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OCCUPATION TIMES OF LONG-RANGE EXCLUSION AND CONNECTIONS

TO KPZ CLASS EXPONENTS

CÉDRIC BERNARDIN, PATRÍCIA GONÇALVES, AND SUNDER SETHURAMAN

ABSTRACT. With respect to a class of long-range exclusion processes on Zd , with single

particle transition rates of order | · |−(d+α) , starting under Bernoulli invariant measure νρ

with density ρ , we consider the fluctuation behavior of occupation times at a vertex and

more general additive functionals. Part of our motivation is to investigate the dependence

on α , d and ρ with respect to the variance of these functionals and associated scaling limits.

In the case the rates are symmetric, among other results, we find the scaling limits exhaust

a range of fractional Brownian motions with Hurst parameter H ∈ [1/2,3/4].
However, in the asymmetric case, we study the asymptotics of the variances, which

when d = 1 and ρ = 1/2 points to a curious dichotomy between long-range strength pa-

rameters 0 < α ≤ 3/2 and α > 3/2. In the former case, the order of the occupation time

variance is the same as under the process with symmetrized transition rates, which are

calculated exactly. In the latter situation, we provide consistent lower and upper bounds

and other motivations that this variance order is the same as under the asymmetric short-

range model, which is connected to KPZ class scalings of the space-time bulk mass density

fluctuations.

1. INTRODUCTION

Informally, the exclusion process is an interacting particle system consisting of a col-

lection of continuous-time dependent random walks moving on the lattice Zd : A particle

at x waits an exponential(1) time and then chooses to displace to x+ y with translation-

invariant probability p(y). If, however, x+ y is already occupied, the jump is suppressed

and the clock is reset. The process ηt = {ηt(x) : x ∈ Zd} ∈ {0,1}Zd
for t ≥ 0 is a Markov

process which keeps track of the occupied locations on Zd . These systems have been much

investigated since the 1970’s when they were introduced as models of queues, traffic, fluid

flow etc. In particular, the model has proved useful and fundamental in the context of

statistical physics [17], [18], [30].

The exclusion model has many invariant measures, being ‘mass-conservative’ with no

birth or death. In fact, there is a one parameter family of Bernoulli product invariant

measures νρ , indexed by the ‘mass density’ ρ ∈ [0,1] (cf. Chapter VIII in [17]). Here,

under νρ , particles are placed at lattice points x ∈ Zd independently with probability ρ .

Throughout the paper, we fix a density ρ ∈ (0,1) and begin the process under νρ .

The study of the fluctuations of occupation times of a vertex, or a local region, or more

generally that of additive functionals in exclusion particle systems on Zd , starting from an

invariant measure νρ has a long history going back to [12] and [14]. When the infinitesimal

interactions are ‘finite-range’, that is when p is compactly supported, several interesting

dependencies on the dimension d, the density ρ , and the type of underlying single particle
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transition probability p= p(·) have been found . In particular, for the asymmetric exclusion

model, when ρ = 1/2, connections with ‘Kardar-Parisi-Zhang’ (KPZ) class variance orders

of the space-time bulk mass density of the process have been made (cf. Subsection 1.4

below).

The purpose of this article is to ask what happens if the system has ‘long-range’ inter-

actions, that is say when p(·) has a long tail, proportional to | · |−(d+α) for α > 0. Such

systems are of interest in models with anomalous diffusion, a subject of recent interest (cf.

[7], [1] and references therein). In the particle systems context, symmetric long-range ex-

clusion processes have been studied with respect to tagged particles [11]. However, in the

asymmetric context, there appears to be little work on long-range processes. We note the

‘long-range’ systems considered in this article are not those systems, with the same name,

where at rate 1 a particle hops to the nearest empty location found by iterating a random

walk kernel (cf. [3]).

What are the variance orders and scaled centered limits of the occupation time at a vertex

or more general additive functionals, and how do they relate to d, ρ , α and the structure

of p? In particular, one wonders under asymmetric long-range infinitesimal interactions if

there are still connections with‘KPZ’ exponent orders, and if so how to interpret them. Can

one infer the notion of ’long-range KPZ’ exponent orders, which to our knowledge have

not before been considered?

To discuss these questions and to put our work in better context, we first develop con-

nections with ‘second-class’ particles and H−1 norms in the setting of occupation times at

the origin, and then discuss previous ‘finite-range’ literature afterwards.

Let ηs(0) be the indicator of a particle at the origin at time s with respect to the process,

and let Γ(t) =
∫ t

0 f (ηs)ds with f (η) = η(0)−ρ be the centered occupation time up to time

t. Let a2
t = Eρ

(
[Γ(t)]2

)
be the variance starting from νρ .

1.1. Connection with a ‘second-class’ particle. The variance may be computed from a

standard argument. By stationarity of νρ and changing variables,

a2
t = 2

∫ t

0

∫ s

0
Eρ [ f (ηu) f (η0)]duds

= 2t

∫ t

0

(
1− s/t

)
Eρ [ f (ηs) f (η0)]ds.

Now, the covariance, or ‘two-point’ function as it sometimes called, as ρ = Pρ(ηs(0) = 1)
for s ≥ 0, and by Bayes’s formula,

Eρ [ f (ηs) f (η0)] = Eρ [ηs(0)η0(0)]−ρ2

= ρ
{
Eρ [ηs(0)|η0(0) = 1]−Eρ [ηs(0)]

}

= ρ(1−ρ)
{
Eρ [ηs(0)|η0(0) = 1]−Eρ [ηs(0)|η0(0) = 0]

}
.

From the basic coupling, which compares two exclusion systems starting from η0 and η ′
0,

a configuration which ‘flips’ the value at the origin, that is η ′
0(x) = η0(x) for x 6= 0 and

η ′
0(0) = 1−η0(0), we can track the location of the discrepancy Rs, initially at the origin,

for times s ≥ 0. The dynamics of the discrepancy, or ‘second-class’ particle, is that it

moves from location x to x+ y at time s with rate p(y)(1−ηs(x+ y))+ p(−y)ηs(x+ y).
The interpretation is that it jumps as any other particle in the system, corresponding to the

part p(y)(1−ηs(x+ y)); but, also it must move if one of the other particles jumps to its

location, corresponding to the part p(−y)ηs(x+ y). Hence,

Eρ [ηs(0)|η0(0) = 1]−Eρ [ηs(0)|η0(0) = 0] = P̄ρ(Rs = 0)
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where P̄ρ is the coupled measure. See Section VIII.2 in [17] for more discussion on the

basic coupling.

Putting these observations together, we have

a2
t = 2t

∫ t

0

(
1− s/t

)
P̄ρ(Rs = 0)ds,

roughly t times the expected occupation time of the second-class particle at the origin.

1.2. Connection with ‘H−1’ norms. Instead of dealing directly with a2
t , one might con-

sider the Laplace transform Lλ =
∫ ∞

0 e−λ ta2
t dt and its behavior as λ ↓ 0. By a formal

Tauberian ansatz, t−1Lt−1 ∼ t−1
∫ t

0 a2
udu ∼ a2

t . Moreover, the object Lλ , after two integra-

tion by parts, may be written as

Lλ =
2

λ 2

∫ ∞

0
e−λ tEρ [ f (ηt) f (η0)]dt.

=
2

λ 2
Eρ [ f (η0)uλ (η0)]

where uλ (η) =
∫ ∞

0 e−λ tTt f (η) = (λ −L )−1 f (η) and Tt and L are the process semigroup

and generator respectively. The term
{
Eρ [ f (η)(λ −L )−1 f (η)]

}1/2
is well defined for

f ∈ L2(νρ) and can be written in variational form in terms of H1 and H−1 (semi-)norms

and the symmetric and anti-symmetric decomposition of L = S +A , which may be

leveraged in bounding Lλ . Moreover, a useful test for when a2
t = O(t) is that the H−1 norm

‖ f‖−1 < ∞. See Subsection 3.1 for a more comprehensive treatment.

1.3. Finite-range models: Symmetric and mean-zero transtitions. When p is symmet-

ric, p(·) = p(−·), the transition rates of the second-class particle from x to x+ y reduce to

p(y)(1−ηs(x+y))+ p(−y)ηs(x+y) = p(y). Hence, marginally, the second-class particle

moves as a symmetric random walk. In this case, P̄ρ(Rs = 0) can be explicitly estimated.

When p is finite-range, along similar lines, it was shown in [12] that

a2
t =





O(t3/2) in d = 1

O(t log(t)) in d = 2

O(t) in d ≥ 3.

Moreover, in the above scales, the functional CLT in the uniform topology was shown

in [12], [23]:
1

aN

Γ(Nt) −−−→
N→∞

{
B3/4(t) in d = 1

B(t) in d ≥ 2.
(1.1)

Here, BH is fractional Brownian motion with Hurst parameter H and B= B1/2 is standard

Brownian motion.

We remark similar claims on the Laplace transform Lλ hold when p is finite-range,

asymmetric and mean-zero, ∑xp(x) = 0 by different methods. Also, corresponding CLT’s

and scaling limits have been shown [10], [23], [31].

1.4. Finite-range models: Asymmetric transitions and KPZ exponents. When p is

finite-range and has a drift, m = ∑xp(x) 6= 0, although the second-class particle Rs is not

a random walk, it has a mean drift of (1− 2ρ)m under P̄ρ (cf. [4] and references therein).

In analogy with random walks, the second-class particle should be transient exactly when

ρ 6= 1/2. Partly based on this intuition, it was proved for ρ 6= 1/2 in d ≥ 1 that a2
t = O(t),

and also the functional CLT N−1/2Γ(Nt)⇒ B(t) (cf. [8], [22], [23]).

However, now fix ρ = 1/2 for the remainder of the subsection. This case interestingly

connects with ‘Kardar-Parisi-Zhang’ (KPZ) behavior and exponents of driven diffusive
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systems. In this situation, the process macroscopic characteristic speed (1− 2ρ)∑xp(x)
vanishes. By the same sort of calculation presented above in Subsection 1.1, the variance

of the second-class particle can be written in terms of the ‘diffusivity’ of the system:

ρ(1−ρ)Ēρ

∣∣Rt

∣∣2 = ∑ |x|2Eρ

[
(ηt (x)−ρ)(η0(0)−ρ)

]
=: D(t)

which in d = 1 is related to the variance of the ‘height’ function for an associated interface

which is in the KPZ class (cf. Chapter 5 in [30] and [21] for definition of the height

function and more discussion).

In [6], it was formulated that

D(t) =





O(t4/3) in d = 1

O(t(log(t))2/3) in d = 2

O(t) in d ≥ 3.

This has been proved, in Tauberian form, by various techniques and discussed in more

detail in [5], [9], [16], [20], [21], and [32].

Then, allowing a Gaussian ansatz, P̄ρ(Rt = 0) should decay as O(t−2/3) in d = 1,

O(t−1(log(t))1/3) in d = 2, and O(t−d/2) in d ≥ 3. Although these local limit type es-

timates have not been shown, they would imply that the occupation time variance should

satisfy the same estimates as for D(t) above. However, in d ≥ 3, when ρ = 1/2, the con-

clusion a2
t = O(t) is known [23], [27].

Although the conjecture in d ≤ 2 for the order of a2
t has not been substantiated, the

following H−1 estimates have been found in [8] and [26]: As λ ↓ 0,

Cλ−9/4 ≤ Lλ ≤ C−1λ−5/2 in d = 1

Cλ−2 log | log(λ )| ≤ Lλ ≤ C−1λ−2| log(λ )| d = 2 (1.2)

with an improvement in the second line lower bound of Cλ−2| log(λ )|1/2 when the p-drift,

∑xp(x), lies on a coordinate axis. These Tauberian bounds formally imply that

Ct5/4 ≤ a2
t ≤ C−1t3/2 in d = 1

Ct log(log(t)) ≤ a2
t ≤ C−1t log(t) in d = 2.

1.5. Finite-range models: General additive functionals and H−1 norms. Besides the

occupation function, one can consider the additive functional Γ f (t) =
∫ t

0 f (ηs)ds for a

general class of ‘local’ mean-zero functions, Eρ [ f ] = 0. That is, by ‘local’, we mean f is

compactly supported: f (η) depends only on the variables η(x) for x ∈ Λ ⊂ Zd and Λ is a

finite set. Let σ2
t ( f ) = Eρ

(
Γ f (t)

)2
.

One may ask for which functions f is σ2
t ( f ) = O(t), that is the variance is of ‘diffusive’

order. When p is finite-range, there is a dimension dependent characterization of such

f ’s depending on the ‘degree’ or ‘smoothness’ of the functions (cf. Proposition 2.1). In

particular, for the symmetric process, we have seen f (η) = η(0)−ρ in dimensions d ≤ 2

is not smooth enough.

When σ2
t ( f ) is not ‘diffusive’, divergence orders have been found for symmetric and

mean-zero processes (cf. Proposition 2.2) and bounds for the asymmetric model (cf.

Proposition 2.3).

Functional CLT’s in diffusive scale, converging to Brownian motion, for Γ f (t) when

σ2
t ( f ) = O(t) have been shown (cf. [19], [14], [28], and [26] and references therein for

statements and more discussion). When p is mean-zero and f is a degree 1 function (such

as the occupation function f (η) = η(0)− ρ), in d = 1, a functional CLT in anomalous

scale has been proved [10]. Otherwise, characterizing the fluctuations of Γ f (t) is open.
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1.6. Long-range transitions and main results. We will take p to be ‘long-range’ if its

symmetrization 2−1(p(x) + p(−x)) is proportional to |x|−(d+α) for α > 0. This natural

choice introduces the parameter α which controls the order of moments allowed. We also

consider several types of asymmetries, both ‘short’ and ‘long’, which are detailed in the

next section.

When α > 2, p has two moments and one suspects the asymptotics of the occupation

time Γ(·) behaves as if p were finite-range (cf. Theorem 2.4). Also, when 0 < α < 1 or

d ≥ 3, the random walk generated by p is transient [29], and the long time behavior of Γ(·)
is diffusive (cf. part of Theorems 2.6, 2.11, 2.12).

Our main interest is when 1 ≤ α ≤ 2 and d ≤ 2. When p is symmetric, one of our main

results is to derive a fractional Brownian motion scaling limit in d = 1 for Γ(·) in scale

at = O(t1−(2α)−1
), corresponding to Hurst parameter H = 1− (2α)−1. This microscopic

derivation of a collection of fractional BM’s, in a range of Hurst parameters, generalizes

the H = 3/4 limit when p is finite-range. In d ≤ 2, other additive functional variance

divergence orders and CLTs are also found (cf. Theorems 2.8, 2.9, and 2.11). We also

observe that most of these results also hold for a class of long-range mean-zero processes.

However, when p is asymmetric with a ‘drift’–an example is when p(x) is proportional

to 1(xi>0:1≤i≤d)|x|−d−α –other new phenomena appear. In particular, in d = 1 when ρ =
1/2, we observe a curious transition point at α = 3/2. When α ≤ 3/2, we show the

variance a2
t is of the same Tauberian order as if p were symmetric. In particular, when

α = 3/2, we prove a2
t = O(t4/3) in the Tauberian sense (cf. Theorem 2.14).

However, as α increases, the process is less heavy-tailed and one feels less mixing,

more volatile and more susceptible to ‘traffic jams’. In fact, we propose for a large class

of exclusion systems that Lλ and a2
t should increase as α increases. In support, we verify

this intuition for symmetric and mean-zero type processs (cf. Theorem 2.18).

Moreover, we conjecture, from (1) this intuition, (2) the statement a2
t = O(t4/3), in the

Tauberian sense, when α = 3/2 and ρ = 1/2, (3) the result a2
t is of the same Tauberian

order as for finite-range processes when α > 2, and (4) the belief for d = 1 finite-range

processes with drift that also a2
t = O(t4/3), that we have a2

t = O(t4/3) in the Tauberian

sense for all α ≥ 3/2 in d = 1 (cf. Conjecture 2.17). We note superdiffusive lower and

upper bounds, consistent with this conjecture, are given in Theorem 2.14.

We remark the apparent dichotomy in the behavior of a2
t when variously α ≤ 3/2 and

α > 3/2 in d = 1 for ρ = 1/2 suggests a novel extension of the scope of the KPZ class

behavior to long-range models. This topic and supporting results are discussed more in

Subsections 2.5, 2.6.

In dimension d = 2 when ρ = 1/2, analogously, we show for α ≤ 2 that a2
t is of the

same Tauberian order as in the symmetric case (Theorems 2.12, 2.15). Here, it seems,

the KPZ class behavior does not extend below α ≤ 2. As in the finite-range case, what is

expected for α > 2 is that a2
t = O(t(log(t))2/3).

In addition, when ρ 6= 1/2, since the process characteristic speed drifts away from the

origin, one expects a2
t = O(t). This is indeed the case and stated in Theorem 2.12 for

almost all values of α and d ≤ 2.

We also consider the variance Γ f (t) for general local functions f , and find an α , ρ ,

d-dependent characterization of when a2
t ( f ) = O(t) (Theorems 2.6, 2.12), and also excep-

tional orders (Theorems 2.14, 2.15). Corresponding functional CLT’s are also given for the

symmetric model (cf. Theorems 2.11) and remarked upon for the asymmetric process (cf.

Remark 2.13).
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The methods of the article make use of a combination of martingale CLT, ‘duality’, and

H−1 norm variational formula arguments. In particular, part of the arguments nontrivially

generalize, to long-range models, the works [12], [8], [23] in the finite-range setting. The

long-range nature of the jump rate introduces new questions, such as the long-range sector

condition and monotonicity work in Sections 4 and 7, which may be of interest themselves.

1.6.1. Notation and plan of the article. The canonical basis of Rd and coordinates of a

vertex x ∈ Rd are denoted by ei and xi for 1 ≤ i ≤ d respectively. The usual scalar product

between x and y in Rd is denoted by x · y and the corresponding norm by | · |.
Define the relations ‘ ≈”, ∼’, ‘4’, ‘<’ and note usual conventions ‘O(·)’ and ‘o(·)’

between sequences a(s)≥ 0 and b(s)> 0:

• a(s)≈ b(s) when both 0 < liminfs→∞ a(s)/b(s) and limsups→∞ a(s)/b(s)< ∞,

• a(s)∼ b(s) when lims→∞ a(s)/b(s) exists and 0 < lims→∞ a(s)/b(s)< ∞,

• a(s) = O(b(s)) when limsups→∞ a(s)/b(s)< ∞,

• a(s) = o(b(s)) when limsups→∞ a(s)/b(s) = 0,

• a(s)4 b(s) when a(s) = O(b(s)), and

• a(s)< b(s) when b(s) = O(a(s)).

Sometimes, the parameter s will denote the time t which tends to infinity. At other times,

s = λ , a parameter we will send to 0, and the relations above are defined accordingly.

In the next section, we more carefully define the model, and discuss the results. In Sec-

tion 3, we give notions of H−1 norms, ‘duality’ with respect to the (asymmetric) exclusion

process, ‘free particle’ approximations, and other basic estimates useful in the proofs. In

Section 2.2, finite and long-range H−1 norm comparison results are proved. In Sections 5

and 6, we prove the main results for symmetric and asymmetric long-range exclusion pro-

cesses respectively. In Section 7, Theorem 2.18 on monotonicity of Tauberian variances

with respect to α is proved. Finally, in Appendix A, some more technical computations

are collected.

