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Fresh Air Fraction Control in Engines Using

Dynamic Boundary Stabilization of LPV Hyperbolic

Systems

Felipe Castillo, Emmanuel Witrant, Christophe Prieur, Vincent Talon and Luc

Dugard

Abstract

In this paper, we consider the boundary control of the fresh air mass fraction in a Diesel engine

operated with low-pressure exhaust gas recirculation. The air mass fraction transport phenomenon is

modeled using a cascade of first-order linear parameter varying (LPV) hyperbolic systems with dynamics

associated with their boundary conditions. By means of Lyapunov based techniques, sufficient conditions

are derived to guarantee the exponential stability of this class of infinite dimensional systems. We develop

a polytopic approach to synthesize a robust boundary control that guarantees the exponential stability

for a given convex parameter set. Simulation results illustrate the effectiveness of the proposed boundary

control to regulate the mass fraction of fresh air in a Diesel engine.

I. INTRODUCTION

Regulations of Diesel engine emissions have become stricter, and satisfying simultaneously the

emissions legislations and the desired engine drivability objectives is a particularly challenging

issue. Although significant improvements were made over the past years, there are still many

technical issues that need to be addressed in order to meet the future regulation laws on

emissions. The introduction of sophisticated alternative combustion modes such as homogeneous
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charge compression ignition (HCCI), low temperature combustion (LTC) and premixed controlled

compression ignition (PCCI) offers a great potential to reduce the engine emissions levels [1] [2]

[30]. However, these new modes require specific fueling strategies and in-cylinder conditions,

thus creating the need for more complex, reliable and precise control systems and technologies.

Dual-loop exhaust gas recirculation (EGR) with both high (HP) and low-pressure (LP) recir-

culations is one of the new strategies that can provide the appropriate conditions for multiple

combustion modes [22]. Ensuring the adequate in-cylinder conditions is still a difficult task, due

to the lack of measurements for EGR flow rates and mass fraction. Several air mass fraction/EGR

rate control and estimation methods have been proposed in the literature [14] [20] [34] [37].

However, most of the actual air fraction control techniques are based on zero-dimensional (0D)

engine modeling, which does not allow taking into account the air transport inside the engine

admission air-path. Indeed, the mass transport causes a degradation of the overall engine emission

performance during strong transient conditions. This is mostly due to the LP-EGR, as the distance

that the gas travels in the engine air-path is much longer than the one associated with HP-EGR.

The control of air fraction taking into account the mass transport time is a significantly less

explored subject, although in [6] a non-physical representation of the delay by means of PDES

was used to design a predictor-based controller.

The flow transport strongly depends on the engine operating conditions. It has been shown in

[13] and [35] that this dependence can be modeled by using a linear parameter varying (LPV)

approach. On the other hand, the transport of mass is often modeled by first order hyperbolic

partial differential equations (PDEs), as reported in [4], [10] and [31]. An LPV hyperbolic model

can thus capture the dynamics of the air mass fraction and be used to solve the associated control

problem.

Several results are available in the literature for the control of first order hyperbolic systems.

For instance, sufficient conditions for controllability and observability of quasilinear hyperbolic

systems have been obtained in [24]. The boundary control of hyperbolic systems has been

considered in [17], [16], [26] and [27], among other references. Most results consider that

the boundary control can react fast enough in comparison with the waves travel time. More



precisely, no time response limitation is taken into account at the boundary conditions. For

many applications (e.g. [5] [18]), the wave travel can be considered as being much slower than

the actuator time response. A static relationship can then be established between the control input

and the boundary condition. Nevertheless, there are applications where the dynamics associated

with the boundary control cannot be neglected (e.g. the use of LP-EGR to control the fresh air

fraction in an engine intake manifold). To address this problem, a discretization of the infinite-

dimensional system has been used in [7] to apply finite-dimensional control tools. In [10] some

sufficient conditions for the exponential stability of hyperbolic systems with linear time invariant

(LTI) dynamic boundary conditions have been given. In [28] and [21], a strict time-varying

Lyapunov function that allows establishing the asymptotic stability of time-varying hyperbolic

systems is formulated for time-invariant boundary conditions. In [32], a multi-model approach

(similar to an LPV) with a bilinear matrix inequality has been proposed for the stability of a

hyperbolic system representing the flow in an open channel. In [23], backstepping designs for

the boundary control of hyperbolic and time delayed systems have been proposed. However, to

the best of our knowledge, no boundary control design for LPV hyperbolic systems with LPV

boundary conditions has been addressed in the literature.

This article, which is an extension of our previous work [8], focuses on the stabilization of LPV

hyperbolic systems with boundary conditions defined by LPV dynamics and its application to the

control of the air fraction in the intake manifold of Diesel engines. To demonstrate the asymptotic

stability for this class of hyperbolic systems, we use an extension of the strict Lyapunov function

formulation presented in [17]. A polytopic approach is developed to synthesize a robust boundary

control that guarantees the exponential stability for a given convex parameter set. We obtain

sufficient conditions in terms of the boundary conditions to prove Lyapunov stability. This

feedback design strategy is used for the boundary control of the fresh air mass fraction in

an engine air-path with LP-EGR. The effectiveness of our approach is evaluated in simulation

using a 1D model of the engine admission air-path.

