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Abstract

A sufficient condition for the stability of a system resulting from the interconnection of dynamical systems is given by the small
gain theorem. Roughly speaking, to apply this theorem, it is required that the gains composition is continuous, increasing and
upper bounded by the identity function. In this work, it is presented an alternative sufficient condition when such criterion fails
due to either lack of continuity or the bound of the composed gain is larger than the identity function. More precisely, the local
(resp. non-local) asymptotic stability of the origin (resp. global attractivity of a compact set) is ensured by a region-dependent
small gain condition. Under an additional condition that implies convergence of solutions for almost all initial conditions in
a suitable domain, the almost global asymptotic stability of the origin is ensured. Two examples illustrate and motivate this
approach.

1 Introduction

The use of nonlinear input-output gains for stability
analysis was introduced in [26] by considering a system
as an input-output operator. The condition that ensures
stability, called Small Gain Theorem, of interconnected
systems is based on the contraction principle.

The work [22] introduces a new concept of gain relating
the input to system states. This notion of stability links
Zames’ and Lyapunov’s approaches [23]. Characteriza-
tions in terms of dissipation and Lyapunov functions are
given in [24].

In [14], the contraction principle is used in the input-
to-state stability notion to obtain an equivalent Small
Gain Theorem. A formulation of this criterion in terms
of Lyapunov functions may be found in [13].

Besides stability analysis, the Small Gain Theorem may
also be used for the design of dynamic feedback laws sat-
isfying robustness constraints. The interested reader is
invited to see [9,21] and references therein. Other ver-
sions of the Small Gain theorem do exist in the litera-
ture, see [4,5,11,12] for not necessarily ISS systems.

1 The work of the first and the third authors are partly sup-
ported by HYCON2 Network of Excellence Highly-Complex
and Networked Control Systems, grant agreement 257462.
E-mail: humberto.shiromoto@ieee.org.

In order to apply the Small Gain Theorem, it is required
that the composition of the nonlinear gains is smaller
than the argument for all of its positive values. Such
a condition, called Small Gain Condition, restricts the
application of the Small Gain Theorem to a composition
of well chosen gains.

In this work, an alternative criterion for the stabiliza-
tion of interconnected systems is provided when a single
Small Gain Condition does not hold globally. It consists
in showing that if a local (resp. non-local) Small Gain
Condition holds in a local (resp. non-local) region of the
state space, and the intersection of the local and non-
local is empty. Furthermore, if outside the union of these
regions, the set of initial conditions from which the as-
sociated trajectories do not converge to the local region
has measure zero, then the resulting interconnected sys-
tem is almost asymptotically stable (this notion is pre-
cisely defined below). In this paper, a sufficient condition
guaranteeing this property to hold is presented. More-
over, for planar systems, an extension of the Bendixson’s
criterion to regions which are not simply connected is
given. This allows to obtain global asymptotic stability
of the origin.

This approach may be seen as a unification of two small
gain conditions that hold in different regions: a local and
a non-local. The use of a unifying approach for local and
non-local properties is well known in the literature see
[2] in the context of control Lyapunov functions, see [6]
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when uniting iISS and ISS properties.

This paper is organized as follows. In Section 2, the sys-
tem under consideration and the problem statement are
presented. Section 3 states the assumptions to solve the
problem under consideration and the main results. Sec-
tion 4 presents examples that illustrate the assumptions
and main results. In Section 5 the proofs of the main re-
sults are presented. Section 6 collects some concluding
remarks.

Notation. Let k ∈ Z>0. Let S be a subset of Rk containing
the origin, the notation S ̸=0 stands for S \ {0}. The closure
of S is denoted by cl{S}. Let x ∈ Rk, the notation |x|
stands for Euclidean norm of x. An open (resp. closed) ball
centered at x ∈ Rk with radius r > 0 is denoted by B<r(x)
(resp. B≤r(x)). A continuous function f : Rk → R is positive
definite if, for every x ∈ Rk\{0}, f(x) > 0 and f(0) = 0. It is
proper if |f(x)| → ∞, as |x| → ∞. By L∞

loc(R,Rk) the class of
functions η : R → Rk that are locally essentially bounded . By
Cs it is denoted the class of s-times continuously differentiable
functions, by P it is denoted the class of positive definite
functions, by K it is denoted the class of continuous, positive
definite and strictly increasing functions γ : R≥0 → R≥0; it
is denoted by K∞ if, in addition, they are unbounded. Let
c ∈ R>0, the notation Ω⋄c(f) stands for the subset of Rk

defined by {x ∈ Rk : f(x) ⋄ c}, where ⋄ is a comparison
operator (i.e., =, <, ≥ etc). The support of the function f is
the set supp := {x ∈ Rk : f(x) ̸= 0}. By L∞

loc(R≥0,Rk) it is
denoted the class of functions g : R≥0 → Rk that are locally
essentially bounded. Let x, x̄ ∈ R≥0, the notation x ↗ x̄
(resp. x ↘ x̄) stands for x → x̄ with x < x̄ (resp. x > x̄).

2 Background and problem statement

Consider the system

ẋ(t) = f(x(t), u(t)), (1)

where, for every t ∈ R≥0, x(t) ∈ Rn, and u ∈
L∞
loc(R≥0,Rm), for some positive integers n and m.

Also, f ∈ C1(Rn+m,Rn). A solution of (1) with ini-
tial condition x, and input u at time t is denoted by
X(t, x, u). From now on, arguments t will be omitted,
and assume that the origin is input-to-stable stable (ISS
for short) for (1). For further details on this concept,
the interested reader is invited to consult [23] or [25].

A locally Lipschitz function V : Rn → R≥0 for which
there exist αx, αx ∈ K∞ such that, for every x ∈ Rn,
αx(|x|) ≤ V (x) ≤ αx(|x|) is called storage function.

Inspired by [7,16], here it will be used the following no-
tion of derivative.

