(π ≥ y)| -2   k∈I> t k s k     k∈I ≤ e it k y k -1 (e is k y k -1) |y k | 2   as n → ∞ and for all t, s ∈ [0, 1] d , (37) n 
-2γ 0 -2q(E ) |Φ n (y, t, s)| ≤ π 2d max x∈[-π,π] d |g(x)| 2 h(y), with (38) h(y 
) := sup x∈H< | log ψ(x + π ≥ y)| -2 k∈I ≤ min 1, 1 |y k | 2 .
Applying the dominated convergence theorem to [START_REF] Meerschaert | Limit distributions for sums of independent random vectors[END_REF], [START_REF] Peligrad | On fractional Brownian motion limits in one dimensional nearest-neighbor symmetric simple exclusion[END_REF] and [START_REF] Peligrad | Central limit theorem for linear processes[END_REF] and using [START_REF] Lodhia | Fractional Gaussian fields: A survey[END_REF], to show the desired result it remains to prove that h is integrable on R d .

Formally, write

R d h(y)dy = H< H ≥ h(y) dλ < ⊗ λ ≥ (y) = H< k∈I< min 1, 1 |y k | 2 dλ < (y) H ≥ sup x∈H< | log ψ(x + y)| -2 k∈I= min 1, 1 |y k | 2 dλ ≥ (y),
where the first integral in the right hand-side is understood to be 1 if

H < = {0} (i.e. I < = ∅). By Fubini's theorem, h is integrable over R d if (39) H< k∈I< min 1, 1 |y k | 2 dλ < (y) < ∞ and (40) 
H ≥ h(y) dλ ≥ (y) = H ≥ sup x∈H< | log ψ(x + y)| -2 k∈I= min 1, 1 |y k | 2 dλ ≥ (y) < ∞.
The integrability condition (39) is obvious. For [START_REF] Resnick | A bivariate stable characterization and domains of attraction[END_REF], let us remark that the function y ∈ H ≥ → inf x∈H< | log ψ(x + y)| is (π ≥ E)-homogeneous and since q(π ≥ E) > 2, by Lemma 3, the function y ∈ H ≥ → sup x∈H< | log ψ(x + y)| -2 is locally integrable on H ≥ with respect to λ ≥ . Together with the fact that sup x∈H< | log ψ(x + y)| -2 is bounded by 1 for π = y large enough, this shows that (40) holds in the case H > = {0}. For the case H > = {0}, the preceding considerations show that

H ≥ 1 { π>y π > E ≤1} h(y) dλ ≥ (y) < ∞,
with the definition of • π > E given in [START_REF] Bingham | Regular variation, volume 27 of Encyclopedia of Mathematics and its Applications[END_REF]. Moreover,

H ≥ 1 { π>y π > E >1} h(y) dλ ≥ (y) ≤ H> 1 { y π > E >1} sup x∈H ≤ | log ψ(x + y)| -2 dλ > (y) H= k∈I= min 1, 1 |y k | 2 dλ = (y).
The second integral is clearly finite. For the first one, since

y ∈ H > → inf x∈H ≤ | log ψ(x + y)| is (π > E)-homogeneous and q(π > E) < 2, one has H> 1 { y π > E >1} sup x∈H ≤ | log ψ(x + y)| -2 dλ > (y) = +∞ 1 r q(π>E)-3 S π > E sup x∈H ≤ | log ψ(x + θ)| -2 dσ π>E (θ) < ∞,
where S π>E is the unit sphere of H > with respect to • π>E and σ π>E is the Radon measure on S π>E such that dλ > = r q(π>E)-1 drdσ π>E . This shows that (40) holds and thus the function h in [START_REF] Puplinskaitė | Scaling transition for long-range dependent Gaussian random fields[END_REF] is integrable over R d .

Finite-dimensional convergence.

We start by showing that the coefficients b n,j (t) defined in [START_REF] Mcleish | Dependent central limit theorems and invariance principles[END_REF] satisfy the condition (20) of Theorem 3 in the following lemma.

