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1 Abstract

We study the asymptotic behaviour of a sequence of Piecewise Constant Markov Processes (in short
PDMP) in which three different scales are at work: a rapid, a medium and a slow one. At the limit
the rapid scale gives rise to a diffusion part (this is a CLT type regime), the medium scale produces a
drift part (this is the law of large numbers type regime) and the slaw rate gives a finite variation jump
process. So at the limit we obtain a stochastic differential equation which is similar to the PDMP
evolution but now, in-between two jumps the equation evolutes as a general diffusion process including
a Brownian part and moreover, an infinity of jumps occur in each finite time interval. This type of
equations seems to be new in the literature and our first goal is to prove existence and uniqueness of
the solution for them. Afterwords we study the regularity of the semigroup and we use it in order to
prove the convergence result mentioned in the beginning.

2 Introduction

In this paper we introduce the following class of jump type stochastic equations:

Xt = x+

m∑
l=1

∫ t

0

σl(Xs)dW
l
s +

∫ t

0

b(Xs)ds (1)

+

∫ t

0

∫
E

∫
(0,∞)

c(z,Xs−)1{u≤γ(z,Xs−)}Nµ(ds, dz, du).

Here E is a measurable space, Nµ(ds, dz, du) is a homogeneous Poisson point measure on E × (0,∞)
with intensity measure µ(dz)× 1(0,∞)(u)du and the coefficients are σl, b : Rd → Rd and c : Rd ×E →
Rd, γ : Rd × E → [0,∞). Suppose for a moment that µ is a finite measure and σl = 0, l = 1, ...,m.
Then the solution of the above equation is a Piecewise Deterministic Markov Process (PDMP in
short) and existence and uniqueness of the solution are well known. But, if µ is an infinite measure
and we have a non null diffusion component, this type of equations have not been considered in the
literature. So our first aim is to prove that under reasonable hypothesis equation (1) has a unique
solution - this is done Theorem 3. The proof is based on some non trivial L1 estimates (we thank to
Nicolas Fournier who gave us an important hint in this direction).

∗LAMA (UMR CNRS, UPEMLV, UPEC), INRIA, F-77454 Marne-la-Vallée, France. Email: bally@univ-mlv.fr
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The equation (1) naturally appears as the limit of sequences of PDMP ′s with three different
regimes, that we describe now. We consider a sequence of processes Xn

t , n ∈ N, which solve

Xn
t = x+

3∑
i=1

∫ t

0

∫
E

∫
(0,∞)

c(i),n(z,Xn
s−)1{u≤γ(i),n(z,Xs−)}Nµ(i),n

(ds, dz, du) (2)

where Nµ(i),n
(ds, dz, du), i = 1, 2, 3 are three independent Poisson point measures of intensities

µ(i),n(dz)× 1(0,∞)(u)du.

Each of them represents a different regime. For i = 1 we consider a CLT type regime, described by
the following hypothesis:

lim
n

∫
E

c(1),nc
∗
(1),n(z, x)× γ(1),n(z, x)dµ(1),n(z) = σσ∗(x) (3)

where σ is the matrix with columns σl, l = 1, ...,m and σ∗ designs the transposed matrix. Moreover
we assume that

lim
n

∫
E

∣∣c(1),n(z, x)
∣∣3 × γ(1),n(z, x)dµ(1),n(z) = 0. (4)

For i = 2 we have a Law of Large Numbers type regime: we assume that

lim
n

∫
E

c(2),n(z, x)× γ(2),n(z, x)dµ(2),n(z) = b(x) (5)

and

lim
n

∫
E

∣∣c(2),n(z, x)
∣∣2 × γ(2),n(z, x)dµ(2),n(z) = 0. (6)

Finally, for i = 3 we have a ”finite variation” type regime: we assume that µ(3),n(dz) = 1En(z)dµ(z)
where µ is the intensity measure which appears in the limit equation (1) and En ↑ E is a sequence of
measurable sets such that µ(En) <∞ and

lim
n

∫
E\En

|c(z, x)|γ(z, x)dµ(z) = 0. (7)

And we assume that

lim
n

∫
E

c(3),n(z, x)γ(3),n(z, x)dµ(3),n(z) =

∫
E

c(z, x)γ(z, x)dµ(z) (8)

We stress that the convergence in (3),(5) and (8) has to be given in a more precise and quantitative
way (see (69)) - here we just give the general direction. Some other technical hypothesis are in force.
Then we are able to prove that, for f ∈ C3

b (Rd), one has

lim
n
E(f(Xn

t )) = E(f(Xt))

and to control the speed of convergence.
The weak convergence of Markov chains to diffusion processes has been widely discussed in the

literature (see e.g. [Kur71], [Kur78], [Kus84], [JS03])) but in our framework we have the following
specific difficulty. In the case of standard jump type equations (that is: 1{u≤γ(z,Xs−)} does not

appear in the equation (1)) the flow x→ Xt(x) is differentiable and consequently, if f ∈ C3
b (Rd), then

x→ E(f(Xt(x))) is three times differentiable as well. Using this, one proves in a straightforward way
the convergence of the semigroups and moreover, obtains an estimate of the error. But, because of the
indicator function, this is not true here - and so a key point in our approach is to study the regularity
of x→ E(f(Xt(x))). This is done in Theorem 7 and 12.

We also mention that PDMP ′s with several regimes have recently been considered in the literature
for modelling and numerically solving problems in gene networks (see [CDMR12] and [ACT+04],
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[ACT+05]) and chemical networks (see [BKPR06]). However we do not enter in our paper in the
specific framework on such physical phenomenons.

The paper is organized as follows: In Section 3 we prove existence and uniqueness for the solution
of equation (1) and in Section 4 we prove the regularity of x → E(f(Xt(x))). In Section 5 we prove
the convergence result and in the Appendix we give some moment inequalities used in the paper.

Acknowledgements: We are grateful to Nicolas Fournier and to Eva Löcherbach for their useful
suggestions and commentaries.

3 Existence and uniqueness

3.1 Notation and main result

We consider a measurable space (E, E) and, for a σ finite measure µ on E we denote by Nµ the

Poisson point measure on E × [0,∞) of compensator N̂µ(dt, dz, du) = dt × µ(dz) × du (we refer to
Ikeda Watanabe [IW89] for definitions and notation concerning Poisson point measures). Moreover we
consider a m dimensional Brownian motion W = (W 1, ...,Wm) which is independent of the Poisson
measure Nµ and we look to the d dimensional stochastic equation

Xt = x+

m∑
l=1

∫ t

0

σl(Xs)dW
l
s +

∫ t

0

b(Xs)ds (9)

+

∫ t+

0

∫
E×[0,∞)

c(z,Xs−)1{u≤γ(z,Xs−)}Nµ(ds, dz, du).

with σl, b : Rd → Rd and c : E ×Rd → Rd, γ : E ×Rd → [0,∞).

Definition 1 A process (Xt)t≥0 is called a L1 solution of the equation (9) if it is adapted, càdlàg
and, for every T > 0

sup
t≤T

E(|Xt|) <∞. (10)

Remark 2 We precise that Xt, t ≥ 0 is a càdlàg process if it is right continuous and has finite left
hand limits almost surely. In particular Xt may not blow up in finite time: if τR = inf{t : |Xt| ≥ R}
then supR τR =∞ (indeed, if supR τR = τ∞ ≤ T, then XT∧τ∞− =∞).

We give now the hypothesis which are needed in order to obtain existence and uniqueness for a L1

solution of the above equation. We assume that there exist a constant L ∈ R+ and some functions
lc, lγ : E → R+ such that, for every x, y ∈ Rd

|b(x)− b(y)|+
m∑
l=1

|σl(x)− σl(y)| ≤ L |x− y| (11)

and for every x, y ∈ Rd and z ∈ E

|c(z, x)− c(z, y)| ≤ lc(z) |x− y| , |γ(z, x)− γ(z, y)| ≤ lγ(z) |x− y| . (12)
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Moreover we assume that

Cµ(γ, c) := sup
x∈Rd

∫
E

(lγ(z) |c(z, x)|+ lc(z)γ(z, x))dµ(z) <∞. (13)

For a measurable set G ⊂ E and Γ ≥ 1 we denote

λ(G) = sup
x∈Rd

∫
G

|c(z, x)| γ(z, x)dµ(z), (14)

β(Γ) = sup
x∈Rd

∫
E

|c(z, x)| γ(z, x)1{Γ≤γ(z,x)}dµ(z) (15)

and we assume that
λ(E) <∞ and lim

Γ→∞
β(Γ) = 0. (16)

Our main result is the following:

Theorem 3 Suppose that (11),(12), (13) and (16) hold. Then the equation (9) has a unique L1

solution.