Definition 1. Consider the function ξ : [a, b) → R, the
limit at t ∈ [a, b)

D+ξ(t) = lim sup
τ↘0

ξ(t+τ)−ξ(t)
τ

(if it exists) is called Dini derivative. Let k1 and k2 be
positive integers, (y1, y2) ∈ Rk1 × Rk2 , functions φ :
Rk1+k2 → R, h1 : Rk1 → Rk1 and h2 : Rk2 → Rk2 . The
limit

D+
h1,h2

φ(y1, y2) = lim sup
τ↘0

φ(y1+τh1(y1),y2+τh2(y2))−φ(y1,y2)
τ

(if it exists) is called Dini derivative of φ in the h1 and
h2-directions at (y1, y2).

2 ◁

If, for a given storage function V , there exist a proper
function λx ∈ (C0 ∩ P)(Rn,R≥0), and αx ∈ K∞ called
ISS-Lyapunov gain such that, for every (x, u) ∈ Rn ×
Rm,

|x| ≥ αx(|u|) ⇒ D+
f V (x, u) ≤ −λx(x), (2)

then V is called ISS-Lyapunov function for (1). As in [7],
the proof that the existence of an ISS-Lyapunov implies
that (1) is ISS goes along the lines presented in [24].

Consider the system 3

ż = g(v, z), (3)

where v ∈ L∞
loc(R≥0,Rn), z ∈ Rm, and g ∈ C1(Rn+m,Rm).

From now on, assume that W : Rn+m → R≥0 is an ISS-
Lyapunov function for (3) with λz ∈ (C0∩P)(Rm,R≥0),
and αz ∈ K∞ satisfying, for every (v, z) ∈ Rn+m,

W (z) ≥ αz(|v|) ⇒ D+
g W (v, z) ≤ −λz(z). (4)

System under consideration. Interconnecting sys-
tems (1) and (3) yields the system{

ẋ = f(x, z),

ż = g(x, z).
(5)

Using the vectorial notation y = (x, z), system (5) is
denoted by ẏ = h(y). A solution initiated from y inRn+m

and evaluated at time t is denoted Y (t, y). The two ISS-
Lyapunov inequalities (2) and (4) can be rephrased as
follows. For every couple (x, z) ∈ Rn+m,

V (x) ≥ γ(W (z)) ⇒ D+
f V (x, z) ≤ −λx(x),

W (z) ≥ δ(V (x)) ⇒ D+
g W (x, z) ≤ −λz(z)

(6)

with suitable functions γ, δ ∈ K∞.

A sufficient condition that ensures the stability of (5) is
given by the small gain theorem [13]. Roughly speaking
if, ∀s ∈ R>0, γ ◦ δ(s) < s, (7)
then the origin is globally asymptotically stable for (5).

Problem statement. At this point, it is possible to ex-
plain the problem under consideration. ISS systems for

2 When the Dini derivative is taken in only one direction,
the subscript denotes only such a direction.
3 A solution of (3) with initial condition z, and input v at
time t is denoted by Z(t, z, v).
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which (7) does not hold in a bounded set of R≥0 are con-
sidered. This paper shows that by merging small gain
arguments in different regions of the state space and em-
ploying some tools from measure theory, a sufficient con-
dition ensuring almost global asymptotic stability of the
origin is possible to be given. For planar interconnected
systems, by using an extension of Bendixon’s criterion,
global asymptotic stability of the origin may be estab-
lished.

3 Assumptions and main results

Assumption 1. There exist constant values 0 ≤ M <
M ≤ ∞ and 0 ≤ N < N ≤ ∞, and class K∞ functions
γ and δ such that, for every (x, z) ∈ S ⊂ Rn × Rm, the
implications

V (x) ≥ γ(W (z))⇒D+
f V (x, z) ≤ −λx(x) (8)

W (z) ≥ δ(V (x))⇒D+
g W (x, z) ≤ −λz(z) (9)

hold, where
S := {(x, z) ∈ Rn × Rm : M ≤ V (x) ≤ M,

W (z) ≤ N} ∪ {(x, z) ∈ Rn × Rm :

V (x) ≤ M,N ≤ W (z) ≤ N},

(10)

◁

In other words, Assumption 1 states that the set
Ω≤M (V ) × Ω≤N (W ) is locally ISS for the x and z-
subsystems of (5). To see more details on locally ISS
systems, the interested reader may consult [8].

Assumption 2.
if M < ∞, s ∈ [M,M ] \ {0}, γ ◦ δ(s) < s,

if M = ∞, s ∈ [M,M) \ {0}, γ ◦ δ(s) < s.
(11)

◁

Assumption 2 states that the small gain condition holds
in the interval corresponding to the value to the value of
V , when x is restricted to S.

Proposition 1. Under Assumptions 1 and 2, if

M̃ := max{γ−1(M), N} < min{δ(M), N} =: M̂, (12)

then there exists a proper function U ∈ P(Rn+m,R≥0)
that is locally Lipschitz on Rn+m \ {0} and such that,

∀y ∈ Ω≤M̂
(U) \ Ω≤M̃

(U), lim sup
t→∞

U(Y (t, y)) ≤ M̃.

Moreover, if γ, δ ∈ (C1 ∩ K∞), then a suitable U can be
defined, for every (x, z) ∈ Rn × Rm, by

U(x, z) = max
{

δ(V (x))+γ−1(V (x))
2 ,W (z)

}
. (13)

Condition (12) implies that Ω≤M̃
(U) ⊊ Ω≤M̂

(U).

Proposition 1 states that solutions of (5) starting in
Ω≤M̂

(U) will converge to the set Ω≤M̃
(U). The proof of

Proposition 1 is provided in Section 5.1.

Corollary 1. [Local stabilization] Consider Assump-
tions 1 and 2 with the constant values M = N = 0,
Mℓ := M < ∞ or Nℓ := N < ∞. The set Ω≤M̂ℓ

(Uℓ) is

included in the basin of attraction of the origin of (5),

where Uℓ and M̂ℓ are given by Proposition 1.

In other words, Corollary 1 states that the set Ω≤M̂ℓ
(Uℓ)

is an estimation of the set of initial conditions fromwhich
issuing solution of (5) remain close and converge to the
origin.