This paper is organized as follows: the problem formulation and the main stability results for

LPV hyperbolic systems with LPV dynamic behavior at the boundary conditions are presented

in Section II. In Section III, an LPV hyperbolic system is used to model the air fraction in the



engine air-path and an air fraction boundary control is designed using the results of Section

II. In Section IV, simulation results are presented to illustrate the effectiveness of the proposed

control strategy.

Notation. By the expressions H � 0, H � 0, H � 0 and H ≺ 0 we mean that the matrix H is

positive semi-definite, negative semi-definite, positive definite and negative definite, respectively.

The usual Euclidian norm in Rn is denoted by |.| and the associated matrix norm is denoted

‖.‖. Given g : [0, 1]→ Rn, we define its L2-norm (when is finite) as:

‖g‖L2 =

√∫ 1

0

|g(x)|2dx

II. STABILITY OF PARAMETER-VARYING LINEAR HYPERBOLIC SYSTEMS WITH DYNAMIC

BOUNDARY CONDITIONS

Let n be a positive integer, Θ an open non-empty convex set of Rn and Zϕ a non empty convex

set of Rl. Consider the general class of first order LPV hyperbolic systems of order n defined

as follows:

∂tξ(x, t) + Λ(ϕ)∂xξ(x, t) = 0 ∀x ∈ [0, 1], t ≥ 0 (1)

where ξ : [0, 1] × [0,+∞) → Θ, ϕ is a varying parameter vector that takes values in the

parameter space Zϕ, Λ(ϕ) : Zϕ → Rn×n is a diagonal and invertible matrix function (called

the characteristic matrix) such that Λ(ϕ) = diag(λ1(ϕ), λ2(ϕ), ..., λn(ϕ)), ∂t and ∂x denote the

partial derivatives with respect to time and space, respectively.

Assumption 1: Assume that the following inequalities hold for all ϕ ∈ Zϕ:

0 < λ1(ϕ) < ... < λn(ϕ) (2)

Consider the following dynamic boundary conditions for (1):

Ẋc = Ac(ϕ)Xc +Bc(ϕ)u (3)

ξ(0, t) = CcXc +Dcu



with

u = Kξ(1, t) (4)

where Xc ∈ Rnx , Ac : Zϕ → Rnx×nx , Bc : Zϕ → Rnx×n, Cc ∈ Rn×nx , Dc ∈ Rn×n, K ∈ Rn×n,

u ∈ Rn and nx ≥ 1. Define the initial condition for (1) and (3) as:

{
ξ(x, 0) = ξ0(x), ∀x ∈ [0, 1]

Xc(0) = X0
c

(5)

where ξ0(x) ∈ L2((0, 1);Rn) and X0
c ∈ Rnx . Such an initial condition is required for the

existence of a unique classical solution of the Cauchy problem (1) - (5) [19]. In this section, we

consider the problem of finding a control gain K and a positive scalar µ such that the system

(1) with boundary conditions (3) and initial condition (5) is exponentially stable for all ϕ ∈ Zϕ
satisfying the following inequality.

||Xc(t)||2 + ||ξ(t)||L2(0,1) ≤ b
(
||X0

c ||2 + ||ξ0||L2(0,1)

)
e−µ%t (6)

where b and % are positive scalars.

Let the polytope Zϕ be defined as follows:

Zϕ := {[ϕ1, ..., ϕl]
T ∈ Rl | ϕi ∈ [ϕ

i
, ϕi], ∀ i = 1, ..., l} (7)

for given l ∈ N+ and the parameter extremities ϕ
i
, ϕi (minimum and maximum, respectively).

We thus consider that all the admissible values of the vector ϕ are constrained in a hyperrectangle

in the parameter space Zϕ. Consider the polytopic linear representation of the parameter varying

characteristic matrix for all ϕ ∈ Zϕ [3]:

Λ(ϕ) =

Nϕ∑
i=1

αi(ϕ)Λ(wi) (8)

where wi ∈ Zϕ are the Nϕ = 2l vertices of the polytope formed by all extremities (ϕi and ϕ
i
)

of each varying parameter ϕ ∈ Zϕ,
∑2l

i=1 αi(ϕ)Λ(wi) : Zϕ → Rn×n and αi(ϕ) is a scheduling

function αi : Zϕ → [0, 1] defined as:



αi(ϕ) =

∏l
k=1 |ϕk − C(wi)k|∏l

k=1 |ϕk − ϕk|
(9)

where C(wi)k is the kth component of the vector C(wi) defined as:

C(wi)k =

{
ϕk, if (wi)k = ϕ

k

ϕ
k
, otherwise

(10)

The scheduling functions αi have the following properties [3]:

αi(ϕ) ≥ 0,

Nϕ∑
i=1

αi(ϕ) = 1 (11)

