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Introduction

Reduced order modeling is more and more used in engineering problems due to efficient evaluation of quantities of interest. The Reduced Basis Method (see [START_REF] Prud | Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound[END_REF][START_REF] Veroy | Reduced-basis approximation of the viscous Burgers equation: Rigorous a posteriori error bounds[END_REF][START_REF] Veroy | A posteriori error bounds for reducedbasis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations[END_REF][START_REF] Prud'homme | Reduced-basis output bounds for approximately parameterized elliptic coercive partial differential equations Computing and Visualization in[END_REF][START_REF] Quarteroni | Certified reduced basis approximation for parametrized partial differential equations and applications[END_REF][START_REF] Rozza | Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations[END_REF]) has been especially designed for real-time and many-query contexts, and cover a large range of problems among which non-affinely parametrized Partial Differential Equations (PDE). A core enabler of this method is the so-called offline/online decomposition of the problem. This allows for computing costly parameter independent terms that depend solely on the finite element dimension. However such decomposition is not necessarily or readily available in particular for nonaffine/non-linear problems. The Empirical Interpolation Method (EIM, see [START_REF] Barrault | An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations[END_REF][START_REF] Grepl | Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations[END_REF]) has been developed to recover this core ingredient and is used prior to the reduced basis methodology on industrial based applications, see e.g. [START_REF] Daversin | A Reduced Basis Framework: Application to large scale non-linear multi-physics problems[END_REF]. However the EIM building step can be costly when the terms are non-linear and requires many non-linear finite element solves. It is a deterring trait for this methodology which forbids its application to non-linear applications.

In this paper, we propose a Simultaneous EIM-RB (named SER) construction that requires only but a few finite element solves and which builds together the affine decomposition as well as the RB ingredient. To start we first give an overview of both Reduced Basis and Empirical Interpolation methods in non-affinely parametrized PDE context to recall the necessary notions. Based on these considerations, a second part makes an assessment of the proposed simultaneous approach discussing the changes to be made in the EIM offline step. The last part illustrates our method with preliminar results obtained on a benchmark introduced in [START_REF] Grepl | Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations[END_REF].

Preliminaries

Let u(µ) be a solution of a non-linear parametrized PDE, where µ is the p-vector of inputs (µ ∈ D ⊂ R p the parameter space). Considering the Hilbert space X ≡ H 1 0 (Ω), the variational formulation of the PDE consists in finding u(µ) ∈ X as a root of a functional r such that r(u(µ), v; µ) = 0 ∀v ∈ X.
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We denote N the dimension of the finite element approximation space X N ⊂ X, and u N (µ) the associated finite element approximation of u(µ) solution of (1).

In the following, we use a Newton algorithm to deal with the non-linearity. Denoting k u(µ) the solution at k th Newton's iteration, and j the Jacobian associated with the functional r, the problem consists in finding

δ k+1 u(µ) ≡ k+1 u(µ) -k u(µ) ∈ X N and thus k+1 u(µ) ∈ X N such that j(δ k+1 u(µ), v; µ; k u(µ)) = -r( k u(µ), v; µ) ∀v ∈ X N (2) 
at each iteration k.

If j and r depend affinely in µ, there exists positive integers Q j and Q r , µ-dependent functions θ qj j , θ qr r and functions j qj , r qr (1 q r Q r , 1 q j Q j ) allowing to write such affine decompositions

j(u, v; µ; k u) = Qj qj =1 θ qj j ( k u; µ)j qj (u, v) r( k u, v; µ) = Qr qr =1 θ qr r ( k u; µ)r qr (v) ∀u, v ∈ X N , ∀µ ∈ D (3) 
For non-affinely parametrized problems, j and r depend on a set {w i (u(µ), x; µ)} i of non-affine functions

j(u, v; µ; k u(µ); {w i (u(µ), x; µ)} i )δ k+1 u(µ) = -r( k u(µ), v; µ; {w i (u(µ), x; µ)} i ) (4) 
and the affine decomposition (3) doesn't exist owing to w i (u(µ), x; µ) definition. In order to recover an affine decomposition for (4), we build an affine approximation w i,Mi (u(µ), x; µ) of w i (u(µ), x; µ)

w i,Mi (u(µ), x; µ) = Mi m=1 β Mi i,m (u(µ); µ)q i,m (x) ∀i (5) 

Empirical Interpolation Method

In order to build an affine approximation w M (u(µ),

x; µ) = M m=1
β M m (u(µ); µ)q m (x) of a non-affine parameter dependent function w, we first introduce a sample SM = { μ1 , . . . , μM } ∈ D M , and the associated fonction space WM = span{ ξm ≡ w(u( μm ), x; μm ), 1 m M }. These sets are built from a subset Ξ of D, in which the first sample point μ1 is picked (assuming that ξ1 = 0). The basis functions q m are based on ξm , and establishing of β M m coefficients requires, online, the solution of a M × M system, ensuring that the EIM approximation w M (u, x; µ) is exact on a set of interpolation points {t i } i .