Before stating the second corollary, some concepts re-
garding the asymptotic behaviour of solutions are re-
called. A set M ⊂ Rn+m is said to be positively invari-
ant with respect to (5) if, for every t ∈ R≥0, y ∈ M ⇒
Y (t, y) ∈ M (cf. [15, p. 127]). A compact positively in-
variant set M ⊂ Rn+m is said to be globally attractive
if, for all y ∈ Rn+m, limt→∞ |Y (t, y)|M = 0.

Corollary 2. [Global attractivity] Consider Assump-
tions 1 and 2 with the constant values Mg := M > 0 or

Ng := N > 0, and M = N = ∞. The set Ω≤M̃g
(Ug) is

globally attractive for (5), where Ug and M̃g are given
by Proposition 1.

In other words, Corollary 2 states that the set Ω≤M̃g
(Ug)

is an estimation of the global attractor of (5).

The proofs of Corollaries 1 and 2 are not provided and
follow from Proposition 1. The interested reader may
also consult [7,8].

Under the assumptions of Corollaries 1 and 2, if the esti-
mation of the global attractor Ω≤M̃g

(Ug) is contained in

the estimation of the basin of attraction Ω≤M̂ℓ
(Uℓ), then

global asymptotic stability of the origin for (5) follows
trivially. However, when this inclusion does not hold, the
set R = Ω≤M̃g

(Ug) \ Ω≤M̂ℓ
(Uℓ) is not empty, and solu-

tions of (5) may converge to positively invariant sets con-
tained inR instead (cf. Birkhoff’s Theorem [10]). Figure
1 illustrates the region R obtained in this situation.

The next result provides sufficient conditions ensuring
that, for almost every initial condition, issuing solutions
remain close and converge to the origin. For the case in
which (5) is planar, global asymptotic stability of the
origin is established.

Before stating the main results, the concept of stability
introduced in [3] is presented. The origin is called almost

3



Mg

W

V

Nℓ

Ng

Mℓ

R

Figure 1. Illustration of sets Ω≤Mℓ
(V ) × Ω≤Nℓ

(W )
(blue region), Ω=M̃ℓ

(Uℓ) (dark blue line),

Ω≥M (V ) × Ω≥N (W ) (pink region), Ω=M̃g
(Ug) (red line),

and R = cl{Ω≤M̂g
(Ug) \ Ω≤M̃ℓ

(Uℓ)} (pattern filled).

globally asymptotically stable for (5) if it is locally stable
in the Lyapunov sense and attractive for almost every
initial condition. More precisely, there exists ℵ ⊂ Rn+m,
with µ(ℵ) = 0 such that, for every y ∈ Rn+m \ ℵ,
limt→∞ |Y (t, y)| = 0, where µ is the Lebesgue measure.

Theorem 1.Under Assumptions 1 and 2, if the constant
values of Corollaries 1 and 2 are such that Mℓ < Mg

or Nℓ < Ng, there exists a function ρ ∈ C1(Rn+m \
{0},R≥0) with supp(ρ) ⊇ R, whereR = cl{Ω≤M̃g

(Ug)\
Ω≤M̂ℓ

(Uℓ)}, and if for every y ∈ R, div(hρ)(y) > 0, then

the origin is almost globally asymptotically stable for (5).

In other words, Theorem 1 states that with an extra
assumption on the vector field of system (4), solutions
converge to the origin for almost every initial condition
and the origin is locally asymptotically stable. The proof
of Theorem 1 is provided in Section 5.2.

Theorem 2. Let n = m = 1. Under Assumptions 1 and
2, if the constant values of Corollaries 1 and 2 are such
that Mℓ < Mg or Nℓ < Ng, and for every y ∈ R =
cl{Ω≤M̃g

(Ug) \Ω≤M̂ℓ
(Uℓ)}, divh(y) ̸= 0 and h(y) ̸= 0,

then the origin is globally asymptotically stable for (5).

Theorem 2 states that, when (5) is planar and under
mild conditions on the vector field, the origin is globally
asymptotically stable for (5). In other words, no ω-limit
sets exists in R. The proof of Theorem 2 is provided in
Section 5.3.

4 Illustration

Here, the results given in the previous section are illus-
trated in two examples. The first concerns the vectorial
case, while the second concerns the planar case.

4.1 A class of systems satisfying an asymptotic small-
gain condition

Recall system (5), and assume that there exist locally
Lipschitz and proper functions V ∈ P(Rn,R≥0) and

W ∈ P(Rm,R≥0) satisfying 4 , for every (x, z) ∈ Rn ×
Rm, {

D+
f V (x, z) ≤ −V (x) + γ(W (z)),

D+
g W (x, z) ≤ −W (z) + δ(V (x)),

(14)

where γ, δ ∈ K∞ are such that 5

lim
s→0

γ ◦ δ(s)
s

< 1 and lim
s→∞

γ ◦ δ(s)
s

< 1. (15)

In other words, the composition γ ◦ δ satisfies the small-
gain condition in the bi-limit: 0 and ∞. Note that to
apply [5] it would be necessary to impose that, for every
b1, b2 ∈ R≥0, and for some ε > 0, γ(b1)δ(b2) ≤ (1 −
ε)b1b2.

From (15), there exists a positive constant Mℓ (resp.
Mg) that is sufficiently small (resp. large) and such that,
for every s ∈ (0,Mℓ] (resp. s ∈ [Mg,∞)), γ ◦ δ(s) <
s. Together with (14) and since W is continuous and
proper, Assumptions 1 and 2 hold locally on the compact
set Ω≤Mℓ

(V ) × Ω≤Nℓ
(W ) (resp. non-locally on the set

Ω≥Mg (V )× Ω≥Ng (W )).

Since condition Eq. (12) is satisfied, as formulated in
Corollary 1 (resp. 2), from this result the set Ω≤M̂ℓ

(Uℓ) ⊂
Rn+m (resp. Ω≤M̃g

(Ug) ⊂ Rn+m) is an estimation of the

basin of attraction of the origin (resp. global attractor)
of (17). Also, Ω≤M̂ℓ

(Uℓ) ⊂ Ω≤M̃g
(Ug).