3.2 The basic estimate

In this section we give the main estimate which allows to prove Theorem 3. We will work with
some truncated versions of the equation (9) that we construct now. We consider a family of smooth
functions ψΓ : R+ → [0,Γ] such that

ψΓ(x) = x if x ≤ Γ− 1, (17)

= Γ if x ≥ Γ

and such that the derivatives of any order of ψΓ are bounded, unifromely with respect to Γ. Then we
construct

γΓ(z, x) = ψΓ(γ(z, x)). (18)

This is a smooth version of Γ ∧ γ(z, x).
For a measurable set G ⊂ E and a constant Γ > 1 we denote by XG,Γ the L1 solution (if such a

solution exists) of the equation

XG,Γ
t = x+

m∑
l=1

∫ t

0

σl(X
G,Γ
s )dW l

s +

∫ t

0

b(XG,Γ
s )ds (19)

+

∫ t+

0

∫
E×[0,∞)

1G(z)c(z,XG,Γ
s− )1{u≤γΓ(z,XG,Γ

s− )}Nµ(ds, dz, du).

Remark 4 Notice that we accept the case G = E and Γ = ∞ and then XG,Γ
t = Xt the solution of

the equation (9).

Remark 5 If µ(G) < ∞ and Γ < ∞ then it is easy to prove that the equation (19) has a unique
L1 solution: indeed if Tk, k ∈ N are the jump times of the Poisson process t → Nµ(t, G) then, for
t ∈ [Tk−1, Tk) one solves the standard diffusion equation dXG,Γ

s =
∑m
l=1 σl(X

G,Γ
s )dW l

s + b(XG,Γ
s )ds

and then defines XG,Γ
Tk

= XG
Tk− + c(Zk, X

G,Γ
s− )1{Uk≤γΓ(z,XG

s−)} where Zk ∼ 1
µ(G)1G(z)µ(dz) and Uk ∼

1
Γ1[0,Γ](u)du.
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Lemma 6 Suppose that (11),(12),(13) and (16) hold. Let G1 ⊂ G2 ⊂ E be two measurable sets

and 1 < Γ1 ≤ Γ2 (the case G1 = G2 = E and Γ1 = Γ2 = ∞ is included) and let X1
t := XG1,Γ1

t

and X2
t := XG2,Γ2

t be two L1 solutions of the equation (19) (corresponding to G1,Γ1 respectively to
G2,Γ2). There exists an universal constant C such that for every T ≥ 0 one has

sup
t≤T

E(
∣∣X1

t −X2
t

∣∣) ≤ CT exp(CT (L+ Cµ(γ, c)))× (β(Γ1) + λ(G28G1)) (20)

with L, Cµ(γ, c), β(Γ1) and λ(G28G1) defined in (11), (13),(14) and (15). Moreover for every ρ > 0

P (sup
t≤T

∣∣X1
t −X2

t

∣∣ ≥ ρ) ≤ CT

ρ
exp(CT (L+ Cµ(γ, c)))× (β(Γ1) + λ(G28G1)). (21)

Proof. Step 1. We will use a cut-off procedure inspired from [BF11]. Let us introduce some
notation. Let ϕ(x) = α1(−1,1)(x) exp(− 1

1−x2 ) with α such that
∫
ϕ(x)dx = 1, and, for ε > 0 let

ϕε(x) = 1
εϕ(xε ). We also denote hε(x) = 2ε ∨ |x| and we define

φε(x) = hε ∗ ϕε(x), and fε(z) = φε(|z|).

The basic property of fε is the following: there exists an universal constant C such that for every
ε > 0 ∣∣∣∣∂fε∂zi

(z)

∣∣∣∣ ≤ C and (22)∣∣∣∣ ∂2fε
∂zi∂zj

(z)

∣∣∣∣ ≤ C

|z|
. (23)

Proof. We have

∂fε
∂zi

(z) = φ′ε(|z|)
zi
|z|

and

∂2fε
∂zi∂zj

(z) =

(
φ′′ε (|z|)− φ′ε(|z|)

|z|

)
zizj

|z|2
+ δi,j

φ′ε(|z|)
|z|

.

Since φ′ε is bounded, (22) follows. Let us check (23). If |z| ≤ ε then φ′ε(|z|) = φ′′ε (|z|) = 0 so fε(z) = 0.
If ε ≤ |z| ≤ 3ε then φ′ε(|z|) ≤ C and φ′′ε (|z|) ≤ 1

ε so that∣∣∣∣ ∂2fε
∂zi∂zj

(z)

∣∣∣∣ ≤ C(
1

ε
+

1

|z|
) ≤ C

|z|
.

Finally, if x ≥ 3ε then φ′ε(x) = 1 and φ′′ε (x) = 0 so we obtain (23) for |z| ≥ 3ε as well .
Step 2. We denote

∆jσt = σj(X
1
t )− σj(X2

t ), ∆bt = b(X1
t )− b(X2

t ) and (24)

HΓ1,Γ2

t (z, u) = 1G1(z)c(z,X1
t−)1{u≤γΓ1

(z,X1
t−)} − 1G2(z)c(z,X2

t−)1{u≤ΓγΓ2
(z,X2

t−)}.

Then Zt := X1
t −X2

t verifies the equation

Zt =

m∑
l=1

∫ t

0

∆lσsdW
l
s +

∫ t

0

∆bsds+

∫ t+

0

∫
E×[0,1]

HΓ1,Γ2

s− (z, u)Nµ(ds, dz, du).

For R > 0 we define the stopping time

τR = inf{t :
∣∣X1

t

∣∣ ∨ ∣∣X2
t

∣∣ > R}

and we notice that limR→∞ τR =∞ (see Remark 2). We denote

ZRt = Zt∧τR .
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Using Itô’s formula we write

fε(Z
R
t )− fε(ZR0 ) = Mε(t ∧ τR) +

3∑
i=1

Iiε(t ∧ τR) (25)

with

Mε(t) =

d∑
i=1

m∑
l=1

∫ t

0

∂fε
∂zi

(ZRs )∆i
lσsdW

l
s

and

I1
ε (t) =

1

2

d∑
i,j=1

m∑
l=1

∫ t

0

∂2fε
∂zi∂zj

(ZRs )∆i
lσs∆

j
lσsds,

I2
ε (t) =

d∑
i=1

∫ t

0

∂fε
∂zi

(ZRs )∆ibsds,

I3
ε (t) =

∫ t+

0

∫
E×(0,1)

(fε(Zs− +HΓ1,Γ2

s− (z, u))− fε(Zs−))dN(s, z, u).

Since
∣∣∆i

lσs
∣∣ ≤ L |Zs∧τR | ≤ 2LR and ∂ifε is bounded, the process Mε is a martingale and this gives

E(Mε(t ∧ τR)) = 0. Then (we have fε(Z
R
0 ) = fε(0) = ε)

∣∣E(fε(Z
R
t ))
∣∣ ≤ ε+

3∑
i=1

∣∣E(Iiε(t ∧ τR))
∣∣ .

We will prove that

3∑
i=1

E(
∣∣Iiε(t ∧ τR)

∣∣) ≤ t(β(Γ1) + λ(G28G1)) + C(L+ Cµ(γ, c))

∫ t

0

E(
∣∣ZRs ∣∣)ds. (26)

We estimate the terms in the RHS of the above inequality. Since σl is Lipschitz continuous, for
s ≤ t ∧ τR we have

∣∣∆i
lσs
∣∣ ≤ L ∣∣ZRs ∣∣ . Then, using (23) we obtain

∣∣I1
ε (t ∧ τR)

∣∣ ≤ CL∫ t

0

∣∣ZRs ∣∣ ds
and using (22) we get a similar upper bound for

∣∣I2
ε (t ∧ τR)

∣∣ . So (26) is verified for i = 1, 2.
We estimate now I3

ε . Since N(ds, dz, du) is a positive measure and fε is Lipschitz continuous

∣∣I3
ε (t ∧ τR)

∣∣ ≤ C ∫ (t∧τR)+

0

∫
E×(0,∞)

∣∣HΓ1,Γ2
s (z, u)

∣∣ dN(s, z, u)

and then, using the isometry property

E(
∣∣I3
ε (t ∧ τR)

∣∣) ≤ E(

∫ t∧τR

0

∫
E×(0,∞)

∣∣HΓ1,Γ2
s (z, u)

∣∣ dµ(z)duds) ≤ J1 + J2

with

J1 = E(

∫ t∧τR

0

∫
E×(0,1)

∣∣HΓ1,Γ2
s (z, u)−H∞,∞s (z, u)

∣∣ dµ(z)duds)

J2 = E(

∫ t∧τR

0

∫
E×(0,1)

|H∞,∞s (z, u)| dµ(z)duds).
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Then

J2 ≤ E(

∫ t∧τR

0

∫
G28G1

∣∣c(z,X2
s )
∣∣ γ(z,X2

s )dµ(z)ds)

+E(

∫ t∧τR

0

∫
G1

(lγ(z)
∣∣c(z,X1

s )
∣∣+ lc(z)γ(z,X2

s ))
∣∣X2

s −X1
s

∣∣ dµ(z)ds)

≤ tλ(G28G1) + Cµ(γ, c)E(

∫ t∧τR

0

∣∣ZRs ∣∣ ds).
And

J1 ≤ K1 +K2

with

Ki ≤ E(

∫ t∧τR

0

∫
Gi

∣∣c(z,Xi
s)
∣∣ (γ(z,Xi

s)− γΓi(z,X
i
s))dµ(z)ds)

≤ E(

∫ t∧τR

0

∫
Gi

∣∣c(z,Xi
s)
∣∣ γ(z,Xi

s)1{Γi≤γ(z,Xi
s)}dµ(z)ds) ≤ β(Γi)t.