2. DEFINITIONS AND MAIN RESULTS

Let α > 0 and let p(·) be a transition function on Zd such that for any y ∈ Zd ,

p(y) =
γ(y)

|y|d+α
, γ(y) = ∑

σ=±
c

d

∑
i=1

bσ
i (y)1σ(y·ei)>0

and p(0) = 0. Here, c is a normalization constant and (b±i (y))1≤i≤d,y∈Zd are nonnegative

real numbers, which are bounded b±i (·)≤ b̄, such that (p(·)+ p(−·))/2 is irreducible.

The symmetric and antisymmetric parts of p are denoted respectively by s and a where

s(y) = (p(y)+ p(−y))/2 and a(y) = (p(y)+ p(−y))/2. The mean of p, equal to the mean

of a, is defined by m = ∑y∈Zd yp(y) ∈Rd if it converges.

We now distinguish several types of natural asymmetric long-range probabilities:

(LA) (Long asymmetric range) There are constants bσ
i ≥ 0 such that bσ

i (y)≡ bσ
i ,

min
1≤i≤d

b+i ∧b−i > 0 and
d

∑
i=1

|b+i − b−i |> 0.

(SA) (Short asymmetric range) There is an R < ∞ and bi > 0 such that b+i (y) = b−i (y) =
bi for |y|> R, ∑|y|≤R yp(y) 6= 0. Here, a is finite range, but jumps of all large sizes

are supported by p.

(NNA) (Nearest-neighbor asymmetry) A particular case of the short asymmetric range

probability is when R = 1 and the asymmetry is nearest-neighbor.
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(MZA) (Mean-zero asymmetry) Another case of the short asymmetric range probability

is when ∑|y|≤R yp(y) = 0, but p is not symmetric.

We will on occasion make comparisons with respect to the more studied ‘finite-range’

jump probability, for which symmetric, mean-zero asymmetric and asymmetric versions

can be analogously defined.

(FR) (Finite range) There is an R < ∞ such that for all 1 ≤ i ≤ d, b+i (y) = b−i (y) = 0 for

|y| > R. As before, to avoid sublattice periodicity, we assume the symmetric part

s is irreducible.

(FR-NN) (Nearest-neighbor) A case of the finite-range probability is when R = 1. Here,

necessarily s(ei)> 0 for 1 ≤ i ≤ d.

Most of our focus, to make a choice, is on long asymmetric range model (LA), and

for the remainder of the article p denotes such a probability. However, some comparisons

with other types of probabilities are made in Subsection 2.2. In the following, quanti-

ties with respect to the different types of probabilities will be denoted with corresponding

superscripts; in this respect, (S) signifies the jump probability is s.

The corresponding d-dimensional exclusion process is a Markov process {ηt ; t ≥ 0},

with state space Ω = {0,1}Zd
, whose generator acts on local functions f : Ω → R as

L f (η) = ∑
x,y∈Zd

p(y)η(x)(1−η(x+ y))∇x,x+y f (η),

where ∇x,x+y f (η) = f (ηx,x+y)− f (η) and

ηx,x+y(z) =





η(x+ y), z = x

η(x), z = x+ y

η(z), z 6= x,x+ y.

We will denote by Tt the associated semigroup.

As mentioned in the introduction, for every ρ ∈ [0,1], the Bernoulli product measure

νρ with density ρ is invariant for {ηt ; t ≥ 0}. Let Pρ be the law of the process {ηt ; t ≥ 0}
starting from νρ . We denote by Eρ , as it will be clear by context, the expectation with

respect to both νρ and Pρ . We will also use the notation 〈 f ,g〉ρ := Eρ [ f g].

One may compute that the L2(νρ ) adjoint L ∗ itself is an exclusion generator with

reversed jump probability p∗(·)= p(−·). When p= s, the L2(νρ ) process generator L and

semigroup Tt are reversible. The construction and basic properties of this Markov process

can be found in Chapter I, VIII in [17]; its extension to L2(νρ), with a core including local

functions, follows from the development in Section IV.4 in [17].

Recall the additive functional for this process

Γ f (t) =

∫ t

0
f (ηs)ds,

where f : Ω → R is a local function, and its variance σt
2( f ) with respect to the stationary

measure νρ with density ρ . We now define the ‘limiting variance’ σ2( f ) by

σ2( f ) = limsup
t→+∞

t−1σ2
t ( f ).

A local function f such that σ2( f ) < ∞ or equivalently σ2
t ( f ) ≤ Ct for a constant C > 0

independent of t, is said to be admissible.

Define the Laplace transform of σ2
t ( f ), L f (λ ) =

∫ ∞
0 e−λ tσ2

t ( f )dt. We observe that if f

is admissible then λ−2L f (λ ) is uniformly bounded as λ ↓ 0.
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The behavior of the variance σ2
t ( f ) and L f (λ ) are much related to the degree of f .

Define µ f (z) =
∫

f dνz the mean of f with respect to νz.

Definition 2.1. Let deg( f ) be the degree of the local function f , with respect to νρ , that is

the integer i ≥ 0 such that µ
(i)
f (ρ) 6= 0 and µ

( j)
f (ρ) = 0 for any j < i. If µ

( j)
f (ρ) = 0 for all

0 ≤ j ∈N0 we say deg( f ) = ∞.

For a finite subset A ⊂ Zd with cardinality |A|, let ΦA(η) := ∏i∈A

(
η(i)− ρ

)
. Then,

ΦA is a degree |A| function and µΦA
(z) = (z − ρ)|A|. All local, mean-zero functions f ,

Eρ [ f ] = 0, can be decomposed in terms of {ΦA : A ⊂ Zd}: Since the occupation variables

are at most 1,

f (η) = ∑
n≥1

∑
|A|=n

c(A)ΦA(η),

in terms of coefficients c(A) where all sums are finite. In particular, if f is a degree i local

function then µ f (z) is a degree i polynomial.

Moreover, we may conclude,

if deg( f ) = 1, then ∑|A|=1 c(A) 6= 0

if deg( f ) = 2, then ∑|A|=2 c(A) 6= 0 and ∑|A|=1 c(A) = 0

if deg( f )≥ 3, then ∑|A|=1 c(A) = ∑|A|=2 c(A) = 0.
(2.1)

It will be helpful, before stating our main long-range results in Subsections 2.2 – 2.6, to

state precisely some of the work on finite-range systems.

2.1. Previous work on (FR) models. Admissibility has been previously characterized for

exclusion with finite range probabilities p(FR) in [8], [28], [23].

Proposition 2.1. Suppose p(FR) is mean-zero. Then, a local function f is admissible ex-

actly when

deg( f ) ≥





3 in d = 1

2 in d = 2

1 in d ≥ 3.

But when p(FR) has a drift, ∑xp(FR)(x) 6= 0, then f is admissible exactly when

deg( f ) ≥
{

1 if ρ 6= 1/2 or d ≥ 3

2 if ρ = 1/2 and d ≤ 2.

In the exceptional cases, the following is known. We remark when p(FR) is symmetric,

L f (λ ) and ≈ below can be replaced by σ2
t ( f ) and ∼ respectively; see [19], [28], [23] for

more details and refinements.

Proposition 2.2. Suppose p(FR) is mean-zero and f is local. Then, in d = 1,

L f (λ ) ≈





λ−5/2 if deg( f ) = 1

λ−2| log(λ )| if deg( f ) = 2

λ−2 if deg( f )≥ 3.

In d = 2,

L f (λ ) ≈
{

λ−2| log(λ )| if deg( f ) = 1

λ 2 if deg( f ) ≥ 2.

In d ≥ 3,

L f (λ ) ≈ λ−2.
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When p(FR) has a drift, ρ = 1/2 and deg( f ) = 1, the behavior of σ2
t ( f ) will be of

the same conjectured orders t4/3 in d = 1 and t(log(t))2/3 in d = 2 with respect to the

occupation time function f0(η) = η(0)− 1/2 discussed in the introduction.

On the other hand, the bounds on Lλ = L f0(λ ) given in (1.2) extend to degree 1 functions

[8], [26].

Proposition 2.3. Suppose p(FR) has a drift, ∑xp(FR)(x) 6= 0, ρ = 1/2, and f is local and

deg( f ) = 1. Then,

λ−9/4 ≤ L f (λ ) ≤ λ−5/2 in d = 1

λ−2 log | log(λ )| ≤ L f (λ ) ≤ λ−2| log(λ )| in d = 2.

Also, in d = 2, when in addition ∑xp(FR)(x) is on a coordinate axis, the lower bound can

be replaced by λ−2| log(λ )|1/2.

2.2. Finite/Long-range and other comparisons. We now compare Tauberian variances

L f and L(FR) when α > 0. We remark the results of Theorem 2.4 holds also with respect

to comparisons between L(·), for all the types of jump probabilities mentioned before, and

L(FR).

Theorem 2.4. Let f be a local function. Then, for α > 2 and d ≥ 1, when ∑yp(y) =

c∑yp(FR)(y) for a constant c 6= 0, we have

L f (λ ) ≈ L
(FR)
f (λ ).

We remark, in d = 1, the ‘parallel’ condition ∑yp(y) = c∑yp(FR)(y) for a nonzero

c is the same as ∑yp(y) = ∑yp(FR)(y) = 0 or both ∑yp(y), ∑yp(FR)(y) 6= 0. The first

display indicates that if p has strictly more than 2 moments then the associated long-range

exclusion dynamics may be thought to have similar properties as when the jump probability

is finite-range and parallel. In particular, one may apply results for finite-range processes

when α > 2.

Also, in long-range models with finite-range mean-zero asymmetries, we note Taube-

rian variances are comparable to their symmetric counterparts.

Theorem 2.5. Let f be a local function. Then, for α > 0 and d ≥ 1, when p = p(MZA), we

have

L
(MZA)
f (λ ) ≈ L

(S)
f (λ ).

The proof of this statement is omitted as it follows the same proof of Lemma 4.4 in [23]

for finite-range mean-zero systems, as a(MZA) is the anti-symmetric part of a finite-range

jump probability.

2.3. Symmetric jumps. We now consider the symmetric process when p(·) = s(·) for

which we have a clear picture of the scaling limits of additive functionals. We first charac-

terize admissibility of local functions.

Theorem 2.6. Consider the symmetric long-range exclusion process in dimension d. We

have the following characterization of admissibility.

• d = 1: Every local function f such that:

1. deg( f ) ≥ 3 is admissible,

2. deg( f ) = 2 is admissible if α < 2,

3. deg( f ) = 1 is admissible if α < 1.
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• d = 2: Every local function f such that:

1. deg( f ) ≥ 2 is admissible,

2. deg( f ) = 1 is admissible if α < 2.

• d ≥ 3: Every local function with deg( f )≥ 1 is admissible.

Remark 2.7. In terms of variance asymptotics, the following observation reduces the con-

sideration of a general local degree 1 function f to that of the occupation time function

η(0)−ρ . Indeed, note that g = f −µ ′
f (ρ)(η(0)−ρ) is at least a degree 2 function. When

d = 1, α < 2, σ2
t (g) = O(t) by Theorem 2.6. Hence, if σ2

t (η(0)−ρ)) is superdiffusive in

growth, it is the dominant term with respect to the equation f = g+ µ ′
f (ρ)(η(0)−ρ).

Similarly, noting (2.1), a degree k function f can be written as f = h+ 1
k!

µ f (k)(ρ)ΦA

where |A|= k and h is now at least a degree k+ 1 function. Hence, one deduces σ2
t ( f ) ∼

σ2
t (ΦA) when σ2

t (ΦA) dominates σ2
t (h).

Next, the following results give the variance behavior for exceptional functions f in

terms of dimension d. As discussed earlier, when α > 2, the orders match those for the

symmetric finite-range model (cf. Theorem 2.4).

Theorem 2.8. Let f be a local degree 1 function. It holds that

• In d = 1

σ2
t ( f ) ∼





t, if α < 1

t log(t), if α = 1

t2−1/α , if 1 < α < 2

t3/2(log(t))−1/2, if α = 2

t3/2, if α > 2.

• In d=2

σ2
t ( f ) ∼





t, if α < 2

t log(log(t)), if α = 2

t log(t), if α > 2.

• In d ≥ 3,

σ2
t ( f ) ∼ t, for all α.

Theorem 2.9. Let d = 1, α ≥ 2 and let f be a local degree 2 function. Then, as λ ↓ 0, we

have

L f (λ ) ≈ λ−2| log(λ )|.
Remark 2.10. When deg( f ) = 2, we expect variance asymptotics σ2

t ( f )∼ t log(t) if α > 2

and σ2
t ( f )∼ t log(log(t)) if α = 2, which is not seen at the level of the Laplace transform

L f (λ ). However, in the nearest-neighbor case, by computing the Green’s function of a

system of two interacting exclusion particles, which seems more difficult when jumps are

not nearest-neighbor, these asymptotics are shown in [28].

The following convergence results hold. Recall BH denotes fractional Brownian motion

with Hurst exponent H, and B= B1/2 is standard Brownian motion.

Theorem 2.11. i) If f is an admissible function then we have weak convergence in the

uniform topology:
1

σN( f )
Γ f (tN)−−−→

N→∞
B(t).

ii) If f is a (non-admissible) function of degree 1, we have the following weak conver-

gences in the uniform topology
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• In d = 1

1

σN( f )
Γ f (tN)−−−→

N→∞





B(t), if α = 1

B1−1/2α(t), if 1 < α < 2

B3/4(t), if α ≥ 2.

• In d = 2, for all α ≥ 2,

1

σN( f )
Γ f (tN)−−−→

N→∞
B(t).

iii) If f is a (non-admissible) function of degree 2, i.e. α ≥ 2 and d = 1, then for any

t > 0, we have the one-time CLT, convergence in law

1

σN( f )
Γ f (tN)−−−→

N→∞
N (t)

where N (t) is a centered normal variable with variance t as N →+∞.

The last part is weaker than the previous lines in Theorem 2.11 as the exact asymptotics

of σtN( f ) have not been found (cf. Remark 2.10).

2.3.1. Mean-zero (MZA) processes. We make a few remarks on (MZA) systems and note

all statements in Theorems 2.6 and 2.9 hold for these processes. In addition, statements in

Theorem 2.8, interpreted in the Tauberian sense, that is with respect to the asymptotics of

L f (λ ) =
∫ ∞

0 e−λ tσ2
t ( f )dt, also hold for (MZA) processes.

Indeed, by the bound σ2
t ( f )≤ 10t−1L

(S)
f (t−1) in the H−1 norm Lemmas 3.1 and 3.2, and

admissibility for the symmetric process in Theorem 2.6, the same admissibility statements

follow for (MZA) systems. Also, the Tauberian variance statements for the symmetric

process transfer to (MZA) processes by Theorem 2.5.

Finally, we remark, the statement in Part (i) Theorem 2.11 also holds for (MZA)-

systems, by the method in [31] for finite-range mean-zero systems, since a(MZA) is the

anti-symmetric part of a finite-range mean-zero jump probability. Otherwise, the fluctua-

tions have not been considered.

2.4. Asymmetric jumps. We now consider (LA) asymmetric processes with long-range

probability p, which require more delicate considerations than in the symmetric situation.

However, we remark all results of this subsection also hold for long-range (SA) models

with short-range asymmetries, with similar proofs.

Theorem 2.12. Consider the asymmetric long-range exclusion process in dimension d.

We have the following characterization of admissibility.

• d = 1: Every local function f such that:

1. deg( f )≥ 3 is admissible,

2. deg( f ) = 2 is admissible if α 6= 2,

3. deg( f ) = 1 is admissible if ρ 6= 1/2 and α 6= 1,2 or if ρ = 1/2 and α < 1.

• d = 2: Every local function f such that:

1. deg( f )≥ 2 is admissible,

2. deg( f ) = 1 is admissible

if and only if ρ 6= 1/2 for all α or if ρ = 1/2 and α < 2.

• d ≥ 3: Every local function such that deg( f )≥ 1 is admissible.

Remark 2.13. Cases left open, by our methods, are the boundary cases when d = 1, α =
1,2, ρ 6= 1/2 and deg( f ) = 1 or when d = 1, α = 2, deg( f ) = 2 for which we conjecture

such functions are admissible. Moreover, we show later in Theorems 2.14 and 2.15 that
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functions not satisfying either the assumptions of Theorem 2.12 or the two cases above are

not admissible.

When all mean-zero local functions are admissible, that is when α < 1 or d ≥ 3, the

functional CLT display in Part (i) Theorem 2.11 holds by the same argument as for Corol-

lary 2.1 in [22]. Otherwise, the fluctuation limits for Γ f have not been characterized.

The next results give upper and lower bounds on L f (λ ) in exceptional non-admissible

situations. Formal estimates on σ2
t ( f ) can be recovered by the formal Tauberian relation

σ2
t ( f )∼ t−1L f (t

−1).

Theorem 2.14. Consider the asymmetric long-range exclusion process in dimension d = 1

with α ≥ 1 and ρ = 1/2. Let f be a local function of degree one.

• When α = 1, as λ ↓ 0,

L f (λ ) ∼ λ−2| log(λ )|.
• When 1 < α ≤ 3/2, as λ ↓ 0,

L f (λ ) ∼ λ 1/α−3.

• When 3/2 ≤ α < 2, there exists a constant C such that for all small λ ,

C−1λ−1/2α−2 ≤ L f (λ ) ≤ Cλ 1/α−3

• When α = 2, there exists a constant C such that for all small λ

C−1λ−9/4| log(λ )|1/4 ≤ L f (λ ) ≤ C
λ−5/2

√
| log(λ )|

.

• When α > 2, let L
(FR)
f (λ ) correspond to p(FR) with a drift, ∑xp(FR)(x) 6= 0. Then,

by Theorem 2.4, L f (λ )≈ L
(FR)
f (λ ), and the bounds in Proposition 2.3 hold.

Theorem 2.15. Consider the asymmetric long-range exclusion process in dimension d = 2

with α ≥ 2 and ρ = 1/2. Let f be a local function of degree one.

• When α = 2, as λ ↓ 0,

L f (λ ) ≈ λ−2 log(| log(λ )|).

• When α > 2, let L
(FR)
f (λ ) correspond to p(FR) with a drift, ∑xp(FR)(x) 6= 0. Then,

by Theorem 2.4, L f (λ )≈ L
(FR)
f (λ ), and the bounds in Proposition 2.3 hold.

Remark 2.16. We note all upper bounds in Theorems 2.14 and 2.15 hold in the Abelian

sense: That is, σ2
t ( f ) ≤ 10t−1L

(S)
f (t−1) by the H−1 norms Lemmas 3.1 and 3.2, and the

variance bounds for the symmetric long-range process in Theorem 2.8.

2.5. A conjecture and partial monotonicity argument. As remarked in the Introduc-

tion, with respect to finite-range asymmetric exclusion processes, when ρ = 1/2 and

∑yp(FR)(y) 6= 0, it is believed that the occupation time variance σ2
t (η(0)− 1/2)) ≈ t4/3

in d = 1 and ≈ t(log(t))2/3 in d = 2. Given Theorem 2.4, these are the same orders con-

jectured for the variance, in the Tauberian sense, for the long-range asymmetric exclusion

process when α > 2 in d = 1,2.