Lemma 10. For all t ∈ (0, 1] d and all q = 1, . . . , d,

lim n→∞ 1 b n (t) 2 j∈Z d |b 2 n,j (t) -b 2 n,j+eq (t)| = 0 and (20) holds. 
Proof. Fix ∈ {1, . . . , d} and t ∈ (0, 1] d be fixed. Using Cauchy-Schwarz inequality,

j∈Z d |b 2 n,j (t) -b 2 n,j+e (t)| ≤   j∈Z d (b n,j (t) -b n,j+e (t)) 2   1 2 2 b n (t) .
So, it is enough to show that

j∈Z d (b n,j (t) -b n,j+e (t)) 2 = o( b n (t) 2 ). But, we have b n,j (t) -b n,j+e (t) = k∈[0,n E t-1] with k = n 1/α t -1 q k-j - k∈[0,n E t-1] with k =0 q k-j-e .
Thus,

j∈Z d (b n,j (t) -b n,j+e (t)) 2 ≤ 2 j∈Z d      k∈[0,n E t-1] with k =0 q k-j      2 .
Let ε > 0. Using Lemma 9, we get lim sup

n→∞ 1 b n (t) 2 j∈Z d      k∈[0,n E t-1] with k =0 q k-j      2 ≤ lim sup n→∞ 1 b n (t) 2 j∈Z d       k∈[0,n E t-1] with k ≤εn 1/α t -1 q k-j       2 = lim sup n→∞ b n (t 1 , . . . , t -1 , εt , t +1 , . . . , t d ) 2 b n (t) 2 = V (t 1 , . . . , t -1 , εt , t +1 , . . . , t d ) V (t) ,
where V (t) := C(t, t) with the covariance function C(•, •) defined in [START_REF] Lodhia | Fractional Gaussian fields: A survey[END_REF]. We conclude the proof of the lemma using that, for any t ∈ (0, 1] d , V (t 1 , . . . , t -1 , εt , t +1 , . . . , t d ) → 0, as ε → 0.

The fact that (20) holds is a consequence of Lemma 8.

To prove the finite-dimensional convergence, we use the Cramèr-Wold device. Let m ∈ N,

t 1 , . . . , t m ∈ [0, 1] d , λ 1 , . . . , λ m ∈ R, and consider S (m) n = m k=1 λ k S E n (t k ). One has S (m) n -E(S (m) n ) = j∈Z d d n,j X * j ,
where d n,j := m k=1 λ k b n,j (t k ) and Var(S

(m) n ) = d n 2 
Var(X * 0 ). Using Lemma 9, we get

d n 2 = m k=1 m =1 λ k λ b n (t k ), b n (t ) ∼ n→∞ n 2γ 0 +2q(E )-q(E ) (2π) d m k=1 m =1 λ k λ C(t k , t ),
where C is defined in [START_REF] Lodhia | Fractional Gaussian fields: A survey[END_REF].

If m k=1 m =1 λ k λ C(t k , t ) = 0, then 1 
n γ 0 +q(E )-q(E )/2 (S (m) n -E(S (m) n )) converges to 0 in L 2 . If m k=1 m =1 λ k λ C(t k , t ) > 0, we get that for each k = 1, . . . , m, b n (t k ) 2 ∼ n→∞ d n 2 C(t k , t k ) m k=1 m =1 λ k λ C(t k , t ) .
Thus, since the b n,j (t k ) satisfy [START_REF] Fernández | Chains with complete connections and onedimensional Gibbs measures[END_REF],

sup j |d n,j | ≤ m k=1 λ k sup j |b n,j (t k )| = m k=1 λ k o( b n (t k ) ) = o( d n ).
This proves that (20) also holds for the d n,j and Theorem 3 applies to S (m) n . We thus proved the finite-dimensional convergence.

Tightness.

To prove the tightness, by Bickel and Wichura [START_REF] Bickel | Convergence criteria for multiparameter stochastic processes and some applications[END_REF], following [START_REF] Wang | An invariance principle for fractional Brownian sheets[END_REF] and [START_REF] Lavancier | Processus empirique de fonctionnelles de champs gaussiens à longue mémoire[END_REF], it is enough to show that for some p > 0 there exist γ > 1 and C > 0 such that for all t = (t 1 , . . . ,

t d ) ∈ [0, 1] d , E S E n (t) -E(S E n (t)) n γ 0 +q(E )-q(E ) 2 p ≤ C d j=1 t γ j .
Recall from the equation ( 34) that for all t ∈ [0, 1] d , we have

b n (t) 2 = n -q(E ) (2π) d n E [-π,π] d Q(n -E y) 2 d k=1 D n 1/α k t k -1 (n -γ k /α k y k ) 2 dy.
For any δ ∈ (0, 1), observe that

