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INVARIANCE PRINCIPLES FOR OPERATOR-SCALING GAUSSIAN

RANDOM FIELDS

HERMINE BIERMÉ, OLIVIER DURIEU, AND YIZAO WANG

Abstract. Recently, Hammond and Sheffield [22] introduced a model of correlated one-
dimensional random walks that scale to fractional Brownian motions with long-range de-
pendence. In this paper, we consider a natural generalization of this model to dimension
d ≥ 2. We define a Zd-indexed random field with dependence relations governed by an un-
derlying random graph with vertices Zd, and we study the scaling limits of the partial sums
of the random field over rectangular sets. An interesting phenomenon appears: depending
on how fast the rectangular sets increase along different directions, different random fields
arise in the limit. In particular, there is a critical regime where the limit random field is
operator-scaling and inherits the full dependence structure of the discrete model, whereas in
other regimes the limit random fields have at least one direction that has either invariant or
independent increments, no longer reflecting the dependence structure in the discrete model.
The limit random fields form a general class of operator-scaling Gaussian random fields.
Their increments and path properties are investigated.

1. Introduction

Self-similar processes are important in probability theory because of their connections with
limit theorems and their intensive use in modeling, see for example [50]. These are processes
(X(t))t∈R that satisfy, for some H > 0,

(1) (X(λt))t∈R
fdd
= λH(X(t))t∈R, for all λ > 0,

where ‘
fdd
= ’ stands for ‘equal in finite-dimensional distributions’. It is well known that the

only Gaussian processes that are self-similar and have stationary increments are the fractional
Brownian motions. Throughout, we let (BH(t))t∈R denote a fractional Brownian motion with
Hurst index H ∈ (0, 1); this is a zero-mean Gaussian process with covariances given by

Cov(BH(t), BH(s)) =
1

2
(|t|2H + |s|2H − |t− s|2H), t, s ∈ R.

Fractional Brownian motions were first introduced in 1940 by Kolmogorov [25] and their rel-
evance was first recognized by Mandelbrot and Van Ness [32], who gave them their name.
Invariance principles for fractional Brownian motions have a long history, since the seminal
work of Davydov [15] and Taqqu [49]. As the limiting objects of stochastic models, fractional
Brownian motions have appeared in various areas, including random walks in random envi-
ronment [19], telecommunication processes [35], interacting particle systems [36], and finance
[24], just to mention a few.

Recently, Hammond and Sheffield [22] proposed a simple discrete model that scales to
fractional Brownian motions with H > 1/2. This model, to be described below, can be
interpreted as a strongly correlated random walk with ±1 jumps. As the simple random walk
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can be viewed as the discrete counterpart of the Brownian motion, the correlated random
walks proposed in [22] can be viewed as the discrete counterparts of the fractional Brownian
motions for H > 1/2. In this regime, the fractional Brownian motion is well known to exhibit
long-range dependence [45].

In the present paper we introduce a discrete random field model that generalizes the
Hammond–Sheffield model to any dimension d ≥ 2 and we study the scaling limits. Based on
this model, we establish invariance principles for a new class of operator-scaling Gaussian ran-
dom fields. The operator-scaling random fields are generalization of self-similar processes (1)
to random fields, proposed by Biermé et al. [8]. Namely, for a matrix E with all eigenvalues
having positive real parts, the random field (X(t))t∈Rd is said to be (E,H)-operator-scaling
for some H > 0, if

(2) (X(λEt))t∈Rd
fdd
= λH(X(t))t∈Rd for all λ > 0,

where λE :=
∑

k≥0(log λ)kEk/k!. In this paper, we focus on the case that E is a d × d

diagonal matrix with diagonal entries β1, . . . , βd, denoted by E = diag(β1, . . . , βd). It is
worth mentioning that a simple generalization of the self-similarity would be to take E being
the identity matrix in (2), and the advantage of taking a general diagonal matrix is to be able
to accommodate anisotropic random fields. Examples of operator-scaling Gaussian random
fields include fractional Brownian sheets [23] and Lévy Brownian sheets [46]. Here, our
results provide a new class to this family with corresponding invariance principles. We also
mention that there are other well investigated generalizations of fractional Brownian motions
to Gaussian random fields, including distribution-valued ones. See for example [6, 30, 47].

We now give a brief description of the Hammond–Sheffield model and its generalization to
high dimensions. Let us start with the one-dimensional model. Let µ be a probability distri-
bution with support in {1, 2, . . .} that is assumed to be aperiodic (to be defined below). Using
the sites of Z as vertices, one defines a random directed graph Gµ by sampling independently
one directed edge on each site. The edge starting at the site i ∈ Z will point backward to
the site i − Zi, where Zi is a random variable with distribution µ. Here, µ is a probability
distribution in the form of

(3) µ({n, . . .}) = n−αL(n),

where L is a slowly varying function and α ∈ (0, 1/2). This choice of α guarantees that
the graph Gµ has a.s. infinitely many components, each being a tree with infinite vertices.
Conditioning on Gµ, one then defines (Xj)j∈Z such that

• Xj = Xi if j and i are in the same component of the graph,
• Xj and Xi are independent otherwise, and
• marginally each Xi has the distribution (1− p)δ−1 + pδ1 for some p ∈ (0, 1).

The partial-sum process Sn =
∑n

i=1Xi, n ≥ 1, can be interpreted as a correlated random
walk. Hammond and Sheffield [22, Theorem 1.1] proved that

(4)

(
Sbntc − ESbntc
nα+1/2L(n)

)
t∈[0,1]

⇒ σ
(
Bα+1/2(t)

)
t∈[0,1]

as n → ∞ in D([0, 1]), with the constant σ explicitly given. Here and in the sequel, we let
“⇒” denote convergence in distribution [10]. Hammond and Sheffield [22] actually established
a strong invariance principle for the convergence (4).
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To generalize the Hammond–Sheffield model to high dimensions, we start by construct-
ing a random graph Gµ with vertices Zd. Similarly, at each vertex i ∈ Zd we first sample
independently a random edge of length Zi, according to a probability distribution µ, and
connect i to i − Zi. The distribution µ has support within {1, 2, . . . }d, intuitively meaning
that all the edges are directed towards the southwest when d = 2. Throughout, we assume
that the additive group generated by the support of µ is all Zd, and in short we say that µ
is aperiodic. Most importantly, the distribution µ is assumed to be in the strict domain of
normal attraction of (E, ν), denoted by µ ∈ D(E, ν), for a matrix E = diag(1/α1, . . . , 1/αd)
with αi ∈ (0, 1), i = 1, . . . , d, and an infinitely divisible probability measure ν on Rd+. That
is, if (ξi)i≥1 are i.i.d. copies with distribution µ, then

(5) n−E
n∑
i=1

ξi ⇒ ν.

This assumption is a natural generalization of (3) to high dimensions. We again focus on the
case that Gµ has infinitely many components, which turns out to be exactly the case that
q(E) := trace(E) > 2, and given Gµ we define (Xj)j∈Zd similarly as in dimension one. Remark
that q(E) > 2 is trivially satisfied for d ≥ 2, due to the restriction on αi ∈ (0, 1). Remark
also that when d ≥ 2, sometimes it is more practical to express (5) in terms of non-standard
multivariate regular variation, and in this case nothing needs to be assumed in terms of the
spectral measure of ν. See Section 2 for detailed descriptions of the measure µ, the random
graph Gµ, and the model.

The key feature of our model is that the underlying random graph induces a partial order
of Zd. Models with such a feature have been considered in literature. In particular, the
so-called partially ordered models have been recently introduced by Deveaux and Fernández
[18]. Applications of such models include notably image and texture analysis [14]. Our model
may be formulated alternatively as a partially ordered model. However, we do not pursue
this direction here, as the current setup serves our purpose better.

In this paper, we will investigate the scaling limits of partial sums over increasing rectangles
of the random fields described above. For this purpose, we introduce

Sn(t) :=
∑

j∈R(n,t)

Xj , n = (n1, . . . , nd) ∈ Nd, t = (t1, . . . , td) ∈ [0, 1]d

with R(n, t) =
∏d
k=1[0, nktk − 1] ∩ Zd. Surprisingly, the limit theorems are much more

complicated in high dimensions. In order to obtain an invariance principle for Sn(t), one
cannot simply require mini=1,...,d ni →∞ as most of the limit theorems for random fields do
(see e.g. [5, 16, 28]). Instead, one needs to investigate

(6) SE
′

n (t) :=
∑

j∈R(nE′1,t)

Xj

with a diagonal matrix E′ = diag(β1, . . . , βd).
The contribution of our main result, Theorem 5, is twofold. First, we establish invariance

principles to operator-scaling Gaussian random fields. Such limit theorems, rare in the lit-
erature, justify the usage of such Gaussian random fields in various applications, including
particularly texture analysis [4, 9, 44] and hydrology [2]. Second, unexpectedly, Theorem 5
reveals the following surprising phenomenon: for different E′, the limiting random field may
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not be the same. Moreover, in the special case with E′ = cE for some c > 0, the depen-
dence structure of the limiting random field is determined by the measure ν. This case is
referred to as the critical regime. For the non-critical regime, one can still obtain invariance
principles under different normalizations depending on both E and E′, although the limiting
random field has degenerate dependence structure (either invariant, i.e. completely depen-
dent, or independent increments) along at least one direction. To the best of our knowledge,
the existence of such a critical regime has been rarely seen in the literature, except for the
recent results by Puplinskaitė and Surgailis [38, 39]. They investigated a different model in
dimension 2, and referred to the same phenomenon as the scaling-transition phenomenon.

Below we briefly summarize the phenomenon of critical regime.

Critical regime: Here we refer to the case of taking E′ = E in (6).

Theorem 1. Assume that µ ∈ D(E, ν) for some E = diag(1/α1, . . . , 1/αd) with αi ∈
(0, 1), i = 1, . . . , d, and a probability measure ν on Rd+. Assume α1 < 1/2 if d = 1. Let
ψ be the characteristic function of ν. Then,(

SEn (t)− ESEn (t)

n1+q(E)/2

)
t∈[0,1]d

⇒ (W (t))t∈[0,1]d ,

in the space D([0, 1]d), where the limit Gaussian random field (W (t))t∈Rd has zero-mean and
covariance function

Cov(W (t),W (s)) = σ2
X

∫
Rd

d∏
k=1

(
eitkyk − 1

)
(eiskyk − 1)

2π|yk|2
| logψ(y)|−2dy, t, s ∈ Rd,

where an explicit expression of σ2
X is given in (21) below.

The limit Gaussian random field is easily seen to be (E,H)-operator-scaling with H =
1 + q(E)/2. For this new class of random fields, we study its increments and the Hölder
regularity of the sample paths in Section 5.

Non-critical regime: For the case E′ in (6) is not a multiple of E, the situation becomes
much more subtle. One can still obtain invariance principles with appropriate normalization
depending on both E and E′. However, in the non-critical regime the limiting random fields no
longer reflects fully the long-range dependence inherited from Gµ. In particular, the covariance
function of the limiting random field becomes degenerate in certain directions: along these
directions, the covariance function becomes the one of a fractional Brownian motion with
either H = 1/2 (the standard Brownian motion, which is memoryless) or H = 1 (the case
of complete dependence with W (t) = tZ, t ≥ 0 for a common standard Gaussian random
variable Z). Accordingly, along these directions the increments of the Gaussian random
fields are independent or translation invariant, respectively. A general invariance principle
is established in Section 4, and properties of the limiting random fields are investigated in
Section 5. Here we only state the invariance principle for d = 2. In the non-critical regime,
the limit Gaussian random field is a fractional Brownian sheet with Hurst indices H1 and H2.
However, we do not see a fractional Brownian sheet in the limit in high dimensions most of
the time: a complete characterization of when it appears is given in Proposition 6 below.

Theorem 2. Assume d = 2. Let µ ∈ D(E, ν) with E = diag(1/α1, 1/α2) and set E′ =
diag(1/α1, 1/α

′
2) with α1, α2 ∈ (0, 1), α2 6= α′2. Then, depending on the relation between
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α1, α2 and α′2, the following weak convergence holds:(
SE
′

n (t)− ESE′n (t)

nβ

)
t∈[0,1]2

⇒ (W (t))t∈[0,1]2 ,

in the space D([0, 1]2), where the limit Gaussian random field (W (t))t∈R2 has zero-mean and
covariance function in the form of

Cov(W (t),W (s)) = σ2
Xσ

2 Cov(BH1(t1), BH1(s1)) Cov(BH2(t2), BH2(s2)).

Here, β, σ2, H1, H2 and hence {W (t)}t∈[0,1]2 all depend on α1, α2 and α′2. In particular, there
are four different possibilities as follows:

(i) α′2 > α2, α2 ∈ (0, 1/2): β = α2
α′2

+ 1
2( 1
α1

+ 1
α′2

), H1 = 1
2 , H2 = 1

2 + α2.