The polytopic representation (8) can also be considered for the matrices Ac(ϕ) and Bc(ϕ) of

the boundary conditions (3) using the same scheduling function (9). Define the polytopic linear

representation (PLR) of the parameter varying hyperbolic system (1) with boundary conditions

(3) as follows:

∂tξ(x, t) +

Nϕ∑
i=1

αi(ϕ)Λ(wi)∂xξ(x, t) = 0

∀ϕ ∈ Zϕ, ∀x ∈ [0, 1], t ≥ 0

(12)

with boundary conditions

Ẋc =

Nϕ∑
i=1

αi(ϕ)Ac(wi)Xc +

Nϕ∑
i=1

αi(ϕ)Bc(wi)u

ξ(0, t) = CcXc +Dcu

(13)

Based on the PLR (12) - (13), the following theorem states a sufficient condition to ensure the

exponential stability for system (1) with boundary conditions (3) and initial condition (5) for all

ϕ ∈ Zϕ.

Theorem 1. [Stability analysis] Along with Assumption 1, assume that there exists two diagonal

positive definite matrices P1 ∈ Rnx×nx and P2 ∈ Rn×nand a scalar µ > 0 such that the following

matrix inequality is satisfied, for all i = 1, ..., Nϕ,



Mi =


Ac(wi)

TP1 + P1Ac(wi) + CT
c Λ(wi)P2Cc P1Bc(wi)K + CT

c Λ(wi)P2DcK

+µΛ(wi)P1

KTBc(wi)
TP1 +KTDT

c Λ(wi)P2Cc KTDT
c Λ(wi)P2DcK − e−µΛ(wi)P2

 � 0

(14)

Then there exist two constant scalars a > 0 and b > 0 such that, for all ξ0 ∈ L2((0, 1);Rn) and

X0
c ∈ Rnx , the solution of (1), (3) and (5) satisfies, for all t ≥ 0

||Xc(t)||2 + ||ξ(t)||L2(0,1) ≤ be−at
(
||X0

c ||2 + ||ξ0||L2(0,1)

)
(15)

Proof: Given the diagonal positive definite matrices P1 and P2, consider (as an extension of the

Lyapunov function proposed in [17]) the quadratic strict Lyapunov function candidate defined

for all continuously differentiable functions ξ : [0, 1]→ Θ as:

V (ξ,Xc) = XT
c P1Xc +

∫ 1

0

(
ξTP2ξ

)
e−µxdx (16)

where µ is a positive scalar. Computing the time derivative V̇ of V along the classical C1-

solutions of (1) with boundary conditions (3) and initial condition (5), yields to the following:

V̇ = ẊT
c P1Xc +XT

c P1Ẋc +

∫ 1

0

(
ξ̇TP2ξ + ξTP2ξ̇

)
e−µxdx (17)

After integration by parts and taking into account the polytopic linear representation (12) and

(13), the following is obtained:

V̇ =
2l∑
i=1

αi(ϕ)
[ (
XT
c

(
Ac(wi)

TP1 + P1Ac(wi)
)
Xc

)
+
(
ξ(1)TKTBc(wi)

TP1Xc

+XT
c P1Bc(wi)Kξ(1)

)
−
[
e−µxξTΛ(wi)P2ξ

] ∣∣1
0
− µ

∫ 1

0

(
ξTΛ(wi)P2ξ

)
e−µxdx

] (18)

where ξ(1) = ξ(1, t). The previous equation can be written using the boundary conditions (3)

as follows:



V̇ =
2l∑
i=1

αi(ϕ)
[ (
XT
c

(
Ac(wi)

TP1 + P1Ac(wi)
)
Xc

)
+
(
ξ(1)TKTBc(wi)

TP1Xc

+XT
c P1Bc(wi)Kξ(1)

)
− e−µξ(1)TΛ(wi)P2ξ(1) +XT

c C
T
c Λ(wi)P2CcXc

+XT
c C

T
c Λ(wi)P2DcKξ(1) + ξ(1)TKTDT

c Λ(wi)P2CcXc

+ ξ(1)TKTDT
c Λ(wi)P2DcKξ(1)− µ

∫ 1

0

(
ξTΛ(wi)P2ξ

)
e−µxdx

]
=

2l∑
i=1

αi(ϕ)

[
− µXT

c Λ(wi)P1Xc − µ
∫ 1

0

(
ξTΛ(wi)P2ξ

)
e−µxdx

+

 Xc

ξ(1)

T Mi

 Xc

ξ(1)

]

(19)

where the matrix Mi is defined as in (14). The definition αi ≥ 0 and the matrix inequality

Mi � 0 from (14) imply that the last term of (19) is always negative or zero. This gives the

following inequality:

V̇ ≤
2l∑
i=1

αi(ϕ)

[
−µXT

c Λ(wi)P1Xc − µ
∫ 1

0

(
ξTΛ(wi)P2ξ

)
e−µxdx

]
(20)

From (2) it can be proved that there always exists a % > 0 such that Λ(ϕ)− %In×n � 0 (e.g. %

could be the smallest eigenvalue of Λ(ϕ) over Zϕ). Moreover, the diagonality of P1, P2 and Λ

implies that:

V̇ ≤ −µ%V (ξ,Xc) (21)

Therefore, the function (16) is a Lyapunov function for the hyperbolic system (1) with boundary

conditions (3).