Now, as α increases, the jump probability p becomes less heavy-tailed. Correspond-

ingly, because of the exclusion dynamics, particles which are bunched together disperse

slower and traffic jams are more likely to persist. In particular, it is known that the

occupation time at the origin has positively associated increments in time [23]. One
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feels consequently that the origin occupation time is more volatile as α grows, that is

α 7→ Eρ

[∫ t
0 f (ηs)ds

]2
= σ2

t ( f ), and α 7→ ∫ ∞
0 e−λ tEρ [ f Pt f ]dt = L f (λ ), in terms of their

orders, are increasing functions of α , where f (η) = η(0)−ρ .

Recall, also, at α = 3/2, the order of the variance σ2
t ( f ), in both the symmetric and

asymmetric cases, in the Tauberian sense, is O(t4/3), the same order believed under asym-

metric finite-range dynamics. These comments form the basis of the following conjecture.

Conjecture 2.17. For α ≥ 3/2 and ρ = 1/2, with respect to the exclusion dynamics with

asymmetric long-range jump probability p, the Tauberian variance satisfies

L f (λ ) =

∫ ∞

0
e−λ tσ2

t ( f )dt ≈
{

λ−7/3 in d = 1

λ−2| log(λ )|2/3 in d = 2.

Correspondingly, this type of approximation would formally imply σ2
t ( f )≈ t4/3 in d =

1 and σ2
t ( f ) ≈ t(log(t))2/3 in d = 2.

In partial support of the conjecture, consider long-range models with finite range mean-

zero asymmetries or symmetric transitions, where the jump probability p(MZA) or s is

replaced by jump rates p̄(MZA) = (b1c)−1 p(MZA) or s̄ = (b1c)−1s respectively, which are

sub-probabilities, effectively having removed the normalization. Let also L̄
(MZA)
f (λ ) and

L̄
(S)
f (λ ) be the respective Tauberian variances, and ā(MZA) be the anti-symmetric part of

p̄(MZA).

As the process is speeded up by (b1c)−1, a calculation with the generator gives L̄
(·)
f (λ )=

(b1c)3L
(·)
f (b1cλ ). In particular, the order, as λ ↓ 0, of L̄

(·)
f (λ ) and L

(·)
f (λ ) are the same.

Theorem 2.18. Consider long-range exclusion processes with jump rates p̄(MZA) or s̄. Let

ε := max|y|≤R |ā(MZA)(y)|. Then, for 1 < α0 < β0, there is ε0 = ε0(α0,β0) > 0 such that

for 0 < ε < ε0 and λ > 0, the map α ∈ [α0,β0] 7→ L̄
(MZA)
f (λ ) or α ∈ [α0,β0] 7→ L̄

(S)
f (λ ) is

non-decreasing.

Remark 2.19. We conjecture the same monotonicity statement holds for the Tauberian

variance L̄
(SA)
f (λ ) with respect to short asymmetric long range processes, with jump rate

p̄(SA) = c−1 p(SA), when the drift ∑xp̄(SA)(x) 6= 0. If such monotonicity could be verified,

by Theorem 2.14, there would be a constant C such that L̄
(SA)
f (λ )≥Cλ−7/3 when α ≥ 3/2

and ρ = 1/2. To show the corresponding upperbound on L̄
(SA)
f (λ ), by Theorem 2.4, it is

sufficient to consider finite-range models. In particular, to complete the Tauberian part of

Conjecture 2.17, it would be enough to show for an α > 2 and ρ = 1/2 that L̄
(FR)
f (λ ) ≤

Cλ−7/3, an estimate which is expected.

We show, however, for general short-range asymmetric (SA) processes with jump rate

p̄(SA), a formula for the derivative of the map α 7→ L̄
(SA)
f (λ ) in the first part of the proof

of Theorem 2.18. Namely, the derivative equals 2λ−2〈 f ,vα
λ 〉ρ , where vα

λ solves a certain

resolvent equation.

2.6. Role of α = 3/2. Given Conjecture 2.17, it seems the long-range parameter value

α = 3/2 is a change-point for the occupation time dynamics with respect to d = 1 asym-

metric exclusion with jump probability p when ρ = 1/2. On the one hand, for α ≤ 3/2,

the occupation time variance behaves as that under the symmetric dynamics (cf. Theorems

2.8, 2.14). But, otherwise, it would seem, for α ≥ 3/2, the variance acts as that under an

asymmetric finite-range (FA) model.
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Technically, the symmetric part of the generator L “dominates” the anti-symmetric part

exactly when 0<α < 3/2. At α = 3/2, they are of the same order, and exact computations

can be made. A more physical intutition of the phenomena is yet to be understood.

That the occupation time variance orders are computed exactly, namely 1 for 0 < α ≤ 1

and 2−1/α for 1 ≤ α ≤ 3/2 in d = 1 (cf. Theorem 2.14), in particular a power of 4/3 for

α = 3/2, is one of the few exact calculations with respect to the fluctuations of asymmetric

particle systems across process characteristics.

When ρ 6= 1/2, we conjecture the same scaling behavior, as in Theorem 2.14 and Sub-

section 2.5, for the occupation time of the vertex in the moving frame with process charac-

teristic velocity ⌊(1− 2ρ)m⌋.

Finally, it would be of interest to explore more the proposed ‘extension’ of the KPZ

class to other long-range models when 3/2 ≤ α ≤ 2. One feels that it is perhaps a generic

feature of a large class of mass conservative particle systems.

3. TOOLS

The goal of this section is to develop for long-range processes, H−1 norm estimates,

generalized ‘duality’ decompositions, ‘free particle’ approximations and other technical

bounds useful in the sequel. We refer the reader to [15], [8], [23] for more discussion of

the material in the finite-range context.

3.1. Resolvent norms. Denote the symmetric and antisymmetric parts of L by S and

A , respectively:

S :=
L +L ∗

2

A :=
L −L ∗

2
.

A straightforward calculation shows that S itself generates the symmetric exclusion pro-

cess with jump probability s: On local functions,

S f (η) = ∑
x,y∈Zd

p(y)
[

f (ηx,x+y)− f (η)
]
.

The corresponding Dirichlet form 〈 f ,−L f 〉ρ , acting on local functions, after a calcula-

tion, is given by

〈 f ,−L f 〉ρ = 〈 f ,−S f 〉ρ =
1

2
∑

x,y∈Zd

s(y)Eρ

[(
f (ηx,x+y)− f (η)

)2
]
≥ 0. (3.1)

In particular, −S is a nonnegative operator.

We now define the following resolvent norms. Fix λ > 0 and consider (λ −S )−1 :

L2(νρ)→ L2(νρ ) where, in terms of the semigroup T
(S)

t for the symmetric process gener-

ated by S ,

(λ −S )−1 f (ζ ) :=
∫ ∞

0
e−λ tT

(S)
t f (ζ )dt.

Denote by H1,λ the closure of local functions f such that ‖ f‖2
1,λ := 〈 f ,(λ −S ) f 〉ρ < ∞.

Let H−1,λ be its topological dual with respect to L2(νρ ) and let ‖ ·‖−1,λ be its norm. One
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has

‖ f‖−1,λ = sup
{
〈 f ,φ〉ρ/‖φ‖1,λ : φ local

}

= 〈 f ,(λ −S )−1 f 〉ρ

=

∫ ∞

0
e−λ t〈 f ,T

(S)
t f 〉ρ .

Analogously, let H1 be the closure over local f such that ‖ f‖2
1 := 〈 f ,−S f 〉ρ < ∞.

Denote H−1 as its topological dual with respect to L2(νρ) and ‖ · ‖−1 its norm, namely

‖ f‖−1 = sup
{
〈 f ,φ〉ρ/‖φ‖1 : φ local

}
.

By the formulas, we have ‖ f‖1,λ ≥ ‖ f‖1 and so ‖ f‖−1,λ ≤ ‖ f‖−1. Moreover, as

T
(S)

t is reversible with respect to νρ , 〈 f ,T
(S)

t f 〉ρ = 〈T (S)
t/2

f ,T
(S)

t/2
f 〉ρ ≥ 0. Hence, the limit

limλ↓0‖ f‖−1,λ = ‖ f‖−1 exists, which may be infinite.

The resolvent (λ −L )−1 : L2(νρ)→ L2(νρ) is given by

(λ −L )−1 f (ζ ) =

∫ ∞

0
e−λ tTt f (ζ )dt,

with respect to the (asymmetric) generator L and semigroup Tt , will be important in many

arguments. Observe that by a simple integration by parts and stationarity of the process, we

may relate the Tauberian variance L f (λ ) to the quadratic form with respect to (λ −L )−1:

L f (λ ) =

∫ ∞

0
e−λ tσ2

f (t)dt

= 2

∫ ∞

0
e−λ t

∫ t

0

∫ s

0
〈 f ,Ts−u f 〉ρ dudsdt

=
2

λ 2
〈 f ,(λ −L )−1 f 〉ρ . (3.2)

As discussed in [23],

[
1

2

(
λ −L )−1 +(λ −L

∗)−1
)]−1

= (λ −L
∗)(λ −S )−1(λ −L ) =: Q,

the point being that one can symmetrize in the inner product 〈 f ,(λ −L )−1 f 〉ρ and inter-

pret it as the dual form with respect to the operator Q. Since 〈 f ,Q f 〉ρ = 〈(λ −L ) f ,(λ −
S )−1(λ −L ) f 〉ρ ≥ 0 for all local f , we see that Q and Q−1 are nonnegative symmetric

operators which admit square roots. Hence, we may apply Schwarz’s inequality to obtain

L f+g(λ ) ≤ 2L f (λ )+ 2Lg(λ ). (3.3)

We now recall a basic estimate, proved in [23], which applies for general Markov pro-

cesses.

Lemma 3.1. For t > 0 and f ∈ L2(νρ) such that Eρ [ f ] = 0, we have

Eρ

[(
Γ f (t)

)2]
≤ 10 t 〈 f ,(1/t −L )−1 f 〉ρ = 10t−1L f (t

−1).

In [23], the following sup variational form for the quadratic form is proved. The inf

variational form is an equivalent relation.
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Lemma 3.2. Let f : Ω → R be a local function and let λ > 0. Then,

〈 f ,(λ −L )−1 f 〉ρ = sup
g

{
2〈 f ,g〉ρ −‖g‖2

1,λ −‖A g‖2
−1,λ

}

= inf
g

{
‖ f +A g‖2

−1,λ + ‖g‖2
1,λ

}
,

where the supremum and the infimum are taken over local functions g. In particular, by

taking g ≡ 0, we have

〈 f ,(λ −L )−1 f 〉ρ ≤ 〈 f ,(λ −S )−1 f 〉ρ .

We remark, although these variational formulas are quite difficult to compute, by re-

stricting the supremum or the infimum over the class of degree one functions, that is linear

combinations of the functions {η(x)−ρ : x ∈ Zd}, we can sometimes extract interesting

lower and upper bounds.

Putting things together, we obtain the following estimate which bounds the variance,

with respect to the process generated by L , in terms of the symmetric part S .

Corollary 3.3. For t > 0 and f ∈ L2(νρ) such that Eρ [ f ] = 0, we have

Eρ

[(
Γ f (t)

)2]
≤ 10 t ‖ f‖2

−1,t−1 = 10t−1L
(S)
f (t−1).

3.2. Duality. We now detail certain ‘duality’ decompositions which often help simplify

calculations. For finite subsets A ⊂ Zd , let ΨA be the function

ΨA = ∏
x∈A

η(x)−ρ√
χ(ρ)

,

where χ(ρ) = ρ(1− ρ). The collection {ΨA : A ⊂ Zd} forms an orthonormal basis of

L2(νρ).

Let En = {A ⊂Zd : |A|= n} be the class of subsets of Zd with n ≥ 1 points. Let also Hn

be the set of functions F : En →R such that ∑|A|=n F2(A)<∞; when n= 0, H0 denotes the

space of constants. Denote also, for n ≥ 1, Hn as the space of ‘n-point’ functions f in form

f = ∑|A|=n f(A)ΨA with f ∈ Hn; for n = 0, as before, H0 denotes the space of constants.

We have thus the orthogonal decomposition

L2(νρ) = ⊕n≥0Hn.

Functions f in Hn can be identified with a symmetric function f : χn\Dn → R where

χn = (Zd)n and Dn = {(x1, . . . ,xn) ∈ (Zd)n ; ∃i 6= j such that xi = x j} via f(x1, . . . ,xn) :=
f({x1, . . . ,xn}). In the sequel, we will use this identification implicitly.

We now decompose the generator L on the basis {ΨA : A ⊂ Zd}. Given a subset

A of Zd and x,y ∈ Zd denote by Ax,y the set Ax,y = A\{x}∪ {y} if x ∈ A and y /∈ A, by

Ax,y = A\{y}∪{x} if x /∈ A and by Ax,y = A otherwise. Let also E :=
⋃

n≥0 En. Then,

L f = ∑
A∈E

(Lf)(A)ΨA,

S f = ∑
A∈E

(Sf)(A)ΨA,

A f = ∑
A∈E

(Af)(A)ΨA,

where

L=S+A and S= L1, A= (1− 2ρ)L2+ 2
√

χ(ρ)(L+−L−),
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and

(L1f)(A) = (1/2) ∑
x,y∈Zd

s(y− x) [f(Ax,y)− f(A)] ,

(L2f)(A) = ∑
x∈A,y/∈A

a(y− x) [f(Ax,y)− f(A)] ,

(L−f)(A) = ∑
x/∈A,y/∈A

a(y− x)f(A∪{x}),

(L+f)(A) = ∑
x∈A,y∈A

a(y− x)f(A\{y}).

The operator S, which generates the dual symmetric exclusion process, takes Hn to

Hn for n ≥ 0. Its restriction to Hn is the generator of the set of n particles interacting

by the exclusion rule with the jump probability s. This property represents the classical

self-duality of the symmetric exclusion process [17].

Since the spaces {Hn : n ≥ 0} are orthogonal and S is invariant on each Hn, for f ∈ Hn

and g ∈ Hm with n 6= m, we have ‖ f + g‖2
1,λ = ‖ f‖2

1,λ + ‖g‖2
1,λ . Similarly, from the sup-

variational formula in Lemma 3.2, we have

‖ f + g‖2
−1,λ = ‖ f‖2

−1,λ + ‖g‖2
−1,λ . (3.4)

Although self-duality is not valid in the asymmetric setting, the decomposition of the

generator gives an extension of the duality relations. Note that the operators L1 and L2

preserve the degree of functions, but that L+ and L− respectively increase and decrease

the degree by 1. The operator A has a decomposition of the form

A= ∑
n≥1

(
An−1n +Ann +Ann+1

)
,

where Anm is the projection onto Hm of the restriction of A to Hn.

Later on, we will primarily consider functions of degree 1 and degree 2. We note the

following action of the operators A11 = (1− 2ρ)B11 and A12 = 2
√

χ(ρ)B12:

(B11f)(x) = ∑
y∈Zd

a(y− x) [f(y)− f(x)] ,

(B12f)({x,y}) = a(y− x) [f(x)− f(y)] .

3.3. Approximation by free particles. We now discuss ‘free particle’ approximations

though which n-particle exclusion interactions can be estimated in terms of n-‘free’ or

independent particles. For a local function f = ∑|A|=n f(A)ΨA ∈ Hn, the H1,λ norm can be

written in terms of the dual function f ∈ Hn:

‖ f‖2
1,λ = λ ∑

|A|=n

f2(A)+ ∑
u,v∈Zd

∑
|A|=n

s(v− u) [f(Au,v)− f(A)]2 . (3.5)

Similarly, the H−1,λ norm of f can be written in terms f.

Because of the exclusion interaction, it is not easy, even for simple functions, to com-

pute these norms. The idea then is to compare them to corresponding norms without the

exclusion, that is for a system composed of free particles. Observe there exists a positive

constant K0 such that

K−1
0 s0(·) ≤ s(·) ≤ K0s0(·) (3.6)

where s0 is the symmetric probability, defined for y ∈ Zd by

s0(y) =
c0

|y|d+α
,
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where c0 is a normalization constant.

The H1,free,λ -norm of the symmetric function F : χn → R is defined by

‖F‖2
1,free,λ = λ

1

n!
∑
x

F2(x)+
1

n!

n

∑
j=1

∑
z∈Zd

∑
x

s0(z) [F(x+ ze j)−F(x)]2

where x+ ze j = (x1, . . . ,x j−1,x j + z,x j+1, . . . ,xn). If n = 1, the formula reduces to

‖F‖2
1,free,λ = λ ∑

x∈Zd

F2(x)+ ∑
z,x∈Zd

s0(z− x) [F(z)−F(x)]2 .

When n = 2, it is given by

‖F‖2
1,free,λ =

λ

2
∑

x,y∈Zd

F2(x,y)+ ∑
z,x,y∈Zd

s0(z− x) [F(z,y)−F(x,y)]2 .

The implicit ‘free’ dynamics is that each particle moves independently according to jump

probability s0.

The H−1,free,λ -norm of the symmetric function G : χn → R is defined by

‖G‖2
−1,free,λ = sup

F :χn→R

{
1

n!
∑
x

F(x)G(x)−‖F‖2
1,free,λ

}
.

To f∈Hn, we associate a symmetric function f̃ : χn →R which coincides with f outside

Dn and for (x1, . . . ,xn) ∈ Dn by

f̃(x1, . . . ,xn) = E [f(X1(T ), . . . ,Xn(T ))]

where E is the expectation with respect to the law of n-independent simple symmetric

random walks (X1(t), . . . ,Xn(t))t≥0 on Zd starting from (x1, . . . ,xn) and T is the hitting

time of χn\Dn. For example, if f ∈ H2 then

f̃(x,y) =

{
f({x,y}) if x 6= y,

(2d)−1 ∑d
i=1 (f({x+ ei,x})+ f({x− ei,x})) if x = y.

(3.7)

With respect to the symmetric function F : χn → R, we also associate the function

WnF : χn →R which coincides with F outside Dn and is equal to 0 on Dn.

Lemma 3.4. Let n ≥ 1. There exists a constant Cn,d independent of λ such that for f ∈ Hn

and its dual function f ∈ Hn we have

C−1
n,d‖f̃‖2

1,free,λ ≤ ‖ f‖2
1,λ ≤ Cn,d‖f̃‖2

1,free,λ .

It follows that

‖ f‖2
−1,λ ≤ Cn,d‖Wnf̃‖2

−1,free,λ .

Proof. We only give the proof of the first claim for n = 2 to reduce notation; the argument

for general n ≥ 1 is similar. The second claim is a consequence of the first one since

‖f̃‖2
1,free,λ ≥ ‖ f‖2

1,λ = ‖Wn f̃‖2
1,λ ,free

noting the H1,λ formula in (3.5), and the dual form of

‖ · ‖−1,free,λ . Let now C be a positive constant independent of λ whose value can change

from line to line.

The first term in (3.5), noting (3.7), can be bounded by Schwarz’s inequality:

C−1 ∑
x,y∈Zd

f̃2(x,y) ≤ ∑
x6=y

f2({x,y}) ≤ ∑
x,y∈Zd

f̃2(x,y).
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With respect to the second term in (3.5), noting (3.6), by replacing f with f̃, we have trivially

∑
z,x,y∈Zd

s(z− x) [f({z,y})− f({x,y})]2 1z 6=y,z 6=x,x6=y ≤ C ∑
z,x,y∈Zd

s0(z− x)
[
f̃(z,y)− f̃(x,y)

]2
.