Let 6 {
rV (x, z) := −V (x) + γ(W (z)),

rW (x, z) := −W (z) + δ(V (x)).

For any (x, z) belonging to the sets Ω≤M̂ℓ
(Uℓ) and

Ω≥M̃g
(Ug) ⊂ Rn+m either

1. rV (x, z) ≥ 0 and rW (x, z) ≤ 0 or;
2. rV (x, z) ≤ 0 and rW (x, z) ≥ 0 or;
3. rV (x, z) ≤ 0 and rW (x, z) ≤ 0.
While in the compact set R = Ω≤M̃g

(Ug)\Ω≤M̂ℓ
(Uℓ), it

may happen that rV (x, z) ≥ 0 and rV (x, z) ≥ 0. In this
case, the result given in [4] can not be applied, because
it requires that the union of the regions described by
items 1-3 forms a cover of Rn+m.

Note that in contrast to [11], the existence of a Lyapunov
function candidate for the system (5) whose derivative
is definite negative on Rn+m is not requested.

4 From Remark 2.4 of [24] Eq. (14) is equivalent to (6).
5 Note that, in contrast to [5,11,12], no information is given
about the behaviour of the function s 7→ γ ◦ δ(s), in the
interval (0,∞).
6 Note that, in contrast to [4], here it is not assumed that
Ω≥M̃g

(Ug) ∪ Ω≤M̂ℓ
(Uℓ) = Rn+m.
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Let, for every (x, y) ∈ Rn+m, ρ(x, y) = (V (x)+W (z))−1,
and assume that for every (x, z) ∈ R,

(divh(x, z))(V (x)+W (z)) ≥ γ(W (z))+δ(V (x)). (16)

In such a compact set, note that

div(hρ)(x, z) = ρ(x, z) divh(x, z) + grad ρ(x, z) · h(x, z)

= divh(x,z)
V (x)+W (z) −

D+
f
V (x,z)+D+

g W (x,z)

(V (x)+W (z))2

≥ divh(x,z)+1
V (x)+W (z) − γ(W (z))+δ(V (x))

(V (x)+W (z))2

> 0,

where the first inequality is due to (14): for every (x, z) ∈
Rn × Rm,

−D+
f V (x, z)−D+

g W (x, z) ≥ V (x) − γ(W (z))

+W (z) − δ(V (x)),

and last inequality is due to (16).

From Theorem 1, the origin is almost globally asymp-
totically stable for the system (5).

4.2 The planar case

Consider the system{
ẋ = f(x, z) = −1.5x + 2p(z),

ż = g(x, z) = −z + sin(x2/10),
(17)

where, for every s ∈ R, p(s) := s3/3− 3s2/2+ 2s.

Let, for every x ∈ R (resp. z ∈ R), V (x) = |x| (resp.
W (z) = |z|). Taking its Lie derivative in the f -direction
yields, for every (x, z) ∈ R2,

D+
f V (x, z) ≤ −1.5V (x) + 2|p(W (z))|. (18)

Define, for every s ∈ R≥0, γ(s) = max{1.3|p(r)| : 0 ≤
r ≤ s}. From (18),

V (x) ≥ γ(W (z)) ⇒ D+
f V (x, z) ≤ −λx(x) (19)

holds with a suitable λx ∈ (C0 ∩ P)(R,R≥0). The Lie
derivative of W in the g-direction yields, for every
(x, z) ∈ R2,

D+
g W (x, z) ≤ −W (z) +

∣∣∣sin(V (x)2

10

)∣∣∣ .
which can be rephrased as follows

W (z) ≥ δ(V (x)) ⇒ D+
g W (x, z) ≤ −λz(z)

with a suitable λz ∈ (C0 ∩ P)(R,R≥0), where δ(s) =
max{| sin(r2/10)| : 0 ≤ r ≤ s}.

The composition of the function γ and δ yields

γ◦δ(s) = max

{
1.3|p(r)| : 0 ≤ r ≤ max

0≤a≤s

{∣∣∣sin(a2

10

)∣∣∣}} .

Note that there exist values s̄ > 0 for which γ ◦ δ(s̄) =
1.11. Also,

lim
s→0

γ◦δ(s)
s < 1, and lim

s→∞
γ◦δ(s)

s < 1. (20)

From (20), and following the reasoning of the previ-
ous example, there exists Mℓ > 0 small (resp. Mg > 0
large) enough such that, for every s ∈ (0,Mℓ] (resp.
s ∈ [Mg,∞)), γ ◦ δ(s) < s. Also, there exist 7 γℓ, δℓ ∈
K∞ (resp. 8 γg ∈ K and δg ∈ K∞) satisfying, for ev-
ery s ∈ [0,Mℓ] (resp. s ∈ [Mg,∞)), γℓ(s) = γ(s) and
γℓ(s) = γ(s) (resp. γg(s) = γ(s) and δg(s) = δ(s)).
Thus, analogously to the reasoning of the previous ex-
ample, Assumptions 1 and 2 hold locally on the compact
set Ω≤Mℓ

(V ) × Ω≤Nℓ
(W ) (resp. non-locally on the set

Ω≥Mg (V )× Ω≥Ng (W )).

Since condition Eq. (12) is satisfied, as formulated in
Corollary 1 (resp. 2), from this result the set Ω≤M̂ℓ

(Uℓ) ⊂
Rn+m (resp. Ω≤M̃g

(Ug) ⊂ Rn+m) is estimation of the

basin of attraction of the origin (resp. global attractor)
of (17). Also, Ω≤M̂ℓ

(Uℓ) ⊂ Ω≤M̃g
(Ug).

It now remains to check whether there exist ω-limit sets
in R = Ω≤M̃g

(Ug) \ Ω≤M̂ℓ
(Uℓ). Since

∂f
∂x (x, z) +

∂g
∂z (x, z) ≡ −2.5 and

f(x, z) = 0 = g(x, z) ⇔ (x, z) = (0, 0),

from Theorem 2 the origin is globally asymptotically
stable for (17).