By integrating the inequality (21) from 0 to t, we obtain the following:

V (t) ≤ V (0)e−µ%t (22)

To obtain the final result (15), we bound the Lyapunov function as follows:



min{λmin(P1), λmin(P2)}(||Xc(t)||2 + ||ξ(t)||L2(0,1)) ≤

V (t) ≤ max{λmax(P1), λmax(P2)}(||Xc(t)||2 + ||ξ(t)||L2(0,1))
(23)

where λmin and λmax are the minimum and maximum eigenvalues of the considered matrices,

respectively. Then, using (22) together with (23) gives:

||Xc(t)||2 + ||ξ(t)||L2(0,1) ≤
max{λmax(P1), λmax(P2)}
min{λmin(P1), λmin(P2)}

(
||X0

c ||2 + ||ξ0||L2(0,1)

)
e−µ%t (24)

which implies that a = µ% and b = max{λmax(P1), λmax(P2)}/min{λmin(P1), λmin(P2)} in

(15). �

Note that the matrix inequality (14) considers, through the Lyapunov matrices P1 and P2 , the

dynamic coupling between the system and its boundary conditions. Inequality (14) along with

(21) implies that µ is a tuning parameter of the controller design as it explicitly enables to set

the convergence speed of the Lyapunov function. Another interesting convergence feature can

be deduced from (21): a faster convergence is obtained for larger values of %. This implies that

hyperbolic systems with high convective velocities converge faster, which is physically consistent.

The following corollary gives a sufficient condition for the design of a stabilizing controller for

the particular case where Cc is a diagonal matrix, Dc = 0 and n = nx.

Corollary 1. [Design of a stabilizing controller] Along with Assumption 1, if Cc is diagonal

and Dc = 0 and if there exists a diagonal positive definite matrix Q ∈ Rn×n and a scalar µ > 0

such that the following linear matrix inequality is satisfied, for all i ∈ 1, ..., Nϕ,

 QAc(wi)
T + Ac(wi)Q+ CcΛ(wi)QCc + µΛ(wi)Q Bc(wi)Y

Y TBc(wi)
T −e−µΛ(wi)Q

 � 0 (25)

where Y = KQ, then there exist two constants α > 0 and M > 0 such that, for all ξ0 ∈

L2((0, 1);Rn) and X0
c ∈ Rn, the solution of (1) with boundary conditions (3) and initial

condition (5) satisfies (15) for all t ≥ 0.



Proof: The proof of Corollary 1 can be found in [8]. �

This corollary is interesting because, for systems where CC is diagonal and Dc = 0, it provides

a constructive approach to obtain the boundary control gain K using convex optimization

algorithms after determining a suitable value of µ > 0 (e.g. chosen to obtain a good performance

versus robustness trade-off for the system considered).

III. FRESH AIR MASS FRACTION CONTROL

For the air fraction boundary control design problem, consider the admission air-path of a Diesel

engine with low pressure exhaust gas recirculation (LP-EGR) presented in Figure 1.

Ldc Lhe LdeLuc

Compressor

    Heat 
Exchanger

Fim

Fegrl

Qair

pdc

Tdc

pde

Tde

Qegrl

Vuhe Vdhe

LP-EGR
  Valve

puc

Tuc

Towards
  Engine

Qeng

Vuc

Fig. 1: Schematic of a Diesel engine admission air-path

A fresh air mass flow rate Qair enters the admission air-path where it is mixed upstream (subscript

u) the compressor (subscript c) with the LP-EGR (characterized by its mass flow rate Qegrl and

air fraction Fegrl). The exhaust gas recirculation mass flow rate is controlled by the position of

the LP-EGR valve. Fegrl depends on the engine operating conditions and is considered here as a

known exogenous input since this quantity is measured in production engines. The compressor

increases the enthalpy of the gas which results in an increase of the compressor downstream

(subscript d) gas pressure and temperature pdc and Tdc, respectively (see Figure 1). To increase

the gas mass in the engine cylinders and therefore the engine power, the gas coming from the

compressor is cooled down by a heat exchanger, which increases the gas density and therefore



the mass inside the cylinders. The pressure and temperature downstream of the heat exchanger

are denoted as pdhe and Tdhe, respectively. Finally, the gas travels from the heat exchanger to the

intake manifold (subscript im) where the gas is delivered to the engine with a mass flow rate

Qeng and air fraction Fim. In this section, we consider the problem of controlling the air fraction

in the intake manifold by regulating the LP-EGR mass flow rate. We focus on the generation

of the target Qegrl, which then is translated into LP-EGR valve position by a secondary control.