On the other hand, to show

∑
z,x,y∈Zd

s0(z− x)
[
f̃(z,y)− f̃(x,y)

]2 ≤ C ∑
z,x,y∈Zd

s(z− x)
[
f̃(z,y)− f̃(x,y)

]2
1z 6=y,z 6=x,x6=y

it is enough to verify

∑
x6=y

s0(y− x)
[
f̃(y,y)− f̃(x,y)

]2 ≤ C ∑
z,x,y∈Zd

s(z− x) [f({z,y})− f({x,y})]2 1z 6=y,z 6=x,x6=y.

To this end, by Schwarz’s inequality, we have

∑
x6=y

s0(y− x)
[
f̃(y,y)− f̃(x,y)

]2

≤ C
d

∑
i=1

∑
x6=y

s0(y− x)
{
[f({y+ ei,y})− f({x,y})]2 +[f({y− ei,y})− f({x,y})]2

}
.

Since supi=1,...,d supz 6=0,±ei
s0(z)/s0(z ± ei) ≤ C and ∑d

i=1 1 = d, the right-side above is

bounded by

C ∑
x,y,z∈Zd

s0(z− x) [f({z,y})− f({x,y})]2 1x6=y,x6=z,z 6=y,

as desired. �

3.4. Fourier estimates. Let Td = [0,1)d be the d-dimensional torus. Denote the Fourier

transform of the function ψ ∈ L2(χn) by ψ̂ : For (s1, . . . ,sn) ∈ (Td)n,

ψ̂(s1, . . . ,sn) =
1√
n!

∑
(x1,...,xn)∈χn

e2π i(x1·s1+...+xn·sn)ψ(x1, . . . ,xn).

As the ‘free’ dynamics consists of independent random walks moving with jump prob-

ability s0, the H1,free,λ -norm of ψ is

‖ψ‖2
1,free,λ =

1

(2π)nd

∫

(Td)n

(
λ +

d

∑
i=1

θd(si;s0(·))
)
|ψ̂(s1, . . . ,sn)|2ds1 . . .dsn.

Also, the H−1,free,λ -norm of ψ is written as

‖ψ‖2
−1,λ ,free, =

1

(2π)nd

∫

(Td)n

|ψ̂(s1, . . . ,sn)|2

λ +∑d
i=1 θd(si;s0(·))

ds1 . . .dsn. (3.8)

Here, for u ∈ Td , and symmetric transition function r : Zd → [0,1],

θd(u;r(·)) = 2 ∑
z∈Zd

r(z)sin2(πu · z). (3.9)

When ‘free’ particle H±1 norms are used in the sequel, r = s0(·). However, in the proof

of the functional CLT in Theorem 2.11, r = s(·), the symmetric part of p given by

s(z) =
cγ(z)

|z|d+α
, and γ(z) =

d

∑
j=1

b+j + b−j
2

1z·e j 6=0.

Note that s0 is a special case of the more general formulation of s.
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We now state an estimate used throughout the proofs. Let Cd be the set of extremal

points of [0,1]d ,

Cd = {σ1e1 + . . .+σded ; σi ∈ {0,1}}. (3.10)

We note the function θd(u;s(·)) is smooth, even, positive on Td\Cd and vanishes exactly

on Cd .

Lemma 3.5. Let γ0 =
1
2 ∑d

j=1(b
+
j +b−j ). The function θd = θd(·;s(·)) is bounded above by

a positive constant. For u ∈ Td and w ∈ C d , θd(u−w) = θd(u) and, as u−w → 0,

θd(u−w) = J(d,α)Fα(u−w)+ o(Fα(u−w))

where

Fα(x) =





|x|α if α < 2

|x|2 log(|x|) if α = 2

|x|2 if α > 2

and

J(d,α) =





c0γ0

∫
q∈Rd

sin2 (πq1)

|q|d+α
dq if α < 2

−c0γ0π2

d
if α = 2

c0γ0π2

d(α − 2)
if α > 2.

Proof. By periodicity of θd , we can restrict the proof to the case w = 0. Since s0 is a radial

function, we can write θd(u) as

θd(u) = c0|u|α
[
|u|d ∑

z 6=0

γ(|u|z)
| |u|z |d+α

sin2

(
π

u

|u| · |u|z
)]

.

This is equivalent in order, as u vanishes, to

c0γ0|u|α
∫

|q|≥|u|

1

|q|d+α
sin2

(
π

u

|u| ·q
)

dq = c0γ0|u|α
∫

|q|≥|u|

1

|q|d+α
sin2 (πq1) dq.

Here, the second equality follows from the invariance of the Lebesque measure by the

orthogonal group.

If α < 2, the last integral is convergent. If α > 2, the integral diverges as u vanishes as

∫

|q|≥|u|

1

|q|d+α
sin2

(
π

u

|u| ·q
)

dq ∼ π2

d(α − 2)
|u|2−α .

If α = 2, the integral diverges as

∫

|q|≥|u|

1

|q|d+2
sin2

(
π

u

|u| ·q
)

dq ∼ −π2

d
log(|u|).

�
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3.5. One point function lower bounds. The following lower bound will be useful in

the proof of Theorems 2.14 and 2.15, and may be skipped on first reading. We estimate

the variational formulas of the resolvent norms given in Lemma 3.2 with respect to the

occupation function Ψ{0}.

Recall the decomposition of the probability p = s+ a and the notation in Subsection

3.4. Let θd = θd(·;s0(·)) and

Fd
λ ,ρ(u) := [λ +θd(u)]+ (1− 2ρ)2

|â(u)|2
λ +θd(u)

+χ(ρ) ∑
V∈Cd

∫

s∈DV (u)

|â(s)+ â(u− s)|2
λ +θd(s)+θd(u− s)

ds,

where

DV (u) :=
{

s ∈ [0,1)d, (u− s+V) ∈ [0,1)d
}
, (3.11)

and

Id(λ ,ρ) :=

∫

Td

1

Fd
λ ,ρ

(u)
du. (3.12)

Proposition 3.6. There exists a constant C, not depending on λ , such that

〈(λ −L )−1Ψ{0},Ψ{0}〉ρ ≥ CId(λ ,ρ).

Proof. The first step is to use the sup-variational formula in Lemma 3.2 to express

〈(λ −L )−1Ψ{0},Ψ{0}〉ρ = sup
g

{
2〈Ψ{0},g〉−‖g‖2

1,λ −‖A g‖2
−1,λ

}
.

The second step is to restrict the supremum over functions g = ∑x∈Zd g(x)Ψ{x} in H1 to

get a lower bound. By orthogonality relation (3.4) and Lemma 3.4, we have

‖g‖2
1,λ ≤ C‖g‖2

1,free,λ = C

[
λ ∑

x

g2(x)+∑
x,y

s0(y− x) [g(y)−g(x)]2
]

‖A g‖2
−1,λ =

∥∥ ∑
|A|=1

(A1,1g)(A)ΨA

∥∥2

−1,λ
+
∥∥ ∑
|A|=2

(A1,2g)(A)Ψ(A)
∥∥2

−1,λ

≤ C
[
‖W1A1,1g‖2

−1,free,λ + ‖W2A1,2g‖2
−1,free,λ

]
. (3.13)

Recall the operators T1,1 :=W1A1,1 and T1,2 :=W1A1,2 act on functions defined on Zd

and (Zd)2 respectively, and are given by

(T1,1g)(x) = (1− 2ρ) ∑
y∈Zd

a(y− x) [g(y)−g(x)] ,

(T1,2g)(x,y) =
√

χ(ρ)a(y− x) [g(x)−g(y)] .

It follows that

〈(λ −L )−1Ψ{0},Ψ{0}〉ρ (3.14)

C sup
g

{
2g(0)−λ ∑

x∈Zd

g2(x)+ ∑
x,y∈Zd

s0(y− x)
[
g(y)−g(x)

]2

−‖T1,1g‖2
−1,free,λ −‖T1,2g‖2

−1,free,λ

}
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The last step is to express the terms in this formula via the Fourier transform of g. We

have, as a is anti-symmetric,

T̂1,1g(s) = −(1− 2ρ) â(s) ĝ(s),

T̂1,2g(s, t) = −
√

χ(ρ)[â(s)+ â(t)] ĝ(s+ t).

Recall Cd = {σ1e1 + . . .+σded ; σi ∈ {0,1}} ⊂ Zd . Observe that the set [0,2)d is equal to

the disjoint union of the sets [0,1)d +V over V ∈ C d . Then, by periodicity of ĝ, θd and â,

we have

‖T1,2g‖2
−1,free,λ = χ(ρ)

∫

[0,1)d
|ĝ(u)|2

[
∑

V∈Cd

∫

s∈DV (u)

|â(s)+ â(u− s)|2
λ +θd(s)+θd(u− s)

ds

]
du.

Because g is a real function, ĝ has even real and odd imaginary parts. To obtain a lower

bound of (3.14), we maximize, over such square integrable complex functions ϕ : Td →C,

the following expression
∫

Td
du
{

2ϕ(u)−Fd
λ ,ρ(u) |ϕ(u)|2

}
du. (3.15)

Noting, for A > 0, that supx∈R[2x−Ax2] = 1/A is realized at x = 1/A, the supremum in

(3.15) is attained at ϕ = 1/Fd
λ ,ρ and the value of the supremum is Id(λ ,ρ). �

4. COMPARISON RESULTS: PROOF OF THEOREM 2.4

The proof of Theorem 2.4, given at the end of the section, makes use of two preliminary

results which we first argue. In particular, Lemma 4.2 states a type of sector condition,

perhaps useful in other problems, for long-range models when α > 2 and d ≥ 1.

Denote by ‖ ·‖±1,(FA), ‖ ·‖±1,(FA−NN) and ‖ ·‖±1,(NNA) the H±1-norms defined in terms

of S (FA), S (FA−NN) and S (NNA) respectively, and similar expressions with respect to

(FA−NN) and (NNA) generators.

Lemma 4.1. For α > 2, and d ≥ 1, there exist constants C = C(p,d),D = D(p,d) > 0

such that on local functions ϕ ,

C−1 ‖ϕ‖2
1,(FA) ≤ ‖ϕ‖2

1 ≤ C‖ϕ‖2
1,(FA) (4.1)

D−1 ‖ϕ‖2
−1,(FA) ≤ ‖ϕ‖2

−1 ≤ D‖ϕ‖2
−1,(FA).

Proof. The second display follows from first in (4.1) and the definition of H−1 norms.

To prove (4.1), we now give a reduction: By irreducibility of s(FA), Lemma 3.7 in [25]

states that ‖ · ‖±,(FA) and ‖ · ‖±,(FA−NN) are equivalent. Hence, we need only to show (4.1)

with respect to p(FA−NN).

Recall, the Dirichlet form ‖ϕ‖2
1 = ∑x,y∈Zd s(y)Dx,x+y(ϕ). Similarly, ‖ϕ‖2

1,(FA−NN) =

∑x∈Zd ∑d
i=1 s(FA−NN)(ei)Dx,x+ei

(ϕ). Here, for u,v ∈ Zd , Du,v(ϕ) = Eρ(ϕ(η
u,v)−ϕ(η))2.

We now argue in d = 1, and remark later on modifications to d ≥ 2. The left in-

equality in (4.1) is trivial since s(FA−NN)(1) = 2−1, s(1) = c2−1(b+1 + b−1 ) > 0 and so

‖ϕ‖2
1 ≥

s(1)

s(FR−NN)(1)
‖ϕ‖2

1,(FR−NN).

For the right inequality in (4.1), consider the bond (x,x+y) for y > 0. Rewrite ηx,x+y as

a series of nearest-neighbor exchanges. One exchanges in succession the values on bonds

(x,x+ 1), (x+ 1,x+ 2) and so on to bond (x+ y− 1,x+ y). In this way, the value at x is

now at x+ y. Exchange now on bonds (x+ y− 1,x+ y− 2), and so on to (x,x+ 1). This

puts the value initially at x+y at x, also shifts back the values at intermediate points to their
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initial states. The Dirichlet bond Dx,x+y(ϕ), by invariance of νρ , by adding and subtracting

2y− 1 terms and Schwarz inequality is bounded

Dx,x+y(ϕ) ≤ 2y

x+y−1

∑
z=x

Dz,z+1(ϕ).

Since α > 2, we have ∑y2s(y)< ∞ and

‖ϕ‖1
1 ≤ ∑

y

2ys(y)∑
x

x+y−1

∑
z=x

Dz,z+1(ϕ)

≤
(
∑
y

2y2s(y)
)
∑
x

Dx,x+1(ϕ) ≤ s(FR−NN)(1)−1
(
∑
y

2y2s(y)
)
‖ϕ‖2

1,FR−NN .

In d ≥ 2, the proof of the left inequality in (4.1) is similar, as s(FA−NN)(ei),s(ei)> 0 for

1 ≤ i ≤ d. For the right inequality, an exchange over the bond (x,x+ y) is decomposed by

nearest-neighbor exchanges first on bonds (x,x+e1) to ((x1+y1−1,x2),(x1+y1,x2)), and

then from ((x1 + y1,x2),(x1 + y1,x2 + 1)) to x+ y. Then, as before in the d = 1 argument,

exchanges are made on the vertical and horizontal lines to bring the value at x+ y to x, and

shift back other values. The analysis is now analogous with more notation (cf. Appendix

3.3 in [13]). �

Now, suppose m = ∑yp(y) is such that mi ≥ 0 for 1 ≤ i ≤ d. Let L 1 be the generator

of a nearest-neighbor finite range (FA-NN) exclusion process where

(L 1 f )(η) = ∑
z∈Zd

[
(2m1 − 1)η(z+ e1)(1−η(z))∇z,z+e1

f (η)

+
d

∑
i=2

(2mi)η(z+ ei)(1−η(z))∇z,z+ei
f (η)

]
.

Lemma 4.2. Suppose α > 2, d ≥ 1 and consider the exclusion process generated by L̃ =
L +L 1. Then, L̃ satisfies a sector condition: There exists a constant C =C(p,d) such

that on local functions ϕ ,ψ : Ω →R we have

〈(−L̃ )ϕ ,ψ〉ρ ≤ C‖ϕ‖1,(FA−NN)‖ψ‖1,(FA−NN).

We remark this lemma is a type of generalization, to the long-range setting, of the finite-

range sector inequality in Lemma 5.2 of [31]:

〈(−L̂ )ϕ ,ψ〉ρ ≤ C‖ϕ‖1,(FA)‖ψ‖1,(FA) (4.2)

where L̂ is the generator of a finite-range mean-zero exclusion process.

Proof. We work in d = 1, but a similar but more notationally involved argument, decom-

posing a jump from x to x+ y into nearest-neighbor jumps parallel to axes, as in the proof

of Lemma 4.1, yields the proof for d ≥ 2.

First, we notice that L̃ generates a process which can be decomposed into certain ‘loop-

ing’ operators L̃k:

L̃ ϕ(η) = ∑
k∈Z

∑
x∈Z

L̃
x

k ϕ(η), (4.3)

where, for k > 0,

L̃
x
k ϕ(η)= p(k)

{
η(x)(1−η(x+k))∇x,x+kϕ(η)+2

x+k−1

∑
y=x

η(y+1)(1−η(y))∇y,y+1ϕ(η)
}
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and for k < 0 the last term in the curly braces above takes the form 2∑x
y=x+k+1 η(y−1)(1−

η(y))∇y,y+1ϕ(η).
We now fix k > 0–the arguments in the case when k < 0 will be analogous. Define the

following νρ -measure-preserving transformations: Let Tj : Ω → Ω be given by

T0η = ηx,x+k

Tjη = ηx+k− j+1,x+k− j for 1 ≤ j ≤ k

Tj = T2k− j for k+ 1 ≤ j ≤ 2k− 1.

Define also the sets

E0 = {η(x) = 1}
E j = {η(x+ k− j+ 1)= 1} for 1 ≤ j ≤ k

E j = E2k− j for k+ 1 ≤ j ≤ 2k− 1.

Then, since η(z)(1−η(w))∇z,wϕ(η) = η(z)∇z,wϕ(η), a moment’s thought gives

L̃
x
k ϕ(η) = p(k)

{
η(x)∇x,x+kϕ(η)+η(x+ 1)∇x,x+1ϕ(η)

+2
x+k−1

∑
y=x+1

η(y+ 1)∇y,y+1ϕ(η)
}

= p(k)
2k−1

∑
j=0

1E j
(η)
{

ϕ(Tjη)−ϕ(η)
}
.

Now, E j = Tj−1 · · ·T0E0 for 1 ≤ j ≤ 2k− 1. Also, noting the order of the exchanges

{Tk}, we take a particle from x to x+ k, bring it back to x in k nearest-neighbor steps, and

then put back the offset values in k−1 nearest-neighbor exchanges. Then, T2k−1 · · ·T0 = I,

the identity map. For local functions ϕ and ψ , we have

〈(−L̃
x

k )ϕ ,ψ〉ρ = p(k)Eρ

[ 2k−1

∑
j=0

1E j
(η)
[
ϕ(Tjη)−ϕ(η)

]
ψ(η)

]

= p(k)Eρ

[ 2k−1

∑
j=0

1E0
(η)
{

ϕ(Tj · · ·T0η)−ϕ(Tj−1 · · ·T0η)
}

ψ(Tj−1 · · ·T0η)
]
,

after changing variables, with convention T−1 · · ·T0 = I. As the sum over the curly brackets

telescopes in the last display and vanishes for each η , we may subtract ψ(η) to obtain

〈(−L̃
x
k )ϕ ,ψ〉ρ = p(k)Eρ

[ 2k−1

∑
j=0

1E0
(η)
{

ϕ(Tj · · ·T0η)−ϕ(Tj−1 · · ·T0η)
}

·
{

ψ(Tj−1 · · ·T0η)−ψ(η)
}]

.

The last display is rewritten, noting the j = 0 term vanishes, as

p(k)Eρ

[ 2k−1

∑
j=2

1E0
(η)
{

ϕ(Tj · · ·T0η)−ϕ(Tj−1 · · ·T0η)
}{

ψ(Tj−1 · · ·T0η)−ψ(T0η)
}]

+ p(k)Eρ

[ 2k−1

∑
j=1

1E0
(η)
{

ϕ(Tj · · ·T0η)−ϕ(Tj−1 · · ·T0η)
}{

ψ(T0η)−ψ(η)
}]

=: A+B.
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In the following, C is a constant which may change line to line. From Schwarz’s in-

equality, changing variables,

2k−1

∑
j=2

Eρ

{
ψ(Tj−1 · · ·T0η)−ψ(T0η)

}2 ≤ Ck
2k−1

∑
j=2

j−1

∑
l=1

Eρ

{
ψ(Tlη)−ψ(η)

}2
.

Note that Tl for l ≥ 1 is a nearest-neighbor operation. Hence, by another Schwarz’s in-

equality, infε>0{a2ε + b2ε−1} = 2ab, 1E0
≤ 1, and counting nearest-neighbor bonds, we

have after summing on x, that ∑x |A| is bounded

∑
x

|A| ≤ Ck3 p(k)εk‖ψ‖2
1,(FA−NN)+Ckp(k)ε−1

k ‖ϕ‖2
1,(FA−NN).