So (26) is proved. In particular we obtain∣∣E(fε(Z
R
t ))
∣∣ ≤ ε+ t(β(Γ1) + λ(G28G1)) + C(L+ Cµ(γ, c))

∫ t

0

E(
∣∣ZRs ∣∣)ds.

We have limε→0 fε(z) = |z| , so, using Fatou’s lemma

E(
∣∣ZRt ∣∣) ≤ t(β(Γ1) + λ(G28G1)) + C(L+ Cµ(γ, c))

∫ t

0

E(
∣∣ZRs ∣∣)ds.

Then, by Gronwall’s lemma

E(
∣∣ZRt ∣∣) ≤ Ct(β(Γ1) + λ(G28G1)) exp(Ct(L+ Cµ(γ, c))). (27)

We recall that limR→∞ τR =∞ so, using again Fatou’s lemma, we pass to the limit with R→∞
and we obtain

E(|Zt|) = E(limR→∞
∣∣ZRt ∣∣) ≤ Ct(β(Γ1) + λ(G28G1)) exp(Ct(L+ Cµ(γ, c)))

so (20) is proved.
Step 3. Let us prove (21). Using (25) and the fact that fε is Lipschitz continuous, we obtain

E(|Mε(t ∧ τR)|) ≤ E(
∣∣fε(ZRt )− fε(ZR0 )

∣∣) +

3∑
i=1

E(
∣∣Iiε(t ∧ τR)

∣∣)
≤ CE(

∣∣ZRt ∣∣) +

3∑
i=1

E(
∣∣Iiε(t ∧ τR)

∣∣)
≤ Ct(β(Γ1) + λ(G28G1)) exp(Ct(L+ Cµ(γ, c)))

the last inequality being a consequence of (26) and (27).
We take now ρ > 0 and we use Doob’s inequality and Chebyshev’s inequality in order to get

P (sup
t≤T

∣∣fε(ZRt )
∣∣ ≥ ρ) ≤ P (sup

t≤T
|Mε(t ∧ τR)| ≥ ρ

4
) +

3∑
i=1

P (sup
t≤T

∣∣Iiε(t ∧ τR)
∣∣ ≥ ρ

4
)

≤ C

ρ
(E(|Mε(t ∧ τR)|) +

3∑
i=1

E(sup
t≤T

∣∣Iiε(t ∧ τR)
∣∣)

≤ Ct

ρ
(β(Γ1) + λ(G28G1)) exp(Ct(L+ Cµ(γ, c)))).

Using Fatou’s lemma we pass to the limit with ε→ 0 and with R→∞ and we obtain(21). �
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3.3 Proof of Theorem 3

Uniqueness of the solution immediately follows from (20) with G1 = G2 = E and Γ1 = Γ2 = ∞. Let
us prove existence. We take a sequence of subsets En ↑ E such that µ(En) <∞ and Γn = n. By (16)

lim
n,m→∞

(β(Γn) + λ(En8Em)) = 0.

Since µ(En) <∞,Γn <∞ we may construct a solution Xn
t := XEn,Γn

t and then, by (21),

lim
n,m→∞

sup
t≤T
|Xn

t −Xm
t | = 0

in probability. Passing to a subsequence, the above convergence holds almost surely, so we may
construct a process Xt such that

lim
n→∞

sup
t≤T
|Xt −Xn

t | = 0 almost surely.

Since Xn
t are adapted and càdlàg processes, so is Xt.

Using (20) we conclude that for every n

sup
t≤T

E(|Xn
t |) ≤ Cλ(En) (28)

and using (20) again we get
sup
t≤T

E(|Xt|) ≤ Cλ(E). (29)

It remains to check that Xt verifies the equation (9) which reads

Xt = x+M(t) + I1(t) + I2(t) (30)

where

M(t) =

m∑
l=1

∫ t

0

σl(Xs)dW
l
s, I1(t) =

∫ t

0

b(Xs)ds,

I2(t) =

∫ t+

0

∫
E×[0,∞)

c(z,Xs−)1{u≤γ(z,Xs−)}Nµ(ds, dz, du).

In a similar way we write
Xn
t = x+Mn(t) + I1

n(t) + I2
n(t) (31)

where

Mn(t) =

m∑
l=1

∫ t

0

σl(X
n
s )dW l

s, I1
n(t) =

∫ t

0

b(Xn
s )ds,

I2
n(t) =

∫ t+

0

∫
En×[0,∞)

c(z,Xn
s−)1{u≤γΓn (z,Xn

s−)}Nµ(ds, dz, du).

Since (31) holds true and Xn
t → Xt almost surely, it remains to prove that the terms in the right side

of (31) converge in probability also. We have

E(
∣∣I2(t)− I2

n(t)
∣∣) ≤ E(

∫ t

0

∫
E×(0,∞)

∣∣H∞,Γn
s (z, u)

∣∣ dµ(z)duds)

with H∞,Γn
s (z, u) defined as in (24) with G1 = E,Γ1 =∞ and G2 = En,Γn = n. Using (26)

E(
∣∣I2(t)− I2

n(t)
∣∣) ≤ Ct(β(Γn) + λ(Ecn) +

∫ t

0

E(|Xs −Xn
s |)ds).
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since limnE(|Xs −Xn
s |) = 0 for every s, we use Lebesgue’s theorem (recall (28) and (29)) and we

conclude that I2
n(t)→ I2(t) in L1. The same is true for I1

n(t).
Let us now treat Mn(t). We denote An = {sups≤t |Xs −Xn

s | ≤ 1} and, for ρ > 0, we write

P (|Mn(t)−M(t)| ≥ ρ) ≤ P (Acn) + P (An ∩ {|Mn(t)−M(t)| ≥ ρ}).

On An we have

M(t)−Mn(t) =

m∑
l=1

∫ t

0

(σl(Xs)− σl(Xn
s ))1{|Xs−Xn

s |≤1}dW
l
s

so that

P (An ∩ {|Mn(t)−M(t)| ≥ ρ}) ≤ 1

ρ

m∑
l=1

E(

∣∣∣∣∫ t

0

(σl(Xs)− σl(Xn
s ))1{|Xs−XEn

s |≤1}dW
l
s

∣∣∣∣)
≤ C

ρ
(E(

∫ t

0

|Xs −Xn
s |

2
1{|Xs−Xn

s |≤1}ds))
1/2

≤ C

ρ
(E(

∫ t

0

|Xs −Xn
s | ds))1/2 → 0.

We also have limn→∞ P (Acn) = 0 so that limn→∞ P (|Mn(t)−M(t)| ≥ ρ) = 0. �

4 Regularity of the semigroup

Our aim is to study the regularity of the semigroup Ptf(x) := E(f(Xt(x))) where Xt(x) is the solution
of the equation (9) which starts from X0 = x. We have to introduce some more notation. For a function
f : Rd → R which is k time differentiable we denote

‖f‖k,∞ = sup
x∈Rd

∑
|α|≤k

|∂αx f(x)| . (32)

For a function f : E ×Rd → R,which is q times differentiable with respect to a, for a set G ⊂ E and
for p ≥ 1 we denote

fq,p(G) = sup
x∈Rd

∑
1≤|α|≤q

∫
G

|∂αx f(z, x)|p γ(z, x)dµ(z) (33)

Moreover, for q ∈ N and p > 1, we define (with σ, b and c the coefficients in the equation (9))

θq,p(G) = 1 + ‖σ‖2pq,∞ + ‖b‖2pq,∞ + cq,1(G) + cq,2p(G). (34)

We also denote

γ(G) = inf{γ(z, x) : x ∈ Rd, z ∈ G}, (35)

γ(G) = sup
x∈Rd

∫
G

γ(z, x)dµ(x), (36)

γ̃q(G) =
∑

1≤|α|≤q

1

µ(G)
sup
x∈Rd

∫
G

|∂αx γ(z, x)| dµ(x) (37)

and

αq,p(t, G) = C(t ∨ 1)(
γq,2q(G)

γq(G)
+ θq,p(G)etCθq,p(G)(1 +

γ(G)

γq(G)
+

q∑
j=1

γ̃q−j+1
j (G))) (38)

Here C is an universal constant.
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In the following we will repeatedly use the following inequalities:

sup
x∈Rd

∑
1≤|α|≤q

∫
G

|∂αx f(z, x)|p γΓ(z, x)dµ(z) ≤ fq,p(G) (39)

and ∑
1≤|α|≤q

1

µ(G)
sup
x∈Rd

∫
G

|∂αx γΓ(z, x)| dµ(x) ≤ Cγ̃q(G). (40)

The first one is a consequence of γΓ ≤ γ and the second one follows from the definition γΓ = ψΓ(γ)
and the fact that ψΓ has derivatives which are bounded uniformly with respect to Γ.