(ii) α′2 > α2, α2 ∈ (1/2, 1): β = 1 + 1
2α1

+ 1
α′2
− 1

2α2
, H1 = 1

2 + α1(1− 1
2α2

), H2 = 1.

(iii) α′2 < α2, α1 ∈ (0, 1/2): β = 1 + 1
2( 1
α1

+ 1
α′2

), H1 = 1
2 + α1, H2 = 1

2 .

(iv) α′2 < α2, α1 ∈ (1/2, 1): β = α2
α′2

(1− 1
2α1

) + 1
α1

+ 1
2α′2

, H1 = 1, H2 = 1
2 + α2(1− 1

2α1
).

Explicit expressions of σ2 in these cases can be found in the proof of Theorem 2 in Section 5.
The main result of the paper, Theorem 5, is a unified version of invariance principles for

general d ∈ N, E = diag(1/α1, . . . , 1/αd) and arbitrary E′, from which both Theorems 1 and 2
follow as immediate corollaries. Theorem 5 also provides a general principle to determine
the correct normalization order, the limit covariance function, and hence the directions of
degenerate dependence. We have just seen that in dimension 2 there are already 4 different
non-critical regimes. For general d ≥ 3, the situation becomes more complicated.

The core of the proofs is an application of the martingale central limit theorem, thanks to
the key observation that the random field of interest can be represented as a linear random
field in the form of

(7) Xi =
∑
j∈Zd

qjX
∗
i−j , i ∈ Zd,

of which the innovations (X∗j )j∈Zd are multiparameter martingale differences. Hammond and

Sheffield [22] also made essential use of the martingale central limit theorem, although the
representation as a linear process as in (7) was not explicit. This representation plays a key
role in our proofs, as from there when verifying conditions in the martingale central limit
theorem, thanks to the structure of the linear process, we can deal with the coefficients qj
and innovations X∗j separately. This framework, or more generally the martingale approx-
imation method, has been carried out successfully in dimension one to establish invariance
principles for fractional Brownian motions for general stationary processes [17]. To extend
this framework to high dimensions, a notorious difficulty is to find a convenient multiparam-
eter martingale to work with. It is well known that the martingale approximation method
applied to stationary random fields is not as powerful as to stationary sequences, as pointed
out a long time ago by Bolthausen [12]. Fortunately, our specific model can be represented
exactly as a simple linear random field with martingale-difference innovations as in (7).

Once the representation of linear random fields in (7) is established, the main work lies
in the computation of the limit of the covariance functions. This step is heavily based on
the analysis of Fourier transforms of the linear coefficients (qi)i∈Zd , the asymptotic property
of which is essentially determined by ν. Analyzing the Fourier transforms is a standard
tool to compute the covariance functions for stationary linear random fields, see for example
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[28, 38, 39]. To complete the invariance principle, the tightness is established. At last, to
develop the sample-path properties we apply recent results in Biermé and Lacaux [7].

The rest of the paper is organized as follows. In Section 2 we describe in details the random-
field model. Section 3 provides a general central limit theorem that serves our purpose.
Section 4 establishes a general invariance principle that applies to both critical and non-
critical regimes. Some properties of the limit random fields are provided in Section 5.

Acknowledgement. The third author would like to thank the hospitality of Laboratoire
de Mathématiques et Physique Théorique, UMR-CNRS 7350, Tours, France, during his visit
from April to July in 2014, when the main part of this project was accomplished. The third
author’s research was partially supported by NSA grant H98230-14-1-0318. The authors
would like to thank two anonymous referees for their comments on the paper.

2. The model

In this section, we will give a detailed description of our random field model {Xi}i∈Zd ,
of which the dependence structure is determined by an underlying random graph Gµ. The
asymptotic properties of the random graph are determined by a probability measure µ on
{1, 2, . . . }d, which is assumed to be in the strict domain of normal attraction of an E-operator
stable measure ν on Rd+. Some simple properties of the model will be derived. In particular,
we show that the random field of interest can be represented as a linear random field, of which
the innovations are stationary multiparameter martingale differences.

Throughout the paper we use the following usual notations. Let d ≥ 1 be an integer.
On Rd, we consider the partial order (also denoted by <) defined by t < s if tj < sj for
all j = 1, . . . , d, where t = (t1, . . . , td) and s = (s1, . . . , sd). In the same way, we use the
notations >, ≤, ≥. We write t ≮ s as soon as tj ≥ sj for at least one j = 1, . . . , d, and in
the same way, we use ≯, �, �. We denote by [t, s] the set [t1, s1]× · · · × [td, sd] and we write

|t|∞ for max{|tj |, j = 1, . . . , d}, and |t|1 for
∑d

j=1 |tj |. Furthermore, write N = {0, 1, . . . }
and N∗ = {1, 2, . . . }.

2.1. The random graph.
On Zd, we consider the random directed graph Gµ, associated to µ, defined as follows:

• Let (Zn)n∈Zd be i.i.d. random variables with distribution µ.

• For each n ∈ Zd, let en be the outward edge from n to n−Zn.
• Gµ is the graph with all sites of Zd as vertices and random directed edges {en, n ∈ Zd}.

The graph Gµ is then composed of (possibly) several disconnected components and each
component is a tree. The upcoming Proposition 1 shows that, almost surely, the number of
components of Gµ is one or is infinite.

We first introduce the following notations. For n ∈ Zd, we denote by An the ancestral line
of n, that is the set of all elements k ∈ Zd for which there exists a directed connection from
n to k (taking the orientations of the edges into account). Note that, in distribution, An
can be described by the range of the random walk (n−Sk)k≥0 where (Sk)k≥0 is the random
walk starting at 0 with step distribution µ. In particular, since µ is supported by Nd∗, any
element k in An satisfies k < n. Observe that the condition that the support of µ generates
the group Zd is equivalent to the fact that P(An ∩Am 6= ∅) > 0 for all n, m ∈ Zd.
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For n ∈ Zd, we set qn = P(0 ∈ An). We clearly have qn = 0 as soon as 0 ≮ n, except for
q0 = 1. Further, since each edge is generated independently at each site, for any n, k ∈ Zd,

P(k ∈ An) = qn−k.

Proposition 1. If
∑
k∈Nd q

2
k converges, then Gµ has almost surely infinitely many components

whereas if
∑
k∈Nd q

2
k diverges, then Gµ has almost surely only one component.

We start by proving the following lemma.

Lemma 1. (i) If
∑
k∈Nd q

2
k converges then for all n ∈ Zd,

P(A0 ∩An 6= ∅) =

∑
k∈Nd

q2
k

−1∑
k∈Zd

qkqk+n

 .

(ii) If
∑
k∈Nd q

2
k diverges then P(A0 ∩An 6= ∅) = 1 for all n ∈ Zd.

Proof. The proof follows an idea developed in [22, Lemma 3.1] for the dimension 1. Let G′µ
be an independent copy of Gµ. We denote by A′n the ancestral line of n with respect to G′µ.
On one hand, one has

E|A0 ∩A′n| =
∑
k∈Zd

P(k ∈ A0)P(k ∈ An) =
∑
k∈Zd

qkqk+n.

On the other hand,

E|A0 ∩A′n| = P(A0 ∩An 6= ∅)E|A0 ∩A′0| = P(A0 ∩An 6= ∅)
∑
k∈Nd

q2
k

and thus (i) follows.
If
∑
k∈Nd q

2
k =∞, then E|A0 ∩A′0| =∞. But E|A0 ∩A′0| can also be computed as

(8) E|A0 ∩A′0| =
∑
k≥0

P(|A0 ∩A′0| > k) =
∑
k≥0

P(A0 ∩A′0 6= {0})k =
1

1− P(A0 ∩A′0 6= {0})
.

Thus E|A0∩A′0| =∞ if and only if P(A0∩A′0 6= {0}) = 1, and in this situation |A0∩A′0| =∞
almost surely. Now, since the group generated by the support of µ covers Zd, we know that,
for all n ∈ Zd, there exists k0 ∈ Zd such that

P(k0 ∈ A0 and k0 − n ∈ A′0) = P(k0 ∈ A0 ∩A′n) > 0.

But, since |A0 ∩A′0| =∞ a.s., we infer that |Ak0 ∩Ak0−n| =∞ also a.s., and thus

P(A0 ∩An 6= ∅) = P(Ak0 ∩Ak0−n 6= ∅) ≥ P(|Ak0 ∩Ak0−n| =∞) = 1,

which proves (ii). �

Proof of Proposition 1. If C :=
∑
k∈Nd q

2
k <∞, from Lemma 1 (i), we get

P(A0 ∩An 6= ∅) = C−1
∑
k∈Zd

qkqk+n ≤ C−1

 ∑
k∈Zd,k+n≥0

q2
k

1/2 ∑
k∈Zd,k≥0

q2
k+n

1/2

= C−1

 ∑
k∈Zd,k≥−n

q2
k

 1
2
 ∑
k∈Zd,k≥n

q2
k

 1
2

,
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which goes to 0 as |n|∞ →∞. Thus, P(A0 ∩An 6= ∅)→ 0 as |n|∞ →∞, and we can build a
sequence (nk)k∈N ⊂ Zd, iteratively, such that for each k ∈ N,

P
(
Ank ∩ (∪k−1

j=0Anj ) 6= ∅
)
≤ 1

k2
.

By the Borel-Cantelli lemma, we see that, almost surely, the ancestral lines Ank , for all k
large enough, are disjoint from each other. This proves the first part of the proposition.
The second part of the proposition is clear from Lemma 1 (ii). �

2.2. The measure.
From now on, we always consider a probability measure µ on Nd∗ which is aperiodic (the

additive group generated by the support of µ is all Zd) and such that µ ∈ D(E, ν) for an
infinitely divisible full probability measure ν on Rd+ and a matrix E = diag(1/α1, . . . , 1/αd)
with αi ∈ (0, 1) for all i = 1, . . . , d. Recall that we mean by µ ∈ D(E, ν) that if (ξi)i≥1 are
i.i.d. copies with distribution µ, then

(9) n−E
n∑
i=1

ξi ⇒ ν.

Note that, since the distribution of each coordinate is in the strict domain of normal attraction
of a positive stable law and since positive α-stable laws only exist for α ∈ (0, 1), the condition
αi ∈ (0, 1) for all i = 1, . . . , d is necessary.

Consider the characteristic function ψ(t) =
∫
Rd+
eit·xdν(x) of ν. It follows from (9) that

the log-characteristic function logψ is then an E-homogeneous function, that is

for all t > 0 and x ∈ Rd, logψ(tEx) = t logψ(x).

(See (12) below.) Further, logψ(0) = 0 and for all x 6= 0, | logψ(x)| > 0.
One can also describe µ in the framework of multivariate regular variation. Consider the

triplet representation of ν as an infinitely divisible distribution [34, Eq. (3.17)]. Then, [34,
Corollary 8.2.11] tells that (9) implies that the triplet has the form (0, 0, φ), with φ satisfying

(10) lim
n→∞

nµ(nEA) = φ(A) for all A ∈ B(Rd) bounded away from 0 and φ(∂A) = 0.

Conversely, [34, Corollary 8.2.11] also shows that (10) implies (9) with a possibly centering
on the left-hand side and ν determined by the triplet (a, 0, φ) with a possible drift term a.
However, under the assumption αi ∈ (0, 1), it follows from [34, Theorem 8.2.7] that a = 0
and the centering can be set as zero.

In view of (10), µ is said to have non-standard multivariate regular variation with exponent
E and exponent measure φ. Most of the applications in the literature of multivariate regular
variation, however, focus on the case that α1 = · · · = αd. In this case, (10) is referred to as
multivariate regular variation in the literature. Standard references on (standard) multivariate
regular variation include [42, 43]. References on non-standard multivariate regular variation
include [40], [43, Chapter 6]. See also some recent development in [41]. Some examples are
given at the end of the subsection.

We denote by P the Fourier transform of the measure µ, that is

P (t) =
∑
k∈Nd

µ({k})eit·k, t ∈ Rd.



INVARIANCE PRINCIPLES FOR OPERATOR-SCALING GAUSSIAN RANDOM FIELDS 9

Note that the assumption that the additive group generated by the support of µ is all Zd is
equivalent to:

P (t) = 1 if and only if the coordinates of t belong to 2πZ,

see for example Spitzer [48, p.76].
Let Gµ be the random graph associated to µ as defined in Section 2.1. The asymptotic

behavior of {qk}k∈Nd will play a key role in our analysis. It is essentially determined by the
measure µ ∈ D(E, ν). We denote by Q the Fourier series with coefficients qk = P(0 ∈ Ak),
that is

Q(t) =
∑
k∈Nd

qke
it·k.

Using that qk =
∑
j∈Nd∗ µ({j})qk−j for k > 0, we see that both Fourier series are linked by

the relation

Q(t) =
1

1− P (t)
.