Since the EGR valves potision controllers have been already implemented in modern engines

and is an application well known in the engine control community, then we do not detail its

functionally in this work.

The admission air-path presented in Figure 1 can be considered as a series of tubes that are linked

together by volumes, i.e. by the volumes upstream and downstream of the heat exchanger Vuhe

and Vdhe, respectively. Using this formulation, we can define three tube sections and three control

volumes. The three tube sections are defined as: the tube downstream of the compressor (up to

the heat exchanger), the heat exchanger with Nd tubes in parallel and the tube downstream of the

heat exchanger. The control volumes are: the tube upstream of the compressor (denoted as Vuc

where gas mixture occurs), the heat exchanger upstream volume Vuhe and downstream volume

Vdhe. The control volumes allow us to formulate a zero-dimensional model for the interfaces

between the components of the air-path where most of the mass transport phenomenon occurs

(the three tubes). In other words, we do not model the evolution of the states along the space

dimensions in these volumes. Instead, we describe the dynamics of the flow using a volume-

average formulation which eases the modeling of the air-path without affecting significantly the

accuracy of the mass transport representation.

The one-dimensional modeling of the engine admission air-path is particularly complex as it

involves solving the 1D Euler equations for a compressible gas [36], which is not appropriate

for designing real-time feedback strategies. Therefore, the following assumptions are made to

simplify the complexity of the air fraction model, making it suitable for Diesel engine control.

Assumption 2: We assume the following:

A-21: the pressure and particle speed dynamics are much faster than the air fraction dynamics;



A-22: no friction and thermal losses are considered (except for the heat exchanger);

A-23: the speed density equation (equation that accurately predicts the amount of air ingested

by an engine during the induction stroke [34]) is considered to model the engine intake

mass flow rate. No pulsating flow is considered;

A-24: the cross-sectional area of each of the air-path sections (tube between two devices) is

considered constant along the space variable x.

The air fraction in a control volume is modeled by considering the classical 0D approach [35]:

Ḟv =
RTv
pvVv

(
ni∑
i=1

(QiFi)−
no∑
o=1

(QoFv)

)
(26)

where Fv, Tv, pv, Vv are the control volume air fraction, temperature, pressure and volume,

respectively. ni and no are the amount of mass inputs and outputs and Qi and Qo are the input

and output mass flow rates, respectively. Assumption A-21 implies that Qeng = Qair + Qegrl.

Therefore, the following equations describe the air mass fraction dynamics in the tube upstream

of the compressor and in both heat exchanger volumes (according to (26)):

Ḟuc =
RTuc
pucVuc

(−(Qegrl +Qair)Fuc +QegrlFegrl +Qair) (27)

Ḟuhe =
RTdc
pdcVuhe

(−(Qegrl +Qair)Fuhe + (Qegrl +Qair)Fdc(Ldc, t)) (28)

Ḟdhe =
RTdhe
pdheVdhe

(−(Qegrl +Qair)Fdhe + (Qegrl +Qair)Fhe(Lhe, t)) (29)

where Fuc, Tuc and puc are the air fraction, temperature, pressure and volume upstream of the

compressor. Fuhe and Fdhe are the air fractions upstream and downstream of the heat exchanger,

respectively. Fhe is the air fraction inside the heat exchanger and Fdc(Ldc, t) and Fhe(Lhe, t)

are the output air fractions of the compressor downstream tube and the heat exchanger tubes,

respectively. Note that the dynamics of (27) - (29) are defined in terms of the states with the

exception of (27) that depends on the time-varying additive term QegrlFegrl + Qair. This issue

is addressed in the sequel to obtain a system in the form of the dynamic boundary conditions (3).



For the 1D model of the air fraction dynamics in the tube sections, consider the change in mass

fraction across a control volume of length ∂x, which can be expressed as [36]:

∂t[ρ(x, t)At(x)F (x, t)] + ∂x[ρ(x, t)u(x, t)At(x)F (x, t)] = 0, ∀x ∈ [0, L], t ≥ 0 (30)

where L is the length of the pipe, At the tube cross section, ρ the gas density and u the speed

of particles. Equation (30) can be expressed as (e.g. see [36] Chapter 4.2.5 for more details):

∂t[ρ(x, t)F (x, t)] + ∂x[ρ(x, t)u(x, t)F (x, t)] + ρ(x, t)u(x, t)F (x, t)∂x[ln(At(x))] = 0 (31)

Expanding (31) and dividing by F (x, t) gives:

∂tρ(x, t) + u(x, t)∂xρ(x, t) + ρ(x, t)∂xu(x, t) + ρ(x, t)u(x, t)∂x(ln(At(x)))

+
ρ(x, t)

F (x, t)
∂tF (x, t) +

ρ(x, t)u(x, t)

F (x, t)
∂xF (x, t) = 0

(32)

The first four terms of (32) constitute the global continuity of mass implying, that the sum of

the four terms equals zero. Therefore, the air fraction continuity equation implies that:

∂tF (x, t) + u(x, t)∂xF (x, t) = 0

F (0, t) = Fin(t) F (x, 0) = F0(x), ∀x ∈ [0, L], t ≥ 0
(33)

where Fin is the air fraction at the input boundary condition, F0(x) is a continuous differen-

tiable function describing the initial conditions and u(t, x) is the air fraction propagation speed

(independent of the air fraction).