| sin 2 (x)| = | sin 1-δ (x)|| sin 1+δ (x)| ≤ min{|x| 1-δ , |x| 2 } for all x, and | sin(x)| ≥ 2 π |x| for x ∈ [-π/2, π/2].
Then, for all n and y such that |ny| ≤ π and all t ∈ [0, 1], one has

n -2 |D nt-1 (n -1 y)| 2 = sin 2 nt y 2n n 2 sin 2 y 2n ≤ min π 2 2 1-δ t 1-δ |y| 1+δ , π 2 4 t 2 ≤ π 2 2 1-δ t 1-δ min 1 |y| 1+δ , 1 ,
and thus,

n -2 |D nt-1 (n -γ y)| 2 ≤      π 2 2 1-δ t 1-δ min 1 |y| 1+δ , 1 if γ = 1 π 2 4 t 2 if γ > 1 .
Recalling that γ k /α k > 1 if and only if k ∈ I > , together with [START_REF] Mikosch | Scaling limits for cumulative input processes[END_REF], this shows that there exists a constant C > 0 such that

n -2γ 0 -2q(E )+q(E ) b n (t) 2 ≤ C   j∈I> t 2 j     j∈I ≤ t 1-δ j   R d sup x∈H< | log ψ(x + π ≥ y)| -2 j∈I ≤ min 1 |y j | 1+δ , 1 dy.
One can show that this last integral is finite by proceeding exactly as we did to show the integrability of the function h in [START_REF] Puplinskaitė | Scaling transition for long-range dependent Gaussian random fields[END_REF]. The important point is that 1 + δ > 1 to guarantee the integrability of 1 |y| 1+δ at infinity. Hence, for a new constant C > 0,

n -2γ 0 -2q(E )+q(E ) b n (t) 2 ≤ C   j∈I> t 2 j     j∈I ≤ t 1-δ j   ≤ C d j=1 t 1-δ j .
Let p > 2. Using Burkholder inequality and the preceding inequality, there exists a constant c p > 0 such that

E S E n (t) -E(S E n (t)) n γ 0 +q(E )-q(E )/2 p ≤ c p E   j∈Z d b 2 n,j (t) n 2γ 0 +2q(E )-q(E ) X * 2 j   p 2 ≤ c p b n (t) 2 n 2γ 0 +2q(E )-q(E ) p 2 ≤ c p C p/2 d j=1 t (1-δ)p/2 j
, which gives the tightness by choosing δ > 1 -2 p .

Properties of the limit field

In this section we focus on the zero-mean Gaussian random field (W (t)) t∈R d arising in the limit in Theorem 5. Recall that this random field depends on both E and E .

Increments.

We may consider a harmonizable representation of W , defined on the whole space R d by

W (t) = σ X   k∈I> t k   R d   k∈I ≤ e it k y k -1 iy k   | log ψ(π ≥ y)| -1 M(dy), ∀t ∈ R d ,
with σ X given in [START_REF] Fernández | Chains with complete connections: general theory, uniqueness, loss of memory and mixing properties[END_REF], and M is a centered complex-valued Gaussian measure on R d with Lebesgue control measure (see [START_REF] Xiao | Sample path properties of anisotropic Gaussian random fields[END_REF]). The harmonizable representation shows that the random field has stationary rectangular increments. In the sequel we let (e 1 , . . . , e d ) denote the canonical basis of R d . Rectangular increments of W are defined for s < t by

W ([s, t]) = ε∈{0,1} d (-1) d+|ε| 1 W (s 1 + ε 1 (t 1 -s 1 ), . . . , s d + ε d (t d -s d ))
= ∆

(1)

t 1 -s 1 ∆ (2) 
t 2 -s 2 . . . ∆ (d) t d -s d W (s),
where

|ε| 1 = ε 1 + . . . + ε d and ∆ (j)
δ corresponds to the directional increment of step δ ∈ R in direction j for 1 ≤ j ≤ d, defined by

∆ (j) δ W (t) = W (t + δe j ) -W (t).
A direct consequence of Theorem 5 are the following properties of the random field W . (ii) (E , H)-operator-scaling property: for all λ > 0

(W (λ E t)) t∈R d f dd = (λ H W (t)) t∈R d , with H = γ 0 + q(E ) -q(E )
2 and E satisfying (29).