From Lemma 1, we see that

P(A0 ∩An 6= ∅) =
cn(|Q|2)

c0(|Q|2)
,

where ck(|Q|2) denotes the Fourier coefficient of index k of |Q|2 = QQ. This relation explains
why the Fourier series Q plays a crucial role in the study of the random graph.

The two following lemmas are key results concerning the behavior of Q at 0.

Lemma 2. Let µ ∈ D(E, ν) be as described above and ψ the characteristic function of ν.
Then

|Q(x)| = |1− P (x)|−1 =
g(x)

| logψ(x)|
, x ∈ [−π, π]d,

where g is continuous and positive with g(0) = 1.

Proof. Let us use a change of variables in polar coordinates. As in [34, Chapter 6], we define
a new norm on Rd, related to the matrix E, by

(11) ‖x‖E =

∫ 1

0
|rEx|1

r
dr,

where here | · | denotes the Euclidean norm. The unit ball SE = {x ∈ Rd | ‖x‖E = 1}
associated to this norm is a compact set of Rd \ {0} and every vector in Rd \ {0} can be
uniquely written as rEθ with r > 0 and θ ∈ SE , since for any x 6= 0, the map t 7→ ‖tEx‖E is
strictly increasing on (0,∞).

Since µ ∈ D(E, ν), we have

P (n−Eθ)n → ψ(θ), as n→∞, uniformly in θ ∈ SE ,

from which we infer that

(12) t logP (t−Eθ)→ logψ(θ), as t→∞, uniformly in θ ∈ SE ,

see [31, p.159]. Using that log(1 + x) ∼ x as x→ 0 and that P is continuous at 0, we obtain

t(P (t−Eθ)− 1)→ logψ(θ), as t→∞, uniformly in θ ∈ SE .
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Thus, for all ε > 0, there exists T > 0 such that for all t > T ,∣∣∣∣ | logψ(t−Eθ)|
|P (t−Eθ)− 1|

− 1

∣∣∣∣ =

∣∣∣∣ | logψ(θ)|
t|P (t−Eθ)− 1|

− 1

∣∣∣∣ ≤ ε, uniformly in θ ∈ SE .

Now, set g(·) = | logψ(·)(P (·) − 1)−1|. The function g is clearly continuous and positive on

[−π, π]d \ {0}. Set δ = infθ∈SE ‖T−Eθ‖E > 0. Then for all x such that ‖x‖E < δ, x = t−E0 θ0

with θ0 ∈ SE and t0 > T and thus

|g(x)− 1| = |g(t−E0 θ0)− 1| ≤ ε.

Thus g is continuous at 0 and g(0) = 1. �

We are thus interested by the function x 7→ logψ(x), which is a continuous E-homogeneous
function that only vanishes at 0. Recall that q(E) = trace(E).

Lemma 3. If φ : Rd → R is a continuous E-homogeneous function that only vanishes at 0,
then for any p > 0, x 7→ |φ(x)|−p is locally integrable in Rd if and only if q(E) > p.

Proof. There exists a unique finite Radon measure σE on SE which allows the change of
variable ∫

Rd
f(t)dt =

∫ +∞

0

∫
SE

f(rEθ)rq(E)−1dσE(θ)dr,

for all f ∈ L1(Rd) (see [8], Proposition 2.3). Thus, using the E-homogeneity of φ, one has∫
{‖x‖E≤1}

|φ(x)|−pdx =

∫ 1

0

∫
SE

rq(E)−1|φ(rEθ)|−pdσE(θ)dr

=

∫ 1

0
rq(E)−1−pdr

∫
SE

|φ(θ)|−pdσE(θ).

The second integral is finite because |φ| is continuous and positive on the compact set SE ,
and the first integral is finite if and only if q(E) > p. �

As a first consequence, we get the following proposition.

Proposition 2. Let µ ∈ D(E, ν). The random graph Gµ has almost surely infinitely many
components if and only if q(E) > 2.

Note that, when d = 1, the condition q(E) > 2 becomes α1 <
1
2 , which corresponds to

the condition assumed in [22]. When d ≥ 2, since αi ∈ (0, 1) for all i = 1, . . . , d, then the
conditon q(E) > 2 is always satisfied.

Proof. As a consequence of Lemma 2, using Parseval identity, we get∑
k∈Nd

q2
k =

1

(2π)d

∫
[−π,π]d

|Q(x)|2dx =
1

(2π)d

∫
[−π,π]d

|g(x)|2| logψ(x)|−2dx.

Since g is bounded and bounded away from 0 on any compact set, we see that
∑
k∈Nd q

2
k < +∞

if and only if x 7→ | logψ(x)|−2 is integrable on [−π, π]d. The function x 7→ logψ(x) being
E-homogeneous, by Lemma 3, it is the case if and only if q(E) > 2 and the result follows
from Proposition 1. �

To conclude the section, we give few examples of possible probability measure µ ∈ D(E, ν).
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Example 1 (Product measure). Let µ be the product measure µ1 ⊗ · · · ⊗ µd, where each µi
is a regularly varying measure on N∗ with index αi ∈ (0, 1) such that

µi([n,∞)) ∼ cin−αi ,
for some ci > 0. Then, each µi belongs to the strict domain of normal attraction (with

normalization n−1/αi) of a positive αi-stable law νi, see [11, Theorem 8.3.1]. Positive α-stable
laws only exist for α ∈ (0, 1), and then, their characteristic functions are given by

ϕ(t) = exp
{
−γ|t|α

(
1− isgn(t) tan

(π
2
α
))}

,

for some γ > 0. See [11, Theorem 8.3.2]. In this situation, the measure µ belongs to the strict
domain of normal attraction of the measure ν = ν1⊗· · ·⊗νd which is a full E-operator stable
distribution, with E = diag(1/α1, . . . , 1/αd). The characteristic function ψ of ν is such that

logψ(x) =
d∑
j=1

γj |xj |αj
(

1− isgn(xj) tan
(π

2
αj

))
,

for some γj > 0.

Example 2 (Standard multivariate regular variation). For the standard multivariate regular
variation, that is when α1 = · · · = αd = α, many examples have been known from the studies
of heavy-tailed random vector X = (X1, . . . , Xd) ∈ Rd, in the literature of heavy-tailed time
series. An extensively investigated condition for multivariate regular variation is

(13)
P (|X| > ux,X/|X| ∈ ·)

P(|X| > u)
⇒ x−ασ(·) as u→∞, for all x > 0,

for | · | a norm on Rd and σ a probability measure on B(S) for S = {x ∈ Rd : |x| = 1}. See
for example [1]. It is known that (10) implies (13) (see e.g. [29, Theorem 1.15]).

The measure σ is often referred to as the spectral measure, which captures the dependence
of extremes. For example, the case that σ concentrates on the d-axis with equal mass means
that, in view of (13), the extremes of the stationary processes are asymptotically independent.
For more theory and examples on spectral measures reflecting asymptotic dependence of the
extremes, we refer to [42, Chapter 5].

Example 3 (Polar coordinate). A standard procedure to obtain non-standard regularly
varying random vectors is via the representation using polar coordinates. We use the
norm ‖ · ‖E introduced in (11) to identify Rd \ {0} with (0,∞) × SE for the unit ball
SE = {x ∈ Rd | ‖x‖E = 1} such that every vector in Rd \ {0} can be uniquely written
as rEθ with r > 0 and θ ∈ SE . By [34, Theorem 6.1.7], in case of (9) (equivalently (10)), φ
can be taken to have the polar coordinate representation

φ(A) =

∫ ∞
0

∫
SE

1{tEθ∈A}σ(dθ)
dt

t2
,

for some finite Borel measure σ on SE . In our case, since µ has support contained in Nd∗, φ
is a measure on Rd+, and σ is a finite measure on S+

E = SE ∩ Rd+. Identifying Rd+ \ {0} with

(0,∞)× S+
E , to obtain a multivariate regular varying measure as in (10), it suffices to show

(14) µ((r,∞)× Γ) ∼ r−1σ(Γ) as r →∞, for all Γ ∈ B(S+
E ).

This follows from a standard argument showing that {(r,∞)×Γ}r>0,Γ∈B(S+
E ) are a convergence

determining class.
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A standard procedure to construct a random vector of which the distribution µ satisfies (14)
is the following. Let R be a non-negative random variable with P(R > r) ∼ σ(S+

E )r−1 as

r → ∞. Let Θ be a random element in S+
E with probability σ/σ(S+

E ). Assume that R and

Θ are independent. Then, REΘ is regularly varying in Rd+ in the sense of (14). Indeed,

P(REΘ ∈ (r,∞)× Γ) = P(R > r,Θ ∈ Γ) ∼ r−1σ(Γ) as r →∞.
The so-obtained distributions can then be modified to become distributions on Nd∗ with the
same regular-variation property. We omit the details.

Remark 1. For our main results to hold, we do not impose any assumption on the spectral
measures σ in Examples 2 and 3. The only assumption is the non-standard multivariate
regular variation with indices α1, . . . , αd ∈ (0, 1), and α1 < 1/2 when d = 1.

2.3. The random field.
We now associate a random field (Xj)j∈Zd to the random graph Gµ. Assume that µ ∈

D(E, ν) as in the preceding section, with the diagonal matrix E satisfying q(E) > 2, and let
p ∈ (0, 1). We proceed as follows:

First, generate the random directed graph Gµ as described in previous sections, which has
almost surely infinitely many connected components in this situation. Let {Ci | i ≥ 1} denote
the collection of disjoint components and associate to each component Ci a random variable
εi such that (εi)i≥1 are i.i.d. with distribution given by P(εi = 1) = p and P(εi = −1) = 1−p.
Finally, for all j ∈ Zd, set Xj = εi where i is such that j ∈ Ci. This construction implies that
Xj = Xk as soon as j and k belong to the same component of Gµ, and they are independent
otherwise.

Remark 2. The one-dimensional Hammond–Sheffield model can also be formulated as an
example of the so-called chains with complete connections [22]. This general class of models
has a long history with different names, and is very similar to but not the same as the
Gibbs measures on Z; see [20, 21] for more references. Recently, Deveaux and Fernández
[18] extended chains with complete connections to the so-called partially ordered models. It
would be interesting to formulate our model in their framework.

For all n ∈ Nd, we introduce the partial sum

Sn =
∑

j∈[0,n−1]

Xj .

Our aim is to establish a functional central limit theorem (invariance principle) for the
partial sums Sn (with centering and appropriate normalization) when n goes to infinity with
a specific relative speed in each direction. We will distinguish different regimes. We first
show, in this section, that (Xj)j∈Zd can be seen as a linear random field with martingale
differences innovations, and thus, Sn is a partial sum of a linear random field.

For all j ∈ Zd, we define the σ-fields σj = σ{Xk | k < j} and σj = σ{Xk | k � j}. Note
that, for j < n, the value of Xn conditioned on σj is obtained by sampling the ancestral
line An and taking the value of Xk where k is the first site of the ancestral line An which is
strictly smaller than j. We denote

(15) X∗j = Xj − E(Xj | σj) = Xj − E(Xj | σj).
The equality E(Xj | σj) = E(Xj | σj) comes from the fact that starting from j, the next

site in the ancestral line Aj is necessarily strictly smaller than j. Then for all j ∈ Zd,



INVARIANCE PRINCIPLES FOR OPERATOR-SCALING GAUSSIAN RANDOM FIELDS 13

E(X∗j | σj) = 0 and X∗j is measurable with respect to σj+eq for all q = 1, . . . , d, where eq is

the q-th canonical unit vector of Rd. In particular, the random variables X∗j are orthogonal

to each other, that is, E(X∗jX
∗
k) = 0 as soon as j 6= k.

Lemma 4. In the above setting,

Var(X∗0) =

∑
k∈Nd

q2
k

−1

Var(X0).

Proof. Let Z0 be the random variable with distribution µ that gives the first ancestor of 0.
We have X0 =

∑
k>0 1{Z0=k}X−k and E(X0|σ0) =

∑
k>0 pkX−k, where pk = µ({k}) for all

k > 0. Therefore,

E(X∗20 ) = E

(∑
k>0

(1{Z0=k} − pk)X−k

)2


=
∑
k>0

∑
`>0

E((1{Z0=k} − pk)(1{Z0=`} − p`))E(X−kX−`).(16)

But,

(17) E(X−kX−`) = P(A−k ∩A−` 6= ∅)E(X2
0) + P(A−k ∩A−` = ∅)E(X0)2.

and

(18) E((1{Z0=k} − pk)(1{Z0=`} − p`)) = 1{k=`}pk − pkp`.