Taking εk = εk−1, summing on k, and optimizing on ε , we have

∑
k

∑
x

|A| ≤ C
[
∑
k

k2 p(k)
]
‖ϕ‖1,(FA−NN)‖ψ‖1,(FA−NN).

Similarly, since Eρ

{
ψ(T0η)−ψ(η)

}2
= Eρ

{
ψ(ηx,x+k)−ψ(η)}2,

∑
k

∑
x

|B| ≤ Cε ∑
k,x

k2 p(k)‖ϕ‖2
1,(FA−NN)+ 2ε−1 ∑

k,x

p(k)Eρ

{
ψ(T0η)−ψ(η)

}2

= Cε ∑
k

k2 p(k)‖ϕ‖2
1,(FA−NN)+ 2ε−1‖ψ‖2

1

≤ C
[
∑
k

k2 p(k)
]1/2‖ϕ‖1,(FA−NN)‖ψ‖1.

By Lemma 4.1, ‖ψ‖2
1 ≤C‖ψ‖2

1,(FA−NN).

Finally, combining bounds on A and B, we get the desired estimate for 〈(−L̃ )ϕ ,ψ〉ρ =

∑k ∑x(A+B). �

Proof of Theorem 2.4. For local functions f , we first compare L f (λ ) with L
(FA−NN)
f (λ ) for

λ > 0. Recall from Lemma 3.2 that

L f (λ ) = 2λ−2 sup
ϕ

{
2〈 f ,ϕ〉ρ −〈ϕ ,(λ −S )ϕ〉ρ −〈A ϕ ,(λ −S )−1

A ϕ〉ρ

}
.

Consider L̃ = L +L 1 = A +A 1 +S +S 1, decomposed into anti-symmetric and

symmetric parts. Then, by the triangle inequality, with respect to the ‖ · ‖−1 norm,

〈A ϕ ,(λ −S )−1
A ϕ〉ρ

≤ 3〈A1ϕ ,(λ −S )−1
A1ϕ〉ρ + 3〈L̃ ϕ ,(λ −S )−1

L̃ ϕ〉ρ

+3〈[S +S
1]ϕ ,(λ −S )−1[S +S

1]ϕ〉ρ .

The second inner product, by Lemmas 4.1, 4.2 and that ‖ · ‖1 ≤ ‖ · ‖1,λ , is bounded

〈L̃ ϕ ,(λ −S )−1
L̃ ϕ〉ρ

≤ C‖ϕ‖1,(FA−NN)〈(λ −S )−1
L ϕ ,(−S

1)(λ −S )−1
L ϕ〉1/2

ρ

≤ C‖ϕ‖1,(FA−NN)〈(λ −S )−1
L ϕ ,(λ −S )(λ −S )−1

L ϕ〉1/2
ρ

= C‖ϕ‖1,(FA−NN)‖L̃ ϕ‖−1,λ

where the constant C may change every line. Dividing through by ‖L̃ ϕ‖−1,λ , we obtain

‖L̃ ϕ‖−1,λ ≤C‖ϕ‖1,(FA−NN).
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Similarly, the third inner product, by Lemma 4.1 and definition of ‖ · ‖−1,λ , is bounded

〈[S +S
1]ϕ ,(λ −S )−1[S +S

1]ϕ〉ρ ≤ C〈ϕ ,(λ −S
1)ϕ〉ρ .

Hence, substituting into the variational formula for L f (λ ) and optimizing over ϕ , we

have L f (λ ) ≥CL
(FA−NN)
f (λ ). Similarly, we bound L

(FA−NN)
f (λ ) ≥ CL f (λ ) with possibly

a different constant C, starting from the variational formula for L
(FA−NN)
f (λ ).

Finally, by similar arguments as above with the known ‘finite range’ sector inequality

(4.2), we conclude L
(FA−NN)
f ≈ L

(FA)
f . �

5. PROOF OF RESULTS: SYMMETRIC JUMPS

The proofs of Theorem 2.6, Theorem 2.8 and Theorem 2.9 are based on the self-duality

property of the exclusion process, and follow from several computations. On the other

hand, the proof of Theorem 2.11 follows the martingale approximation scheme in [12],

[19] and [23] for the finite-range case. Nevertheless, several estimates are different and

require care because of the presence of the heavy tails of the probability p(·) = s(·). In the

remainder of the section, we abbreviate θd = θd(·;s(·)) (cf. Subsection 3.4).

5.1. Proof of Theorem 2.6. By the basis decomposition in Subsection 3.2, a local, mean-

zero function can be written as

f = ∑
n≥1

∑
|A|=n

f(A)ΨA

where A ⊂ E and all sums are finite. Let n ≥ 1 be such that α ∧ 2 < nd and suppose

deg( f ) = n. By the remark (2.1), (1) if n = 1, ∑|A|=1 f(A) 6= 0; (2) If n = 2, ∑|A|=1 f(A) = 0;

(3) and if n ≥ 3, ∑|A|=1 f(A) = ∑|A|=2 f(A) = 0.

Note that ∑|A|=k f(A)1A is the dual form of ∑|A|=k f(A)ΨA for k ≥ 1. To show f is

admissible, it is enough to show in case (1) that 1A is admissible for all A ∈ E1; in case (2),

it is enough to prove ∑|A|=1 f(A)1A and 1A for |A| ≥ 2 are admissible; in case (3), we need

to show ∑|A|=1 f(A)1A, ∑|A|=2 f(A)1A and 1A for |A| ≥ 3 are admissible.

To show 1A for |A| ≥ n is admissible, by Lemma 3.1, we need only to bound ‖1A‖−1,λ

uniformly as λ ↓ 0. By Lemma 3.4, it is sufficient to prove

limsupλ→0‖Wn1̃A‖−1,λ ,free < ∞. (5.1)

Since the function g = Wn1̃A = 1 when {x1, . . . ,xn} = A and vanishes otherwise, its

Fourier transform is bounded. Thus, expressing the H−1,λ ,free-norm in Fourier space (cf.

(3.8)), the display (5.1) follows if we show that

limsupλ→0

∫

(Td)n

dk1 . . .dkn

λ +θd(k1)+ . . .θd(kn)
< ∞.

The divergence of this integral can only happen for (k1, . . . ,kn) close to a point in Cd ×
. . .×Cd . It is straightforward to check that all divergences are the same as for (k1, . . . ,kn)
close to (0, . . . ,0). Standard analysis, using Lemma 3.5, shows the bound (5.1).

But, when ∑|A|=ℓ f(A) = 0, the square of the Fourier transform of Wℓ
˜∑|A|=ℓ f(A)1A di-

verges quadratically near points in (Cd)
ℓ, for instance as k2

1 + · · ·+ k2
ℓ near the origin.

Since at these points, by Lemma 3.5, θd(k) diverges with smaller or equal order, the norm

‖Wℓ
˜∑|A|=ℓ f(A)1A‖−1,λ ,free converges as λ ↓ 0.

Combining these estimates, we conclude f is admissible in all cases. �
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5.2. Proof of Theorem 2.9. Let f (η) = (η(0)−ρ)(η(1)−ρ) = χ(ρ)Ψ{0,1} whose dual

function f = χ(ρ)1{0,1}. By our assumption L = S , Remark 2.7 and that functions of

degree strictly larger than 2 are admissible by Theorem 2.6, and (3.2), we need only show

〈 f ,(λ −L )−1 f 〉ρ = 〈 f ,(λ −S )−1 f 〉ρ = ‖ f‖2
−1,λ ≈ | logλ |.

Further, by Lemma 3.4, we need only to show this estimate with ‖ f‖−1,λ replaced by

‖W2f̃‖−1,λ ,free. Observe, by (3.7), that (W2 f̃)(x,y) = χ(ρ) [1x=0,y=1 + 1x=1,y=0] and its

Fourier transform is χ(ρ)
[
e2π is1 + e2π is2

]
. Then, by (3.8), it is enough to show

∫

T2

1

λ +θ1(s1)+θ1(s2)
ds1 ds2 ≈ | logλ |

as λ ↓ 0. This is straightforwardly accomplished using Lemma 3.5 and standard analysis.

�

5.3. Proof of Theorem 2.8. By Remark 2.7, the lower order of variance for degree 2 func-

tions in Theorem 2.9, and admissibility of functions of at least degree 3 in Theorem 2.6, we

need only to consider f (η) = η(0)−ρ . Recall from (3.2) that the Laplace transform L f (·)
of σ2

f (t) is given by L f (λ ) = 2λ−2〈 f ,(λ −L )−1 f 〉ρ which equals 2λ−2〈 f ,(λ −S )−1 f 〉ρ

as L = S by assumption.

Write f =
√

χ(ρ)Ψ{0} ∈ H1 and consider its dual function f=
√

χ(ρ)1{0} ∈H1. Iden-

tifying cardinality 1 subsets of Zd with points in Zd , we see that the generator S restricted

to H1 is nothing but the generator of a random walk on Zd with kernel s. Then,

L f (λ ) = 2χ(ρ)λ−2(λ −S)−1({0},{0})

= 2χ(ρ)λ−2

∫

Td

du

λ +θd(u)

= 2χ(ρ)λ−2

∫ ∞

0
e−λ t

[∫

Td
e−θd(u)tdu

]
dt

using Fubini’s Theorem for the last line.

After two integration by parts, we recover the variance

σ2
t ( f ) = 2χ(ρ)

∫

Td

θd(u)t − 1+ e−θd(u)t

θ 2
d (u)

du. (5.2)

Now, by Lemma A.1, which analyzes (5.2) through standard analysis and Lemma 3.5, we

obtain Theorem 2.8. �

5.4. Proof of Theorem 2.11. The functional CLT follows from a combination of argu-

ments. In particular, since the symmetric exclusion process starting from νρ is reversible,

part (i) follows from the Kipnis-Varadhan theorem [14]. Also, the proof of part (iii) is the

same as in Section 3.2 in Kipnis [12] given the scalings in Theorem 2.9.

However, part (ii) is more involved as the long-range character of the process needs to

be addressed.

5.4.1. Proof of Theorem 2.11, ii). Let f be a local function of degree 1. Again, by Remark

2.7 and the lower order variance growth of degree 2 or more functions in Theorem 2.8, it is

enough to prove the result for the function f (η) = η(0)−ρ . In the following, we denote

η̄(x) := η(x)−ρ .

Recall, the notation from the introduction, aN = σN( f ). In order to show A
(N)
t :=

a−1
N Γ f (tN) converges in the uniform topology as N ↑ ∞, it is sufficient to show tightness
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in the sup-norm, and that the finite-dimensional distributions converge. Tightness is estab-

lished with the same argument as for Theorem 1.2 in [23] with respect to the finite-range

limit (1.1). Also, by the Markov property and scalings in Theorem 2.14, convergence of

finite-dimensional distributions to B(t) when d = 1,α = 1 or d = 2,α ≥ 2, B1−1/2α(t)
when d = 1,1 < α < 2, and B3/4(t) when d = 1,α ≥ 2 follow from the convergence of

the marginal sequence A
(N)
t to a Gaussian limit. We now give a sketch how to obtain this

marginal convergence.

Let T > 0 be fixed. Suppose there is a function vT
s such that for s ∈ [0,T ],

(∂s +L )vT
s (η) =−η̄s(0)

and vT
T = 0. Then, by Dynkin’s formula

M
T
t = vT

t (ηt)− vT
0 (η0)−

∫ t

0
(∂s +L )vT

s (ηs)ds

is a centered martingale and
∫ T

0
η̄s(0)ds = vT

0 (η0)+M
T
T . (5.3)

Moreover, by the martingale property, vT
0 (η0) and M T

T are uncorrelated since M T
0 = 0.

Then, a2
T = Eρ [Γ

2
f (T )] is the sum of the variances of these terms. Define the limiting

variances, assuming they converge,

σ2
1,T := lim

N→∞
Eρ

( 1

aN

vT N
0 (η0)

)2

and σ2
2,T := lim

N→∞
Eρ

( 1

aN

M
T N
T N

)2

.

Write ∣∣∣Eρ

[
eitA

(N)
T − e

− t2

2 (σ 2
1,T+σ 2

2,T )
]∣∣∣

≤ Eρ

∣∣∣Eη(0)

[
e

it
aN

MT N
T N − e

− t2

2 σ 2
2,T

]∣∣∣+
∣∣∣Eρ

[
e

it
aN

vT N
0 (η0)− e

− t2

2 σ 2
1,T

]∣∣∣.

Later, in Lemmas 5.1 and 5.2, we show σ2
1,T and σ2

2,T indeed converge, and that the first

and second terms above vanish, finishing the marginal convergence argument.

To make rigorous this sketch, we first establish the martingale decomposition (5.3). Let

pt(y) be the continuous-time transition probability of the random walk on Zd , starting at

the origin, with translation-invariant symmetric rates p(x,x+ y) := p(y) = s(y). Define

ut(x) =

∫ t

0
ps(x)ds,

the Green’s function, which satisfies

∂tut = ∆ut + δ0

where ∆ is the generator of the random walk, ∆ f (x) = ∑y∈Zd p(y)( f (x+ y)− f (x)).

We now verify that UT
t (η) := vT

t (η) where

UT
t (η) = ∑

x∈Zd

uT−t(x)η̄(x).

Indeed, write

∂sU
T
s = − ∑

x6=0

∆uT−s(x)η̄(x)− (∆uT−s(0)+ 1)η̄(0)

= − ∑
x∈Zd

∆uT−s(x)η̄(x)− η̄(0) = −LUT
s − η̄(0)
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noting Ut(η
x,x+y)−Ut(η) =

(
uT−t(x+ y)− uT−t(x)

)(
η(x)−η(x+ y)

)
, p(·) = s(·) and

LUT
t (η) = ∑

x,y∈Zd

p(y)η(x)(1−η(x+ y))
(
uT−t(x+ y)− uT−t(x)

)
(5.4)

= ∑
x,y∈Zd

p(y)
(
uT−t(x+ y)− uT−t(x)

)
η(x).

Observe that UT
T (η)≡ 0, since u0(x) = 0 for all x ∈ Zd . Hence, (5.3) follows and

∫ T

0
η̄s(0)ds = UT

0 (η0)+M
T
T .

Lemma 5.1. We have

1

aN

UNT
0 (η0) :=

1

aN
∑

x∈Zd

uNT (x)η̄0(x) (5.5)

converges weakly as N ↑ ∞ to a centered Normal variable with limiting variance σ2
1,T .

When 0<α ≤ 1 in d = 1 or α ≥ 2 in d = 2, σ2
1,T = 0. But, for α > 1 in d = 1, 0<σ2

1,T <∞.

Proof. The Fourier transform of ut(·) is given by

ût(k) =

∫ t

0
e−(1− p̂(k))sds

for k ∈ Td where p̂(k) = ∑y∈Zd p(y)e2π ik·y is the Fourier transform of p(·) = s(·). By

symmetry of s(·), the fact that 1−cos(2πk ·y) = 2sin2(πk ·y), and definition of θd in (3.9),

we have

1− p̂(k) = 2 ∑
y∈Zd

s(y)sin2(πk · y) = θd(k).

Thus, we obtain

ût(k) =
1− e−θd(k)t

θd(k)
(5.6)

and as a consequence

ut(x) =

∫

Td
e−2iπk·x

[
1− e−θd(k)t

θd(k)

]
dk. (5.7)

By Parseval’s relation, Eρ [(η(x)−ρ)2] = ρ(1−ρ) = χ(ρ), and the equation for a2
N =

σ2
N( f0) in (5.2), the variance of a−1

N UNT
0 (η0) under νρ is equal to

χ(ρ)

a2
N

∑
x∈Zd

|uTN |2(x) = χ(ρ)
∫

Td

[
1− e−θd(k)T N

θd(k)

]2

dk

·
[
2χ(ρ)

∫

Td

θd(u)N − 1+ e−θd(u)N

θ 2
d (u)

du
]−1

. (5.8)

i) If d = 1 and α = 1, by the scaling relation a2
N ∼ N log(N), θ1(k) ∼ |k| (cf. Lemma

3.5), and simple computation, the variance (5.8) vanishes as N ↑ ∞. Therefore, (5.5)

converges in distribution to the Dirac mass centered at 0.
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ii) If d = 1 and 1 < α < 2, recall aN ∼ N1−1/2α . By (5.6), we have

∑
x∈Z

|ut(x)|2 =
∫ 1

0

[
1− e−θ1(k)t

θ1(k)

]2

dk

= 2

∫ 1/2

0

[
1− e−θ1(k)t

θ1(k)

]2

dk = 2t2−1/α
∫ t1/α/2

0

[
1− e−tθ1(ℓt

−1/α )

tθ1(ℓt−1/α)

]2

dℓ.

By Lemma 3.5 and dominated convergence, we have, as t ↑ ∞,

∑
x∈Z

|ut(x)|2 ∼ 2t2−1/α
∫ ∞

0

[
1− e−a1(α)ℓα

a1(α)ℓα

]2

dℓ, (5.9)

where the constant a1(α) is such that θ1(k)∼ a1(α)|k|α as k ↓ 0. A similar argument

shows, for x ∈ Z and t > 0, that

|ut(x)| ≤
∫ 1

0

∣∣∣∣∣
1− e−θ1(k)t

θ1(k)

∣∣∣∣∣dk = O
(

t1−1/α
)
. (5.10)

Also, by the same type of analysis, one concludes that σ2
1,T , the limit of (5.8) as N ↑∞,

converges.

Now, for β ∈ R, we have

log

[∫
dνρ(η) exp

(
iβ

aN
∑
x∈Z

uNT (x)η̄(x)

)]

= log

[
∏
x∈Z

∫
dνρ(η) exp

(
iβ

aN

uNT (x)η̄(x)

)]

= log

[
∏
x∈Z

[
1− β 2

2a2
N

uNT (x)
2 +O(a−3

N |uNT (x)|3)
]]

.

Since ∑x |uNT (x)|3 ≤ (∑x |uNT (x)|2)supx |uNT (x)| = O(a2
NN1−1/α) and e−z = 1− z+

O(z2) as |z| ↓ 0, by (5.9) and (5.10), we get

lim
N→∞

∫
dνρ(η) exp

(
iβ

aN
∑
x∈Z

uNT (x)η̄(x)

)
= exp

(
−σ2

1,T β 2/2
)
.

iii) If d = 1 and α > 2, the argument is similar to the case when 1<α < 2. If α = 2, using

the substitution k = βtu with tβ 2
t | logβt | = 1 and βt = O((t log(t))−1/2), the proof is

also analogous.

iv) If d = 2 and α ≥ 2, as when d = 1 and α = 1, noting the scaling relation for a2
N in

Theorem 2.8 and that θd(k) ∼ |k|2 for α > 2 and θd(k) ∼ |k|2 log(|k|) for α = 2 by

Lemma 3.5, the limit of the variance in (5.8) vanishes and (5.5) converges to the Dirac

mass at 0.

�

Lemma 5.2. For any fixed T > 0, the limiting variance satisfies 0 < σ2
2,T < ∞ and

lim
N→∞

Eρ

∣∣∣Eη0

[ 1

aN(T )
M

T N
T N − e

− t2

2 σ 2
2,T

]∣∣∣ = 0. (5.11)
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Proof. Although UT
s is not a local function, by standard approximations, the quadratic

variation of the martingale M s
T is

∫ t
0 L (UT

s )2 − 2UT
s LUT

s ds. Recalling p(·) = s(·), the

integrand may be computed as

L (UT
s )2 − 2UT

s LUT
s = ∑

x,y∈Zd

p(y− x)
(
uT−s(y)− uT−s(x)

)2
ηs(x)

(
1−ηs(y)

)
.