5 Proofs
5.1 Proof of Proposition 1

Proof. The proof of Proposition 1 is based on the proof
of [13, Theorem 3.1]. Here, it is divided into 3 parts.
Firstly, the function σ ∈ K∞ ∩ C1 is obtained. In the
second part, the Dini derivative of a locally Lipschitz
and proper function U ∈ P(Rn+m,R≥0) is shown to be
decreasing in the set S defined in (10). In the third part,

7 Recall that γ and δ are continuous positive definite func-
tions. Thus, they are strictly increasing in a neighbourhood
of the origin. Note also that γ is proper.
8 Although γg is of class K, the result of Proposition 1 is
still applicable. The main difference in this case would be
the construction of the function σ ∈ C1∩K∞ satisfying (21).
The interested reader may consult [13] to check how this is
done.
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solutions of (5) starting in Ω≤M̂
(U)\Ω≤M̃

(U) are shown

to converge to Ω≤M̃
(U).

First Part. Under Assumptions 1 and 2, the function
γ being of class K∞ satisfies, for every s ∈ R>0, δ(s) <
γ−1(s). Together with the fact that δ is of class K∞,
from [13, Lemma A.1], there exists σ ∈ K∞ ∩ C1 whose
derivative is strictly positive and satisfies,

∀s ∈ R>0, δ(s) < σ(s) < γ−1(s). (21)

Second Part. Define, for every (x, z) ∈ Rn × Rm,
U(x, z) = max{σ(V (x)),W (z)}. Note that U ∈ (C0 ∩
P)(Rn+m,R≥0) is a proper function. Pick (x, z) ∈ Rn ×
Rm, one of three cases is possible: σ(V (x)) < W (z),
W (z) < σ(V (x)) or W (z) = σ(V (x)). The proof fol-
lows by showing that the Dini derivative of U is nega-
tive definite. For each case, assume that (x, z) ∈ S ̸=0 :=
S \ {(0, 0)}, where S is defined in (10).

Case 1.Assume that σ(V (x)) < W (z). This implies that
U(x, z) = W (z) and D+

f,gU(x, z) = D+
g W (x, z). From

(21), δ(V (x)) < σ(V (x)) < W (z). Since (x, z) ∈ S̸=0,
the inequality D+

g W (x, z) ≤ −λz(z) follows from (9).

Thus, W (z) > σ(V (x)) ⇒ D+
f,gU(x, z) ≤ −λz(z).

Case 2. Assume that W (z) < σ(V (x)). This im-
plies that U(x, z) = σ(V (x)) and D+

f,gU(x, z) =

σ′(V (x))D+
f V (x, z). Since (x, z) ∈ S̸=0, and from (21),

W (z) < σ(V (x)) < γ−1(V (x)). (22)

From (8), the inequality D+
f V (x, z) ≤ −λx(x) holds.

Case 3. Assume that W (z) = σ(V (x)). Let U∗(x, z) :=
W (z) = σ(V (x)). This implies

D+
f,gU

∗(x, z) = lim sup
t↘0

1
t [max{σ(V (X(t, x, z))),

W (Z(t, z, x))} − U∗(x, z)]

= lim sup
t↘0

max
{

σ(V (X(t,x,z)))−σ(V (x))
t , W (Z(t,z,x))−W (z)

t

}
= max{σ′(V (x))D+

f V (x, z), D+
g W (x, z)}.

The analysis of D+
f,gU

∗ is divided in two sub cases. In

the first one, the function D+
g W is analyzed while in the

last the function D+
f V is analyzed.

Case 3.a. The analysis of D+
g W . From (21), and the

fact that x ̸= 0 and z ̸= 0, the inequality δ(V (x)) <
σ(V (x)) = W (z) holds. Moreover since (x, z) ∈ S ̸=0, the
inequality D+

g W (x, z) ≤ −λz(z) follows from (9).

Case 3.b. The analysis of D+
f V . From (21), and the fact

that x ̸= 0 and z ̸= 0, the inequality W (z) = σ(V (x)) <
γ−1(V (x)) holds. Moreover, since (x, z) ∈ S ̸=0, the in-
equality D+

f V (x, z) ≤ −λx(x) follows from (8).

Summing up Case 3, 0 ̸= W (z) = σ(V (x)) ⇒
D+

f,gU
∗(x, z) ≤ −min{σ′(V (x))λx(x), λz(z)}.

Claim 1. There exists c > 0 such that Ω≤c(U) ⊂
Ω≤M (V ) × Ω≤N (W ). Moreover, the constants M̃ and

M̂ are such that

(Ω≤M (V )× Ω≤N (W )) ⊂ Ω≤M̃
(U) ⊂ Ω≤M̂

(U)

⊂ (Ω≤M (V )× Ω≤N (W )).
(23)

The proof of Claim 1 is provided in Section 5.4.

From the above case study and (23),

M̃ ≤ U(x, z) ≤ M̂ ⇒ D+
f,gU(x, z) ≤ −E(x, z), (24)

where E ∈ (C0 ∩ P)(Rn+m,R) is the proper function
defined, for every (x, z) ∈ Rn × Rm, by E(x, z) =
min{σ′(V (x))λx(x), λz(z)}.

Third part. The local Lipschitz property of U on Rn×
Rm \{(0, 0)} is due to the fact that σ(V (·)) (resp. W (·))
is locally Lipschitz on Rn \ {0} (resp. Rm).

From [20, Theorem 4.3] and (24), for all (x, z) ∈
Rn × Rm, and all t ∈ R≥0, along solutions of (5),
D+U(X(t, x, z), Z(t, z, x)) = D+

f,gU(X(t, x, z), Z(t, z, x)).

Since solutions of (5) are absolutely continuous functions
and the righthand side of E is a continuous and posi-
tive definite function, from [20, Remark 4.4.b], for every

(x, z) such that M̃ ≤ U(x, z) ≤ M̂ , and all t ∈ R≥0, the
function

t 7→ U(X(t, x, z), Z(t, z, x)) (25)

is strictly decreasing and satisfies

U∞ := lim
t→∞

U(X(t, x, z), Z(t, z, x)) ≤ M̃.