Combining (16), (17), and (18), we get

E(X∗20 )

= E(X2
0)

(
1−

∑
k>0

∑
`>0

pkp`P(A−k ∩A−` 6= ∅)

)
−
∑
k>0

∑
`>0

pkp`P(A−k ∩A−` = ∅)E(X0)2

= (E(X2
0)− E(X0)2)

∑
k>0

∑
`>0

pkp`P(A−k ∩A−` = ∅)

= Var(X0)P(A0 ∩A′0 = {0}),

where A′0 is an independent copy of A0. Finally, as we saw in (8) in the proof of Lemma 1,∑
k∈Nd q

2
k = E|A0 ∩A′0| = P(A0 ∩A′0 = {0})−1 and the proof is complete. �

Now, for all j ∈ Zd, we introduce

∆j(X) =
∑

ε∈{0,1}d
(−1)d−|ε|1E(X | σj+ε),

where |ε|1 = ε1 + . . .+ εd.
Remark that, since E(Xj | σj+ε) = E(Xj | σj) for all ε ∈ {0, 1}d with the exception of

ε = 1 for which E(Xj | σj+1) = Xj , we have

(19) ∆j(Xj) = Xj − E(Xj | σj) = X∗j .

More generally, we have the following lemma.
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Lemma 5. For all j, k ∈ Zd,
∆j(Xk) = qk−jX

∗
j ,

which vanishes when k ≯ j.

Proof. The result is clear when k = j (see (19)). In the case k ≤ j, k 6= j, we easily see that
∆j(Xk) = 0.

Now, assume k � j. By linearity, we have

∆j(Xk) = ∆j(Xk1{j∈Ak}) + ∆j(Xk1{j /∈Ak}).

Using first that Xk1{j∈Ak} = Xj1{j∈Ak}, and then that {j ∈ Ak} is independent of σj+1, we
obtain

∆j(Xk1{j∈Ak}) = ∆j(Xj)P(j ∈ Ak) = qk−jX
∗
j .

Denote by a(k, j) the first element of the ancestral line Ak that is ≤ j and remark that
a(k, j) is independent of σj+1. Then,

∆j(Xk1{j /∈Ak}) =
∑

`≤j,` 6=j
∆j(Xk1{a(k,j)=`}) =

∑
`≤j,` 6=j

∆j(X`)P(a(k, j) = `).

But, ∆j(X`) = 0 for all ` ≤ j, ` 6= j, and we finally have

∆j(Xk1{j /∈Ak}) = 0,

which completes the proof. �

Lemma 6. For all k ∈ Zd, the series
∑
j∈Zd ∆j(Xk) converges in L2 and

Xk − E(Xk) =
∑
j∈Zd

∆j(Xk).

Proof. First, remark that by stationarity we may only consider the case where k = 0. The
sum in the statement can be written as

∑
j∈Nd ∆−j(X0) since the other terms vanish. We

denote by n1 the vector (n, . . . , n) where n ∈ N. By Lemma 5, we have

E

 ∑
j∈[0,n1]

∆−j(X0)

2 = E(X∗20 )

 ∑
j∈[0,n1]

q2
j


and the right hand side converges to Var(X0) as n → ∞ thanks to Lemma 4. Now, by
construction, the random variables

∑
j∈[0,n1] ∆−j(X0) and X0 −

∑
j∈[0,n1] ∆−j(X0) are or-

thogonal. To see this last fact, note that for all l ≤ 0 and j ≤ 0, E (E(X0 | σl) | σj) =
E
(
X0 | σmin{l,j}

)
, where the minimum is taken on each coordinate. Thus, we get

E

X0 − E(X0)−
∑

j∈[0,n1]

∆−j(X0)

2 = Var(X0)− E

 ∑
j∈[0,n1]

∆−j(X0)

2→ 0,

as n→∞. �

From Lemma 6 and Lemma 5, we get that (Xj − E(Xj))j∈Zd is the linear random field

given by the innovations (X∗j )j∈Zd and the filter (qj)j∈Zd . That is, for all k ∈ Zd,

Xk − E(Xk) =
∑
j∈Zd

qk−jX
∗
j .
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Hence, we proved the following proposition.

Proposition 3. For all n ∈ Nd,

Sn − E(Sn) =
∑
j∈Zd

bn,jX
∗
j .

where bn,j =
∑
k∈[0,n−1] qk−j. Further, for any n ∈ Nd, bn = (bn,j)j∈Zd belongs to `2(Zd),

that is ‖bn‖2 :=
∑
j∈Zd b

2
n,j <∞.

3. A central limit theorem

We still assume µ ∈ D(E, ν), where ν is a full E-operator stable law on Rd+ with E =
diag(1/α1, . . . , 1/αd), with αi ∈ (0, 1) and α1 ∈ (0, 1/2) if d = 1. The random field (Xj)j∈Zd
is the random field defined in Section 2.3. In view of Proposition 3, we want to establish
central limit theorems for the sequences of L2 random variables∑

j∈Zd
cn,jX

∗
j , n ≥ 1

with general coefficients cn = (cn,j)j∈Zd ∈ `2(Zd). Recall the definition of X∗j in (15). It turns
out that a simple assumption on cn for a central limit theorem is given by

(20) lim
n→∞

sup
j∈Zd

|cn,j |
‖cn‖

= 0.

The aim of this section is to prove the following central limit theorem.

Theorem 3. Let cn = (cn,j)j∈Zd be a sequence in `2(Zd) satisfying (20). Then

1

‖cn‖
∑
j∈Zd

cn,jX
∗
j ⇒ N (0, σ2

X) as n→∞,

where

(21) σ2
X := Var(X∗0) =

Var(X0)∑
k∈Nd q

2
k

.

As a preparation, we prove the following theorem which is an adaptation of a theorem of
McLeish [33]. McLeish’s result applies to triangular arrays of Z-indexed martingale differ-
ences, and here we need a version for Zd-indexed martingale differences in the lexicographical
order. Recall that in the lexicographical order, for i, j ∈ Zd, i 6= j, we write i ≺ j if, with
m := min{q = 1, . . . , d : iq 6= jq}, im < jm. A collection of σ-fields {Fi}i∈Zd is called a
filtration in the lexicographical order, if Fi ⊂ Fj for all i ≺ j. In this case, we say that
integrable random variables (ξi)i∈Zd are martingale differences with respect to {Fi}i∈Zd if

ξi ∈ Fi+ed and E(ξi | Fi) = 0 for all i ∈ Zd,

where ed = (0, . . . , 0, 1) ∈ Zd.

Theorem 4 (McLeish [33]). Let (ξn,j)n∈N,j∈Zd be a collection of random variables satisfying∑
j∈Zd ξn,j ∈ L2 for all n ∈ N. Assume that for each n ∈ N, (ξn,j)j∈Zd are martingale

differences with respect to a filtration {Fn,j}j∈Zd in the lexicographical order. If

(i) limn→∞maxj∈Zd |ξn,j | = 0 in probability,
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(ii) supn∈N E
(

maxj∈Zd ξ
2
n,j

)
<∞,

(iii) limn→∞
∑
j∈Zd ξ

2
n,j = σ2 > 0 in probability,

then ∑
j∈Zd

ξn,j ⇒ N (0, σ2) as n→∞.

Proof. Let us explain how one can derive this theorem from Theorem 2.3 in [33] which is
stated for finite sets of random variables at each n. First, since

∑
j∈Zd ξn,j ∈ L2, one can

find a sequence of finite rectangles Γn in Zd such that
∑
j∈Zd\Γn ξn,j converges to 0 in L2 as

n→∞. Thus, the conclusion of Theorem 4 holds as soon as∑
j∈Γn

ξn,j ⇒ N (0, σ2) as n→∞.

Furthermore, for each n, using the lexicographical order on the finite set Γn, one can re-index
the random variables (ξn,j)j∈Γn and the σ-fields {Fn,j}j∈Γn in order to fit with the statement
of [33, Theorem 2.3]. Now, it suffices to observe that conditions (i), (ii), and (iii) imply those
of [33, Theorem 2.3]. �

We also need the following lemma.

Lemma 7. Let cn = (cn,j)j∈Zd be a sequence in `2(Zd) such that (20) holds. Then,

lim
n→∞

1

‖cn‖2
∑
j∈Zd

c2
n,jX

∗2
j = E(X∗20 ) in L2,

Proof. We start by showing that

(22) Cov(X∗2i , X
∗2
j )→ 0, as |i− j|∞ →∞.

Observe that X∗j = Xj −
∑
`>0 p`Xj−` and let X∗j,k = Xj −

∑
`∈{1,...,k}d p`Xj−`. For any

j ∈ Zd, using that |X∗j | ≤ 2, we get

∣∣X∗2j −X∗2j,k∣∣ ≤ 4
∣∣X∗j −X∗j,k∣∣ = 4

∣∣∣∣∣∣
∑

`∈[1,∞)d\[1,k]d

p`Xj−`

∣∣∣∣∣∣
Thus, since |Xj | = 1 for all j ∈ Zd,

(23) sup
j∈Zd

∣∣X∗2j −X∗2j,k∣∣ ≤ 4µ
(

[1,∞)d \ [1, k]d
)

a.s., for all k > 0.

Now, introduce

Ri,j,k =


 ⋃
`∈i−[0,k]d

A`

 ∩
 ⋃
m∈j−[0,k]d

Am

 = ∅

 .

We have

P(Rci,j,k) ≤
∑

`∈i−[0,k]d

∑
m∈j−[0,k]d

P(A` ∩Am 6= ∅).
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But, from Lemma 1 (i), we see that P(A` ∩ Am 6= ∅) → 0 as |` −m|∞ → ∞ and thus, for
any k ≥ 1,

(24) P(Rci,j,k)→ 0, as |i− j|∞ →∞.

Fix ε > 0 and, using (23), let k ∈ N be such that supj∈Zd |X∗2j −X∗2j,k| < ε. From (24), for

|i− j|∞ large enough, we have P(Rci,j,k) < ε and we obtain

E(X∗2i X
∗2
j ) = E(X∗2i,kX

∗2
j,k) +O(ε) = E(X∗2i,kX

∗2
j,k | Ri,j,k) +O(ε)

= E(X∗2i,k | Ri,j,k)E(X∗2j,k | Ri,j,k) +O(ε) = E(X∗2i,k)E(X∗2j,k) +O(ε)

= E(X∗2i )E(X∗2j ) +O(ε).

This proves (22).
To prove the lemma, fix ε > 0 and let K > 0 be such that |Cov(X∗2j , X

∗2
i )| ≤ ε as soon as

|i− j|∞ > K. One has,

E

 1

‖cn‖2
∑
j∈Zd

c2
n,jX

∗2
j − E(X∗20 )

2

=
∑
j∈Zd

c2
n,j

‖cn‖2
∑
i∈Zd

c2
n,i

‖cn‖2
Cov(X∗2j , X

∗2
i )

≤
∑
j∈Zd

c2
n,j

‖cn‖2
∑

|i−j|∞≤K

c2
n,i

‖cn‖2
|Cov(X∗2j , X

∗2
i )|+ ε

∑
j∈Zd

c2
n,j

‖cn‖2
∑

|i−j|∞>K

c2
n,i

‖cn‖2

≤ sup
k∈Zd

c2
n,k

‖cn‖2
∑

|i−0|∞≤K

|Cov(X∗20 , X
∗2
i )|+ ε,

and the first term of the right hand side goes to 0 as n → ∞ because |Cov(X∗20 , X
∗2
i )| is

bounded and supk∈Zd c
2
n,k = o(‖cn‖2) by assumption. �

Proof of Theorem 3. Recall that we write σj = σ{Xk | k < j} and σj = σ{Xk | k � j}, and

we already have seen for all j ∈ Zd,

E(Xj | σj) = E(Xj | σj).

We now consider the σ-fields Fj = σ{Xk | k ≺ j}. We have σj ⊂ Fj ⊂ σj for all j ∈ Zd and

thus, for all j ∈ Zd, we also have

E(Xj | Fj) = E(Xj | σj).

Thus, by definition (see (15)), the random field (X∗j )j∈Zd is composed of martingale differences

with respect to the filtration {Fj}j∈Zd defined above in the lexicographical order. Now in
order to establish Theorem 3, we apply Theorem 4 to

ξn,j :=
cn,j
‖cn‖

X∗j and Fn,j := Fj = σ{Xk | k ≺ j}.

Note that |X∗j | ≤ 2, and by Lemma 4 the conditions (i), (ii), and (iii) are satisfied with

σ2
X = σ2 = E(X∗20 ) = Var(X∗0) = (

∑
k∈Nd q

2
k)−1 Var(X0). The proof is thus completed. �
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The following lemma gives another useful condition on the coefficients (cn,j)j∈Zd for The-
orem 3.

Lemma 8. If (cn,j)j∈Zd is a sequence in `2(Zd) that satisfies, for all q = 1, . . . , d,

(25) lim
n→∞

1

‖cn‖2
∑
j∈Zd
|c2
n,j − c2

n,j+eq | = 0,

where eq is the q-th vector of the canonical basis of Rd, then (20) holds.