Hence, the variance σ2
2,T is given by

lim
N↑∞

1

a2
N

Eρ

(
M

T N
T N

)2
= lim

N↑∞

ρ(1−ρ)

a2
N

∫ T N

0
∑

x,y∈Zd

p(y− x)
(
uTN−s(y)− uTN−s(x)

)2
ds

= lim
N↑∞

2ρ(1−ρ)

a2
N

∫ NT

0

∫

Td
θd(k)|ûT N−s(k)|2dkds (5.12)

using a form of Parseval’s relation: The random walk Dirichlet form

1

2
∑

x,y∈Zd

p(y− x)
(
uTN−s(y)− uTN−s(x)

)2
=−〈uTN−s,∆uTN−s〉=

∫

Td
θd(k)|ûT N−s(k)|2dk.

Then, the limit converges to a positive quantity, noting the explicit form of ût in (5.6),

Lemma 3.5, and the asymptotics of aN (cf. Theorem 2.8), and from standard analysis as

used in the proof of Lemma 5.1.

Now, by Feynman-Kac’s formula, for β ∈ R, the process

N
T,β

t = exp

{
iβUT

t (ηt)− iβUT
0 (η0)−

∫ t

0
e−iβUT

s (ηs)(∂s +L )eiβUT
s (ηs)ds

}
,

for 0 ≤ t ≤ T , is a martingale with expectation 1. By the form of UT and (5.4), we have

e−iβUT
s (ηs)(∂s +L )eiβUT

s (ηs) = iβ (∂s +L )UT
s (ηs)+A(β ,s,T )

with A(β ,s,T ) equal to

∑
x,y

p(y− x)
[
eiβ (uT−s(y)−uT−s(x))− iβ (uT−s(y)− uT−s(x))− 1

]
ηs(x)(1−ηs(y)).

We have to show that

Eρ

∣∣∣∣∣Eη(0)

[
exp

(
iβ

M T N
T N

aN

)
− exp

(
−σ2

2,T β 2/2)
)
]∣∣∣∣∣

= Eρ

∣∣∣∣Eη(0)

[
N

T N,β/aN

T N

{
exp

[
−
∫ NT

0
A

(
β

aN

,s,NT

)
ds

]
− exp

(
−σ2

2,T β 2/2)
)}]∣∣∣∣

vanishes as N ↑ ∞.

Note, for x, t ∈ R,

|eitx − 1− itx+ x2t2/2| ≤ Ct2x2 min(1, |tx|) (5.13)

and that a−1
N supx |uNT−s|(x) → 0 by (5.10), aN-asymptotics in Theorem 2.8 and straight-

forward computations.
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With this estimate, there exists a constant C > 0 such that

∣∣N T N,β/aN

TN

∣∣ ≤ exp

[∫ NT

0

∣∣∣∣A
(

β

aN

,s,NT

)∣∣∣∣ds

]
(5.14)

≤ exp

{
Cβ 2

a2
N

∫ NT

0
∑
x,y

p(y− x)[uNT−s(y)− uNT−s(x)]
2ds

}

= exp

{
Cβ 2

2a2
N

∫ NT

0

(∫

Td
θd(k)| ûNT−s(k) |2 dk

)
ds

}
,

where the second inequality comes from a Taylor expansion and the equality from the

Parseval relation for the ∆-Dirichlet form.

As the variance in (5.12) converges, the quantity
∫ NT

0 |A(a−1
N β ,s,NT )|ds and (5.14) are

uniformly bounded in N. Therefore, things are reduced to show that

lim
N→∞

∫ NT

0
A

(
β

aN

,s,NT

)
ds =

σ2
2,T β 2

2
(5.15)

in probability under Pρ .

Then, to prove (5.15), noting (5.13), it is sufficient to show, in probability, that

lim
N→∞

1

a2
N

∫ NT

0

[
∑

x,y∈Zd

bN(s,x,y)ηs(x)(1−ηs(y))

]
ds = σ2

2,T

where

bN(s,x,y) = p(y− x)(uNT−s(y)− uNT−s(x))
2.

This statement, by the form of σ2,T
2 (5.12), would follow if we can replace ηs(s)(1−ηs(y))

by ρ(1−ρ) in L2(Pρ):

lim
N→∞

1

a2
N

∫ NT

0

[
∑

x,y∈Zd

bN(s,x,y) {ηs(x)(1−ηs(y))−ρ(1−ρ)}
]

ds = 0. (5.16)

To prove (5.16), after squaring terms, since
(
a−2

N

∫ NT
0 ∑x,y bN(s,x,y)ds

)2
converges in

(5.12), we need only show the covariance

Eρ

[{
ηs(x)(1−ηs(y))−ρ(1−ρ)

}{
ηu(z)(1−ηu(w))−ρ(1−ρ)

}]

vanishes uniformly in x,y,z,w as |u− s| ↑ ∞. As

η(ℓ)(1−η(k))−ρ2 = (1−ρ)(η(ℓ)−ρ)−ρ(η(k)−ρ)− (η(ℓ)−ρ)(η(k)−ρ),

by a calculation using the duality process decompositions in Subsection 3.2, namely the

symmetric semigroup action

Tt

n

∏
i=1

(η(xi)−ρ) = ∑
|A|=n

p(n)({x1, . . . ,xn},A)∏
y∈A

(η(y)−ρ),

the covariance is bounded by

C(ρ)
{

p
(1)
|u−s|(x,z)+ p

(1)
|u−s|(x,w)+ p

(1)
|u−s|(y,z)+ p

(1)
|u−s|(y,w)+ p

(2)
|u−s|

(
(x,y),(z,w)

)}
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where p(n) is the continuous-time transition probability of n particles in symmetric simple

exclusion for n ≥ 1. By Corollary VIII.1.9 in [17], we have the bound

p
(2)
v

(
(k1,k2),(ℓ1, ℓ2)

)
≤ C

2

∑
i, j=1

p
(1)
v (ki, ℓ j).

As p
(1)
v (k, ℓ) = p

(1)
v (0,k− ℓ), to show the covariance vanishes, we show limv↑∞ p

(1)
v (0,k) =

0 uniformly in k.

To this end, we bound p
(1)
v (0,k)2 = p

(1)
v (0,k)p

(1)
v (k,0)≤ p

(1)
2v (0,0) uniformly in k. But,

p
(1)
v (0,0) =

∫ 1

0
e−v(1− p̂(k))dk =

∫ 1

0
e−vθd(k)dk.

Since for α ≥ 1, by Lemma 3.5, θd(k)≥C|k|2 near the zeroes of θd , we have p
(1)
v (0,0)≤

C′v−1/2, which shows the covariance vanishes uniformly. �

6. PROOF OF RESULTS: ASYMMETRIC JUMPS

The proofs of the results for the asymmetric model rely on several ingredients, among

them careful estimation of variational formulas for L f (λ ), which we have partially pre-

pared for in Subsection 3.5, and several technical results collected in Appendix A.

6.1. Proof of Theorem 2.12. We first make a few reductions. By Corollary 3.3, the vari-

ance σ2
f (t)≤ 10t−1L

(S)
f (t−1). Then, by Theorem 2.6, which bounds L

(S)
f (λ ), all statements

in Theorem 2.12 follow modulo a few exceptions in d ≤ 2. In d = 1, we still need to show

(a) admissibility when deg( f ) = 1, α ∈ (1,2)∪ (2,∞) and ρ 6= 1/2, and (b) admissibility

when deg( f ) = 2, α > 2, ρ ∈ [0,1]. In d = 2, the case not obtained is (c) admissibility

when deg( f ) = 1, α ≥ 2 and ρ 6= 1/2.

When α > 2, by Lemma 3.1, σ2
f (t) ≤ 10t−1L f (t

−1) and by Theorem 2.4, L f (λ ) ≈
L
(FR)
f (λ ) with respect to a jump probability p(FR) with a drift. Also, by Proposition 2.1,

when ρ 6= 1/2, λ 2L
(FR)
f (λ ) is bounded as λ ↓ 0 for all local f . Hence, λ 2L f (λ ) is also

bounded and σ2
f (t) = O(t) when ρ 6= 1/2 in d = 1,2, and so parts (a) and (c) in these cases

also hold. Also, by Proposition 2.1, for local functions f with degree deg( f ) = 2, and any

0 ≤ ρ ≤ 1, we know λ 2L
(FR)
f (λ ) is bounded as λ ↓ 0. Therefore, λ 2L f (λ ) is also bounded

and σ2
f (t) = O(t), establishing part (b).

What remains then to conclude the proof of Theorem 2.12 is to show admissibility of

degree one functions when

(A) α ∈ (1,2), d = 1 and ρ 6= 1/2, and

(B) α = 2, d = 2 and ρ 6= 1/2.

By Remark 2.7 and the already proven admissibility of functions of at least degree 2 in

these cases (A) and (B), it is sufficient to focus on the degree 1 function f (η) = η(0)−ρ .

For the rest of the section, we remind that θd = θd(·;s0(·)) (cf. Subsection 3.4) in all

the formulas.

6.1.1. Proof of (A). To prove f (η) = η(0)− ρ is admissible, by Lemma 3.1, we need

to bound 〈 f ,(t−1 −L )−1 f 〉ρ . Then, by Lemma 3.2, using the inf form, to get an upper

bound, we restrict the infimum to the set of functions g of degree one. By the estimate
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(3.13), in the ‘free particle’ formulation, we have

inf
g of degree one

{‖η(0)−ρ +A g‖2
−1,λ + ‖g‖2

1,λ}

≤ inf
ϕ
{‖δ0 +T1,1ϕ‖2

−1,λ ,free + ‖T1,2ϕ‖2
−1,λ ,free + ‖ϕ‖2

1,λ ,free},

which is further expressed, in terms of the Fourier transform ϕ̂ , as

inf
ϕ̂

{∫ 1

0

|1+(1− 2ρ)â(u)ϕ̂(u)|2
λ +θ1(u)

du+

∫ 1

0
(λ +θ1(u))|ϕ̂(u)|2du

+ χ(ρ)2
∫ 1

0
|ϕ̂(u)|2

∫ 1

0

|â(s)+ â(u− s)|2
λ +θ1(s)+θ1(u− s)

ds du

}
. (6.1)

We note, as ϕ is real, ϕ̂ is a complex function with even real part and odd imaginary part.

The previous infimum is taken over this set of complex functions.

Now, for real numbers b,c > 0 and a 6= 0, we observe

inf
z∈C

{ |1+ iaz|2
b

+ c|z|2
}

=
1

b+ a2

c

and the infimum is realized at z = ia/(bc+ a2). In our case, we have

ia = (1− 2ρ)â(u),

b = λ +θ1(u)

c = λ +θ1(u)+ χ(ρ)2

∫ 1

0

|â(s)+ â(u− s)|2
λ +θ1(s)+θ1(u− s)

ds.

Then, the infimum (6.1) is realized for the function

ϕ̂(u) = −
G
(1)
λ ,ρ(u)

(1− 2ρ)â(u)
[
λ +θ1(u)+Gλ ,ρ(u)

],

where G
(1)
λ ,ρ is given by

G
(1)
λ ,ρ(u) =

(1− 2ρ)2|â(u)|2

λ +θ1(u)+ χ(ρ)2
∫ 1

0

|â(s)+ â(u− s)|2
λ +θ1(s)+θ1(u− s)

ds

.

Noting that G
(1)
λ ,ρ

is even, we see ϕ̂(u) has odd imaginary part and zero real part.

Therefore, we obtain the infimum (6.1) is equal to
∫ 1

0

1

λ +θ1(u)+G
(1)
λ ,ρ(u)

du.

We split the above integral over u-regions [0,δ ], [δ ,1− δ ] and [1− δ ,1] for δ > 0 small.

The contributions to the first and last regions are the same, while the integral over the

middle region is O(1) independent of λ since θ1 vanishes only on C1.

By Lemma A.2, sups∈T |â(s)+ â(u− s)|2 ≤Cu2. Also, by Lemma A.4, for 1 < α < 2,
∫

(0,δ )∪(1−δ ,1)

ds

λ +θ1(s)+θ1(s− u)
ds ≤ C0(λ + uα/C1)

1/α−1.

On the other hand,
∫ 1−δ

δ (λ +θ1(s)+θ1(s− u))−1ds = O(1) not depending on λ .
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Hence, there exist κ0,κ1 > 0 such that for any 0 < u ≤ δ

G
(1)
λ ,ρ(u) ≥ κ0u2

λ + uα + u2[(λ +κ1uα)1/α−1 + 1]
.

Therefore
∫ δ

0

du

λ +θ1(u)+G
(1)
λ ,ρ

(u)
≤
∫ δ

0

du

λ + uα +
κ0u2

λ + uα + u2[1+(λ +κ1uα)1/α−1]

=: J(λ ),

where

limsup
λ→0

J(λ ) =
∫ δ

0

du

uα +
κ0u2

uα + u2+κ
1/α−1

1 u3−α

.

• If 1 < α < 3/2, as u → 0,

uα +
κ0u2

uα + u2 +κ
1/α−1

1 u3−α
∼ κ0u2−α

because 3−α > α and α > 2−α .

• If 3/2 < α < 2, as u → 0,

uα +
κ0u2

uα + u2 +κ
1/α−1

1 u3−α
∼ κ0

κ
1/α−1

1

uα−1

because 3−α < α < 2 and α − 1 < α .

• If α = 3/2, as u → 0,

uα +
κ0u2

uα + u2 +κ
1/α−1

1 u3−α
∼ κ0

1+κ
−1/3

1

u1/2.

In all these cases, limsupλ→0 J(λ ) is finite, finishing the proof of part (A). �

6.1.2. Proof of (B). We proceed as in Section 6.1.1, and note that it suffices to show

limsup
λ→0

∫

T2

1

λ +θ2(u)+G
(2)
λ ,ρ

(u)
du < ∞ (6.2)

where

G
(2)
λ ,ρ

(u) =
(1− 2ρ)2|â(u)|2

λ +θ2(u)+ χ(ρ)2
∫
T2

|â(s)+ â(u− s)|2
λ +θ2(s)+θ2(u− s)

ds

.

We split the integral appearing in (6.2) in five parts according to when u is close to

one of the four points in C2 or not. The integral corresponding to the exceptional region

is bounded O(1) independent of λ as in part (A). The four remaining integrals can all be

treated similarly, and we restrict ourselves to the integral corresponding to the small ball

{u ∈ T2 ; |u| ≤ δ} where δ > 0 is small.

In the sequel C is a positive constant, which can depend on δ but not on λ , changing

line to line. By Lemma A.2 and Lemma 3.5, we have
∫

|u|≤δ

1

λ +θ2(u)+Gλ ,ρ(u)
du ≤

∫

|u|≤δ

1

λ +C|u|2| log |u||+CHλ ,ρ(u)
du
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where, recalling m is the mean of p,

Hλ ,ρ(u) =
|u ·m|2

λ +C|u|2| log |u||+C|u|2 ∫T2
ds

λ+θ2(s)+θ2(s−u)

.

We now write
∫

T2

ds

λ +θ2(s)+θ2(s− u)
= ∑

w∈C2

∫

|s−w|≤δ/2

ds

λ +θ2(s)+θ2(s− u)
+Rδ (λ ),

where supλ>0 Rδ (λ )≤C since θ2 is positive and vanishes only on C2. Similarly, as |u| ≤ δ ,

all integrals in the sum over w ∈ C2 are equivalent in order to the integral on the domain

{|s| ≤ δ/2}. By Lemma 3.5 and the fact, for |x| small, that |x2|| log |x|| ≥ |x|2, it follows

∫

T2

ds

λ +θ2(s)+θ2(s− u)
≤ C

∫

|s|≤δ/2

ds

λ + |s|2 + |s− u|2 +C

≤ C

∫

|s|≤δ/2

ds

λ + |s|2 + |u|2 +C

≤ C
∣∣log(λ + |u|2)

∣∣+C,

where the second inequality is obtained from |x|2/4≤ (|y|2+ |x−y|2)/2 and the third from

direct computations.

Substituting into Hλ ,ρ and noting again |x|2| log |x|| ≥ |x|2 for small |x|, we get

Hλ ,ρ(u) ≥ |u ·m|2
λ +C|u|2| log |u||+C|u|2 |log(λ + |u|2)|

≥ |u ·m|2
λ +C|u|2 |log(λ + |u|2)|.

Fix ε ∈ (0,1) and observe, for δ sufficiently small, that sup|t|≤δ {|t|ε | log |t||} ≤ 1. Then,

Hλ ,ρ(u) ≥ |u ·m|2

λ +C (λ + |u|2)1−ε
,

and we arrive at an upper bound for the integral in (6.2) given by

C

∫

|u|≤δ

[
λ + |u|2 + |u ·m|2

λ +C(λ + |u|2)1−ε

]−1

du. (6.3)

We can assume m = (m1,m2) ∈ R2 is such that m1 6= 0,m2 6= 0, and so |u ·m|2 ≥C|u|2.

Otherwise, we choose a rotation R−θ of angle −θ ∈ (0,2π), such that R−θ m satisfies the

previous condition, and change variables v = Rθ u in the above integral (6.3). Thus, an

upper bound of (6.3) is

C

∫

|u|≤δ

[
λ + |u|2 + |u|2

λ +C(λ + |u|2)1−ε

]−1

du

≤ C

∫

|u|≤δ

[
λ + |u|2 + |u|2

C(λ + |u|2)1−ε

]−1

du,

where we note λ ≤ λ 1−ε ≤ (λ + |u|2)1−ε for all small λ .
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Through polar coordinates, we are left to show

limsup
λ→0

∫ δ

0

r

λ + r2 +C r2

(λ+r2)1−ε

dr < ∞.

Changing variables v = λ 1/2r, the integral

∫ δλ−1/2

0

v

1+ v2+Cλ ε−1 v2

(1+v2)1−ε

dv

≤
∫ 1

0
vdv+Cλ 1−ε

∫ δλ−1/2

1

(1+ v2)1−ε

v
dv = O(1).

This finishes the proof of (B). �

6.2. Proof of Theorem 2.14. Only the results for α ≤ 2 need proof. The upper bounds

are obtained using Corollary 3.3 and Theorem 2.8. Indeed, for completeness, we discuss

the case 1<α < 2, the rest being similar. From Theorem 2.8 we have that σ2
t ( f )∼ t2−1/α .

Then, by the change of variables λ t = s, we obtain

L f (λ ) =
∫ ∞

0
e−λ tσ2

t ( f )dt ≤ λ 1/α−3
∫ ∞

0
ess2−1/αds = O(λ 1/α−3).

To address the lower bounds, we first note a bound for degree 2 functions g in d = 1.

When α < 2, by the admissibility Theorem 2.12, such a g is admissible. When α = 2, by

Proposition 3.2 and Theorem 2.9, the Tauberian variance Lg(λ )≤ L
(S)
g (λ )≤Cλ−2| logλ |,

which is of smaller order than the desired lower bound for degree 1 functions in this situa-

tion; in fact, we believe g is admissible in this case (cf. Remark 2.13), although this is not

needed here.