Theorem 7 Let q ∈ N and G ⊂ E with µ(G) <∞. We assume that (11), (12), (13) and (16) hold,
that σ ∈ Cq+1

b (Rd), b ∈ Cqb (Rd), c(◦, z) ∈ Cqb (Rd), γ(◦, z) ∈ Cqb (Rd) and γ(G) > 0. Let Γ > 1 be such
that

mG(Γ) :=
1

µ(G)

∫
G

1 ∧ γ(z, x)

Γ
dµ(z) < 1 (41)

and let PG,Γt f(x) = E(f(XG,Γ
t (x)) where XG,Γ

t (x) is the solution of equation (19) which starts from
x. There exits some constants Cq and lq, depending on q only, such that for every f ∈ Cqb (Rd) one
has ∥∥∥PG,Γt f

∥∥∥
q,∞
≤ Cq

1−mG(Γ)
αq,qlq (t, G) ‖f‖q,∞ (42)

For q = 1, 2, 3 we have lq = q.

Remark 8 Notice that αq,qlq (t, G) appears as the constant which controls the regularity of x →
PG,Γt f(x). Roughly speaking we expect that αq,qlq (t, G) <∞ if µ(G) <∞. But in the following we will
consider a sequence of sets En ↑ E such that µ(En) <∞ and αq,qlq (t, En) <∞ but αq,qlq (t, En) ↑ ∞.
So we have regularity for the semigroup of the truncated equations but we loose control when passing
with n → ∞. This is the delicate point in our approach. The rate of the blow up αq,qlq (t, En) ↑ ∞
becomes critical ; see also Remark 13.

In order to prove Theorem 7 we need some preparation. Since µ(G) < ∞ we have an alternative

representation of the solution XG,Γ
t of the equation (19) by means of a compound Poisson process:

we consider a Poisson process Jt with parameter µ(G)Γ < ∞ and we denote by Tk, k ∈ N the jump
times of Jt (since G and Γ are fixed, we do not mention them in the notation). Moreover we take a
sequence Zk, Uk, k ∈ N of independent random variables (which are independent of W and of J) with
laws

P (Zk ∈ dz) =
1

µ(G)
1G(z)µ(dz), P (Uk ∈ du) =

1

Γ
1(0,Γ)(u)du.

Then the equation (19) may be represented as

XG,Γ
t (x) = x+

m∑
l=1

∫ t

0

σl(X
G,Γ
s (x))dW l

s +

∫ t

0

b(XG,Γ
s (x))ds (43)

+
∑
k≤Jt

c(Zk, X
G,Γ
Tk−(x))1{Uk≤γΓ(Zk,X

G,Γ
Tk−

(x))}.

We give now a second representation which does no more contain the indicator function 1{Uk≤γΓ(Zk,X
G,Γ
Tk−

(x))}

and so it is suitable when discussing the regularity with respect to x. We denote by Φt,s(x), 0 ≤ t ≤ s
the solution of the standard diffusion equation

Φt,s(x) = x+

m∑
l=1

∫ s

t

σl(Φt,r(x))dW l
r +

∫ s

t

b(Φt,r(x))dr. (44)
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Notice that, since σ ∈ Cq+1
b (Rd) and b ∈ Cqb (Rd), we may choose a version of Φ which is q times

differentiable with respect to x (see [IW89]). Moreover we consider a sequence (z) := (zk)k∈N with
zk ∈ E, we denote

zk = (z1, ..., zk)

and we construct a process xt(x, (z)) in the following way: we put x0(x) = x and, if xTk−(x, zk−1) is
given, we define

xTk
(x, zk) = xTk−(x, zk−1) + c(xTk−(x, zk−1), zk)1G(zk) (45)

xt(x, z
k) = ΦTk,t(xTk

(x, zk)) Tk ≤ t < Tk+1.

Since Φ and c(◦, z) are q times differentiable with respect to x, so is x→ xt(x, z
k).

We take now function ψ : E → R+ such that ψ(z) = 0 for z ∈ G and
∫
ψdµ = 1 and we construct

the probability density

qG,Γ(z, x) = θG(x)ψ(z) +
1

µ(G)Γ
1G(z)γΓ(z, x) with (46)

θG,Γ(x) = 1− 1

µ(G)Γ

∫
G

γΓ(z, x))µ(dz).

By the very definition of θG,Γ(x) we have
∫
E
qG,Γ(z, x)dµ(z) = 1. And since mG(Γ) < 1 we have

θG,Γ(x) ≥ 1−mG(Γ) > 0.
We construct a sequence of random variables Zk in the following way. Z1 has conditional law

P (Z1 ∈ dz | xT1−(x) = y) = qG,Γ(z, y)µ(dz).

Then, if Zi, i ≤ k − 1 are given, we construct Zk to be a random variable with conditional law

P (Zk ∈ dz | xTk−(x, Z
k−1

) = y) = qG,Γ(z, y)µ(dz) (47)

where Z
k

= (Z1, ..., Zk). Notice that the density of the law of Z
n

with respect to µ(dz1)...µ(dzn) is
given by

pn(x, z1, ..., zn) =

n∏
k=1

qG(xTk−(x, z1, ..., zk−1), zk). (48)

Finally we define

X
G,Γ

t (x) = xt(x, Z
k−1

), Tk−1 ≤ t < Tk (49)

and we notice that, according to (45)

X
G,Γ

Tk
(x) = X

G,Γ

Tk−(x) + c(Zk, X
G,Γ

Tk−(x))1G(Zk) (50)

X
G,Γ

t (x, zk) = ΦTk,t(X
G,Γ

Tk
(x)) Tk ≤ t < Tk+1.

Remark 9 In mathematical physics the above equation are known as ”transport equations” and the
equation (43) is called the ”fictive chock” representation and the recurrence relation (50) is the ”real
chock” representation: see [LPS98] pg 49. The above book gives a complete view of the numerical
methods used in the Monte Carlo approach to such equations as well as several possible applications.

Lemma 10 The law of XG,Γ
t (x) coincides with the law of X

G,Γ

t (x). Moreover, for any non negative

and measurable function Ψ the law of St =
∑Jt
k=1 Ψ(Zk)1{Uk≤γΓ(Zk,X

G,Γ
k )} coincides with the law of

St =
∑Jt
k=1 Ψ(Zk).

Proof. We have

E(f(XG,Γ
Tj

) | XG,Γ
Tj− = x)

= E(f(x+ c(Zj , x)1G(Zj))1{Uj≤γΓ(Zj ,x)}) + E(f(x)1{Uj>γΓ(Zj ,x)})

= : I + J.
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A simple computation shows that P (Uj > γ(Zj , x)) = θG,Γ(x) and moreover

I =
1

Γ

∫
E

∫ Γ

0

f(x+ c(z, x)1G(z))1{u≤γΓ(z,x)}
1

µ(G)
duµ(dz)

=

∫
E

f(x+ c(z, x)1G(z))γΓ(z, x)
1

Γµ(G)
µ(dz)

so that

E(f(XG,Γ
Tj

) | XG,Γ
Tj− = x) =

∫
E

f(x+ c(z, x)1G(z))γΓ(z, x)
1

Γµ(G)
µ(dz)

+θG,Γ(x)f(x) =

∫
E

f(x+ c(z, x)1G(z))qG,Γ(z, x)µ(dz) = E(f(X
G,Γ

Tj
) | XG,Γ

Tj− = x).

We conclude that the laws of XG,Γ
t coincides with the law of X

G,Γ

t . In order to check that the law of

St and of St are the same, we just use the previous result for the couple (XG,Γ
t , St) and (X

G,Γ

t , St). �

The process X
G,Γ

t (x) satisfy the equation:

X
G,Γ

t (x) = x+

m∑
l=1

∫ t

0

σl(X
G,Γ

s (x))dW l
s +

∫ t

0

b(X
G,Γ

s (x))ds (51)

+

Jt∑
k=1

c(Zk, X
G,Γ

Tk−(x))1G(Zk).