To see this claim suppose, for purposes of contradiction,

thatU∞ > M̃ . From the continuity ofU , there exists ε >

0 such that U∞−ε > M̃ and U∞−ε ≤ U(x, z) ≤ U∞+
ε. Since U is proper, the constant ξ = min{E(x, z) >
0 : U∞ − ε ≤ U(x, z) ≤ U∞ + ε} exists. Recalling the
definition ofU , there exists T > 0 such that, for all t ≥ T ,
U(X(t, x, z), Z(t, z, x)) − U∞ < ε. Moreover, from the
definition of the constant ξ,

U(X(t, x, z), Z(t, z, x))− U(X(T, x, z), Z(T, z, x)) =∫ t

T
D+U(X(s, x, z), Z(s, z, x)) ds ≤ −ξ(t− T ).

Then,
U∞ = lim

t→∞
U(X(t, x, z), Z(t, z, x))

= U(X(T, x, z), Z(T, z, x))

+ lim
t→∞

∫ t

T
D+U(X(s, x, z), Z(s, z, x)) ds ≤ −∞

which contradicts the fact that U is positive definite.

Thus, U∞ ≤ M̃ . Hence, solutions of (5) starting in
Ω≤M̂

(U) \ Ω≤M̃
(U) converge towards Ω≤M̃

(U).
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To see that U can be given by (13), note that U relies
on the computation of σ. Let, for every s ∈ R≥0, σ(s) =
(δ(s) + γ−1(s))/2. Its derivative yields, for every s > 0,
2σ′(s) = δ′(s)+1/(γ′ ◦ γ(s)) which is positive, because 9

δ′(s) > 0 and γ′ ◦γ−1(s) > 0. Moreover, such a function
σ satisfies (21). This concludes the proof. ■

5.2 Proof of Theorem 1

This proof is divided into 4 parts. The first one shows
that solutions starting in Ω≥M̃g

(Ug) converge to R. The

second part shows that almost all solutions starting in
R converges to Ω≤M̂ℓ

(Uℓ). The third part shows that

solutions starting in the latter set converge to the origin.
The fourth part concludes the almost global asymptotic
stability of the origin.

1st part. From Corollary 2, the set Ω≤M̃g
(Ug) is glob-

ally attractive for (5), where M̃g = max{γ−1
g (Mg), Ng},

Mg and Ng are defined in Corollary 2, and γg is given
by Assumption 1.

2nd part. From the proof of Proposition 1, there exist
proper functions Ug, Eg ∈ (C0 ∩ P)(Rn+m,R≥0) (resp.
Uℓ, Eℓ ∈ (C0 ∩ P)(Rn+m,R≥0)) with Ug (resp. Uℓ) be-
ing also locally Lipschitz and such that, for every y ∈
Ω≥M̃g

(Ug), D
+
h Ug(y) ≤ −Eg(y) (resp. for every y ∈

Ω≤M̂ℓ
(Uℓ), D

+
h Uℓ(y) ≤ −Eℓ(y)).

To see that Ω≤M̂ℓ
(Uℓ) ⊊ Ω≤M̃g

(Ug). From the proof

of Claim 1, Uℓ(x, z) ≤ M̂ℓ ⇒ max{V (x),W (z)} ≤
min{Mℓ, Nℓ}. Analogously, Ug(x, z) ≥ M̃g ⇒
min{V (x),W (z)} ≥ max{Mg, Ng}. Sincemin{Mℓ, Nℓ} <
max{Mg, Ng}. Thus, Ω≤M̂ℓ

(Uℓ) ⊊ Ω≤M̃g
(Ug).

The proof proceeds by showing that, for almost every
initial condition staring in R = Ω≤M̃g

(Ug) \ Ω≤M̂ℓ
(Uℓ),

issuing solutions of (5) converge to Ω≤M̂ℓ
(Uℓ). To do so,

the same lines as in [19, Theorem 1] and [3, Theorem 3]
are followed. However, here a less conservative condition
is required, since a set that is only positively invariant,
and the divergence to be positive only in a compact set
are needed.

Let Z ⊂ Rn a set given by 10

Z = ∩∞
l=1{y ∈ Ω≤M̃g

(Ug) : Uℓ(Y (t, y)) > M̂ℓ, t > l}.

9 Recall that δ, γ ∈ (C1 ∩ K∞).
10 Note that Z is the set of all initial conditions belonging to
Ω≤M̃g

(Ug) from which issuing solutions do not converge to

Ω≤M̂ℓ
(Uℓ).

For every t ∈ R, let Y (t,Z) = {Y (t, z) : z ∈ Z, t ∈
dom(z)}, where dom(z) is the maximum time interval
where Y (t, z) exists. Since Ω≤M̃g

(Ug) is positively invari-

ant, Z is also positively invariant. Thus, given a fixed
τ ∈ R>0, for all t ≥ τ , Y (t,Z) ⊂ Y (τ,Z). Hence, for all
t ∈ R≥0, ∫

Y (t,Z)
ρ(y) dy −

∫
Z
ρ(y) dy ≤ 0, (26)

where ρ ∈ C1(Rn+m \ {0},R≥0) and supp(ρ) ⊇ R.

From Liouville’s Theorem (see [19, Lemma A.1]), for
every t ∈ R≥0,∫ t

0

∫
Y (s,Z)

div(hρ)(y) dyds =
∫
Y (t,Z)

ρ(y) dy−
∫
Z
ρ(y) dy.

Since Z ⊂ R, for every t ∈ R≥0, the inequality

t
∫

Y (t,Z)

div(hρ)(y) dy ≤
∫ t

0

∫
Y (s,Z)

div(hρ)(y) dyds

≤
∫
Y (t,Z)

ρ(y) dy −
∫
Z
ρ(y) dy

holds. From (26), for every t ∈ R≥0,
∫
Y (t,Z)

div(hρ)(y) dy ≤
0. Together with the fact that, for every y ∈ R,
div(hρ)(y) > 0, it yields

∫
Y (t,Z)

div(hρ)(y) dy = 0,

for every t ∈ R≥0. Thus, for every t ∈ R≥0, Y (t,Z)
has Lebesgue measure zero. In particular, Z has also
Lebesgue measure zero. Consequently, for almost every

y ∈ R, lim supt→∞ Uℓ(Y (t, y)) ≤ M̂ℓ.