Proof. Property (i) can be proved by observing that W [s, t] corresponds to the limit of partial sums of a stationary random field over a rectangle area, after normalization. By stationarity, the distributions of the partial sums, and hence the limit, depend only on ts, up to certain boundary effect which needs to be taken care of. Alternatively, the stationary increment property can also be derived from the covariance function. The proof is omitted. We only prove (ii) here. Recall the definition of C(t, s) in [START_REF] Lodhia | Fractional Gaussian fields: A survey[END_REF]. By the change of variables

y k → λ 1/α k y k k ∈ I ≤ λ γ 0 /α k y k k ∈ I > ,
we have

C(λ E t, λ E s) =   k∈I> λ 2/α k t k s k   × R d 1 | log ψ(λ -γ 0 E λ γ 0 E π ≥ y)| 2   k∈I ≤ (e it k λ 1/α k y k -1)(e is k λ 1/α k y k -1) 2π|y k | 2   dy =   k∈I> λ 2/α k   λ 2γ 0   k∈I ≤ λ 1/α k     k∈I> λ -γ 0 /α k   C(t, s) = λ 2γ 0 +q(E )+q(π>E )-γ 0 q(π>E) C(t, s),
where in the second equality we also used the fact that log ψ(λ E y) = λ log ψ(y). On the other hand, recalling (29), we have

q(E ) - 1 2 q(E ) = q(E ) - 1 2 q(π ≤ E ) - γ 0 2 q(π > E) = 1 2 q(E ) + 1 2 q(π > E ) - γ 0 2 q(π > E).
The desired result thus follows.

We can say more about the directional increments ∆ (j) δ W (t). First of all, as a special case of Proposition 4, (i), W (t) viewed as a process indexed by t j ∈ R has stationary increments. Moreover, simple dependence properties in the directions corresponding to I > and I < , if not empty, are given below. Following ideas from [39, Definition 2.2] we state the following proposition. Recall that |I > | ≤ 1.

Proposition 5. The random field W satisfies the following properties: (i) When I > = {j}, the random field W has invariant increments in the direction e j : for all h, δ ∈ R, t ∈ R d , we have ∆

(j) δ W (t + he j ) = ∆ (j)
δ W (t). (ii) When I < = ∅, the random field W has independent increments in any direction e j with j ∈ I < : for all δ > 0, t ∈ R d , ∆

δ W (t) is independent from W (t).

Proof. Let e j ⊥ denote the subspace of R d orthogonal to e j . Let π e j ⊥ and λ e j ⊥ denote the corresponding projection and Lebesgue measure, respectively. First, let us simply remark that for I > = {j}, δ ∈ R, and t ∈ R d , ∆ (j) δ W (t) = δW (π e j ⊥ (t) + e j ), which does not depend on t j . The desired statement then follows. For the second statement, when j ∈ I < , ∆

(j) δ W (t) = σ X   k∈I> t k   × R d e it j y j e iδy j -1 iy j   k∈I ≤ ;k =j e it k y k -1 iy k   | log ψ(π ≥ y)| -1 M(dy). Therefore Cov(∆ (j) δ W (t), W (t)) = C e j (t) R e iδy j -1 1 -e it j y j |y j | 2 dy j , with C e j (t) = σ 2 X   k∈I> t k   2 e j ⊥ k∈I ≤ ;k =j e it k y k -1 iy k 2 | log ψ(π ≥ y)| -2 dλ e j ⊥ (y).
Hence, Cov(∆

(j) δ W (t), W (t)) = 2πC e j (t)Cov(B 1/2 (t j + δ) -B 1/2 (t j ), B 1/2 (t j )), with B 1/2 a standard Brownian motion on R. By independent increments of B 1/2 , we obtain that Cov(∆ (j) δ W (t), W (t)) = 0 for δ ≥ 0. Since W is a Gaussian field, we conclude that ∆ (j) δ W (t) is independent from W (t).
Let us mention that our definitions of invariant and independent increments are not the ones used in [39, Definition 2.2]. However we remark that invariant increments in the direction e j lead to invariant rectangular increments in the sense that, for all δ ∈ R, and s < t W ([s + δe j , t + δe j ])=W ([s, t]).

This follows from the fact that W ([s + δe j , t + δe j ]) = ∆

(1)

t 1 -s 1 ∆ (2) t 2 -s 2 . . . ∆ (d) t d -s d W (s + δe j ).
Indeed, computing first ∆ (j) t j -s j W (s + δe j ) = ∆ (j) t j -s j W (s), we obtain the desired result. When the increments are either invariant or independent in at least one direction, we say that W has degenerate increments. Otherwise, we say that W has non-degenerate increments.