S1 = { μ1 }, ξ1 = w(u( μ1 ), x; μ1 ), W1 = span{ ξ1 } t 1 = arg sup x∈Ω | ξ1 (x)|, q 1 = ξ1 (x) ξ1 (t 1 ) (6) 
For M 2, the sample points μM are determined from a Greedy algorithm :

μM = arg max µ∈Ξ inf z∈WM-1 ||w(.; .; µ) -z|| L ∞ (Ω) ξM = w (u( μM ), x; μM ) , SM = SM-1 ∪ { μM }, WM = WM-1 ⊕ span{ ξM } (7) 
The system ensuring the exactness of w M-1 at {t i } M-1 i=1 , gives w M-1 (u( μM ), x; μM ), leading to the residual r M defined as r M (x) = w(u( μM ), x; μM )w M-1 (u( μM ), x; μM ) on which interpolation points {t M } M 2 and basis functions {q M } M 2 are computed. The next t M and q M are given by

t M = arg sup x∈Ω |r M (x)|, q M (x) = r M (x) r M (t M ) (8) 
We are now ready to apply EIM on the jacobian j the affine decomposition reads

j(u, v; µ; k u; {w i (u(µ), x; µ)} i ) = Q eim j q=1 M j q m=1 γ q j,m ( k u; µ)j q m (u, v) non-affine part of j + Q af f j l=1 θ l j ( k u; µ)j l (u, v) affine part of j ∀u, v ∈ X, ∀µ ∈ D, (9) with Q eim j (resp. Q af f j
) the number of non-affinely (resp. affinely) parametrized terms of j, and γ q j,m (resp. j q m ) obtained from β Mi i,m (resp. q i,m ). Similar decomposition is obtained for the residual r.

Reduced basis method

We now turn to the RB methodology. We introduce S N = {µ 1 , • • • , µ N } with N << N , and we define the set of solutions S u N = {u N (µ i )} N i=1 which are orthonormalized with respect to the <, > X inner product to provide

W N = {ξ n } N i=1 . The reduced basis approximation u N (µ) ∈ W N is expressed as a linear combination of W N elements u N (µ) = N i=1 u N,i (µ)ξ i such that r(u N , v; µ; {w i (u N , x; µ)} i ) = 0 ∀v ∈ W N (10) 
The offline/online strategy used to build efficiently the reduced basis approximation is based on the affine decomposition (3), [START_REF] Grepl | Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations[END_REF]. Choosing {ξ n } N i=1 as test functions and using (10) we have for

1 l N N j=1 j(ξ j , ξ l ; µ; k u N ; {w i ( k u N , x; µ)} i )( k+1 u N,j -k u N,j ) = -r(ξ l ; µ; k u N ; {w i ( k u N , x; µ)} i ) (11) 
The offline step consists in the pre-computation of the terms j q m (ξ j , ξ l ), j l (ξ j , ξ l ) and r q m (ξ l ), r l (ξ l ), and is done offline once thanks to the affine decomposition. To evaluate online k+1 u N (µ) for any given µ, the coefficients γ q j,m ( k u N , µ), θ l j ( k u N , µ) and γ q r,m ( k u N , µ), θ l r ( k u N , µ) are computed in order to recover the N × N system (10) giving k+1 u N,j coefficients and consequently k+1 u N (µ).

A Simultaneous EIM-RB method

The standard methodology described previously briefly requires the use of EIM prior to the RB methodology for each affine parameter dependent function w i (4). These EIM approximations are built up front allowing to then write the affine decomposition [START_REF] Grepl | Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations[END_REF]. However the greedy algorithm [START_REF] Rozza | Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations[END_REF] of the EIM offline step requires the computation of the solution u N (µ) for all points of Ξ ∈ D, i.e in the step [START_REF] Rozza | Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations[END_REF].

The SER methodology proposes to reduce the computational cost by simply using the readily available reduced basis approximation based on the previous EIM step and build simultaneously EIM and RB. In particular the expensive step (7) will now use solely RB approximations.

The initialization of EIM offline stage (6) doesn't change since no reduced approximation u N (µ) is available yet. The resulting rough EIM approximations w i,1 are used to compute a first affine decomposition from which ξ 1 can be built, leading to a first reduced approximation u 1 (µ). After this initialization step, EIM and RB approximation spaces are enriched alternatively. Each new EIM basis function q M : (i) is built from reduced basis approximation u M-1 (µ) obtained at previous iteration M -1 (ii) complete the EIM approximation to then build the affine decomposition for u M (µ). To summarize, the EIM steps modified by SER now read

μi,M = arg max µ∈Ξ inf z∈WM-1 ||w i (u M-1 (µ); .; µ) -z|| L ∞ (Ω) (12) ξi,M = w u M-1 ( μi,M ); x; μi,M , Si,M = Si,M-1 ∪ { μi,M }, Wi,M = Wi,M-1 ⊕ span{ ξi,M } (13) 
The residual r i,M (x) = w i (u M-1 ( μi,M ), x; μi,M )w i,M-1 (u M-1 ( μi,M ), x; μi,M ) then gives t i,M and q i,M

t i,M = arg sup x∈Ω |r i,M (x)|, q i,M (x) = r i,M (x) r i,M (t i,M ) (14) 
The affine decomposition is then updated with the new EIM approximation w i,M , to compute the next reduced basis ξ M (i.e) thanks to (11) to then enrich W N space.