It remains to check if the initial conditions belonging to
Ω≥M̃g

(Ug) from which issuing solutions converge to Z

have also measure zero. Since Z is positively invariant,
for all t1 < t2 ≤ 0, Y (t2,Z) ⊂ Y (t1,Z). This inclusion
implies that Y := ∪t≤0{Y (t,Z)} = ∪l∈Z<0{Y (l,Z)}.
Hence, the set Y is a countable union of images of Z by
the flow. Since Z is measurable and, for every t ∈ dom(y),
the map Z ∋ y 7→ Y (t, y) is a diffeomorphism 11 , Y is
also measurable.

For every t ∈ dom(Z),
∫
Y (t,Z)

dz ≤
∫
Z
| gradY (t, y)| dy =

0, because Z has measure zero. This implies that, for all
t ∈ dom(Z), the set Y (t,Z) has measure zero. Since Y is
the countable union of sets of measure zero, it has also
measure zero. 12 Hence the set of solutions starting in
Ω≥M̃g

(Ug) that converge to Z have also measure zero

3rd part. From Corollary 1, the set Ω≤M̂ℓ
(Uℓ) is con-

tained in the basin of attraction of the origin, where

M̂ℓ = min{δℓ(Mℓ), Nℓ},Mℓ andNℓ are defined in Corol-
lary 1, and γℓ is given by Assumption 1.

4th part. From the above discussion, the origin is lo-
cally stable and almost globally attractive for (5). Thus,

11 Because (5) is of class C1 and solutions are unique.
12 Recall that Y is the set of initial conditions from which
issuing solutions of (5) converge Z.
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it is almost globally asymptotically stable for (5). This
concludes the proof. ■

5.3 Proof of Theorem 2

Before proving Theorem 2, some concepts regarding the
asymptotic behavior of solutions of planar systems are
recalled. A point p is said to be a positive limit point of
Y (·, y) if there exists a sequence {tn}n∈N, with tn → ∞
as n → ∞, such that Y (tn, y) → p as n → ∞ (cf. [15, p.
127]). The set ω(y) of all positive limit points of Y (·, y)
is called ω-limit set of y (cf. [10, p. 517]). For planar
systems, a closed curve C ⊂ R2 is called closed orbit if
C is not an equilibrium point and there exists a time
T < ∞ such that, for each y ∈ C, Y (nT, y) = y, ∀n ∈ Z
(cf. [21, Definition 2.6]).

Proof. The proof of Theorem 2 follows the same line as
the proof of Theorem 1. The difference here consists in
the second and fourth parts.

1st part. Recall that from Corollary 2, the set

Ω≤M̃g
(Ug) is globally attractive for (5), where M̃g =

max{γ−1
g (Mg), Ng},Mg andNg are defined in Corollary

2, and γg is given by Assumption 1.

2nd part: Bendixson’s criterion for non simply con-
nected regions. From the proof of Proposition 1, there
exist proper functions Ug, Eg ∈ (C0∩P)(R2,R≥0) (resp.
Uℓ, Eℓ ∈ (C0∩P)(R2,R≥0)) withUg (resp.Uℓ) being also
locally Lipschitz and such that, for every y ∈ Ω≥M̃g

(Ug),

D+
h Ug(y) ≤ −Eg(y) (resp. for every y ∈ Ω≤M̂ℓ

(Uℓ),

D+
h Uℓ(y) ≤ −Eℓ(y)).

Since the set R = cl{Ω≤M̃g
(Ug) \ Ω≤M̂ℓ

(Uℓ)} is

comapct, and for each y ∈ R, Ug(y) ̸= 0, from [1, The-
orem 2.5]
• The set Ω

=M̃g
(Ug) has finite perimeter;

• The function Ug is almost everywheredifferentiable on
Ω

=M̃g
(Ug);

• Let Ng ⊂ Ω
=M̃g

(Ug) be set in which Ug is not dif-

ferentiable. There exists a Lipschitz parametrization
pg : [ag, bg] ⊂ R → Ω

=M̃g
(Ug) that is injective and

satisfies, for almost every s ∈ [ag, bg], pg(s) /∈ Ng and
p′g(s) is perpendicular to ∇Ug(pg(s)).

Recall that by assumption, for every y ∈ R, h(y) ̸= 0.
Together with the fact that h ∈ C1(R2), and almost
each sublevel set of Ug has finite perimeter. From the
generalized divergence theorem [17, Theorem 1.7] (see
also [18])∫∫

Ω
≤M̃g

(Ug)

divh(y) dy =
∮

Ω
=M̃g

(Ug)

h(y) · ng(y) dxdz. (27)

Together with the above discussions and the existence
of the parametrization pg, for almost every s ∈ [ag, bg],
h(pg(s)) · ng(pg(s)) < 0, where for almost every s ∈
[ag, bg], ng(pg(s)) = ∇Ug(pg(s))/|∇Ug(pg(s))|,∫∫
Ω

≤M̃g
(Ug)

divh(y) dy=
∫

[ag,bg ]

h(pg(s))·ng(pg(s)) ds < 0. (28)

Analogously to the above, and by letting pℓ : [aℓ, bℓ] →
Ω

=M̂ℓ
(Uℓ) be a parametrization of Ω

=M̂ℓ
(Uℓ) with out-

ward unit normal nℓ, based on Equation (27),∫∫
Ω

≤M̂ℓ

(Uℓ)

divh(y) dy =
∫

[aℓ,bℓ]

h(pℓ(s)) ·nℓ(pℓ(s)) ds < 0. (29)

Suppose, for purposes of contradiction, that there exists
a closed orbit C ∈ R2, parametrized by p : [a, b] → C
and with outward unit normal n, and contained in R.
From the generalized divergence theorem,∫∫

DC

divh(x, z) dxdz =
∫

[a,b]

h(p(s)) · n(p(s)) ds = 0, (30)

whereDC is the simply connected region bounded by C.