Since x→ xt(x, z
k)is differentiable, so is x→ X

G,Γ

t (x). Our first aim is to estimate the derivatives of
this process.

Proposition 11 A. For every q, p ∈ N there exists some constants C (depending on q and p), and
lq (depending on q) such that, for every multi-index α with |α| = q

E(
∣∣∣∂αxXG,Γ

t (x)
∣∣∣p) ≤ Cθq,plq (G)etCθq,plq (G) (52)

with θq,p(G) defined in (34). One has lq ≤ 2q and, for q = 1, 2, 3, one has lq = q.
B. Moreover, with γ(G) defined in (36),

E(

Jt∑
k=1

1G(Zk)
∣∣∣∂αxXG,Γ

t (x)
∣∣∣p) ≤ Ctγ(G)× θq,plq (G)etCθq,plq (G). (53)

Proof. We treat the first derivatives. We have (with ei = (0, ..., 0, 1, 0, ..., 0) with 1 on the i′th
position)

∂xiX
G,Γ

t (x) = ei +

m∑
l=1

∫ t

0

〈
∇σl(X

G,Γ

s (x)), ∂xiX
G,Γ

s (x)
〉
dW l

s (54)

+

∫ t

0

〈
∇b(XG,Γ

s (x)), ∂xiX
G,Γ

s (x)
〉
ds

+

Jt∑
k=1

〈
∇xc(X

G,Γ

Tk−(x), Zk), ∂xiX
G,Γ

Tk−(x)
〉

1G(Zk).

Using the identity of laws given in Lemma 10 for the system (X
G,Γ

t (x),∇xX
G,Γ

t (x))t≥0 we conclude

that the law of this process coincides with the law of the process (XG,Γ
t (x), V(1),t(x))t≥0 where XG,Γ

t (x)
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is the solution of the equation (19) and V i(1),t ∈ R
d, i = 1, ..., d solves the equation

V(1),t(x) = ei +

m∑
l=1

∫ t

0

〈
∇σl(XG,Γ

s (x)), V(1),s(x)
〉
dW l

s (55)

+

∫ t

0

〈
∇b(XG,Γ

s (x)), V(1),t(x)
〉
ds

+

Jt∑
k=1

〈
∇xc(Zk, XG,Γ

Tk−(x)), V(1),Tk−(x)
〉

1G(Zk)1{Uk≤γΓ(Zk,X
G,Γ
Tk−

(x))}.

We will use Proposition 21 from the Appendix (with E replaced by G) in order to estimate the
moments of V(1),t(x). In order to identify notations we mention that the index set is now Λ = {1, ..., d}
and α = i. Moreover V i(1),0 = ei and Hi = hi = Qi = 0 so, in particular, q = 0 and Ri = 0. Let us

now identify ĉ(1)(p) which is defined in (87):

ĉ(1)(p) = sup
x∈Rd

∫
G

|∇xc(z, x)|)(1 + |∇xc(z, x)|)2p−1γΓ(z, x)dµ(z) ≤ θ1,p(G).

Here the lower index in ĉ(1)(p) indicates that we are dealing with the solutions of (55) which concern
the first order derivatives. And we have used the inequality |∂αx γΓ(z, x)| ≤ C |∂αx γ(z, x)| .

Then, using the identity of law and (88) we obtain

E(
∣∣∣∂xiX

G,Γ

t (x)
∣∣∣2p) = E(

∣∣∣V i(1),t(x)
∣∣∣2p) ≤ exp(tCpθ1,p(G))

so (52) is proved. And

E(

Jt∑
k=1

1G(Zk)
∣∣∣∂xiX

G,Γ

Tk−(x)
∣∣∣p) = E(

Jt∑
k=1

1G(Zk)
∣∣∣V i(1),Tk−(x)

∣∣∣p 1{Uk≤γΓ(Zk,X
G,Γ
Tk−

(x))})

= E(

∫ t

0

∫
G

∣∣∣V i(1),Tk−(x)
∣∣∣p γΓ(z,XG,Γ

Tk−(x))µ(dz)

≤ sup
x∈Rd

∫
G

γ(z, x)dµ(z)

∫ t

0

E(
∣∣∣V i(1),s(x)

∣∣∣2p)ds
so (53) is also proved (with l1 = 1).

We estimate now the second order derivatives. We take derivatives in (54) and we obtain

∂xj∂xiX
G,Γ

t (x) =

m∑
l=1

∫ t

0

H
i,j

l (s)dW l
s +

∫ t

0

h
i,j

(s)ds+

Jt∑
k=1

Q
i,j

(Tk−, Zk)1G(Zk) (56)

+

m∑
l=1

∫ t

0

〈
∇σl(X

G,Γ

s (x)), ∂xj∂xiX
G,Γ

s (x)
〉
dW l

s

+

∫ t

0

〈
∇b(XG,Γ

s (x)), ∂xj∂xiX
G,Γ

s (x)
〉
ds

+

JG
t∑

k=1

〈
∇xc(Zk, X

G,Γ

Tk−(x)), ∂xj∂xiX
G,Γ

Tk−(x)
〉

1G(Zk).

with

H
i,j

l (s) =

d∑
r,r′=1

∂r∂r′σl(X
G

s (x))∂xiX
G,r

s (x)∂xjX
G,r′

s (x),

h
i,j

(s) =

d∑
r,r′=1

∂r∂r′b(X
G

s (x))∂xiX
G,r

s (x)∂xjX
G,r′

s (x),
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and

Q
i,j

(s, Zk) =

d∑
r,r′=1

∂xr∂xr′ c(Zk, X
G,Γ

s (x))∂xiX
G,Γ,r

s (x)∂xjX
G,Γ,r′

s (x).

Using the identity of laws given in Lemma 10 for the system (X
G,Γ

t (x),∇xX
G,Γ

t (x),∇2
xX

G,Γ

t (x))t≥0 we

conclude that the law of this process coincides with the law of the process (XG,Γ
t (x), V(1),t(x), V(2),t(x))t≥0

where XG,Γ
t (x) is the solution of the equation (19), V i(1),t ∈ R

d, i = 1, ..., d solves the equation (55)

and V i,j(2),t(x) ∈ Rd, i, j = 1, ..., d solves the following equation:

V i,j(2),t(x) =

m∑
l=1

∫ t

0

Hi,j
l (s)dW l

s +

∫ t

0

hi,j(s)ds (57)

+

JG
t∑

k=1

Qi,j(Tk−, Zk)1G(Zk)1{Uk≤γΓ(Zk,XG
Tk−

(x),)}

+

m∑
l=1

∫ t

0

〈
∇σl(XG,Γ

s (x)), V i,j(2),s

〉
dW l

s +

∫ t

0

〈
∇b(XG,Γ

s (x)), V i,j(2),s

〉
ds

+

JG
t∑

k=1

〈
∇xc(Zk, XG,Γ

Tk−(x)), V i,j(2),Tk−

〉
1G(Zk)1{Uk≤γΓ(Zk,X

G,Γ
Tk−

(x))}

with

Hi,j
l (s) =

d∑
r,r′=1

∂r∂r′σl(X
G,Γ
s (x))(V i(1),s)

r(x)(V j(1),s)
r′(x),

hi,j(s) =

d∑
r,r′=1

∂r∂r′b(X
G,Γ
s (x))(V i(1),s)

r(x)(V j(1),s)
r′(x),

and

Qi,j(s, ak) =

d∑
r,r′=1

∂xr∂xr′ c(Zk, X
G,Γ
s (x))(V i(1),s)

r(x)(V j(1),s)
r′(x).

We will again use Proposition 21 (with E = G) in order to estimate the moments of V(2),t(x). Now

the index set is Λ = {(i, j); i, j = 1, ..., d} and α = (i, j). Moreover V i,j(2),0 = 0 and Hi,j , hi,j , Qi,j are

given above. In particular we have
∣∣Qi,j(s, Zk)

∣∣ ≤ q(Zk, X
G
s )Ri,j(s) with q(z, x) =

∑
|α|=2 |∂αx c(z, x)|

and Ri,js =
∣∣V(1),s

∣∣2. So

ĉ(2)(p) = sup
x∈Rd

∫
G

(
∑

1≤|α|≤2

|∂αx c(z, x)|)(1 +
∑

1≤|α|≤2

|∂αx c(z, x)|)2p−1γΓ(z, x)dµ(z)

≤ θ2,p(G)

Moreover, using the estimates for V(1),t we obtain∫ t

0

(E(

m∑
l=1

|Hα
l (s)|2p + |hαl (s)|2p + ĉ(2)(p)

∣∣Rαs−∣∣2p)ds) (58)

≤
∫ t

0

Cp(‖σ‖2p2,∞ + ‖b‖2p2,∞ + θ2,p(G))E(
∣∣V(1),s

∣∣4p)ds
≤ tCp(‖σ‖2p2,∞ + ‖b‖2p2,∞ + θ2,p(G)) exp(tCpθ1,2p(G)).