Example 4. When d = 2, choosing E = diag(1, β) for β > 0 as in [START_REF] Puplinskaitė | Aggregation of autoregressive random fields and anisotropic long-range dependence[END_REF] we obtain that

|I = | = 2 if and only if ρ 1 = ρ 2 , that is β = α 2 α 1 .
It follows that for β = α 2 α 1 , one has |I = | = 1 and W has either independent or invariant increments in the orthogonal direction. However, when β = α 2 α 1 we get

W (t) = σ X R 2 2 k=1 e it k y k -1 iy k | log ψ(y)| -1 M(dy), ∀t ∈ R 2 .
In this case, W has non-degenerate increments. Recall that all possible non-critical cases in d = 2 have been provided in Theorem 2 in introduction.

More generally for d ≥ 2 we can state the following scaling-transition property.

Corollary 1. The random field (X j ) j∈Z d , defined in Section 2.3, exhibits a scaling-transition in the sense that (i) If there exists c > 0 such that E = cE, then W has non-degenerate increments;

(ii) Otherwise, W has degenerate increments. That is, there exists at least one direction in which the increments of the limit random field are either invariant or independent.

In the sequel, we need to control the variance of the directional increments. By Proposition 5, for all u ∈ R d , δ ∈ R,

Var(∆ (j) δ W (u)) = δ 2 Var(W (π e j ⊥ (u) + e j )), j ∈ I > , and (41) 
Var(∆

(j) δ W (u)) = |δ| Var(W (π e j ⊥ (u) + e j )), j ∈ I < .
The control for j ∈ I = is a little more involved, as summarized in the following lemma.

Lemma 11. There exist some constants C such that for all u ∈ [-1, 1] d , δ ∈ R, j ∈ I = , the following inequalities hold.

(a) If |I > | = 1 or I > = ∅ and α j < 1/2, (42) Var(∆ 
(j) δ W (u)) ≤ C|δ| 2β j with β j = α j 1 - q(π > E) 2 + 1 2 . (b) If I > = ∅, α j = 1/2, then (43) Var(∆ 
(j) δ W (u)) ≤ C max(δ 2 , |δ| 2H j ) for all H j ∈ (0, 1). (c) If I > = ∅, α j > 1/2, then (44) 
Var(∆

(j) δ W (u)) ≤ Cδ 2 .
Proof. Recall [START_REF] Maejima | Operator-self-similar stable processes[END_REF]. For j ∈ I = , for all u ∈ [-1, 1] d and δ ∈ R,

Var ∆ (j) δ W (u) =   σ X k∈I> u k   2 R e iδy j -1 iy j 2 f j (y j )dy j , with f j (y j ) = e j ⊥ k∈I ≤ ;k =j e iu k y k -1 iy k 2 | log ψ(π ≥ (y + y j e j ))| -2 dλ e j ⊥ (y).
This is a locally integrable function over R for all values of α j ∈ (0, 1) due to the fact that | log ψ(π ≥ y)| is a π ≥ E-homogeneous function, q(π ≥ E) > 2, and Lemma 3. Furthermore, by E-homogeneity and polar coordinate x = τ (x) E θ(x),

| log ψ(x)| -1 = | log ψ(π > x)| + |x j | α j | log ψ(x)| (| log ψ(π > x)| + |x j | α j ) -1 = τ (x)| log ψ(π > θ(x))| + τ (x)|θ j (x)| α j τ (x)| log ψ(θ(x))| (| log ψ(π > x)| + |x j | α j ) -1 ≤ c 1 (| log ψ(π > x)| + |x j | α j ) -1 with c 1 = max θ∈S E (| log ψ(π > θ)| + |θ j | α j )/| log ψ(θ)|. Thus, f j (y j ) ≤ c 2 1 e j ⊥ k∈I ≤ ;k =j e iu k y k -1 iy k 2 (| log ψ(π > y)| + |y j | α j ) -2 dλ e j ⊥ (y) = c 2 1   k∈I ≤ ;k =j R e iu k y k -1 iy k 2 dy k   H> (| log ψ(π > y)| + |y j | α j ) -2 dλ > (y),
where the last integral in the right-hand side has to be reduced to |y j | -2α j if H > = {0} and otherwise is equal to