Note that,∫∫
Ω

≤M̃g
(Ug)\DC

divh(y) dy =
∫∫

Ω
≤M̃g

(Ug)

divh(y) dy −
∫∫
DC

divh(y) dy

=
∫∫

Ω
≤M̃g

(Ug)

divh(y) dy,

where the last equality is due to (30). From (28),∫∫
Ω

≤M̃g
(Ug)\DC

divh(y) dy < 0. (31)

On the other hand,∫∫
DC\Ω

≤M̂ℓ

(Uℓ)

divh(y) dy =
∫∫
DC

divh(y) dy −
∫∫

Ω
≤M̂ℓ

(Uℓ)

divh(y) dy

= −
∫∫

Ω
≤M̂ℓ

(Uℓ)

divh(y) dy,

where the last equality is due to (30). From (29),∫∫
DC\Ω

≤M̂ℓ

(Uℓ)

divh(x, z) dxdz > 0. (32)

From (31), (32) and the continuity of divh, the function
divh changes sign in R. Thus, there exists ȳ ∈ R such
that divh(ȳ) = 0 which is a contradiction with the hy-
pothesis div(y) ̸= 0, for every y ∈ R. Thus, there exist
no closed orbits C contained in R.

From the Poincaré-Bendixson Theorem [21, Theorem
2.15], the ω-limit set of a solution starting inR is a closed
orbit or equilibrium. Since equilibria are impossible by
assumption, and from above analysis there exist no ω-
limit sets in R, all solutions starting in R will converge
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to Ω≤M̂ℓ
(Uℓ).

3rd part. Recall that from Corollary 1, the set
Ω≤M̂ℓ

(Uℓ) is contained in the basin of attraction of the

origin, where M̂ℓ = min{δℓ(Mℓ), Nℓ}, Mℓ and Nℓ are
defined in Corollary 1, and γℓ is given by Assumption 1.

4th part. From the above discussion, the origin is lo-
cally stable and globally attractive for (5). Thus, it is
globally asymptotically stable for (5). This concludes the
proof. ■

Remark 1. Note that, if Ω≤M̂ℓ
(Uℓ) = {0}, then R =

Ω≤M̃g
(Ug) is a simply connected region, and the second

part of the proof of Theorem 2 can be reduced to the
proof of the known Bendixson’s criterion. ◦

5.4 Proof of Claim 1

Let c be a positive real number 13 such that Ω≤c(U) ⊂
Ω≤M (V )× Ω≤N (W ).

In the first part, it will be shown that, for all (x, z) ∈ S,

U(x, z) ≤ M̂ ⇒ max{V (x),W (z)} ≤ min{M,N}. (33)
In the second part, it will be shown that, for all (x, z) ∈
S,

M̃ ≤ U(x, z) ⇒ max{M,N} ≤ min{V (x),W (z)}. (34)

Part 1. U(x, z) ≤ M̂ . This implies U(x, z) =

max{σ(V (x)),W (z)} ≤ M̂ = min{δ(M), N}.

Assume that max{σ(V (x)),W (z)} = σ(V (x)) and
min{δ(M), N} = δ(M). This implies σ(V (x)) ≤ δ(M).
From (21), V (x) ≤ σ−1 ◦ δ(M) < M . Assume now that
max{σ(V (x)),W (z)} = W (z) and min{δ(M), N} =
δ(M). This implies W (z) ≤ δ(M) ≤ N . The other
two cases are straightforward. Thus, (33) holds. Hence,
Ω≤M̂

(U) ⊂ (Ω≤M (V )× Ω≤N (W ));

Part 2. M̃ ≤ U(x, z). This implies M̃ = max{γ−1(M),
N} ≤ U(x, z) = max{σ(V (x)),W (z)}.

Assume that, max{γ−1(M), N} = γ−1(M) and
max{σ(V (x)),W (z)} = σ(V (x)). This implies γ−1(M) ≤

13 Such a positive real number always exist. Otherwise, for
all n ≥ N, there exists yn such that yn ∈ Ω≤1/n(U) and
yn /∈ Ω≤M (V ) × Ω≤N (W ). Since U is proper, Ω≤1/n(U) ⊂
Ω≤1(U) is compact. Hence, there exists {ynj}j∈N ⊂ {yn}n∈N

such that ynj

j→∞−−−→ y∗ and U(y∗) = 0. From the positive
definiteness of U , y∗ = 0. Consequently, ynj is a sequence
converging to zero and outside Ω≤M (V )×Ω≤N (W ). This is
impossible since this set is a neighborhoud of the origin.

σ(V (x)). From (21), M ≤ γ ◦ σ(V (x)) < V (x). As-
sume now that, max{γ−1(M), N} = γ−1(M) and
max{σ(V (x)),W (z)} = W (z). This implies N ≤
γ−1(M) ≤ W (z). The other two cases are straightfor-
ward. Thus, (34) holds. Hence, (Ω≤M (V )×Ω≤N (W )) ⊂
Ω≤M̃

(U);

Since (12) is a strict inequality, from the continuity
and surjectivity of U , there exists (x, z) ∈ S such

that M̃ ≤ U(x, z) ≤ M̂ . From (33) and (34), M̃ ≤
U(x, z) ≤ M̂ ⇒ max{M,N} ≤ min{V (x),W (z)} ≤
max{V (x),W (z)} ≤ min{M,N}. Thus, the inclusion
(23) holds. This concludes the proof. ■

6 Conclusion

Systems for which the small gain theorem cannot be
used, a sufficient condition for the stability of the result-
ing interconnected system is proposed. The approach
consists in verifying if the small gain condition holds in
two different regions of the state space: a local and a
non-local. In the gap between both regions, assuming
mild properties on the vector field, a sufficient condition
ensuring the convergence of solutions, for almost every
initial condition, is provided. An approach is proposed
for planar system for which Bendixson’s criterion does
not hold. Two examples illustrate the results.

The authors plan to extend the proposed approach for
the case in which, in a countable number of intervals, the
small gain condition holds and, between such intervals,
a condition ensuring the absence of ω-limit set holds.

Acknowledgements. The authors thank the anony-
mous reviewers for suggestions and fruitful discussions.
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