Proof. We use an idea of [37]. Assume that (20) does not hold. Then, there exist ε > 0, a
sequence (nk)k≥1 such that nk → ∞ as k → ∞, and a sequence (jk)k≥1 such that cnk,jk >

ε‖cnk‖ for all k ∈ N. Choose M > 0 such that Mdε2 > 1. One has, for all k ∈ N,

‖cnk‖
2 ≥

∑
j∈[0,M−1]d

c2
nk,jk+j ≥Mdc2

nk,jk
−

∑
j∈[0,M−1]d

|c2
nk,jk+j − c2

nk,jk
|.

Hence,

(26) (Mdε2 − 1)‖cnk‖
2 ≤

∑
j∈[0,M−1]d

|c2
nk,jk+j − c2

nk,jk
|.

But, if j ∈ [0,M − 1]d, then

|c2
nk,jk

− c2
nk,jk+j | ≤

`(λ)∑
i=1

|c2
nk,λi

− c2
nk,λi+1

|,

where λ = (λ0,λ1, . . . ,λ`) is any path from λ0 = jk to λ` = jk + j, with |λi − λi+1|1 = 1.
Since j ∈ [0,M − 1]d, we can always choose the path λ of length ` = `(λ) smaller than dM .
Thus, we get

|c2
nk,jk

− c2
nk,jk+j | ≤ dM sup

q=1,...,d
sup
k∈Zd

|c2
nk,k
− c2

nk,k+eq |

≤ dM
d∑
q=1

∑
k∈Zd

|c2
nk,k
− c2

nk,k+eq |.

Together with (26), this contradicts (25). �

Remark 3. Using Cauchy-Schwarz inequality, we also see that the condition

(27) lim
n→∞

1

‖cn‖2
∑
j∈Zd

(cn,j − cn,j+eq)2 = 0, for all q = 1, . . . , d,

implies (25) and thus by Lemma 8, implies (20). This last observation leads to an improvement
in Theorem 3.1 in Biermé and Durieu [5]. The conditions (i) and (ii) of this theorem are
equivalent to our conditions (20) and (27), respectively. Thus, the condition (i) in [5, Theorem
3.1] is unnecessary.

4. An invariance principle

The aim of the section is to establish a general invariance principle for partial sums of the
random field (Xj)j∈Zd defined in Section 2.
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4.1. Main result.
Recall that (Xj)j∈Zd are associated to the random graph Gµ, with µ ∈ D(E, ν). We consider

partial sums on finite rectangular subsets of Zd. As we will see, the growth of the rectangles
will be determinant in the invariance principle and different limit random fields appear at
different regimes. For the general case, consider a matrix E′ = diag(1/α′1, . . . , 1/α

′
d) with

α′i > 0, i = 1, . . . , d and the partial-sum process

SE
′

n (t) =
∑

j∈[0,nE′t−1]

Xj , n ≥ 1 and t = (t1, . . . , td) ∈ [0, 1]d.

The result will depend on both E′ and E.
We introduce several parameters. First, for all k = 1, . . . , d, set ρk := αk/α

′
k, and consider

(28) γ0 = γ0(E,E′) := min

γ ∈ {ρ1, . . . , ρd}

∣∣∣∣∣∣
∑

k:γ≥ρk

1

αk
> 2,

∑
k:γ>ρk

1

αk
≤ 2

 .

Note that γ0 is well defined by the assumption q(E) > 2, and is completely determined by E
and E′. Given γ0 > 0, define the sets

I< := {k ∈ {1, . . . , d} | γ0 < ρk},
I= := {k ∈ {1, . . . , d} | γ0 = ρk},
I> := {k ∈ {1, . . . , d} | γ0 > ρk}.

This gives a partition of {1, . . . , d}. We also write I≤ := I< ∪ I= and I≥ := I= ∪ I>. The
sets I> and I< consist of the directions in which the limit random field exhibit degenerate
dependence structure. Remark that by construction,

|I=| ≥ 1 and |I>| ≤ 1.

According to these subsets of {1, . . . , d}, we consider subspaces of Rd given by

H< := {x ∈ Rd | xk = 0 for k /∈ I<},

and similarly H=,H>,H≤,H≥. Let π<, π=, π>, π≤, and π≥ denote orthogonal projections to
the corresponding subspaces, and let λ<, λ=, λ>, λ≤, and λ≥ denote the Lebesgue measures
on the corresponding subspaces. For π of any proceeding projection, πE is a linear operator
on Rd; accordingly there is a corresponding diagonal matrix, which we also denote by πE
with a slight abuse of notation.

Next, we define another diagonal matrix E′′ (that only depends on E and E′) by:

E′′ := diag(γ1/α
′
1, . . . , γd/α

′
d), with γk :=

γ0

ρk
∨ 1, k = 1, . . . , d.

By definition of E′′, one has

(29) π≤E
′′ = π≤E

′ and π≥E
′′ = γ0π≥E.

Further, E′′ − γ0E is strictly positive on H<. We can now state our main result.

Theorem 5. Assume µ ∈ D(E, ν) with E = diag(1/α1, . . . , 1/αd) with αi ∈ (0, 1), i =
1, . . . , d, and α1 ∈ (0, 1/2) if d = 1. Let E′ = diag(1/α′1, . . . , 1/α

′
d), with α′i > 0, i = 1, . . . , d,



20 HERMINE BIERMÉ, OLIVIER DURIEU, AND YIZAO WANG

and γ0 defined as in (28). If q(π>E) < 2, then(
SE
′

n (t)− E(SE
′

n (t))

nγ0+q(E′)−q(E′′)/2

)
t∈[0,1]d

⇒ (W (t))t∈[0,1]d ,

as n → ∞, in the Skorohod space D([0, 1]d), where (W (t))t∈Rd is a zero-mean Gaussian
process with covariances given by

Cov(W (t),W (s)) = σ2
X

∏
k∈I<

Cov(B1/2(tk), B1/2(sk))


×

∏
k∈I>

tksk
2π

∫
H≥
| logψ(y)|−2

∏
k∈I=

(eitkyk − 1)(eiskyk − 1)

2π|yk|2
dλ≥(y),

with B1/2 a standard Brownian motion on R, ψ is the characteristic function of ν, and σ2
X is

given in (21).

In the expression of covariance above and in the sequel, it is understood that when I< or
I> is empty, the corresponding product equals 1.

This theorem reveals that taking different summing rectangles may lead to different limits,
under different normalizations. To the best of our knowledge, such a phenomenon has not
been noticed in the literature until very recently [38, 39] for a different model. We elaborate
on this phenomenon of scaling transition in Section 5.

Remark 4. Observe that one can write Cov(W (t),W (s)) =
σ2
X

(2π)d
C(t, s) with

(30) C(t, s) :=

∏
k∈I>

tksk

∫
Rd
|logψ(π≥y)|−2

∏
k∈I≤

(
eitkyk − 1

)
(eiskyk − 1)

|yk|2

 dy,

because of the identity [46, Proposition 7.2.8]:

(31)

∫
R

(eity − 1)(eisy − 1)

2π|y|1+2H
dy = CH Cov (BH(t), BH(s)) , t, s ∈ R, H ∈ (0, 1)

with
CH =

π

HΓ(2H) sin(Hπ)
.

Both Theorems 1 and 2 follow directly from Theorem 5.

Proof of Theorem 1. In the critical regime corresponding to Theorem 1, E = E′ and I< =
I> = ∅. In addition to I< = I> = ∅, it also follows that H≥ = Rd and λ≥ is the Lebesgue
measure on Rd. Theorem 1 now follows immediately. �

The proof of Theorem 2 is slightly more computational. As it corresponds to a special case
that the limit W is a fractional Brownian sheet, which will be discussed in Section 5.2, the
proof is postponed there.

Remark 5. By definition (28), q(π>E) ≤ 2. The condition q(π>E) < 2 in Theorem 5 cannot
be dropped. It is easy to construct an example with q(π>E) = 2, and as can be seen at
the end of the proof of Lemma 9, in this case the asymptotic estimate of the covariance
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no longer holds. Moreover, in view of results for d = 2 (Theorem 2), this corresponds to
the cases α′2 > α2, α2 = 1/2 or α′2 < α2, α1 = 1/2. In these cases, we conjecture that
the limiting random fields are still fractional Brownian sheets with (H1, H2) = (1/2, 1) and
(H1, H2) = (1, 1/2) respectively: that is, the dependence is degenerate in both directions. So
q(π>E) = 2 may be viewed as another critical regime in the non-critical regime. Since the
paper is already quite involved, and this regime seems to preserve the least dependence, we
do not pursue the investigation of this case here.

Remark 6. As we will see below in the proof, essentially we establish an invariance principle
for linear random field (Xj)j∈Zd with

Xj =
∑
i∈Zd

qj−iX
∗
i , j ∈ Zd,

where (X∗i )i∈Zd are stationary martingale-difference innovations, and (qi)i∈Zd are real Fourier
coefficients of certain function Q(t). This is a standard framework to obtain linear random
fields in the literature, and we comment briefly on connections between our results and others.

(i) First, the same invariance principle should hold if the innovations are replaced by other
weakly dependent random fields (weakly dependent in the sense of e.g. [5, 28, 51]).
These results can be viewed as generalizations of the seminal work of Davydov [15]
on invariance principles for linear processes.

(ii) Second, from the modeling point of view, the specific choices of Q(t) (in terms of
µ ∈ D(E, ν)) and hence (qj)j∈Zd are new. However, although our assumption on
Q(t) is very general, not all possible operator-scaling Gaussian random fields can
show up in the limit; in particular the Hammond–Sheffield model in high dimensions
does not scale to fractional Brownian sheets except for a few cases in terms of Hurst
indices shown in Proposition 6. The aforementioned results [5, 28, 51] all include
linear random-field models scaling to fractional Brownian sheets, for flexible choices
of Hurst indices.

(iii) At last, when the innovation random fields exhibit strong dependence, the limiting
object could be more complicated ([28]).

4.2. Proof of the main result.
The rest of the section is devoted to the proof of Theorem 5. Using Proposition 3, we get

(32) SE
′

n (t)− E(SE
′

n (t)) =
∑
j∈Zd

bn,j(t)X
∗
j ,

with bn(t) = (bn,j(t))j∈Zd ∈ `
2(Zd) and

(33) bn,j(t) =
∑

k∈[0,nE′t−1]

qk−j .

Recall that (X∗j )j∈Zd are stationary martingale differences.
The proof of Theorem 5 is now divided into three steps. The key step is to compute the

covariance, which is done in Section 4.2.1. Then, we proceed with the standard argument to
show the weak convergence by first establishing finite-dimensional convergence in Section 4.2.2
and then the tightness in Section 4.2.3. The matrices E and E′, and thus γ0 and E′′, are
fixed as in the assumptions of the theorem.
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4.2.1. Covariances.
From (32), we obtain for t, s ∈ [0, 1]d,

Cov(SE
′

n (t), SE
′

n (s)) = σ2
X〈bn(t), bn(s)〉,

where, 〈bn(t), bn(s)〉 :=
∑
k∈Zd bn,k(t)bn,k(s). The asymptotic behavior of the covariances are

given in the following lemma where un ∼
n→∞

vn stands for limn→∞ un/vn = 1.

Lemma 9. For all t, s ∈ [0, 1]d,

σ2
X〈bn(t), bn(s)〉 ∼

n→∞
n2γ0+2q(E′)−q(E′′) Cov(W (t),W (s)).

Proof. Define for m ∈ N and x ∈ R,

Dm(x) =

m∑
l=0

eilx =
ei(m+1)x − 1

eix − 1
,

and for x ∈ Rd, the trigonometric polynomial

Kn(t,x) =
∑
j∈Zd

1j∈[0,nE′t−1]e
ij·x =

d∏
k=1

D
bn1/α′

k tk−1c
(xk),

where b·c stands for the integer part. Recall that since

Q(x) =
∑
j∈Zd

qje
ij·x,

the sequence bn(t) (defined in (33)) is obtained by the convolution product of the Fourier
coefficients of Kn(t, ·) and Q with Q(x) = Q(−x) since (qj)j∈Zd is a real sequence. It follows

that bn,k(t) is the k-th Fourier coefficient of QKn(t, ·). Therefore, using Bessel–Parseval
identity, we get

〈bn(t), bn(s)〉 =
1

(2π)d

∫
[−π,π]d

Q(x)Kn(t,x)Q(x)Kn(s,x)dx

=
1

(2π)d

∫
[−π,π]d

|Q(x)|2
d∏

k=1

D
bn1/α′

k tk−1c
(xk)Dbn1/α′

ksk−1c
(xk)dx

=
n−q(E

′′)

(2π)d

∫
nE′′ [−π,π]d

Φn(y, t, s) dy,(34)

where

Φn(y, t, s) :=
∣∣∣Q(n−E

′′
y)
∣∣∣2 d∏
k=1

D
bn1/α′

k tk−1c
(n−γk/α

′
kyk)Dbn1/α′

ksk−1c
(n−γk/α

′
kyk).