The assumptions A-21, A-22 and A-24 imply that u(x, t) is only time-varying (constant in space),

which simplifies significantly the solution of (33). For the heat exchanger, where A-22 does not

apply, the average temperature and pressure are defined as follows:

The =
Tdc + Tdhe

2
, phe =

pdc + pdhe
2

(34)

where The and phe are the heat exchanger temperature and pressure, respectively. Uniform

pressure and temperature distribution are assumed inside the heat exchanger to obtain (34), which



allows approximating a space average particle speed inside the heat exchanger as presented later

in (38).

From (33) and (34), the dynamics of each tube section can be modeled with the following set

of time-varying first order hyperbolic partial differential equations:

∂tFdc + udc(t)∂xFdc = 0, Fdc(0, t) = Fuc(t), Fdc(x, 0) = Fdc0(x) (35)

∂tFhe + uhe(t)∂xFhe = 0, Fhe(0, t) = Fuhe(t), Fhe(x, 0) = Fhe0(x) (36)

∂tFdhe + udhe(t)∂xFdhe = 0, Fdhe(0, t) = Fdhe(t), Fdhe(0, x) = Fde0(x) (37)

for all x ∈ [0, 1] and t ≥ 0. The particle speeds for each air-path section udc, uhe and udhe can

be normalized (implying that x ∈ [0, 1]) and calculated using the ideal gas law as follows:

udc =
RTdc(Qair +Qegrl)

pdcAdcLdc
, uhe =

RThe(Qair +Qegrl)

pheAheLheNd

, udhe =
RTdhe(Qair +Qegrl)

pdheAdheLdhe
(38)

where Ldc, Lhe and Ldhe are the lengths, Adc, Ahe and Adhe are the cross-sectional areas of each

of the respective tube sections and Nd is the number of parallel tubes in the heat exchanger. To

use the results of Theorem 1, the system has to be in the form of (1) with boundary conditions

(3). System (35) - (37) is a cascade of hyperbolic systems connected by the dynamics defined

by (27) - (29), which does not correspond to the system structure (1). This problem is solved

by following a similar approach as in [18], where n hyperbolic systems in cascade form are

combined in one PDE of order n by re-defining the boundary control. However, it is important to

highlight that our realization takes into account the dynamic behavior of the boundary conditions,

therefore a different stability analysis as to be taken into account. Consider the definition of the

air fraction errors as:

ξdc(x, t) = Fdc(x, t)− Fimref , ξhe(x, t) = Fhe(x, t)− Fimref ,

ξdhe(x, t) = Fdc(x, t)− Fimref ,
(39)



and

ξuc(t) = Fuc(t)− Fimref , ξuhe(t) = Fuhe(t)− Fimref , ξdhe(t) = Fdhe(t)− Fimref (40)

where Fimref is a given scalar reference for the air fraction. According to (39) and (40), we can

rewrite the dynamics of the simplified air fraction air-path model (27) - (29) and (35) - (37) as

an LPV hyperbolic PDE of order n as follows:

∂t


ξdc

ξhe

ξdhe

+


ϕ2

AdcLdc
0 0

0 ϕ3

AheLheNd
0

0 0 ϕ4

AdheLdhe

 ∂x


ξdc

ξhe

ξdhe

 = 0 (41)

with the dynamic boundary conditions in the form of (3):


ξ̇uc

ξ̇uhe

ξ̇dhe

 =


− ϕ1

Vuc
0 0

0 − ϕ2

Vuhe
0

0 0 − ϕ4

Vdhe




ξuc

ξuhe

ξdhe

+


ϕ1

Vuc
0 0

0 ϕ2

Vuhe
0

0 0 ϕ4

Vdhe




ṽ

ξdc(1)

ξhe(1)

 (42)

The boundary control in the form of (4) that allows writing the cascade of hyperbolic systems

as a PDE of order n is:


ṽ

ξdc(1)

ξhe(1)

 =


0 0 K13

1 0 0

0 1 0




ξdc(1)

ξhe(1)

ξdhe(1)

 (43)

where ṽ is a virtual control input that cancels the additive terms of (27) and is defined as:

ṽ =
FegrlQegrl

Qair +Qegrl

− Fimref −
Qair

Qair +Qegrl

(44)

The time-varying parameters ϕi are given by:



ϕ1 =
RTuc(Qair +Qegrl)

puc
, ϕ2 =

RTdc(Qair +Qegrl)

pdc
,

ϕ3 =
RThe(Qair +Qegrl)

phe
, ϕ4 =

RTdhe(Qair +Qegrl)

pdhe

(45)

From (43) and (44), the LP-EGR mass flow rate is defined as:

Qegrl =
Qair(Fimref − 1 +K13(ξdhe(1)))

Fegrl − Fimref −K13(ξdhe(1))
(46)

The LP-EGR mass flow rate target of (46) is then transformed into LP-EGR valve position by

a secondary controller which typically is composed by an open-loop control obtained from an

inverted orifice equation and a closed-loop control composed by a PID and a LP-EGR mass

flow rate estimation as the one presented in [13]. Figure 2 presents the final schematic of the

proposed air fraction control in the intake manifold.