Hence, decompose a local degree 1 function f as f = Ψ{0} + g. By the inequality

LΨ{0}(λ ) ≤ 2L f (λ ) + 2Lg(λ ) in (3.3), we need only to prove the lower bound for the

specific one-point function f (η) = Ψ{0}. Recall the notation in Subsection 3.5 which is

used throughout this subsection.

Noting (3.2), we apply Proposition 3.6 and estimate the integral I1(λ ,1/2) there which

serves as a lower bound for 〈Ψ{0},(λ −L )−1Ψ{0}〉ρ . For this purpose, we restrict the

integration domain of the integral I1(λ ,1/2) in (3.12), around a small neighborhood of 0,

say (0,δ ), for δ > 0 small. Note, since u is very small, the domains DV for V ∈ C1 (cf.

(3.11)) take form

D0(u) = [0,u], D1(u) = [u,1].

Since ρ = 1/2, d = 1, it follows, from Lemma A.2, that the sums of the two integrals,

over domains D0 and D1, appearing in the definition of F1
λ ,1/2

in (3.12) with respect to the

integral I1(λ ,1/2) are of order

bα(u)

∫ 1

0

ds

λ +θ1(s)+θ1(s− u)
. (6.4)

where

bα(u) =

{
sin2(πu) log2(u), if α = 1,

sin2(πu), if α > 1.

We rewrite the integral in (6.4) as the sum of the integrals over [0,δ ], [δ ,1− δ ] and

[1− δ ,1]. By periodicity of θ1, the integral on [1− δ ,1] is the same as that over [0,δ ].
Also, the integral on [δ ,1− δ ] is O(1) independent of λ as θ1 vanishes only at 0 and 1.
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However, in Lemma A.4, in Appendix A, α-dependent bounds are given for the integral∫ δ
0 (λ +θ1(s)+θ1(s− u))−1ds.

We now substitute these estimates for the integral into the formula for I1(λ ,1/2).

i) For α = 1, since b1(u) = sin2(πu) log2(u)∼ π2u2 log2(u) for u ∼ 0, for some positive

constants C0,C1,

I1(λ ,1/2) <

∫ δ

0

du

λ + u+ u2 log2(u)
[
1+C0 log

(
1+ C1

λ+u/C1

)] .

To show the last integral is equivalent in order to
∫ δ

0 (λ + u)−1du = log(1+ δ/λ ), it

is sufficient to verify that the difference

Rλ :=

∫ δ

0

u2 log2(u)
[
1+C0 log

(
1+ C1

λ+u/C1

)]

(λ + u)
{

λ + u+ u2 log2(u)
[
1+C0 log

(
1+ C1

λ+u/C1

)]}du = o(| logλ |).

To this end, note that the denominator of the integrand is bounded below by (λ +u)2.

For small ε ∈ (0,1), as u2 log2(u) = O(u2−ε) for u small, the numerator is bounded

by above by a constant times u2−ε | log(λ )|. Then, by the change of variables u = λ v,

we have

Rλ ≤ C| log(λ )|
∫ δ

0

u2−ε

(λ + u)2
du = O(λ 1−ε | log(λ )|).

ii) For α ∈ (1,2), since bα(u) = sin2(πu)∼ π2u2 for u ∼ 0, it follows, for positive con-

stants C0,C1, that

I1(λ ,1/2) <

∫ δ

0

du

λ + |u|α +C0u2(1+(λ + uα/C1)1/α−1)
.

• Assume that 1 < α ≤ 3/2. Changing variables z = λ−1/αu, and noting when

α ≤ 3/2 and λ ≤ 1 that λ 3/α−2 ≤ 1, we have

I1(λ ,1/2) < λ 1/α−1

∫ δλ−1/α

0

dz

(1+ zα)+λ 3/α−2 z2(1+κ1zα)1/α−1

< λ 1/α−1

∫ δλ−1/α

0

dz

(1+ zα)+ z2(1+κ1zα )1/α−1
< λ 1/α−1.

• Assume that 3/2 ≤ α < 2. Changing variables u = λ 1−1/(2α)z, similarly,

I1(λ ,1/2) < λ−1/(2α)
∫ δλ 1/(2α)−1

0

dz

1+λ α−3/2zα + z2(1+κ1λ α−3/2zα)1/α−1

< λ−1/(2α)
∫ δλ 1/(2α)−1

0

dz

1+ zα + z2
< λ−1/(2α).

iii) For α = 2, since b2(u) = sin2(πu) ∼ π2u2 for u ∼ 0, changing variables u = λ 3/4z,

similarly we have I1(λ ,1/2) is greater in order than

λ−1/4
∫ δλ−3/4

0

dz

1+λ 1/2z2 log(λ 3/4z)+ z2R(λ ,z)

< λ−1/4

∫ M

0

dz

1+λ 1/2z2 log(λ 3/4z)+ z2R(λ ,z)
,
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where M > 0 and

R(λ ,z) =
{
(1+λ 1/2z2| log(λ 3/4z)|) ·

∣∣ logλ + log(1+λ 1/2z2| log(λ 3/4z)|)
∣∣
}−1/2

.

Since R(λ ,z) is of order | logλ |−1/2, we have further

I1(λ ,1/2) < λ−1/4

∫ M

0

dz

1+κz2| logλ |−1/2
,

which yields the desired lower bound. �

6.3. Proof of Theorem 2.15. The only statement to prove is the first one. The desired

upper bound is a consequence of Corollary 3.3 and Theorem 2.8. On the other hand, for

the lower bound, again by Remark 2.7 and admissibility of degree 2 or more functions in

d = 2 given in Theorem 2.12, we need only to focus on f = Ψ{0}.

We begin as in the proof of Theorem 2.14: With α = 2 and ρ = 1/2, to find a lower

bound of L f (λ ), using (3.2), we estimate the integral I2(λ ,1/2) in (3.12) which yields

a lower bound for 〈Ψ{0},(λ −L )−1Ψ{0}〉ρ . We restrict the domain of integration in

I2(λ ,1/2) over a small box [0,δ ]2 with δ > 0 small.

For u ∈ [0,δ ]2, by the periodicity in each direction of θ2 and â, and Lemma A.2, we

bound the term in F2
λ ,1/2

(3.12) by

∑
V∈C2

∫

s∈DV (u)

|â(s)+ â(u− s)|2
λ +θ2(s)+θ2(u− s)

ds ≤ 4

∫

T2

|â(s)+ â(u− s)|2
λ +θ2(s)+θ2(u− s)

ds

4 |u|2
∫

T2

1

λ +θ2(s)+θ2(u− s)
ds.

We split the region of integration in five parts: The union of four sets {s ∈ T2 ; |s−w| ≤
δ/2} for w ∈ C2 and its complement. The integral on the complement is bounded O(1)
uniformly in λ since θ2 vanishes exactly on C2. But, by periodicity of θ2 in each direction,

the remaining integrals over the first four regions are all equal. Thus, by Lemma 3.5,

|x|2| log |x|| ≥ |x|2 for small |x|, and |x|2/4 ≤ (|y|2 + |x− y|2)/2, we have
∫

T2

1

λ +θ2(s)+θ2(u− s)
ds 4 1+

∫

|s|≤δ/2

1

λ + |s|2| log |s||+ |u− s|2| log |u− s||ds

4 1+

∫

|s|≤δ/2

1

λ + |s|2 + |u− s|2 ds

4
∣∣log(λ + |u|2)

∣∣ .

Finally, by Lemma 3.5 again, and inequalities |u|2 ≤ |u|2| log |u|| and |u|2| log(λ +
|u|2)| ≤ |u|2| log |u|2| for small |u|, we obtain the lower bound,

I2(λ ,1/2) <

∫

[0,δ ]2

du

λ + |u|2| log |u||+ |u|2[1+ | log(λ + |u|2)|]

<

∫

[0,δ ]2

du

λ + |u|2| log |u||

<

∫ δ

0

rdr

λ + r2| logr| <

∫ δ

λ

dr

r| log(r)| = O(| log | logλ ||).

�
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7. MONOTONICITY: PROOF OF THEOREM 2.18

It will be helpful to write the long-range short asymmetic generator, with jump rate

p̄(SA), in the following way, which stresses dependence on α: For α > 1, let L α = ¯A +
S α where S α generates the symmetric long-range exclusion process with sub-probability

jump rate sα =
1y6=0

|y|1+α
, and ¯A is a finite-range anti-symmetric operator on local functions

given by

( ¯A f )(η) = ∑
x,y∈Zd

ā(y)η(x)(1−η(x+ y)
[

f (ηx,x+y)− f (η)
]
.

We remark, in the following, the arguments do not depend on the fixed value of ρ .

Proof of Theorem 2.18. We first calculate the derivative of the map α : (1,∞) 7→ L̄
(SA)
f (λ ).

Let uα
λ be the solution in L2(νρ ) of the resolvent equation

λ uα
λ −L

α uα
λ = f .

Observe, formally, the derivative of L α is given by −(α + 1)S α+1 and the derivative
d

dα uα
λ =: vα

λ is the solution of the resolvent equation

(λ −L
α)vα

λ =−(α + 1)S α+1uα
λ .

Indeed, in Lemmas 7.1 and 7.3, we show that S α+1uα
λ is well-defined and in L2(νρ),

and vα
λ is the weak limit of h−1[uα+h

λ
−uα

λ ] as h ↓ 0. In particular, the function α ∈ (1,∞) 7→
L̄
(SA)
f (λ ) = 2λ−2〈 f ,uα ,ε

λ
〉ρ (cf. (3.2)) is differentiable, and its derivative equals

2

λ 2
〈 f ,vα ,ε

λ 〉ρ . (7.1)

Our task now is to show that (7.1) is nonnegative when the short asymmetry is a mean-

zero asymmetry (MZA) or the process is symmetric (S). Equivalently, we have to show

〈 f ,(λ −L
α)−1(−S

α+1)(λ −L
α)−1 f 〉ρ ≥ 0.

Let gα = (λ −L α )−1(−S α+1)(λ −L α)−1 f and, for z > 0,

gα
z = (λ −L

α)−1(z−S
α+1)(λ −L

α)−1 f .

By Lemma 7.1, both gα ,gα
z ∈ L2(νρ) and gα = limz→0 gα

z in L2(νρ). Also, gα
z belongs to

the domain of L α . Hence, in the following, gα
z can be approximated by local functions g.

It will be sufficient to prove

liminf
z→0

〈gα
z , (λ −L

α)(z−S
α+1)−1(λ −L

α)gα
z 〉ρ ≥ 0

or, for local functions g,

〈g , (λ −L
α)(z−S

α+1)−1(λ −L
α)g〉ρ ≥ 0. (7.2)

Observe now, by the polarization formula with respect to the H−1,z-norm defined by

z−S α+1 and the antisymmetry of ¯A , that

〈g , (λ −L
α)(z−S

α+1)−1(λ −L
α)g〉ρ (7.3)

= 〈
[
(λ −L

α)
]∗

g , (z−S
α+1)−1(λ −L

α)g〉ρ

=
1

2

[
〈(λ −S

α)g , (z−S
α+1)−1(λ −S

α)g〉ρ

−〈 ¯A g , (z−S
α+1)−1 ¯A g〉ρ

]
.
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The right-side of the previous equality is the difference of two non-negative terms. If

the process is symmetric and generated by L α = S α , we have ¯A = 0 and the second

term disappears. Trivially, the right-side is non-negative.

Consider now the case when the process is mean-zero asymmetric and |ā(y)| ≤ ε for

all y ∈ Zd . In addition, fix β0 > α0 > 1 and take α ∈ [α0,β0]. We have, as sα+1 ≤ sα , the

Dirichlet forms (cf. (3.1)),

〈ϕ ,−S
α+1ϕ〉ρ ≤ 〈ϕ ,−S

α ϕ〉ρ . (7.4)

A lower bound for (7.3), using Lemma 3.2, is then given by

1

2

[
〈(λ −S

α)g , (z−S
α)−1(λ −S

α)g〉ρ

−〈 ¯A g , (z−S
α+1)−1 ¯A g〉ρ

]
. (7.5)

Writing (λ −S α)g = (λ − z)g+(z−S α)g we see that if 0 < z ≤ λ we have

〈(λ −S
α)g , (z−S

α)−1(λ −S
α)g〉ρ

= (λ − z)2〈g , (z−S
α)−1g〉ρ + 2(λ − z)〈g , g〉ρ

+〈g,(z−S
α)g〉ρ

≥ 〈g,(z−S
α)g〉ρ .

Writing ¯A /ε =: A0, our aim is now to bound the term

〈A0g , (z−S
α+1)−1

A0g〉ρ ≤ C 〈g,(z−S
α)g〉ρ (7.6)

with respect to a constant C > 0 independent of z,λ ,ε and g. Then, by choosing ε ≤ 1/
√

C,

inserting into (7.5), we will show (7.2).

Let now S (FR−NN) be the generator of the one-dimensional nearest-neighbor symmet-

ric simple exclusion process. By Proposition 4.1, as α0 + 1 > 2 the Dirichlet forms of

S α+1 and of S (FR−NN) are uniformly equivalent for α ∈ [α0,β0]: There exists a constant

C :=C(α0,β0) such that for α ∈ [α0,β0] and local functions ϕ ,

C−1〈ϕ ,−S
(FR−NN)ϕ〉ρ ≤ 〈ϕ ,−S

α+1ϕ〉ρ ≤ C〈ϕ ,−S
(FR−NN)ϕ〉ρ . (7.7)

Then, for local functions g, we write, by Lemma 3.2,

〈A0g , (z−S
α+1)−1

A0g〉ρ = sup
ϕ

{
2〈A0g,ϕ〉ρ −〈ϕ , (z−S

α+1)ϕ〉ρ

}

≤ sup
ϕ

{
2〈A0g,ϕ〉ρ −C−1〈ϕ , (z−S

(FR−NN))ϕ〉ρ

}

= C〈A0g , (z−S
(FR−NN))−1

A0g〉ρ

By finite-range sector inequality (4.2), which applies to the finite-range ‘mean-zero’

operator A0, approximating h := (z−S (FR−NN))−1A0g by local functions, for a constant

K independent of g and ε > 0,

〈A0g,(z−S
(FR−NN))−1

A0g〉ρ (7.8)

≤ K〈g,−S
(FR−NN)g〉1/2

ρ · 〈h,−S
(FR−NN)h〉1/2

ρ .

Since −S (FR−NN) ≤ (z−S (FR−NN)) in the sense of Dirichlet forms by (7.7), substituting

into (7.8), we obtain

〈A0g,(z−S
α)A0g〉ρ ≤ K2〈g,(z−S

(FR−NN)g〉ρ .
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Finally, as −S (FR−NN) ≤ −MS α , with M = s(FR−NN)(1)/s̄(1), in the sense of Dirichlet

forms (cf. proof of the left inequality in Lemma 4.1), we obtain (7.6). �

To simplify the notation we drop dependencies on λ and fix α > 0 for the remainder of

the section. We observe if h > 0 is sufficiently small, then the operator G h =−S α+h−S α

h
,

well defined on the set of local functions, is the pregenerator of a Markov process. Indeed,

we have that the action of G h on a local function g is given by

(G hg)(η) =
1

h
∑

x,y∈Z

1y6=0

|y|1+α

[
1− 1

|y|h
][

g(ηx,x+y)− g(η)
]

:= ∑
x,y

ph(y)
[
g(ηx,x+y)− g(η)

]
,

with

ph(y) :=
1

h

1y6=0

|y|1+α

[
1− 1

|y|h
]
.

If h > 0, then ∑y ph(y)< ∞ and 0 ≤ ph(y)≤ 1 for all y 6= 0. It follows that G h is closable

and its closure in L2(νρ) is the generator of a symmetric exclusion process with jump rate

ph. For h0 small and y 6= 0, by the mean-value theorem, for all y 6= 0,

sup
0<h<h0

ph(y) ≤ log |y|
|y|α+1

=: plog(y). (7.9)

We now define some notions, following [2]. Define κ(x) := ∑n≥0 2−ns(n)(0,x) ≤ 2

for x ∈ Zd , where s(n)(0,y) is the n-step rate of reaching y starting from 0 according to

sub-probability kernel sβ . Then,

∑
y∈Zd

sβ (y− x)κ(y)≤ 2κ(x) and ∑
x∈Zd

κ(x)≤ ∑
n≥0

2−1 ∑
x∈Zd

s(n)(0,x)≤ 2.

Let ‖η‖ = ‖η‖β = ∑x κ(x)η(x). Define also Lip as the class of functions f such that

| f (η)− f (ζ )| ≤ C‖η − ζ‖ for all η ,ξ ∈ Ω, and let c( f ) = cβ ( f ) be the smallest such

constant C. Note that all local functions belong to Lip; for example, the basis element

f (η) = ∏k
i=1(η(xi)−ρ) satisfies

| f (η)− f (ζ )| =
k

∑
j=1

|(η(x j)− ζ (x j)|∏
i6= j

|η(xi)−ρ)|

≤ |1−ρ |k−1
k

∑
i=1

|η(xi)− ζ (xi)|

≤ |1−ρ |k−1 max{κ−1(xi) : 1 ≤ i ≤ k}‖η − ζ‖.

Analogously, let κ ′(y) be the n-step rate of y with respect to sub-probability plog(·)
defined in (7.9). As before, ∑y plog(y− x)κ ′(y) ≤ 2κ ′(x) and ∑y κ ′(y) ≤ 2. Define the

distance ‖ · ‖′ with respect κ ′, and let Lip′ be the space of functions with ‘Lipschitz’ norm

c′(·).

Lemma 7.1. For 0 < β ≤ γ,χ , S χuγ is well defined and belongs to L2(νρ). Moreover,

we have sup0<h<h0
‖G huα+h‖L2(νρ )

< ∞. In addition, gα ,gα
z ∈ L2(νρ) and limz↓0 gα

z = gα

in L2(νρ ).
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Proof. The argument is to develop pointwise, L∞ bounds. We observe that exclusion

generators are well-defined on Lip. In fact, for f ∈ Lip, we have the pointwise bound

|S χ f (η)| ≤ 6c( f ). Indeed, as |η(·)| ≤ 1, note

| f (ηx,y)− f (η)| ≤ c( f )‖ηx,y −η‖
= c( f )(κ(x)+κ(y))|η(x)−η(y)| ≤ c( f )(κ(x)+κ(y)),

and write, noting sχ(·)≤ sβ (·),
|S χ f (η)| ≤ c( f )∑

x
∑
y

sβ (y− x)(κ(x)+κ(y)) ≤ 6c( f ).

Let now T
γ

t be the semigroup corresponding to L γ . In Lemma 7.2, we show, for f ∈
Lip, that T

γ
t f ∈ Lip and c(T

γ
t f )≤ Mc( f )t with respect to a universal constant M.

Write uγ =
∫ ∞

0 e−λ tT
γ

t f dt. Then,

uγ ∈ Lip and c(uγ)≤ Mc( f )
∫ ∞

0
te−λ tdt.

Therefore,

|S χuγ(η)| ≤ 6c(uγ) ≤ 6Mc( f )
∫ ∞

0
te−λ tdt.

In particular, for local functions f , S χ uγ ∈ L∞ and so also belongs to L2(νρ). This proves

the first statement. Note that the above bounds depend only on β .