According to Lemma 2 and the E-homogeneity of logψ, one has

n−2γ0
∣∣∣Q(n−E

′′
y)
∣∣∣2 = n−2γ0

∣∣∣g(n−E
′′
y)
∣∣∣2 ∣∣∣logψ(n−γ0En−(E′′−γ0E)y)

∣∣∣−2

=
∣∣∣g(n−E

′′
y)
∣∣∣2 ∣∣∣logψ(n−(E′′−γ0E)y)

∣∣∣−2
.

Thus,

lim
n→∞

n−2γ0
∣∣∣Q(n−E

′′
y)
∣∣∣2 = |logψ(π≥y)|−2 ,
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because E′′ − γ0E is null on H≥ and strictly positive on H< and g(0) = 1. Further, for all

n ∈ N∗, y ∈ nE
′′
[−π, π]d,

(35) n−2γ0
∣∣∣Q(n−E

′′
y)
∣∣∣2 ≤ max

x∈[−π,π]d
|g(x)|2 sup

z∈H<
| logψ(z + π≥y)|−2.

Now, remark that for all t ∈ [0, 1] and y ∈ R,

lim
n→∞

n−1Dbnt−1c(n
−γy) =

 eity − 1

iy
if γ = 1

t if γ > 1
,

and if |n−γy| ≤ π, then

∣∣n−1Dbnt−1c(n
−γy)

∣∣ =

∣∣∣∣sin (bntcn−γy/2)

n sin (n−γy/2)

∣∣∣∣ ≤
 πmin

{
1,

1

|y|

}
if γ = 1

π

2
if γ > 1

,

where we have used that 2
π |x| ≤ | sin(x)| ≤ |x| ∧ 1 for x ∈ [−π/2, π/2] and that |t| ≤ 1. Since

γk > 1 if and only if k ∈ I>, we infer

(36) Φn(y, t, s) ∼ n2γ0+2q(E′) |logψ(π≥y)|−2

∏
k∈I>

tksk

∏
k∈I≤

(
eitkyk − 1

)
(eiskyk − 1)

|yk|2


as n→∞ and for all t, s ∈ [0, 1]d,

(37) n−2γ0−2q(E′)|Φn(y, t, s)| ≤ π2d max
x∈[−π,π]d

|g(x)|2 h(y),

with

(38) h(y) := sup
x∈H<

| logψ(x+ π≥y)|−2
∏
k∈I≤

min

{
1,

1

|yk|2

}
.

Applying the dominated convergence theorem to (34), (36) and (37) and using (30), to show
the desired result it remains to prove that h is integrable on Rd.

Formally, write∫
Rd
h(y)dy =

∫
H<

∫
H≥

h(y) dλ< ⊗ λ≥(y)

=

∫
H<

∏
k∈I<

min

{
1,

1

|yk|2

}
dλ<(y)

∫
H≥

sup
x∈H<

| logψ(x+ y)|−2
∏
k∈I=

min

{
1,

1

|yk|2

}
dλ≥(y),

where the first integral in the right hand-side is understood to be 1 if H< = {0} (i.e. I< = ∅).
By Fubini’s theorem, h is integrable over Rd if

(39)

∫
H<

∏
k∈I<

min

{
1,

1

|yk|2

}
dλ<(y) <∞

and

(40)

∫
H≥

h(y) dλ≥(y) =

∫
H≥

sup
x∈H<

| logψ(x+ y)|−2
∏
k∈I=

min

{
1,

1

|yk|2

}
dλ≥(y) <∞.
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The integrability condition (39) is obvious. For (40), let us remark that the function y ∈
H≥ 7→ infx∈H< | logψ(x+y)| is (π≥E)-homogeneous and since q(π≥E) > 2, by Lemma 3, the
function y ∈ H≥ 7→ supx∈H< | logψ(x+y)|−2 is locally integrable on H≥ with respect to λ≥.

Together with the fact that supx∈H< | logψ(x+ y)|−2 is bounded by 1 for π=y large enough,
this shows that (40) holds in the case H> = {0}. For the case H> 6= {0}, the preceding
considerations show that ∫

H≥
1{‖π>y‖π>E≤1}h(y) dλ≥(y) <∞,

with the definition of ‖ · ‖π>E given in (11). Moreover,∫
H≥

1{‖π>y‖π>E>1}h(y) dλ≥(y)

≤
∫
H>

1{‖y‖
π>E

>1} sup
x∈H≤

| logψ(x+ y)|−2 dλ>(y)

∫
H=

∏
k∈I=

min

{
1,

1

|yk|2

}
dλ=(y).

The second integral is clearly finite. For the first one, since y ∈ H> 7→ infx∈H≤ | logψ(x+y)|
is (π>E)-homogeneous and q(π>E) < 2, one has∫

H>
1{‖y‖

π>E
>1} sup

x∈H≤
| logψ(x+ y)|−2 dλ>(y)

=

∫ +∞

1
rq(π>E)−3

∫
Sπ>E

sup
x∈H≤

| logψ(x+ θ)|−2 dσπ>E(θ) <∞,

where Sπ>E is the unit sphere ofH> with respect to ‖·‖π>E and σπ>E is the Radon measure on

Sπ>E such that dλ> = rq(π>E)−1drdσπ>E . This shows that (40) holds and thus the function

h in (38) is integrable over Rd. �

4.2.2. Finite-dimensional convergence.
We start by showing that the coefficients bn,j(t) defined in (33) satisfy the condition (20)

of Theorem 3 in the following lemma.

Lemma 10. For all t ∈ (0, 1]d and all q = 1, . . . , d,

lim
n→∞

1

‖bn(t)‖2
∑
j∈Zd
|b2n,j(t)− b2n,j+eq(t)| = 0

and (20) holds.

Proof. Fix ` ∈ {1, . . . , d} and t ∈ (0, 1]d be fixed. Using Cauchy–Schwarz inequality,

∑
j∈Zd
|b2n,j(t)− b2n,j+e`(t)| ≤

∑
j∈Zd

(bn,j(t)− bn,j+e`(t))
2

 1
2

2‖bn(t)‖.

So, it is enough to show that∑
j∈Zd

(bn,j(t)− bn,j+e`(t))
2 = o(‖bn(t)‖2).
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But, we have

bn,j(t)− bn,j+e`(t) =
∑

k∈[0,nE
′
t−1]

with k`=bn1/α′` t`c−1

qk−j −
∑

k∈[0,nE
′
t−1]

with k`=0

qk−j−e` .

Thus,

∑
j∈Zd

(bn,j(t)− bn,j+e`(t))
2 ≤ 2

∑
j∈Zd

 ∑
k∈[0,nE

′
t−1]

with k`=0

qk−j


2

.

Let ε > 0. Using Lemma 9, we get

lim sup
n→∞

1

‖bn(t)‖2
∑
j∈Zd

 ∑
k∈[0,nE

′
t−1]

with k`=0

qk−j


2

≤ lim sup
n→∞

1

‖bn(t)‖2
∑
j∈Zd


∑

k∈[0,nE
′
t−1]

with k`≤εn1/α′` t`−1

qk−j


2

= lim sup
n→∞

‖bn(t1, . . . , t`−1, εt`, t`+1, . . . , td)‖2

‖bn(t)‖2

=
V (t1, . . . , t`−1, εt`, t`+1, . . . , td)

V (t)
,

where V (t) := C(t, t) with the covariance function C(·, ·) defined in (30). We conclude the
proof of the lemma using that, for any t ∈ (0, 1]d,

V (t1, . . . , t`−1, εt`, t`+1, . . . , td)→ 0, as ε→ 0.

The fact that (20) holds is a consequence of Lemma 8. �

To prove the finite-dimensional convergence, we use the Cramèr-Wold device. Let m ∈ N,

t1, . . . , tm ∈ [0, 1]d, λ1, . . . , λm ∈ R, and consider S
(m)
n =

∑m
k=1 λkS

E′
n (tk). One has

S(m)
n − E(S(m)

n ) =
∑
j∈Zd

dn,jX
∗
j ,

where dn,j :=
∑m

k=1 λkbn,j(tk) and Var(S
(m)
n ) = ‖dn‖2 Var(X∗0). Using Lemma 9, we get

‖dn‖2 =
m∑
k=1

m∑
`=1

λkλ`〈bn(tk), bn(t`)〉 ∼
n→∞

n2γ0+2q(E′)−q(E′′)

(2π)d

m∑
k=1

m∑
`=1

λkλ`C(tk, t`),

where C is defined in (30).

If
∑m

k=1

∑m
`=1 λkλ`C(tk, t`) = 0, then 1

nγ0+q(E
′)−q(E′′)/2 (S

(m)
n − E(S

(m)
n )) converges to 0 in

L2. If
∑m

k=1

∑m
`=1 λkλ`C(tk, t`) > 0, we get that for each k = 1, . . . ,m,

‖bn(tk)‖2 ∼
n→∞

‖dn‖2
C(tk, tk)∑m

k=1

∑m
`=1 λkλ`C(tk, t`)

.
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Thus, since the bn,j(tk) satisfy (20),

sup
j
|dn,j | ≤

m∑
k=1

λk sup
j
|bn,j(tk)| =

m∑
k=1

λk o(‖bn(tk)‖) = o(‖dn‖).

This proves that (20) also holds for the dn,j and Theorem 3 applies to S
(m)
n . We thus proved

the finite-dimensional convergence.

4.2.3. Tightness.
To prove the tightness, by Bickel and Wichura [3], following [51] and [27], it is enough to

show that for some p > 0 there exist γ > 1 and C > 0 such that for all t = (t1, . . . , td) ∈ [0, 1]d,

E

∣∣∣∣∣SE
′

n (t)− E(SE
′

n (t))

nγ0+q(E′)− q(E
′′)

2

∣∣∣∣∣
p

≤ C
d∏
j=1

tγj .

Recall from the equation (34) that for all t ∈ [0, 1]d, we have

‖bn(t)‖2 =
n−q(E

′′)

(2π)d

∫
nE′′ [−π,π]d

∣∣∣Q(n−E
′′
y)
∣∣∣2( d∏

k=1

∣∣∣Dbn1/α′
k tk−1c

(n−γk/α
′
kyk)

∣∣∣2) dy.

For any δ ∈ (0, 1), observe that | sin2(x)| = | sin1−δ(x)|| sin1+δ(x)| ≤ min{|x|1−δ, |x|2} for all
x, and | sin(x)| ≥ 2

π |x| for x ∈ [−π/2, π/2]. Then, for all n and y such that |ny| ≤ π and all
t ∈ [0, 1], one has

n−2|Dbnt−1c(n
−1y)|2 =

sin2
(
bntc y2n

)
n2 sin2

( y
2n

)
≤ min

{
π2

21−δ
t1−δ

|y|1+δ
,
π2

4
t2
}
≤ π2

21−δ t
1−δ min

{
1

|y|1+δ
, 1

}
,

and thus,

n−2|Dbnt−1c(n
−γy)|2 ≤


π2

21−δ t
1−δ min

{
1

|y|1+δ
, 1

}
if γ = 1

π2

4
t2 if γ > 1

.

Recalling that γk/α
′
k > 1 if and only if k ∈ I>, together with (35), this shows that there

exists a constant C > 0 such that

n−2γ0−2q(E′)+q(E′′)‖bn(t)‖2

≤ C

∏
j∈I>

t2j

∏
j∈I≤

t1−δj

∫
Rd

sup
x∈H<

| logψ(x+ π≥y)|−2
∏
j∈I≤

min

{
1

|yj |1+δ
, 1

}
dy.

One can show that this last integral is finite by proceeding exactly as we did to show the
integrability of the function h in (38). The important point is that 1 + δ > 1 to guarantee
the integrability of 1

|y|1+δ at infinity. Hence, for a new constant C ′ > 0,

n−2γ0−2q(E′)+q(E′′)‖bn(t)‖2 ≤ C ′
∏
j∈I>

t2j

∏
j∈I≤

t1−δj

 ≤ C ′ d∏
j=1

t1−δj .
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Let p > 2. Using Burkholder inequality and the preceding inequality, there exists a constant
cp > 0 such that

E

∣∣∣∣∣SE
′

n (t)− E(SE
′

n (t))

nγ0+q(E′)−q(E′′)/2

∣∣∣∣∣
p

≤ cpE

∑
j∈Zd

b2n,j(t)

n2γ0+2q(E′)−q(E′′)X
∗2
j


p
2

≤ cp
(

‖bn(t)‖2

n2γ0+2q(E′)−q(E′′)

) p
2

≤ cpC ′p/2
d∏
j=1

t
(1−δ)p/2
j ,

which gives the tightness by choosing δ > 1− 2
p .

5. Properties of the limit field

In this section we focus on the zero-mean Gaussian random field (W (t))t∈Rd arising in the
limit in Theorem 5. Recall that this random field depends on both E and E′.