H> |y j | -2α j log ψ((|y j | α j ) -E π > y) + 1 -2 dλ > (y) = |y j | -2α j +α j q(π>E) H> (| log ψ(π > y)| + 1) -2 dλ > (y) =: |y j | -2β j +1 c 2 with β j = α j (1 -q(π > E)/2) + 1/2.
We have thus obtained

f j (y j ) ≤ c 3 |y j | -2β j +1 with c 3 = c 2 1 c 2 k∈I ≤ ;k =j (2πu k ). Recall that |I > | ≤ 1. (a) In case that |I > | = 1, q(π > E) > 1 
and thus β j < 1. Therefore by the above calculation and ( 31), [START_REF] Samorodnitsky | Long range dependence[END_REF] Var(∆

(j) δ W (u (j) )) ≤ σ 2 X c 3 e iδy j -1 iy j 2 |y j | -2β j +1 dy j = σ 2 X c 3 C β j |δ| 2β j .
In case that |I > | = 0, β j = α j + 1/2. If α j < 1/2, then the same bound (45) holds.

(b) If α j = 1/2, then for any H j ∈ (0, 1), R e iδy j -1 iy j 2 f j (y j )dy j ≤ δ 2

|y j |≤1 f j (y j )dy j + c 3 |y j |>1 e iδy j -1 iy j 2 |y j | -2H j +1 dy j ≤ c 4 max(δ 2 , |δ| 2H j ), with c 4 = max u∈[-1,1] d e j ⊥ k∈I ≤ ;k =j e iu k y k -1 iu k 2 | log ψ(π ≥ y)| -2 dλ e j ⊥ (y) + c 3 C H j . Therefore, Var ∆ (j) δ W (u (j) ) ≤ σ 2 X c 4 max(δ 2 , |δ| 2H j ). (c) At last, if α j > 1/2, then β j > 1, the function f j is integrable on R and R e iδy j -1 iy j 2 f j (y j )dy j ≤ δ 2 R f j (y j )dy j .
It then follows that Var ∆ 

(j) δ W (u (j) ) ≤ c 5 δ 2 , with c 5 = σ 2 X sup u∈[-1,1] d R d k∈I ≤ ;k =j e iu k y k -1 iy k 2 | log ψ(π ≥ y)| -2 dy. 5 
) ∈ (0, 1] d if Cov(X(t), X(s)) = 1 2 d d i=1 |t i | 2H i + |s i | 2H i -|t i -s i | 2H i .
Remark that we include the degenerate case that Hurst index equals 1.

For the limit random field W , the covariance function can be factorized according to different directions as Proof. We first prove the 'if part'. Suppose I = = {j}. In the case I > = ∅,

Ψ(t, s) = R
| log ψ(y j e j )| -2 (e it j y j -1)(e is j y j -1) 2π|y j | 2 dy j = R | log ψ((|y j | α j ) E e j )| -2 (e it j y j -1)(e is j y j -1) 2π|y j | 2 dy j = R | log ψ(e j )| -2 (e it j y j -1)(e is j y j -1) 2π|y j | 2+2α j dy j .

Thus by [START_REF] Maejima | Operator-self-similar stable processes[END_REF], in case I = = {j}, I > = ∅, (46) follows. In the case I > = ∅,

Ψ(t, s) = R H>
| log ψ(y + y j e j )| -2 (e it j y j -1)(e is j y j -1) 2π|y j | 2 dλ > (y)dy j = R H> |y j | -2α j | log ψ((|y j | -α j ) E (y + y j e j ))| -2 (e it j y j -1)(e is j y j -1) 2π|y j | 2 dλ > (y)dy j = H> | log ψ(y + e j )| -2 dλ > (y) R (e it j y j -1)(e is j y j -1) 2π|y j | 2+2α j -α j q(π>E) dy j .

That is, in case I = = {j}, I > = ∅, for H j = α j (1 -q(π > E)/2) + 1/2, (47) follows.

Next, we prove the 'only if part'. Suppose W is a fractional Brownian sheet with Hurst indices H 1 , . . . , H d . From Proposition 4, W is also (E , H)-operator-scaling with H = γ 0 + q(E ) -q(E )/2. Then, it follows that

H 1 α 1 + • • • + H d α d = γ 0 + q(E ) -q(E )/2,
or equivalently (48)

k∈I ≤ 1 α k (H k -1/2) + k∈I> 1 α k (H k -1) = γ 0   1 - 1 2 k∈I> 1 α k   .
We consider the variance. By the assumption that W is a fractional Brownian sheet, and the fact that W has stationary directional increments, for all j ∈ {1, . . . , d}, for all δ ∈ R, Remark 7. When the limit is a fractional Brownian sheet, in directions corresponding to I > , I < (if not empty) and I = , the Hurst indices equals 1, 1/2 and some value in (1/2, 1), respectively. Thus, W exhibits long-range dependence in the directions corresponding to I ≥ .