To prove the second statement, for f ∈ Lip′, we have

|G h f (η)| ≤ c′( f ) ∑
x,y∈Zd

plog(y− x)
[
κ ′(y)+κ ′(x)

]
≤ 6c′( f ).

Again, by Lemma 7.2, for all h > 0, T α+h
t f ∈ Lip′ and c′(T α+h

t f ) ≤ Mc′( f )t where M is

a universal constant. Hence, as before, we obtain sup0<h<h0
‖G huα+h(η)‖L∞ < ∞ and the

desired L2(νρ ) bound.

To prove the third statement, as now ‖S α+1uα‖2
L2(νρ )

< ∞, we have ‖gα‖2
L2(νρ )

≤
λ−1‖S α+1uα‖2

L2(νρ )
< ∞ by the resolvent bound. Similarly,

‖gα
z ‖2

L2(νρ )
≤ 2zλ−1‖uα‖2

L2(νρ )
+ 2‖S α+1uα‖2

L2(νρ )
< ∞,

and as z ↓ 0, the limit gα
z → gα follows. �

Lemma 7.2. For 0 < β ≤ γ , the semigroup T
γ

t is invariant on Lip and c(T
γ

t f ) ≤ 48c( f )t.

Similarly, for h > 0, T α+h
t is invariant on Lip′ and c′(T α+h

t f )≤ 48c′( f )t.

Proof. The argument is a modification of the proof of Lemmas 2.2 and 2.6 in [2] to the

exclusion context. One can couple two processes starting from η and ζ with coupled

generator

L̄ f (η ,ζ ) = ∑
x,y∈ZZd

pγ(y− x)η(x)(1− ζ (x))
[

f (ηx,y,ζ )− f (η ,ζ )
]

+ ∑
x,y∈Zd

pγ(y− x)ζ (x)(1−η(x))
[

f (η ,ζ x,y)− f (η ,ζ )
]

+ ∑
x,y∈Zd

pγ(y− x)η(x)ζ (x)
[

f (ηx,y,ζ x,y)− f (η ,ζ )
]
.

Let T̄t be the corresponding semigroup. Marginally, both processes are generated by L γ ,

noting η(x)[ϕ(ηx,y)−ϕ(η)] = η(x)(1−η(y)[ϕ(ηx,y)−ϕ(η)].
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Write

|T γ
t f (η)−T

γ
t f (ζ )| = |T̄tg(η ,ζ )| ≤ c( f )T̄t h(η ,ζ )

where g(η ,ζ ) = f (η)− f (ζ ) and h(η ,ζ ) = ‖η − ζ‖. Note pγ(y − x) ≤ 2sγ(y − x) ≤
2sβ (y− x), and |η(·)− ζ (·)| ≤ 1. Then, by the triangle inequality, we calculate

|L̄h(η ,ζ )| ≤ 4∑
x,y

pγ(y− x)
[
κ(y)+κ(x)

]

≤ 8∑
x,y

sβ (y− x)
[
κ(y)+κ(x)

]
≤ 48.

Hence, T̄t f (η ,ζ ) ≤ 48c( f )t.
The second statement follows the same argument noting that pα+h(·) ≤ 2sα+h(·) ≤

2plog(·) when h > 0. �

Lemma 7.3. Let f be a local function and uα
λ be the L2(νρ) solution of the resolvent

equation (λ −L α)uα
λ = f . Then, for α ∈ (1,∞), we have the L2(νρ)-weak convergence,

h−1[uα+h
λ − uα

λ ] −−→
h→0

vα
λ ,

where vα
λ is the solution in L2(νρ) of the resolvent equation

(λ −L
α)vα

λ = −(α + 1)S α+1uα
λ .

Proof. Let vh = h−1[uα+h − uα ] and observe that

(λ −L
α)vh +(S α −S

α+h)vh = G
huα . (7.10)

We now claim that

(vh)h>0 is uniformly bounded in L2(νρ ). (7.11)

Assuming this bound, let v0 be a limiting point for (vh)h>0 and denote by vh′ a subsequence

converging weakly to v0. Taking the scalar product of the two sides of (7.10) with an

arbitrary local function ϕ , we see that

〈(λ −L
α)∗ϕ , vh′〉ρ + 〈(S α −S

α+h′)ϕ , vh′〉ρ = 〈G hϕ , uα〉ρ . (7.12)

Since ϕ is local, we have that G h converges strongly to −(α + 1)S α+1ϕ and (S α −
S α+h′)ϕ converges strongly to 0. It follows that v0 satisfies

〈(λ −L
α)∗ϕ , v0〉ρ = 〈ϕ , (λ −L

α)v0〉ρ = −(α + 1)〈S α+1ϕ , uα〉ρ

for all local functions ϕ . Since the set of local functions is dense in L2(νρ ), we conclude

that v0 is a solution of the resolvent equation

(λ −L
α)v0 = −(α + 1)S α+1uα .

By the uniqueness in L2(νρ ) of the solution of this resolvent equation, we get the unique-

ness of the limiting point v0 and the desired statement in the lemma.

Therefore, it remains only to show (7.11). By definition of vh and uα+h, we have

(λ −L
α)vh = −G

huα+h.

Take the scalar product of each side of this equation with vh. Then,

λ 〈vh,vh〉ρ + 〈vh,−S
α vh〉ρ = 〈vh,−G

huα+h〉ρ ≤ K‖vh‖L2(νρ )
,

where, by Lemma 7.1, K := sup0<h<h0
‖G huα+h‖L2(νρ )

< ∞. Since the Dirichlet form

〈vh,−S α vh〉ρ ≥ 0, we have sup0<h<h0
‖vh‖L2(νρ )

≤ Kλ−1, finishing the proof. �
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APPENDIX A. USEFUL COMPUTATIONS

In this section, θd = θd(·;s0(·)) (cf. Subsection 3.4).

Lemma A.1. Let Id,α(t) =
∫
Td

θd(u)t − 1+ e−tθd(u)

θ 2
d (u)

du be the integral in (5.2).

• If d = 1,

Id,α(t) ∼





t when α < 1,
t log(t) when α = 1,

t2−1/α when 1 < α < 2,

t3/2(log(t))−1/2 when α = 2,

t3/2 when α > 2.

• If d = 2,

Id,α(t) ∼





t when α < 2,
t log(log(t)) when α = 2,

t log(t) when α > 2.

• If d ≥ 3, for all α > 0, Id,α(t)∼ t.

Proof. We argue only in the one dimensional case, as the other statements are similar.

If α < 1 then the integrand, divided by t, converges pointwise as t ↑ ∞,

θd(u)t − 1+ e−tθd(u)

tθ 2
d (u)

→ 1

θ1(u)
,

and is dominated by 1/θ1(u). By Lemma 3.5, the function 1/θ1 is integrable on T1 and so

the result follows by dominated convergence.

Let now α ≥ 1. Fix δ > 0 small and write I1,α as the sum of the three integrals over

[0,δ ], [δ ,1− δ ] and [1− δ ,1]. The integral over [δ ,1− δ ] is O(t) as θ1 does not vanish

on the domain. By changing variables v = 1− u and periodicity of θ1, the integral over

[1− δ ,1] is equal to the integral over [0,δ ].
When α > 2, by changing variables v =

√
tu, we need to estimate

t3/2

∫ ∞

0
10≤v≤δ

√
t

tθ1(vt−1/2)− 1+ e−tθ1(vt−1/2)

[tθ1(vt−1/2)]2
dv.

By Lemma 3.5, θ1(w) = J(1,α)|w|2 + o(|w|2), as w → 0, and therefore as t ↑ ∞ the inte-

grand converges pointwise to

h(v) =
J(1,α)v2 − 1+ e−J(1,α)v2

[J(1,α)v2]2
.

Since the function

g(x) =

{
x−1+e−x

x2 if x > 0

1/2 if x = 0.

is bounded near 0 and is of order O(x−1) for large x, noting again the asymptotics of

θ1(w), we have
∫ δ

√
t

0
tθ1(vt−1/2)−1+e−tθ1(vt−1/2)

[tθ1(vt−1/2)]2
dv converges to

∫ ∞
0 h(v)dv < ∞ by bounded

convergence, and the statement holds for α > 2.

When 1 < α < 2, by changing variables v = t1/αu, the result follows by similar calcu-

lations.
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When α = 1, the calculation is more involved. Consider the change of variables v = tu

in the integral over u ∈ [0,δ ]. We are the reduced to study t
∫ δ t

0 g(tθ1(v/t))dv. Observe

∫ δ t

0
g(J(1,1)v)dv =

∫ δ

0
g(J(1,1)v)dv +

∫ δ t

δ

e−J(1,1)v − 1

[J(1,1)v]2
dv +

∫ δ t

δ

1

J(1,1)v
dv.

As t ↑ ∞, for fixed δ , the second integral converges to
∫ ∞

δ
e−J(1,1)v−1
[J(1,1)v]2

dv and the third one

equals log(t)/J(1,1). Hence,

∫ δ t

0
g(J(1,1)v)dv =

logt

J(1,1)
+ o(logt).

Therefore, to show the desired statement, it is enough to prove

limsup
δ→0

limsup
t→+∞

(log t)−1
∫ δ t

0
[g(tθ1(v/t))− g(J(1,1)v)]dv = 0. (A.1)

By Lemma 3.5, for v ∈ [0,δ t], we have

|tθ1(v/t)− J(1,1)v| ≤ r(δ )J(1,1)v

where limδ↓0 r(δ )− 0 uniformly in t. On the other hand, there exists a constant C0 > 0

such that |g′(x)| ≤ C0/(x
2 + 1) for x ≥ 0. Consequently, for δ small so that r(δ ) < 1, we

have∣∣∣∣
∫ δ t

0
[g(tθ1(v/t))− g(J(1,1)v)]dv

∣∣∣∣ ≤ C0J(1,1)r(δ )
∫ δ t

0

v

1+[(1− r(δ ))J(1,1)]2v2
dv.

Finally, sending δ → 0, the right-side vanishes and we get (A.1).

When α = 2, using the substitution u= βtv with tβ 2
t | logβt |= 1 and βt =O((t logt)1/2),

a similar method yields the result. �

Lemma A.2. In d = 1, we have

â(u) = ic(b+1 − b−1 )
∞

∑
y=1

sin(2πuy)

y1+α
. (A.2)

When α > 1, let ξ (α)−∑∞
y=1

1

yα
. As u ↓ 0,

â(u) ∼ 2π ic(b+1 − b−1 )ξ (α)u

sup
s∈T

{
|â(s)+ â(u− s)|2

}
4 sin2(πu).

When α = 1, as u ↓ 0,

â(u) ∼ −2π ic(b+1 − b−1 )u log(u)

sup
s∈T

{
|â(s)+ â(u− s)|2

}
4 −sin2(πu) log2(u).

In d = 2, for α > 1 and w ∈ C2, we have, as u → w,

â(u) ∼ 2π i(u−w) ·m.

Also, for δ > 0 small, there exists c(δ )> 0 such that when |u−w| ≤ δ , we have

sup
s∈T2

{
|â(u)+ â(u− s)|2

}
≤ c(δ )|u−w|2.
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Proof. We prove the statements in d = 1, the two dimensional case being similar. To show

the first claim (A.2), we notice, for y ∈ Z, that

a(y) = c(b+1 − b−1 )
1

2|y|1+α
(1− 21y<0),

so that

â(u) = ∑
y∈Z

e2π iuya(y) = ic(b+1 − b−1 )
∞

∑
y=1

sin(2πuy)

y1+α
.

When α > 1, since the function u 7→ sin(2πyu)/(2πyu)→ 1 as u ↓ 0 pointwise and is

uniformly bounded in y ≥ 1, we have

â(u)

u
= 2π ic(b+1 − b−1 ) ∑

y≥1

1

yα

sin(2πyu)

2πyu
→ 2π ic(b+1 − b−1 )ξ (α),

by bounded convergence, proving the second claim.

For the third claim, write

â(s)+ â(u− s)

sin(πu)
= ic(b+1 − b−1 )

∞

∑
y=1

sin(2πsy)+ sin(2πy(u− s))

y1+α sin(πu)

= 2ic(b+1 − b−1 )
∞

∑
y=1

1

yα

sin(πuy)

ysin(πu)
cos(π(u− 2s)y),

as sin(2πsy)+ sin(2πy(u− s)) = 2sin(πyu)cos(πy(u− 2s)). Note cos(π(u− 2s)y) ≤ 1

and |sin(πyu)/(ysin(πu))| ≤ 1 uniformly in y ≥ 1 and u ∈ (0,1). Hence, as u ↓ 0,

sup
s∈T

{
|â(s)+ â(s− u)|2

}
4 sin2(πu). (A.3)

When α = 1, for fixed ε > 0 small, we have

â(u) = ic(b+1 − b−1 )
∞

∑
y=1

sin(2πuy)

y2

= 2π ic(b+1 − b−1 )u
⌊ε/u⌋
∑
y=1

1

y

+ic(b+1 − b−1 )
⌊ε/u⌋
∑
y=1

[sin(2πuy)− 2πuy]

y2
+ ic(b+1 − b−1 )

∞

∑
y=⌊ε/u⌋+1

sin(2πuy)

y2
.

Since there exists Cε > 0 such that |sin(2πuy)− 2πuy| ≤Cε |u|3y3 for 1 ≤ y ≤ ⌊ε/u⌋ and

|sin(2πuy)| ≤ 1, the second and third sums on the right-side are of order O(u). The first

sum is equivalent in order to −2π ic(b+1 − b−1 )u log(u), proving the fourth claim.

The fifth claim is proved similarly by decomposing in the equation,

â(s)+ â(u− s)

sin(πu)
= 2ic(b+1 − b−1 )

∞

∑
y=1

1

y2

sin(πuy)

sin(πu)
cos(π(u− 2s)y),

the sum according to y ≤ [ε/u] and y ≥ [ε/u]+ 1 for a fixed ε small. �

Lemma A.3. Let α ∈ (1,2] and

ϕα(s) =

{
|s|α , if 1 < α < 2 ,

|s|2| log(|s|)|, if α = 2 .
(A.4)
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For 0 < δ < 1 sufficiently small, there exists C =C(α,δ )> 0 such that for u,s ∈ [0,δ ]2,

ϕα(u− s)+ϕα(s) ≥ C [ϕα(u)+ϕα(s)] .

Proof. We only prove the statement for α = 2, as the proof for α ∈ (1,2) is similar. Ob-

serve first that the restriction of ϕ2 to [−δ ,δ ], for δ small, is an even convex function. For

0 < x < 1, we write

(1− x)u = x

(
1− x

x
s

)
+(1− x)(u− s)

and invoke convexity of ϕ2 to get

ϕ2((1− x)u) ≤ xϕ2

(
1− x

x
s

)
+(1− x)ϕ2(u− s).

Then,

ϕ2(u− s)+ϕ2(s) ≥ ϕ2(u)

[
1

1− x

ϕ2((1− x)u)

ϕ2(u)

]
+ϕ2(s)

[
1− x

1− x

ϕ2

(
1−x

x
s
)

ϕ2(s)

]
.

Since,

1

1− x

ϕ2((1− x)u)

ϕ2(u)
≥ (1− x)

∣∣∣∣1+
log(1− x)

logδ

∣∣∣∣
and ∣∣∣∣∣

x

1− x

ϕ2

(
1−x

x
s
)

ϕ2(s)

∣∣∣∣∣ ≤
1− x

x

∣∣∣∣∣1+
log( 1−x

x
)

logδ

∣∣∣∣∣ ,

taking x sufficiently close to 1, the claim follows. �

Lemma A.4. Let

Jα(λ ,δ ,u) :=
∫ δ

0

ds

λ +θ1(s)+θ1(s− u)
. (A.5)

Then, for λ > 0 and 0 < u < δ small, there exist constants C0,C1 > 0 such that

Jα(λ ,δ ,u) ≤





C0 log
(

1+ C1
λ+u/C1

)
if α = 1

C0(λ + uα/C1)
1/α−1 if α ∈ (1,2)

C0

{[
λ +C1|u2 log(u)|

] ∣∣log
(
λ +C1|u2 log(u)|

)∣∣
}−1/2

if α = 2.

Proof. Suppose α = 1. Since u ∈ (0,δ ) with δ ≪ 1, with respect to a suitable positive

constant κ0, by Lemma 3.5, we have

Jα(λ ,δ ,u) ≤
∫ δ

0

ds

λ +κ0|s|+κ0|s− u|

=

∫ u

0

ds

λ +κ0u
+

∫ δ

u

ds

λ +κ0s+κ0(s− u)

=
u

λ +κ0u
+

1

2κ0

log

(
1+

2κ0(δ − u)

λ +κ0u

)

≤ κ−1
0 +(2κ0)

−1 log

(
1+

2κ0δ

λ +κ0u

)
,

finishing the claim in this case.
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Suppose 1 < α < 2. By Lemma 3.5, as s,u ∈ (0,δ ) with δ ≪ 1, and Lemma A.3, we

have

Jα(λ ,δ ,u) ≤
∫ δ

0

ds

λ +κ0|s|α +κ0|s− u|α

≤
∫ δ

0

ds

λ +κ1|s|α +κ1|u|α
,

for a suitable constants κ0 and κ1. By the change of variables t = s/(λ +κ1uα)1/α , the last

integral is equal to

(λ +κ1uα)1/α−1

∫ δ (λ+κ1uα )−α−1

0

dt

1+κ1tα
= O((λ +κ1uα)1/α−1),

which shows the desired statement.

Suppose α = 2. Similarly, by Lemma 3.5 and Lemma A.3, we have
∫ δ

0

ds

λ +θ1(s)+θ1(s− u)
≤

∫ δ

0

ds

λ +κ1|s2 log(s)|+κ1|u2 logu|

= C−1
λ (u)

∫ δ/Cλ (u)

0

ds

1+ s2| log(s)+ log(Cλ (u))|
,

for a positive constant κ1 and Cλ (u) :=
√

λ +κ1|u2 log(u)|.
For λ and δ small, Cλ (u)< 1. Fix 0 < ε < 1. We split the last integral as follows:

∫ δ/Cλ (u)

0

ds

1+ s2| log(s)+ log(Cλ (u))|
(A.6)

=

∫ δ/Cλ (u)
ε

0

ds

1+ s2| log(s)+ log(Cλ (u))|
+

∫ δ/Cλ (u)

δ/Cλ (u)
ε

ds

1+ s2| log(s)+ log(Cλ (u))|
.

We claim the first integral on the right-side of (A.6) is of order O(| log(Cλ (u))|−1/2):
Indeed, for s ∈ (0,δ/Cλ (u)

ε),

| log(s)+ log(Cλ (u))| ≥ | log(δ )+ (1− ε) log(Cλ (u))|
so that
∫ δ/Cλ (u)

ε

0

ds

1+ s2| log(s)+ log(Cλ (u))|
≤ 1

| log(δ )+ (1− ε) log(Cλ (u))|1/2

∫ ∞

0

dv

1+ v2
.

On the other hand, the second integral on the right-side of (A.6) is order O(1): Indeed,

this integral is bounded above by
∫ δ/Cλ (u)

δ/Cλ (u)
ε

ds

1+ s2| logδ | = O(Cλ (u)
ε) = O(1),

finishing the proof. �
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UNIVERSITÉ DE NICE SOPHIA-ANTIPOLIS, LABORATOIRE J.A. DIEUDONNÉ, UMR CNRS 7351, PARC
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