Remark 1 (RB updates). The EIM approximations are changing during the build of W N space. Then, the operator -and the solved problem -evolves at each step, which can mildly deteriorate the approximation. Recomputing W N elements using finite element solves based on the current EIM approximation may be considered. The offline precomputations need however to be updated for all elements of W N for each update of the affine decomposition.

Remark 2 (EIM updates). In the SER methodology only one finite element solve of (1) is required for the initialization afterwards the EIM and RB approximations are updated alternatively. We may in fact update the RB approximation every r EIM steps: if r = M we recover the standard method, if r = 1 we recover the SER method and if 1 < r < M we have an intermediairy method which requires finite element solves for the intensive EIM step (7) before the first RB update. Other alternatives are readily available and some will be discussed in a future publication.

Preliminary results

We now turn to numerical experiments of the SER method compared to the standard one based on the benchmark problem introduced in [START_REF] Grepl | Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations[END_REF]. It reads, find u such that

-∆u + µ 1 e µ2u -1 µ 2 = 100 sin(2πx) sin(2πy) in Ω =]0, 1[ 2 and µ = (µ 1 , µ 2 ) ∈ D = [0.01, 10] 2 (15) 
and we are interested in the output s, the average of the solution u over Ω. Thanks to the function g(u, x; µ) = µ 1 e µ 2 u -1 µ2

we are in the setting of the SER methodology for non-linear problems. Following the standard methodology we develop g M = M i=1 β M m (u, µ)q m (x) of g thanks to the Empirical Interpolation Method (see section 2.1). We shall use the absolute errors on the solution and the output, defined as follows

ǫ u,r M,N = u N -u r N L2 ǫ s,r M,N =| s N -s r N | (16) 
where • N is the finite element solution/output of the initial problem (2), • r N the reduced basis solution/output while r is the frequency at which the EIM are updated, see remark 2.

We first display the maximum of the absolute errors (16) using the standard method r = M in table 1a which reproduces the results in [START_REF] Grepl | Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations[END_REF]. Tables 1c and 1d correspond to the SER methodology (r = 1) with N = M and investigate the influency of W N recomputation in SER method, see remark 1. Table 1b is an intermediary stage such that 1 < r < M where the EIM basis functions are built by groups of r (r = 5). In this last case, since we do not have access yet to the RB, the first group of r EIM basis is built from finite element approximations and reduced basis approximations are used afterwards. This explains, for example, that (N = 4, M = 5) is similar to the first one in table 1a.

The maximum of the errors observed with SER method (r = 1) is slightly higher than with the case r = 5 which itself displays resultats slightly higher than the standard method r = M . This behavior is expected. The results show the pertinence of the SER method and that we can expect good results within a reasonnable computational budget, since the number of finite element approximations can then be reduced to N + 1 (table 1d).

Conclusion

We have now an algorithm and variants that allow an efficient use of EIM and RB in the context of non-linear non-affine partial differential equations. We have already deployed SER in real applications and the initial results are very promising showing the same behavior as the benchmark problem of this paper. This will be reported as well as an analysis of SER in a subsequent paper with applications to non-linear multiphysic problems.

N M max(ǫ u,M M,N ) max(ǫ 

Table 1 :

 1 SER algorithm: Maximum absolute errors on solution u and on output s

				s,M M,N )	N M max(ǫ u,5 M,N ) max(ǫ s,5 M,N )
	4	5	7.38e-3	5.75e-3	4	5	8.21e-3	6.31e-3
	8 10	1.01e-3	2.34e-4	8 10	4.48e-3	6.18e-3
	12 15	1.49e-4	3.09e-5	12 15	2.69e-4	2.36e-4
	16 20	2.21e-5	1.25e-5	16 20	1.48e-4	9.31e-5
	20 25	5.88e-6	2.82e-6	20 25	2.60e-5	1.46e-5
			(a) r = M				(b) r = 5	
	N M max(ǫ u,1 M,N ) max(ǫ s,1 M,N )	N M max(ǫ u,1 M,N ) max(ǫ s,1 M,N )
	5	5	9.98e-3	7.77e-3	5	5	1.30e-2	1.02e-2
	10 10	2.32e-3	1.86e-3	10 10	2.20e-3	1.50e-3
	15 15	4.61e-4	3.75e-4	15 15	4.83e-4	4.05e-4
	20 20	2.48e-4	2.02e-4	20 20	2.42e-4	1.98e-4
	25 25	3.51e-5	2.33e-5	25 25	1.50e-5	1.24e-5
			(c) r = 1				(d) r = 1	
			(WN recomputed)		(WN not recomputed)
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