As a concrete example, we prove Theorem 2.

Proof of Theorem 2. Case (i): when α 2 > α 2 , α 2 ∈ (0, 1/2). In this case, γ 0 = ρ 2 = α 2 /α 2 , E = diag(1/α 1 , 1/α 2 ), I < = {1},

I = = {2}, β = α 2 /α 2 + 1 2 ( 1 α 1 + 1 α 2
) and H 1 = 1/2 are straight-forward. Then, by [START_REF] Samorodnitsky | Stable non-Gaussian random processes[END_REF], H 2 = 1 2 + α 2 and σ 2 = C H 2 | log ψ(0, 1)| -2 . Case (ii): when α 2 > α 2 , α 2 ∈ (1/2, 1). In this case, γ 0 = ρ 1 = 1, E = E, I > = {2}, I = = {1}, The calculation of cases (iii) and (iv) are similar and thus omitted. One obtains σ 2 = C H 1 | log ψ(1, 0)| -2 for case (iii) and σ 2 = C H 2 R | log ψ(y, 1)| -2 dy for case (iv).

β = 1 + 1 2α 1 + 1 α 2 -1 2α

Sample-path properties.

We conclude this section by the following general sample-path properties for the random field W that is a consequence of [START_REF] Biermé | Hölder regularity for operator scaling stable random fields[END_REF]Proposition 5.3

].

Proposition 7. There exists a modification W * of W on [0, 1] d such that for all > 0, almost surely there exists a finite random variable Z such that for all s, t ∈ [0, 1] Proof. Let us consider E the diagonal matrix with entries corresponding to 1 for j ∈ I > , 2 for j ∈ I < and 1/H j for j ∈ I = . Let τ E be the radial part with respect to E according to [START_REF] Biermé | Hölder regularity for operator scaling stable random fields[END_REF]Equation (9)]. Let us quote that since t → ρ(0, t) is E homogeneous and strictly positive on R d {0}, following ideas of Clausel and Vedel [13, Theorem 3.2], the function t → ρ(0, t)/τ E (t) is continuous and strictly positive on the compact set S E . It follows that we may find C, C > 0 such that for all t ∈ R d , Cτ E (t) ≤ ρ(0, t) ≤ C τ E (t).

Therefore, by [7, Proposition 5.3] (with β = 0), to show Proposition 7 we prove for t, s ∈ [0, 1] d that (50) E ((W (t) -W (s)) 2 ) = Var (W (t) -W (s)) ≤ Cρ(s, t). For t, s ∈ [0, 1] d , considering as in [START_REF] Lacaux | From invariance principles to a class of multifractional fields related to fractional sheets[END_REF], the sequence (u (j) ) 0≤j≤d defined by u (0) = s and u (j+1) = u (j) + (t j -s j )e j for 0 ≤ j ≤ d -1, we get W (t) -W (s) = d j=1 ∆

(j) (t j -s j ) W (u (j) ). Hence Var (W (t) -W (s)) ≤ Var ∆ (j) (t j -s j ) W (u (j) ) . Now to obtain [START_REF] Taqqu | A bibliographical guide to self-similar processes and long-range dependence[END_REF], it suffices to apply the bounds on the directional increments established in Lemma 11. Observe that in the case j ∈ I = , I > = ∅, since δ = t j -s j ∈ [-1, 1], the righthand side of [START_REF] Resnick | Heavy-tail Springer Series in Operations Research and Financial Engineering[END_REF] becomes C|δ| 2H j . The details are omitted. The proof is thus completed.

Let us mention that we probably could improve this result. Actually, following [START_REF] Xiao | Sample path properties of anisotropic Gaussian random fields[END_REF], it is sufficient to get a similar lower bound on the variance on [ε, 1] d to establish condition (C 1 ), from which Theorem 4.2 follows, saying that the inequality is true for = 0 and Z has finite moments of any order.

Remark 4 . 2 Xe| 2 

 422 Observe that one can write Cov(W (t),W (s)) = σ (2π) d C(t, s) it k y k -1 (e is k y k -1) |y k  dy,because of the identity [46, Proposition 7.2.8]:

Proposition 4 .