Ldc Lhe LdeLuc

Compressor
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Fim

Fegrl

Qair
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Tdc

pde

Tde
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Vuhe Vdhe

LP-EGR
  Valve

puc

Tuc

Towards
  Engine

Qeng

Vuc

FimrefK13Eq46
Flow Target
to   LP-EGR
   Position

Fig. 2: Resulting air fraction control architecture

The system (41) - (45) with boundary control (43) is in the adequate form to apply the results

of Theorem 1. However, with the definition of the varying parameters presented in (45), the

polytope (convex set Zϕ) obtained by using the polytopic linear representations (PLR) (12) and

(13) is very large and therefore highly conservative. Since all the varying parameters in (45)

are strongly dependent on the compressor mass flow rate Qair + Qegrl, specially from the fact

that this flow has a direct impact on the mass transport time in the admission path, it is highly

convenient to use this quantity to reduce the size of the polytope and therefore the conservatism



of the results. The engine speed could be also used to represent the dynamics of the admission

path [14]; however, it is more complicated in this application because other factors have to be

taken into account to express the mass transport phenomenon in terms of Neng. Among these

factors we find the high-pressure EGR, the swirl and the engine volumetric efficiency.

Let us redefine the varying parameters as:

ϕ̃(t) =
[
Qair +Qegrl, (Qair +Qegrl)

2
]

(47)

and the original varying parameters ϕ as a linear combination of ϕ̃ as follows:

ϕj(t) = ϑTj ψ(t), j ∈ [1, ..., 4] (48)

where ϑj ∈ R3 is an unknown coefficient vector and ψ(t) = [1, (Qair +Qegrl), (Qair +Qegrl)
2].

A classical least square method can be used to determine the optimal set of coefficients ϑj such

that |ϕj(t)− ϑTj ψ(t)|2 is minimized and the coefficient identification can be done using engine

benchmark measurements over representative engine operating conditions. With this approach,

the amount of varying parameters is decreased from four to two, which significantly reduces the

conservatism of the control synthesis.

In Figure 3a, the polytope Zϕ formed by all the extremities of ϕ̃1 and ϕ̃2 is shown. As proposed

demonstrated in [29], the conservatism can be further reduced from the fact that ϕ̃2 = ϕ̃2
1, which

allows considering only the polytope formed by three vertexes for the control synthesis, as shown

in Figure 3b.

The bounds of the varying parameter vector ϕ̃ can also be found using experimental measure-

ments over representative engine operating conditions.

To summarize, the air fraction is controlled using the results of Section II over the polytope

formed by the extremities of ϕ̃ to find the gain K13 in (46) such that the air fraction at the

engine intake manifold Fim converges in finite time to the reference Fimref . In the next section,

simulation results illustrate the performance of the proposed air fraction control.
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Fig. 3: Parameter set reduction

IV. SIMULATION RESULTS

To illustrate the effectiveness of the proposed LPV boundary control strategy, an air fraction

control (46) that satisfies Theorem 1 is simulated along with the setup shown in Figure 1.

The simulation is performed using a 1D model based on the Euler equations for compressible

gases, which is numerically solved with a MacCormack numerical scheme and a Time Variation

Diminishing strategy (for more detail on the numerical methods refer to [36, 15, 33]). This 1D

model has been experimentally validated for inflow, outflow and intra-pipe restrictions [9] [12]

[25]. Table I gives the physical and numerical parameters used for the simulation of a light-duty

1.6 liter Diesel engine.

The bounds on each parameter as well as the coefficients of (48) are found from measurements on

an engine benchmark operated over a wide range of engine operating conditions. More precisely,

we use the new motor vehicle emissions group cycle along with two additional engine cycles.

The bounds obtained for ϕ̃ are the following:

ϕ̃1 ∈ [0.009, 0.074], ϕ̃2 ∈ [0.00009, 0.0054] (49)



Variable Value Variable Value

Ldc 1.3 m Ahe 6× 10−4 m2

Adc 0.002 m2 Vuhe 5× 10−4 m3

Vuc 3× 10−4 m3 Vdhe 5× 10−4 m3

Nd 8 Ldhe 1.1 m

Lhe 0.58 m Adhe 0.002 m2

dt 40 µs Nuhe 50

Nhe 20 Ndhe 50

TABLE I: Simulation parameters. dt is the simulation time step and Nuhe, Nhe and Ndhe are the discretization

sizes of the tube upstream the compressor, heat exchanger and downstream the compressor, respectively

The identification of the coefficient vector ϑi is performed using a traditional least-squared-

method and the Penrose-Moore pseudo-inverse. Table II presents the identified root-mean-square

deviation (RMSD) of ϑi, where RMSDj = RMSD(ϕj(t)− ϑTj ψ(t)).