Then

E(
∣∣∣∂xj∂xiX

G,Γ

t (x)
∣∣∣2p) = E(

∣∣∣V i,jt ∣∣∣2p) ≤ tCpθ2,p(G) exp(tCpθ2,2p(G)).
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So the proof of (52) is finished and then (53) follows as above. Notice that l2 = 2 here.
For the third order derivatives the proof is similar: now the set of multi-indexes is Λ = {α =

(i, j, k) : 1 ≤ i, j, k ≤ d} and Hα, hα, Qα are defined in a similar way. Moreover one has |Hα|+ |hα| ≤
C(‖σ‖3,∞ + ‖b‖3,∞)(

∣∣V(1)

∣∣3 +
∣∣V(2)

∣∣ ∣∣V(1)

∣∣) and |Qα| ≤ Cc[3](
∣∣V(1)

∣∣3 +
∣∣V(2)

∣∣ ∣∣V(1)

∣∣). Using Proposition
21, Hölder’s inequality and the recurrence hypothesis one obtains (52) with l3 = 3. For higher order
derivatives the proof is the same, but it is more difficult to give a precise expression for lq - this is
why we keep the bound lq ≤ 2q which is clearly sufficient. �

We are now ready to give:
Proof of Theorem 7. Recall (45) and (48). Recall also the notation zk = (z1, ..., zk), and recall

that Jt represents the number of jumps up to t. Then we write

E(f(X
G,Γ

t (x))) = E(

∫
f(xt(x, z

Jt))pJt(x, z
Jt)µ(dz1), ..., µ(dzJt))

where

pJt(x, z
Jt) =

Jt∏
k=1

qG,Γ(xTk−(x, zk−1), zk).

It follows that
∂xi

E(f(X
G,Γ

t (x))) = A+B

with

A =

d∑
l=1

E(

∫
∂lf(xt(x, z

Jt))∂xi
xlt(x, z

Jt)pJt(x, z
Jt)µ(dz1), ..., µ(dzJt))

=

d∑
l=1

E(∂lf(xt(x, Z
Jt

))∂xi
xlt(x, Z

Jt
))

and

B = E(

∫
f(xt(x, z

Jt))∂xipJt(x, z
Jt)µ(dz1), ..., µ(dzJt))

= E(

∫
f(xt(x, z

Jt))∂xi
ln pJt(x, z

Jt)× pJt(x, zJt)µ(dz1), ..., µ(dzJt))

= E(f(xt(x, Z
Jt

))∂xi
ln pJt(x, Z

Jt
)).

Let us estimate A. Using (52) (with q = 1, lq = 1 and p = 1)

|A| ≤ ‖f‖1,∞
d∑
l=1

E(
∣∣∣∂xix

l
t(x, Z

Jt
)
∣∣∣) = ‖f‖1,∞E(

∣∣∣∇xXG,Γ

t (x)
∣∣∣)

≤ C ‖f‖1,∞ θ1,1(G)etCθ1,1(G).

Let us estimate B. We have

∂xi
ln pJt(x, z

Jt) =

Jt∑
k=1

ψ(zk)∂xi
ln θG,Γ(xTk−(x, zk−1))

+

Jt∑
k=1

1G(zk)∂xi
ln γΓ(zk, xTk−(x, zk−1)

= : S1(x, zJt) + S2(x, zJt).

Then
|B| ≤ ‖f‖∞ (E(

∣∣∣S1(x, Z
Jt

)
∣∣∣) + E(

∣∣∣S2(x, Z
Jt

)
∣∣∣)
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Recall that θG,Γ(x) ≥ 1−mG(Γ) > 0 and |∇xγΓ(z, x)| ≤ C |∇xγ(z, x)| . It follows that

|∇xθG,Γ(x)| ≤ sup
x∈Rd

C

µ(G)Γ

∫
G

|∇xγ(z, x)| dµ(z) =
C

Γ
× γ̃1(G).

Then ∣∣∂xi
ln θG,Γ(xTk−(x, zk−1))

∣∣ ≤ C

1−mG(Γ)
γ̃1(G)×

∣∣∇xxTk−(x, zk−1)
∣∣

and consequently

∣∣∣S1(x, Z
Jt

)
∣∣∣ ≤ C

1−mG(Γ)
γ̃1(G)

Jt∑
k=1

ψ(Zk)
∣∣∣∇xxTk−(x, Z

k−1
)
∣∣∣ .

Using (53) we get

E(
∣∣∣S1(x, Z

Jt
)
∣∣∣) ≤ C

1−mG(Γ)
γ̃1(G) ‖ψ‖∞E(

Jt∑
k=1

∣∣∣∇xXG,Γ

Tk−(x)
∣∣∣)

≤ C

1−mG(Γ)
tγ̃1(G) ‖ψ‖∞ × θ1,1(G)etCθ1,1(G).

We estimate now S2(x, Z
Jt

). If z ∈ G then γ(z, x) ≥ γ(G) for every x so that

E(
∣∣∣S2(x, Z

Jt
)
∣∣∣) ≤ 1

γ(G)
E(

Jt∑
k=1

1G(Zk)
∣∣∣∇xγΓ(G)(Z

k
, X

G,Γ

Tk−(x))
∣∣∣× ∣∣∣∇xXG,Γ

Tk−(x))
∣∣∣)

≤ C

γ(G)
(E(

Jt∑
k=1

1G(Zk)
∣∣∣∇xγ(Z

k
, X

G,Γ

Tk−(x))
∣∣∣2)

+E(

Jt∑
k=1

1G(Zk)
∣∣∣∇xXG,Γ

Tk−(x))
∣∣∣2)).

Using the identity of laws

E(

Jt∑
k=1

1G(Zk)
∣∣∣∇xγΓ(Zk, X

G

Tk−(x))
∣∣∣2) = E(

Jt∑
k=1

1G(Zk)
∣∣∣∇xγΓ(Zk, X

G

Tk−(x))
∣∣∣2 1{Uk≤γΓ(Zk,X

G
Tk−

(x))
)

≤ sup
x∈Rd

∫
G

|∇xγΓ(z, x)|2 γΓ(z, x)dµ(z) = γ1,2(G)

with γ1,2(G) defined in (33). And using (53)

E(

Jt∑
k=1

1G(Zk)
∣∣∣∇xXG,Γ

Tk−(x))
∣∣∣2) ≤ Ctγ(G)× θ1,2(G)e(t∨1)Cθ1,2(G).

So

E(
∣∣∣S2(x, Z

Jt
)
∣∣∣) ≤ C

γ(G)
(tγ(G)× θ1,2(G)etCθ1,2(G) + γ1,2(G)).

Collecting all these we obtain∣∣∂xiP
G
t f(x)

∣∣ =
∣∣∣∂xiE(f(X

G

t (x)))
∣∣∣

≤ C(t ∨ 1)

1−mG(Γ)
‖f‖1,∞ (

γ1,2(G)

γ(G)
+ θ1,2(G)etCθ1,2(G)(1 +

γ(G)

γ(G)
+ γ̃1(G)))

so (42) is proved in the case q = 1.
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The proof for higher order derivatives is similar but cumbersome, so we live it out. We just precise
that in order to obtain the specific powers in the definition of αq,p(t, G) we used the following standard
estimate: if F (x) = ln f(g(x)) and f ≥ C∗ > 0, then

‖F‖q,∞ ≤
C

Cq∗
(

q∑
j=1

‖f‖q−j+1
j,∞ )(

q∑
j=1

‖g‖q−j+1
j,∞ ).

�
Our aim now is to give a regularity criterion for x→ Ptf(x). We denote BR = {x : |x| < R} and

W q,p(BR) is the standard Sobolev space on BR.

Theorem 12 We assume that (11),(12),(13) and (16) hold. Moreover we assume that there exists
ε > 0 such that for every measurable set G ⊂ E with µ(G) <∞

lim
Γ→∞

mG(Γ) < 1− ε. (59)

where mG(Γ) is given in (41). Let m ∈ N∗ and q ∈ N be fixed. Suppose that there exists a sequence
En ↑ E such that µ(En) <∞ and such that, for some η > q+1

m , one has

sup
n
αη2m+q,(2m+q)l2m+q

(t, En)× λ(Ecn) <∞. (60)

Then, for every f ∈ C2m+q
b (Rd) one has Ptf ∈W q,p(BR) for every p ≥ 1 and R > 0.