 4 The random field W satisfies the following properties: (i) stationary rectangular increments: for any fixed s ∈ R d ,(W ([s, t])) s<t f dd = (W ([0, ts])) s<t ≡ (W (t -s)) s<t ;

2 XProposition 6 .

 26 Cov(W (t), W (s)) = σ (2π) |I>| k∈I< Cov(B 1/2 (t k ), B 1/2 (s k )) • k∈I> t k s k • Ψ(t, s),with Ψ(t, s) only depending on {t k , s k } k∈I= , given by Ψ(t, s) :=H ≥ | log ψ(y)| -2 k∈I= (e it k y k -1)(e is k y k -1) 2π|y k | 2 dλ ≥ (y).Recall C H in[START_REF] Maejima | Operator-self-similar stable processes[END_REF]. The random field W is a fractional Brownian sheet, if and only if|I = | = 1.In this case, Ψ(t, s) has the following expressions: in caseI = = {j}, I > = ∅,(46)Ψ(t, s) = | log ψ(e j )| -2 C α j +1/2 Cov(B α j +1/2 (t j ), B α j +1/2 (s j )); in case I = = {j}, I > = {k},(47)Ψ(t, s) = H> | log ψ(y + e j )| -2 dλ > (y)C H j Cov(B H j (t j ), B H j (s j )),with H j = α j (1 -1/(2α k )) + 1/2.

1 ,

 1 δ W (u)) = |δ| 2H j Var(W (π e j ⊥ (u) + e j )). Recall that |I > | ≤ 1. We first consider the case I > = ∅. In this case,• for k ∈ I < , comparing[START_REF] Taqqu | Weak convergence to fractional Brownian motion and to the Rosenblatt process[END_REF] and[START_REF] Resnick | Tauberian theory for multivariate regularly varying distributions with application to preferential attachment networks[END_REF] yieldsH k = 1/2, • for k ∈ I = , α k < 1/2, comparing (49) and (42) yieldsH k = α k + 1/2, • for k ∈ I = , α k = 1/2, comparing[START_REF] Taqqu | Weak convergence to fractional Brownian motion and to the Rosenblatt process[END_REF] and[START_REF] Resnick | Heavy-tail Springer Series in Operations Research and Financial Engineering[END_REF] yieldsH k = 1, • for k ∈ I = , α k > 1/2, comparing(49)and (44) yields H k = 1. Then[START_REF] Spitzer | Principles of random walk[END_REF] becomesk∈I=,α k >1/2 γ 0 2α k + k∈I=,α k ≤1/2 γ 0 = γ 0 . Since α k < 1, it then follows that |I = | = 1.Similarly, in the case I > = ∅, say I > = {1}, it follows from comparing the corresponding inequalities that• H 1 = 1, • for k ∈ I < , H k = 1/2, • for k ∈ I = , H k = α k (1 -1/(2α 1 )) + 1which implies |I = | = 1.

  2 and H 2 = 1 are straight-forward. Then, by[START_REF] Sheffield | Gaussian free fields for mathematicians[END_REF],H 1 = 1 2 + α 1 (1 -1 2α 2 ) and σ 2 = C H 1 R | log ψ(1, y)| -2 dy.

  d , |W * (t) -W * (s)| ≤ Zρ(t, s)log(1 + ρ(s, t) -1 ) 1/2+ , with ρ(s, t) = j∈I> |t j -s j | + j∈I< |t j -s j | 1/2 + j∈I= |t j -s j | H j ,where for j ∈ I = , (a)H j = α j (1 -q(π > E)/2) + 1/2 if either |I > | = 1 or I > = ∅ and α j < 1/2,(b)H j can take any value in (0, 1) if I > = ∅ and α j = 1/2, and (c) H j = 1 if I > = ∅ and α j > 1/2.

  t, s] the set [t 1 , s 1 ] × • • • × [t d , s d ] and we write |t| ∞ for max{|t j |, j = 1, . . . , d}, and |t| 1 for d j=1 |t j |. Furthermore, write N = {0, 1, . . . } and N * = {1, 2, . . . }.

	2.1. The random graph.

  and only if the coordinates of t belong to 2πZ, see for example Spitzer[48, p.76].

  .2. Fractional Brownian sheets. Here we give a complete characterization of when W is a fractional Brownian sheet. Recall that a zero-mean Gaussian random field (X(t)) t∈R d is a standard fractional Brownian sheet with Hurst index (H 1 , . . . , H d