5.1. Increments.
We may consider a harmonizable representation of W , defined on the whole space Rd by

W (t) = σX

∏
k∈I>

tk

∫
Rd

∏
k∈I≤

eitkyk − 1

iyk

 | logψ(π≥y)|−1M̃(dy), ∀t ∈ Rd,

with σX given in (21), and M̃ is a centered complex-valued Gaussian measure on Rd with
Lebesgue control measure (see [52]). The harmonizable representation shows that the random
field has stationary rectangular increments. In the sequel we let (e1, . . . , ed) denote the
canonical basis of Rd. Rectangular increments of W are defined for s < t by

W ([s, t]) =
∑

ε∈{0,1}d
(−1)d+|ε|1W (s1 + ε1(t1 − s1), . . . , sd + εd(td − sd))

= ∆
(1)
t1−s1∆

(2)
t2−s2 . . .∆

(d)
td−sdW (s),

where |ε|1 = ε1 + . . .+ εd and ∆
(j)
δ corresponds to the directional increment of step δ ∈ R in

direction j for 1 ≤ j ≤ d, defined by

∆
(j)
δ W (t) = W (t+ δej)−W (t).

A direct consequence of Theorem 5 are the following properties of the random field W .

Proposition 4. The random field W satisfies the following properties:

(i) stationary rectangular increments: for any fixed s ∈ Rd,

(W ([s, t]))s<t
fdd
= (W ([0, t− s]))s<t ≡ (W (t− s))s<t;

(ii) (E′, H)-operator-scaling property: for all λ > 0

(W (λE
′
t))t∈Rd

fdd
= (λHW (t))t∈Rd ,

with H = γ0 + q(E′)− q(E′′)
2 and E′′ satisfying (29).
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Proof. Property (i) can be proved by observing that W [s, t] corresponds to the limit of partial
sums of a stationary random field over a rectangle area, after normalization. By stationarity,
the distributions of the partial sums, and hence the limit, depend only on t−s, up to certain
boundary effect which needs to be taken care of. Alternatively, the stationary increment
property can also be derived from the covariance function. The proof is omitted.

We only prove (ii) here. Recall the definition of C(t, s) in (30). By the change of variables

yk 7→
{
λ1/α′kyk k ∈ I≤
λγ0/αkyk k ∈ I>

,

we have

C(λE
′
t, λE

′
s) =

∏
k∈I>

λ2/α′ktksk


×
∫
Rd

1

| logψ(λ−γ0Eλγ0Eπ≥y)|2

∏
k∈I≤

(eitkλ
1/α′kyk − 1)(eiskλ

1/α′
kyk − 1)

2π|yk|2

 dy

=

∏
k∈I>

λ2/α′k

λ2γ0

∏
k∈I≤

λ1/α′k

∏
k∈I>

λ−γ0/αk

C(t, s)

= λ2γ0+q(E′)+q(π>E′)−γ0q(π>E)C(t, s),

where in the second equality we also used the fact that logψ(λEy) = λ logψ(y). On the other
hand, recalling (29), we have

q(E′)− 1

2
q(E′′) = q(E′)− 1

2
q(π≤E

′)− γ0

2
q(π>E) =

1

2
q(E′) +

1

2
q(π>E

′)− γ0

2
q(π>E).

The desired result thus follows. �

We can say more about the directional increments ∆
(j)
δ W (t). First of all, as a special case

of Proposition 4, (i), W (t) viewed as a process indexed by tj ∈ R has stationary increments.
Moreover, simple dependence properties in the directions corresponding to I> and I<, if
not empty, are given below. Following ideas from [39, Definition 2.2] we state the following
proposition. Recall that |I>| ≤ 1.

Proposition 5. The random field W satisfies the following properties:

(i) When I> = {j}, the random field W has invariant increments in the direction ej: for

all h, δ ∈ R, t ∈ Rd, we have ∆
(j)
δ W (t+ hej) = ∆

(j)
δ W (t).

(ii) When I< 6= ∅, the random field W has independent increments in any direction ej with

j ∈ I<: for all δ > 0, t ∈ Rd, ∆
(j)
δ W (t) is independent from W (t).

Proof. Let 〈ej〉⊥ denote the subspace of Rd orthogonal to ej . Let π〈ej〉⊥ and λ〈ej〉⊥ denote
the corresponding projection and Lebesgue measure, respectively. First, let us simply remark
that for I> = {j}, δ ∈ R, and t ∈ Rd,

∆
(j)
δ W (t) = δW (π〈ej〉⊥(t) + ej),
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which does not depend on tj . The desired statement then follows. For the second statement,
when j ∈ I<,

∆
(j)
δ W (t) = σX

∏
k∈I>

tk


×
∫
Rd

eitjyj
(
eiδyj − 1

)
iyj

 ∏
k∈I≤;k 6=j

eitkyk − 1

iyk

 | logψ(π≥y)|−1M̃(dy).

Therefore

Cov(∆
(j)
δ W (t),W (t)) = Cej (t)

∫
R

(
eiδyj − 1

) (
1− eitjyj

)
|yj |2

dyj ,

with

Cej (t) = σ2
X

∏
k∈I>

tk

2 ∫
〈ej〉⊥

∏
k∈I≤;k 6=j

∣∣∣∣eitkyk − 1

iyk

∣∣∣∣2 | logψ(π≥y)|−2dλ〈ej〉⊥(y).

Hence, Cov(∆
(j)
δ W (t),W (t)) = 2πCej (t)Cov(B1/2(tj + δ) − B1/2(tj), B1/2(tj)), with B1/2

a standard Brownian motion on R. By independent increments of B1/2, we obtain that

Cov(∆
(j)
δ W (t),W (t)) = 0 for δ ≥ 0. Since W is a Gaussian field, we conclude that ∆

(j)
δ W (t)

is independent from W (t). �

Let us mention that our definitions of invariant and independent increments are not the
ones used in [39, Definition 2.2]. However we remark that invariant increments in the direction
ej lead to invariant rectangular increments in the sense that, for all δ ∈ R, and s < t

W ([s+ δej , t+ δej ])=W ([s, t]).

This follows from the fact that

W ([s+ δej , t+ δej ]) = ∆
(1)
t1−s1∆

(2)
t2−s2 . . .∆

(d)
td−sdW (s+ δej).

Indeed, computing first ∆
(j)
tj−sjW (s+ δej) = ∆

(j)
tj−sjW (s), we obtain the desired result.

When the increments are either invariant or independent in at least one direction, we say
that W has degenerate increments. Otherwise, we say that W has non-degenerate increments.

Example 4. When d = 2, choosing E′ = diag(1, β) for β > 0 as in [39] we obtain that
|I=| = 2 if and only if ρ1 = ρ2, that is β = α2

α1
. It follows that for β 6= α2

α1
, one has |I=| = 1

and W has either independent or invariant increments in the orthogonal direction. However,
when β = α2

α1
we get

W (t) = σX

∫
R2

(
2∏

k=1

eitkyk − 1

iyk

)
| logψ(y)|−1M̃(dy),∀t ∈ R2.

In this case, W has non-degenerate increments. Recall that all possible non-critical cases in
d = 2 have been provided in Theorem 2 in introduction.

More generally for d ≥ 2 we can state the following scaling-transition property.

Corollary 1. The random field (Xj)j∈Zd, defined in Section 2.3, exhibits a scaling-transition
in the sense that
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(i) If there exists c > 0 such that E′ = cE, then W has non-degenerate increments;
(ii) Otherwise, W has degenerate increments. That is, there exists at least one direction in

which the increments of the limit random field are either invariant or independent.

In the sequel, we need to control the variance of the directional increments. By Proposi-
tion 5, for all u ∈ Rd, δ ∈ R,

Var(∆
(j)
δ W (u)) = δ2 Var(W (π〈ej〉⊥(u) + ej)), j ∈ I>,

and

(41) Var(∆
(j)
δ W (u)) = |δ|Var(W (π〈ej〉⊥(u) + ej)), j ∈ I<.

The control for j ∈ I= is a little more involved, as summarized in the following lemma.

Lemma 11. There exist some constants C such that for all u ∈ [−1, 1]d, δ ∈ R, j ∈ I=, the
following inequalities hold.

(a) If |I>| = 1 or I> = ∅ and αj < 1/2,

(42) Var(∆
(j)
δ W (u)) ≤ C|δ|2βj with βj = αj

(
1− q(π>E)

2

)
+

1

2
.

(b) If I> = ∅, αj = 1/2, then

(43) Var(∆
(j)
δ W (u)) ≤ C max(δ2, |δ|2Hj ) for all Hj ∈ (0, 1).

(c) If I> = ∅, αj > 1/2, then

(44) Var(∆
(j)
δ W (u)) ≤ Cδ2.

Proof. Recall (31). For j ∈ I=, for all u ∈ [−1, 1]d and δ ∈ R,

Var
(

∆
(j)
δ W (u)

)
=

σX ∏
k∈I>

uk

2 ∫
R

∣∣∣∣eiδyj − 1

iyj

∣∣∣∣2 fj(yj)dyj ,
with

fj(yj) =

∫
〈ej〉⊥

∏
k∈I≤;k 6=j

∣∣∣∣eiukyk − 1

iyk

∣∣∣∣2 | logψ(π≥(y + yjej))|−2dλ〈ej〉⊥(y).

This is a locally integrable function over R for all values of αj ∈ (0, 1) due to the fact that
| logψ(π≥y)| is a π≥E-homogeneous function, q(π≥E) > 2, and Lemma 3. Furthermore, by
E-homogeneity and polar coordinate x = τ(x)Eθ(x),

| logψ(x)|−1 =
| logψ(π>x)|+ |xj |αj

| logψ(x)|
(| logψ(π>x)|+ |xj |αj )−1

=
τ(x)| logψ(π>θ(x))|+ τ(x)|θj(x)|αj

τ(x)| logψ(θ(x))|
(| logψ(π>x)|+ |xj |αj )−1

≤ c1(| logψ(π>x)|+ |xj |αj )−1
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with c1 = maxθ∈SE (| logψ(π>θ)|+ |θj |αj )/| logψ(θ)|. Thus,

fj(yj) ≤ c2
1

∫
〈ej〉⊥

∏
k∈I≤;k 6=j

∣∣∣∣eiukyk − 1

iyk

∣∣∣∣2 (| logψ(π>y)|+ |yj |αj )−2 dλ〈ej〉⊥(y)

= c2
1

 ∏
k∈I≤;k 6=j

∫
R

∣∣∣∣eiukyk − 1

iyk

∣∣∣∣2 dyk
∫

H>
(| logψ(π>y)|+ |yj |αj )−2 dλ>(y),

where the last integral in the right-hand side has to be reduced to |yj |−2αj if H> = {0} and
otherwise is equal to∫

H>
|yj |−2αj

(∣∣logψ((|yj |αj )−Eπ>y)
∣∣+ 1

)−2
dλ>(y)

= |yj |−2αj+αjq(π>E)

∫
H>

(| logψ(π>y)|+ 1)−2dλ>(y) =: |yj |−2βj+1c2

with βj = αj(1− q(π>E)/2) + 1/2. We have thus obtained

fj(yj) ≤ c3|yj |−2βj+1 with c3 = c2
1c2

∏
k∈I≤;k 6=j

(2πuk).

Recall that |I>| ≤ 1.
(a) In case that |I>| = 1, q(π>E) > 1 and thus βj < 1. Therefore by the above calculation
and (31),

(45) Var(∆
(j)
δ W (u(j))) ≤ σ2

Xc3

∫ ∣∣∣∣eiδyj − 1

iyj

∣∣∣∣2 |yj |−2βj+1dyj = σ2
Xc3Cβj |δ|

2βj .

In case that |I>| = 0, βj = αj + 1/2. If αj < 1/2, then the same bound (45) holds.
(b) If αj = 1/2, then for any Hj ∈ (0, 1),∫

R

∣∣∣∣eiδyj − 1

iyj

∣∣∣∣2 fj(yj)dyj ≤ δ2

∫
|yj |≤1

fj(yj)dyj + c3

∫
|yj |>1

∣∣∣∣eiδyj − 1

iyj

∣∣∣∣2 |yj |−2Hj+1dyj

≤ c4 max(δ2, |δ|2Hj ),

with

c4 = max
u∈[−1,1]d

∫
〈ej〉⊥

∏
k∈I≤;k 6=j

∣∣∣∣eiukyk − 1

iuk

∣∣∣∣2 | logψ(π≥y)|−2dλ〈ej〉⊥(y) + c3CHj .

Therefore,

Var
(

∆
(j)
δ W (u(j))

)
≤ σ2

Xc4 max(δ2, |δ|2Hj ).

(c) At last, if αj > 1/2, then βj > 1, the function fj is integrable on R and∫
R

∣∣∣∣eiδyj − 1

iyj

∣∣∣∣2 fj(yj)dyj ≤ δ2

∫
R
fj(yj)dyj .