Remark 13 In [Rab15], Rabiet proved that under an uniform ellipticity condition (given in terms of
γ∇zc) one has Ptf(x) =

∫
pt(x, y)f(y)dy with (x, y) → pt(x, y) differentiable. A similar result has

been obtained before by Bally and Caramellino [BC14] in the particular case σ = 0 (so there is no
Brownian part). In contrast, here we assume no ellipticity condition and we study the propagation of
regularity only. Notice that there is a significant loss of regularity between the initial condition f and
Ptf. This seems rather unusual because, at list under some non-degeneracy conditions, the semigroup
has a regularization effect. But here there is no such non-degeneracy condition and this is the only
thing that we can prove in this framework (we do not pretend that our result is optimal). We recall
that α2m+q,l2m+q (En) controls the regularity of PEn

t f but may blow up as n→∞.

Proof. We will use Theorem 2.3 from [BC14] that we recall here. For a function φ : Rd → R we
denote

‖φ‖2m+q,2m,p =
∑

0≤|α|≤2m+q

(

∫
Rd

(1 + |x|)2m |∂αf(x)|p dx)1/p.

Moreover, for φ, ψ : Rd → R+ we consider the Forté Mourier distance

d1(φ, ψ) = sup{
∣∣∣∣∫
Rd

f(x)φ(x)dx−
∫
Rd

f(x)ψ(x)dx

∣∣∣∣ : ‖f‖∞ + ‖∇f‖∞ ≤ 1}.

Then Theorem 2.3 in [BC14] asserts the following: let q ∈ N,m ∈ N∗ and p > 1 be given. Suppose
that one may find a sequence of functions φn : Rd → R such that (with p∗ the conjugate of p)

sup
n
‖φn‖η2m+q,2m,p d1(φn, φ) <∞, with η >

q + 1 + d/p∗
m

(61)

Then φ ∈W q,p(Rd).
Now, for each fixed n we choose Γn such that β(Γn) ≤ λ(Ecn) and mEn

(Γn) < 1−ε (this is possible
by (59)). We will use Theorem 2.3 in [BC14] with

φ(x) = 1BR
(x)Ptf(x), and φn(x) = 1BR

(x)PEn,Γn

t f(x).

By (20)
d1(φ, φn) ≤ C(β(Γn) + λ(Ecn)) ≤ Cλ(Ecn)
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with C a constant which depends on R and t but not on n. Moreover, by (42)∥∥∥PEn,Γn

t f
∥∥∥
q+2m,∞

≤ Cqε−1αq+2m,(q+2m)lq+2m
(t, En)t ‖f‖q+2m,∞

and consequently, for every p ≥ 1

‖φn‖q+2m,2m,p ≤ Cq,pε
−1αq+2m,(q+2m)lq+2m

(t, En)t ‖f‖q+2m,∞ .

Now (60) guarantees that (61) is verified and so the conclusion follows. �

5 PDMP’s with three regimes: the convergence result

5.1 Main result

In this section we construct a sequence of PDMP ′s which converge weakly to the solution of our
equation (9) which we recall here:

Xt = x+

m∑
l=1

∫ t

0

σl(Xs)dW
l
s +

∫ t

0

b(Xs) + g(Xs)ds (62)

+

∫ t+

0

∫
E×[0,1]

c(z,Xs−)1{u≤γ(z,Xs−)}Nµ(ds, dz, du).

Notice that instead of the drift coefficient b in (9), here we have b+ g. This is because b and g appear
as a limit of different components.

In order to obtain this convergence result we need an hypothesis on the coefficients which is stronger
then the one in Section 3 : we assume

C∗ := 1 +

m∑
l=1

‖σl‖1,∞ + ‖b‖1,∞ + ‖g‖1,∞ + sup
x∈Rd

∫
E

(|c| |∇xγ|+ |∇xc| γ)(z, x)dµ <∞. (63)

We construct now the approximation PDMP ′s. We consider two sequences of non negative and
finite measures νn, ηn, n ∈ N on E, and a sequence of sets En ↑ E and we denote µn(dz) = 1En(z)dµ(z)
where µ is the one which appears in the equation (62). Moreover we consider a sequence of coefficients
bn : Rd → Rd, cn, dn, en : E ×Rd → Rd and γn, ξn, βn : E ×Rd → [0,∞) and we denote

Inc,γ = 1En
(|∇xγn| |cn|+ (|∇xcn|+ |cn|+ |cn|2)γn), (64)

Jnd,ξ = |∇xξn| |dn|2 + (|∇xdn|2 + |dn|2)ξn,

Kn
e,β = |∇xβn| |en|+ (|∇xen|+ |en|+ |en|2)βn.

Then we assume

Cn := ‖bn‖1,∞ + sup
x∈Rd

∫
E

Inc,γ(z, x)dµ(z) + sup
x∈Rd

∫
E

Jnd,ξ(z, x)dνn(z) + sup
x∈Rd

∫
E

Kn
e,β(z, x)dηn(z) <∞.

(65)
And we associate the equations

Xn
t = x+

∫ t

0

bn(Xn
s )ds (66)

+

∫ t

0

∫
E×[0,∞)

dn(z,Xn
s−)1{u≤ξn(z,Xn

s−)}Ñνn(ds, dz, du)

+

∫ t

0

∫
E×[0,∞)]

en(z,Xn
s−, )1{u≤βn(z,Xn

s−)}Nηn(ds, dz, du)

+

∫ t

0

∫
E×[0,∞)

cn(z,Xn
s−, )1{u≤γn(z,Xn

s−)}Nµn
(ds, dz, du).
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We recall the notation: Nµ is a Poisson point measure on E×[0,∞) with compensator N̂µ(dt, dz, du) =

dt × µ(dz) × du and Ñµ = Nµ − N̂µ. We assume that the random measures Nνn , Nηn and Nµn are
independent. We also assume that

sup
x∈Rd

∫
E

(|∇xξn|+ |ξn|)(|dn|+ |∇xdn|)(z, x)dνn(z) <∞. (67)

In particular this means that the integral the with respect to Ñνn = Nνn − N̂νn may be splitted.
This, together with the assumption Cn < ∞ guarantees that the hypothesis (11),(12),(13) and (16)
are verified so, for each fixed n, the equation (66) has a unique solution.

We give now the hypothesis which guarantees the weak convergence of Xn
t to Xt. We denote

ai,j(x) =

m∑
l=1

σilσ
j
l (x) and (68)

ai,jn (x) =

∫
E

din(z, x)djn(z, x)ξn(z, x)dνn(z),

gin(x) =

∫
E

ein(z, x)βn(z, x)dηn(z)

and we define

ε0(n) = sup
x∈Rd

∫
E

|dn(z, x)|3 ξn(z, x)dνn(z) + sup
x∈Rd

∫
E

|en(z, x)|2 βn(z, x)dηn(z), (69)

ε1(n) = ‖a− an‖∞ + ‖b− bn‖∞ + ‖g − gn‖∞

ε2(n) = sup
x∈Rd

∫
En

(|c| (|γ − γn|+ γ(1 + |c|) |c− cn|)(z, x)dµ(z).

We recall that in (38) we associated to the coefficients σ, b, c, g, γ of the equation (62) the quantity
αq,p(t, G) (for a set G ⊂ E with µ(G) <∞). We also recall the notation (see (14))

λ(G) = sup
x∈Rd

∫
G

|c(z, x)| γ(z, x)dµ(z)

Then, for every fixed n ∈ N we construct

ε∗(n) = inf
En⊂G⊂E

(λ(Gc) + α3,9(G)(C2
∗ + C2

n)(λ(G8En) +

2∑
i=0

εi(n)) (70)

with the infimum taken on the sets G with µ(G) <∞.
Finally we will assume that

σ ∈ C4
b (Rd), b ∈ C3

b (Rd), c(◦, z) ∈ C3
b (Rd), γ(◦, z) ∈ C3

b (Rd) (71)

and

cn(◦, z) ∈ C1
b (Rd), dn(◦, z) ∈ C1

b (Rd), en(◦, z) ∈ C1
b (Rd), γn(◦, z) ∈ C1

b (Rd) (72)

ξn(◦, z) ∈ C1
b (Rd), βn(◦, z) ∈ C1

b (Rd)

Remark 14 In the case α3,9(E) <∞ one takes G = E and obtains

ε∗(n) ≤ α3,9(E)(C2
∗ + C2

n)

2∑
i=0

εi(n).