Variable Value

RMSD1 0.1 %

RMSD2 4.1 %

RMSD3 2.9 %

RMSD4 4.7 %

TABLE II: The RMSD obtained after the solution of the least square method

As shown in Table II, the parametrization (48) is representative of the engine varying parameters

ϕ and is therefore adequate for the boundary control synthesis.

Consider, as a criterion for the boundary control design, a maximum air fraction convergence

time of 1.2 s, (i.e. the time to reach 90% of the final asymptotic value). From (21) and the

smallest eigenvalue of Λ(ϕ), we find that µ > 0.6 is required to achieve the desired convergence

time. Solving (14) over the reduced polytope (presented in Figure 3b), leads to the following

control gain and Lyapunov matrices P1 and P2:



K13 = 0.25, P1 =


0.0422 0 0

0 0.0493 0

0 0 0.0353

 , P2 =


0.445 0 0

0 0.299 0

0 0 0.129

 (50)

Figures 4 and 5 show the simulation results obtained from a change of air fraction reference

(Fimref ) from 1 to 0.7 at time 0.1 s. Three different air-path operating conditions are simulated,

in order to verify the robustness of the controller with respect to parameter variation and the

impact of the mass transport phenomenon in the control of the air fraction in the intake manifold.

Fig. 4: Intake manifold air fraction simulation results for a change of air fraction reference

As depicted in Figure 4, the intake manifold air fraction converges to the reference while

respecting the convergence time criterion for the three operating conditions. The convergence

time depends on the mass flow rate going through the air system (see Figure 4), which is due

to the intrinsic time delays associated with transport in the system. In Figure 5 the LP-EGR

mass flow rate is presented for the three engine operating conditions: when the mass flow rate

increases in the system, Qegrl also does, to maintain the appropriate air fraction.

The convergence of the Lyapunov function (16) is illustrated on Figure 6, where it is shown that

the actual system convergence is always faster than the exponential decrease predicted by (21).



Fig. 5: LP-EGR mass flow rate simulation results for a change of air fraction reference
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Fig. 6: Convergence of the Lyapunov function

To evaluate the efficiency of the controller under strong engine transient conditions, a simulation

of an engine cycle with abrupt changes in fuel quantities and air fraction in the exhaust and

intake manifold has been performed. Figure 7 shows the engine operating conditions during the

proposed maneuver.
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Fig. 7: Time evolution of the engine operating conditions

Figures 8 and 9 present the evolution in time of the air fraction in the intake manifold and

the LP-EGR mass flow rate, respectively. As depicted, the air fraction in the intake manifold

effectively tracks the air fraction target Fimref in a smooth trajectory, only separated by the

transport time inherent of the system. Figure 9 shows that also the Qegrl effectively compensates

the variation of the engine operating conditions, enabling the controller to properly control the

air fraction in the intake manifold.

Due to the low calculation load and low complexity of the boundary control (46), this approach is

suitable for real-time implementation in a production engine. The current limitation to implement

this strategy mainly comes from the lack of reliable measurements or estimations of the fresh

air mass fraction in the intake manifold under strong transient conditions (e.g. lack of a reliable

sensor for detecting the mass transport). However, many efforts are being done to address this
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Fig. 9: Time evolution of the LP-EGR mas flow rate

issue by using air fraction observers that take into account the mass transport phenomenon (e.g.

[11]), which would enable the implementation of the proposed boundary control in production

engines.



V. CONCLUSIONS AND PERSPECTIVES

This paper proposes a new solution for the boundary control of the fresh air mass fraction

in a Diesel engine operated with low-pressure exhaust gas recirculation. A formulation using

a cascade of first order LPV hyperbolic systems with dynamics associated with the boundary

conditions has been considered to model the air fraction transport phenomenon. Some sufficient

conditions for the exponential stability of such systems were obtained using a matrix inequality

approach. The exponential stability was demonstrated by means of a strict Lyapunov function

formulation, along with a linear polytopic representation for the LPV hyperbolic system.

By defining a minimal air fraction convergence time as the performance criterion, an air fraction

regulation strategy was designed using the previous stability results. The conservatism of the

boundary feedback control was significantly reduced by redefining the system varying parameters.

The complexity of the obtained boundary control is very low, which makes it suitable for real-time

implementation. A 1D simulation of the engine admission air-path with the proposed controller

was performed to evaluate the effectiveness of the control approach. The simulation results are

promising and motivate future steps toward implementation.

The new control design method presented in this paper has many applications in various systems

governed by hyperbolic PDE’s, such as mine ventilation, traffic control and hydraulic networks.

However, many questions are still open. In particular, a generalization of some sufficient con-

ditions for the exponential stability of hyperbolic systems with non-linear dynamic boundary

conditions seems to be a challenging issue. Considering perturbations in system (1) and in the

boundary conditions dynamics (3) is also a natural extension of this work.
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