It then follows that

Var
(

∆
(j)
δ W (u(j))

)
≤ c5δ

2,
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with

c5 = σ2
X sup
u∈[−1,1]d

∫
Rd

∏
k∈I≤;k 6=j

∣∣∣∣eiukyk − 1

iyk

∣∣∣∣2 | logψ(π≥y)|−2dy.

�

5.2. Fractional Brownian sheets. Here we give a complete characterization of when W
is a fractional Brownian sheet. Recall that a zero-mean Gaussian random field (X(t))t∈Rd is

a standard fractional Brownian sheet with Hurst index (H1, . . . ,Hd) ∈ (0, 1]d if

Cov(X(t), X(s)) =
1

2d

d∏
i=1

(
|ti|2Hi + |si|2Hi − |ti − si|2Hi

)
.

Remark that we include the degenerate case that Hurst index equals 1.
For the limit random field W , the covariance function can be factorized according to dif-

ferent directions as

Cov(W (t),W (s)) =
σ2
X

(2π)|I>|

∏
k∈I<

Cov(B1/2(tk), B1/2(sk)) ·
∏
k∈I>

tksk ·Ψ(t, s),

with Ψ(t, s) only depending on {tk, sk}k∈I= , given by

Ψ(t, s) :=

∫
H≥
| logψ(y)|−2

∏
k∈I=

(eitkyk − 1)(eiskyk − 1)

2π|yk|2
dλ≥(y).

Recall CH in (31).

Proposition 6. The random field W is a fractional Brownian sheet, if and only if |I=| = 1.
In this case, Ψ(t, s) has the following expressions: in case I= = {j}, I> = ∅,

(46) Ψ(t, s) = | logψ(ej)|−2Cαj+1/2 Cov(Bαj+1/2(tj), Bαj+1/2(sj));

in case I= = {j}, I> = {k},

(47) Ψ(t, s) =

∫
H>
| logψ(y + ej)|−2dλ>(y)CHj Cov(BHj (tj), BHj (sj)),

with Hj = αj(1− 1/(2αk)) + 1/2.

Proof. We first prove the ‘if part’. Suppose I= = {j}. In the case I> = ∅,

Ψ(t, s) =

∫
R
| logψ(yjej)|−2 (eitjyj − 1)(eisjyj − 1)

2π|yj |2
dyj

=

∫
R
| logψ((|yj |αj )Eej)|−2 (eitjyj − 1)(eisjyj − 1)

2π|yj |2
dyj

=

∫
R
| logψ(ej)|−2 (eitjyj − 1)(eisjyj − 1)

2π|yj |2+2αj
dyj .
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Thus by (31), in case I= = {j}, I> = ∅, (46) follows. In the case I> 6= ∅,

Ψ(t, s) =

∫
R

∫
H>
| logψ(y + yjej)|−2 (eitjyj − 1)(eisjyj − 1)

2π|yj |2
dλ>(y)dyj

=

∫
R

∫
H>
|yj |−2αj | logψ((|yj |−αj )E(y + yjej))|−2 (eitjyj − 1)(eisjyj − 1)

2π|yj |2
dλ>(y)dyj

=

∫
H>
| logψ(y + ej)|−2dλ>(y)

∫
R

(eitjyj − 1)(eisjyj − 1)

2π|yj |2+2αj−αjq(π>E)
dyj .

That is, in case I= = {j}, I> 6= ∅, for Hj = αj(1− q(π>E)/2) + 1/2, (47) follows.
Next, we prove the ‘only if part’. Suppose W is a fractional Brownian sheet with Hurst

indices H1, . . . ,Hd. From Proposition 4, W is also (E′, H)-operator-scaling with H = γ0 +
q(E′)− q(E′′)/2. Then, it follows that

H1

α′1
+ · · ·+ Hd

α′d
= γ0 + q(E′)− q(E′′)/2,

or equivalently

(48)
∑
k∈I≤

1

α′k
(Hk − 1/2) +

∑
k∈I>

1

α′k
(Hk − 1) = γ0

1− 1

2

∑
k∈I>

1

αk

 .

We consider the variance. By the assumption that W is a fractional Brownian sheet, and the
fact that W has stationary directional increments, for all j ∈ {1, . . . , d}, for all δ ∈ R,

(49) Var(∆
(j)
δ W (u)) = |δ|2Hj Var(W (π〈ej〉⊥(u) + ej)).

Recall that |I>| ≤ 1. We first consider the case I> = ∅. In this case,

• for k ∈ I<, comparing (49) and (41) yields Hk = 1/2,
• for k ∈ I=, αk < 1/2, comparing (49) and (42) yields Hk = αk + 1/2,
• for k ∈ I=, αk = 1/2, comparing (49) and (43) yields Hk = 1,
• for k ∈ I=, αk > 1/2, comparing (49) and (44) yields Hk = 1.

Then (48) becomes ∑
k∈I=,αk>1/2

γ0

2αk
+

∑
k∈I=,αk≤1/2

γ0 = γ0.

Since αk < 1, it then follows that |I=| = 1. Similarly, in the case I> 6= ∅, say I> = {1}, it
follows from comparing the corresponding inequalities that

• H1 = 1,
• for k ∈ I<, Hk = 1/2,
• for k ∈ I=, Hk = αk(1− 1/(2α1)) + 1/2.

Then, (48) becomes ∑
k∈I=

γ0

(
1− 1

2α1

)
= γ0

(
1− 1

2α1

)
,

which implies |I=| = 1. �

Remark 7. When the limit is a fractional Brownian sheet, in directions corresponding to
I>, I< (if not empty) and I=, the Hurst indices equals 1, 1/2 and some value in (1/2, 1),
respectively. Thus, W exhibits long-range dependence in the directions corresponding to I≥.
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As a concrete example, we prove Theorem 2.

Proof of Theorem 2. Case (i): when α′2 > α2, α2 ∈ (0, 1/2). In this case, γ0 = ρ2 = α2/α
′
2,

E′′ = diag(1/α1, 1/α
′
2), I< = {1}, I= = {2}, β = α2/α

′
2 + 1

2( 1
α1

+ 1
α′2

) and H1 = 1/2 are

straight-forward. Then, by (46), H2 = 1
2 + α2 and σ2 = CH2 | logψ(0, 1)|−2.

Case (ii): when α′2 > α2, α2 ∈ (1/2, 1). In this case, γ0 = ρ1 = 1, E′′ = E, I> = {2}, I= = {1},
β = 1 + 1

2α1
+ 1

α′2
− 1

2α2
and H2 = 1 are straight-forward. Then, by (47), H1 = 1

2 +α1(1− 1
2α2

)

and σ2 = CH1

∫
R | logψ(1, y)|−2dy.

The calculation of cases (iii) and (iv) are similar and thus omitted. One obtains σ2 =
CH1 | logψ(1, 0)|−2 for case (iii) and σ2 = CH2

∫
R | logψ(y, 1)|−2dy for case (iv). �

5.3. Sample-path properties.
We conclude this section by the following general sample-path properties for the random

field W that is a consequence of [7, Proposition 5.3].

Proposition 7. There exists a modification W ∗ of W on [0, 1]d such that for all ε > 0, almost
surely there exists a finite random variable Z such that for all s, t ∈ [0, 1]d,

|W ∗(t)−W ∗(s)| ≤ Zρ(t, s)log(1 + ρ(s, t)−1)
1/2+ε

,

with
ρ(s, t) =

∑
j∈I>

|tj − sj |+
∑
j∈I<

|tj − sj |1/2 +
∑
j∈I=

|tj − sj |Hj ,

where for j ∈ I=,

(a) Hj = αj(1− q(π>E)/2) + 1/2 if either |I>| = 1 or I> = ∅ and αj < 1/2,
(b) Hj can take any value in (0, 1) if I> = ∅ and αj = 1/2, and
(c) Hj = 1 if I> = ∅ and αj > 1/2.

Proof. Let us consider E′′′ the diagonal matrix with entries corresponding to 1 for j ∈ I>, 2
for j ∈ I< and 1/Hj for j ∈ I=. Let τE′′′ be the radial part with respect to E′′′ according
to [7, Equation (9)]. Let us quote that since t 7→ ρ(0, t) is E′′′ homogeneous and strictly
positive on Rd r {0}, following ideas of Clausel and Vedel [13, Theorem 3.2], the function
t 7→ ρ(0, t)/τE′′′(t) is continuous and strictly positive on the compact set SE′′′ . It follows that
we may find C,C ′ > 0 such that for all t ∈ Rd,

CτE′′′(t) ≤ ρ(0, t) ≤ C ′τE′′′(t).
Therefore, by [7, Proposition 5.3] (with β = 0), to show Proposition 7 we prove for t, s ∈ [0, 1]d

that

(50)
√
E ((W (t)−W (s))2) =

√
Var (W (t)−W (s)) ≤ Cρ(s, t).

For t, s ∈ [0, 1]d, considering as in [26], the sequence (u(j))0≤j≤d defined by u(0) = s and

u(j+1) = u(j) + (tj − sj)ej for 0 ≤ j ≤ d− 1, we get W (t)−W (s) =
∑d

j=1 ∆
(j)
(tj−sj)W (u(j)).

Hence √
Var (W (t)−W (s)) ≤

d∑
j=1

√
Var

(
∆

(j)
(tj−sj)W (u(j))

)
.

Now to obtain (50), it suffices to apply the bounds on the directional increments established
in Lemma 11. Observe that in the case j ∈ I=, I> = ∅, since δ = tj − sj ∈ [−1, 1], the right-
hand side of (43) becomes C|δ|2Hj . The details are omitted. The proof is thus completed. �
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Let us mention that we probably could improve this result. Actually, following [52], it is
sufficient to get a similar lower bound on the variance on [ε, 1]d to establish condition (C1),
from which Theorem 4.2 follows, saying that the inequality is true for ε = 0 and Z has finite
moments of any order.
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[9] Biermé, H., Richard, F., Rachidi, M., and Benhamou, C.-L. (2009). Anisotropic texture
modeling and applications to medical image analysis. In Mathematical methods for imaging
and inverse problems, volume 26 of ESAIM Proc., pages 100–122. EDP Sci., Les Ulis.

[10] Billingsley, P. (1999). Convergence of probability measures. Wiley Series in Probability
and Statistics: Probability and Statistics. John Wiley & Sons Inc., New York, second edition.
A Wiley-Interscience Publication.

[11] Bingham, N. H., Goldie, C. M., and Teugels, J. L. (1987). Regular variation, volume 27 of
Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge.

[12] Bolthausen, E. (1982). On the central limit theorem for stationary mixing random fields.
Ann. Probab., 10(4):1047–1050.

[13] Clausel, M. and Vedel, B. (2011). Explicit construction of operator scaling Gaussian
random fields. Fractals, 19(1):101–111.

[14] Cressie, N. and Davidson, J. L. (1998). Image analysis with partially ordered Markov
models. Comput. Statist. Data Anal., 29(1):1–26.

[15] Davydov, J. A. (1970). The invariance principle for stationary processes. Teor. Verojat-
nost. i Primenen., 15:498–509.

[16] Dedecker, J. (2001). Exponential inequalities and functional central limit theorems for a
random fields. ESAIM Probab. Statist., 5:77–104 (electronic).
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mémoire. PUB. IRMA, Lille., 63(XI):1–26.

[28] Lavancier, F. (2007). Invariance principles for non-isotropic long memory random fields.
Stat. Inference Stoch. Process., 10(3):255–282.

[29] Lindskog, F. (2004). Multivariate extremes and regular variation for stochastic pro-
cesses. Ph.D. Thesis, Department of Mathematics, Swiss Federal Institute of Technology,
Switzerland.

[30] Lodhia, A., Sheffield, S., Sun, X., and Watson, S. S. (2016). Fractional Gaussian fields:
A survey. Probab. Surv., 13:1–56.

[31] Maejima, M. and Mason, J. D. (1994). Operator-self-similar stable processes. Stochastic
Process. Appl., 54(1):139–163.

[32] Mandelbrot, B. B. and Van Ness, J. W. (1968). Fractional Brownian motions, fractional
noises and applications. SIAM Rev., 10:422–437.

[33] McLeish, D. L. (1974). Dependent central limit theorems and invariance principles. Ann.
Probability, 2:620–628.

[34] Meerschaert, M. M. and Scheffler, H.-P. (2001). Limit distributions for sums of indepen-
dent random vectors. Wiley Series in Probability and Statistics: Probability and Statistics.
John Wiley & Sons Inc., New York. Heavy tails in theory and practice.

[35] Mikosch, T. and Samorodnitsky, G. (2007). Scaling limits for cumulative input processes.
Math. Oper. Res., 32(4):890–918.

[36] Peligrad, M. and Sethuraman, S. (2008). On fractional Brownian motion limits in one
dimensional nearest-neighbor symmetric simple exclusion. ALEA Lat. Am. J. Probab. Math.
Stat., 4:245–255.

[37] Peligrad, M. and Utev, S. (1997). Central limit theorem for linear processes. Ann.
Probab., 25(1):443–456.
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