But in the case when α3,9(E) =∞ (and this is the interesting situation) we have to find an equilibrium
between λ(Gc) (which is small) and α3,9(G) (which is large). This is the idea behind the construction
of ε∗(n). See Example 1.
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We are now able to give our main result:

Theorem 15 We assume that (11), (12), (13),(16),(71),(72) and (67) hold. We also assume that,
for every measurable set G ⊂ E with µ(G) <∞,

lim
Γ→∞

mG(Γ) = lim
Γ→∞

1

µ(G)
sup
x∈Rd

∫
G

1 ∧ γ(z, x)

Γ
dµ(z) < 1.

A. There exists an universal constant C such that for every n ∈ N and every f ∈ C3
b (Rd)

‖Ptf − Pnt f‖∞ ≤ Ct ‖f‖3,∞ ε∗(n) (73)

where Ptf(x) = E(f(Xt(x))) and Pnt f(x) = E(f(Xn
t (x))).

B. Moreover, if limn→∞ ε∗(n) = 0, then, for every x ∈ Rd and every t > 0, Xn
t (x) converges in

law to Xt(x).

Remark 16 Notice that if α3,9(t, G) = ∞ for every En ⊂ G ⊂ E then ε∗(n) = ∞ so (73) says
nothing.

Remark 17 Notice that the estimate (73) is not asymptotic. This in contrast with the assertion B.
In B Pnt f appears as an approximation of Ptf. But in A we may think in the converse way: we
consider Xt as an approximation of Xn

t obtained by replacing ”small jumps” (the one corresponding
to νn) by the Brownian motion W. This is the point of view in numeric applications (see [AR01])

5.2 Proof

Before giving the proof of the above theorem we need some preliminary lemmas. We denote

Lnf(x) =
1

2

d∑
i,j=1

∂i∂jf(x)ai,jn (x) +

d∑
i=1

∂if(x)(bin(x) + gin(x)) (74)

+

∫
En

(f(x+ cn(z, x))− f(x))γn(z, x)dµ(z)

Lemma 18 There exists an universal constant C such that for every t > 0 and every f ∈ C3
b (Rd)

‖Pnt f(x)− f(x)− tLnf‖∞ ≤ CC
2
n ‖f‖3,∞ (t1/2 + ε0(n))× t (75)

The proof is rather long and technical so we live it for the appendix.
We fix Γ > 1 and G ⊂ E with µ(G) < ∞ and recall that PG,Γt f(x) = E(f(XG,Γ

t (x)) where

XG,Γ
t (x) is the solution of the truncated equation (19). We define

LG,Γf(x) =
1

2

d∑
i,j=1

∂i∂jf(x)ai,j(x) +

d∑
i=1

∂if(x)(bi(x) + gi(x))

+

∫
G

(f(x+ c(z, x))− f(x))γΓ(z, x)dµ(z).

Lemma 19 A. For every f ∈ C3
b (Rd)∥∥∥PG,Γt f − f − tLG,Γf

∥∥∥
∞
≤ CC2

∗ t
3/2 ‖f‖3,∞ (76)

B. We also have ∥∥∥Ptf − PG,Γt f
∥∥∥
∞
≤ Ct(β(Γ) + λ(Gc)) ‖f‖1,∞ . (77)
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Proof. The proof of A is analogues to the proof of (73) so we skip it. And (77) is an immediate
consequence of (20). �

Proof of Theorem 15:
Step 1. We fix n ∈ N, a set G with µ(G) <∞ such that En ⊂ G, and Γ > 1 such that mG(Γ) < 1.

It is easy to check that

∥∥LG,Γf − Lnf∥∥∞ ≤ C ‖f‖2,∞ (β(Γ) + λ(G8En) +

2∑
i=0

εi(n)).

This, together with the previous two lemmas give (for every every δ > 0)∣∣∣PG,Γδ f(x)− Pnδ f(x)
∣∣∣ ≤ C(C2

∗ + C2
n)δ(δ1/2 + β(Γ) + λ(G8En) +

2∑
i=0

εi(n)) ‖f‖3,∞ (78)

Step 2. Using (77)

‖Ptf − Pnt f‖∞ ≤
∥∥∥PG,Γt f − Pnt f

∥∥∥
∞

+ Ct ‖f‖1,∞ (β(Γ) + λ(Gc).

Step 3. Let δ > 0, tk = kδ and ∆δf(x) = Pnδ f(x)− PGδ f(x). We write∥∥Pnt f(x)− PGt f
∥∥
∞ ≤

∑
k≤t/δ

∥∥∥Pnt−tk+1
∆δP

G
tk
f
∥∥∥
∞
≤
∑
k≤t/δ

∥∥∆δP
G
tk
f
∥∥
∞ .

By (78) first and by (42) then

∥∥∆δP
G
tk
f
∥∥
∞ ≤ C

∥∥PGtkf∥∥3,∞ (C2
∗ + C2

n)(δ1/2 + β(Γ) + λ(G8En) +

2∑
i=0

εi(n))δ

≤ Cα3,9(G) ‖f‖3,∞ (C2
∗ + C2

n)(δ1/2 + β(Γ) + λ(G8En) +

2∑
i=0

εi(n))δ.

Summing over k = 1, ..., t/δ we obtain

∥∥PGt f − Pnt f∥∥∞ ≤ Cα3,9(G) ‖f‖3,∞ (C2
∗ + C2

n)(δ1/2 + β(Γ) + λ(G8En) +

2∑
i=0

εi(n))

= Cα3,9(G) ‖f‖3,∞ (C2
∗ + C2

n)(β(Γ) + λ(G8En) +

2∑
i=0

εi(n))

the last inequality being obtained by taking δ1/2 = β(Γ) + λ(G8En) +
∑2
i=0 εi(n). We conclude that

‖Ptf − Pnt f‖∞ ≤ C(λ(Gc) + β(Γ)) (79)

+Cα3,9(G) ‖f‖3,∞ (C2
∗ + C2

n)(λ(G8En) + β(Γ) +

2∑
i=0

εi(n)).

This estimate holds for every En ⊂ G ⊂ E, with Γ > 1 chosen such that mG(Γ) < 1 (so Γ depends
on G).

Suppose now that ε∗(n) < ε. Then we may choose a set Gε such that

λ(Gcε) + α3,9(Gε)(C
2
∗ + C2

n)(λ(Gε8En) +

2∑
i=0

εi(n)) ≤ ε.

Since limΓ→∞mGε
(Γ) < 1 we may chose Γε such that mGε

(Γ) < 1 for Γ ≥ Γε. And, since

lim
Γ→∞

β(Γ) = 0,
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we pass to the limit with Γ→∞ in (79) (with G = Gε) and we obtain

‖Ptf − Pnt f‖∞ ≤ C(λ(Gcε) + Cα3,9(Gε) ‖f‖3,∞ (C2
∗ + C2

n)(λ(Gε8En) +

2∑
i=0

εi(n))

≤ Cε.

Then we pass to the limit with ε ↓ ε∗(n) and we conclude.
It is easy to check that the sequence Xn

t (x), n ∈ N is tight and so, if limn ε∗(n) = 0 the convergence
in law follows. �

5.3 Example

We give here the simplest possible example which illustrates the convergence result from the previous
section. We consider some C3

b (R) functions f, e, c : R→ R and ξ, β, γ : R→ [0, 1
2 ] and we denote

Q = ‖f‖3,∞ + ‖e‖3,∞ + ‖c‖3,∞ + ‖ξ‖3,∞ + ‖β‖3,∞ + ‖γ‖3,∞ <∞. (80)

We also assume that
γ(x) ≥ γ > 0. (81)

We define

hn(z, x) = z1/2f(x)1[ 1
n ,

2
n )(z) + ze(x)1[ 2

n ,
3
n )(z) + z3/2c(x)1[ 3

n ,1)(z),

γn(z, x) = ξ(x)1[ 1
n ,

2
n )(z) + β(x)1[ 2

n ,
3
n )(z) + γ(x)1[ 3

n ,1)(z).

We also take the measure µ(dz) = 1
z2 1(0,1)(z)dz and we associate the equations

Xn
t = x+

∫ t+

0

∫ 1

0

∫ 1

0

hn(z,Xn
s−)1{u≤γn(Z,Xn

s−)}Nµ(ds, dz, du) (82)

−
√

2n(
√

2− 1)

∫ t

0

(f × ξ)(Xn
s )ds

and

Xt = x+ ln 2

∫ t

0

(f ×
√
ξ)(Xs)dWs + ln(

3

2
)

∫ t

0

(e× β)(Xs)ds (83)

+

∫ t+

0

∫ ∞
0

∫ 1

0

z3/2c(Xs−)1{u≤γ(Xs−)}Nµ(ds, dz, du)

Proposition 20 Suppose that (80) and (81) hold. There exists an universal constant C such that for
every f ∈ C3

b (R) and t > 0

|E(f(Xt))− E(f(Xn
t ))| ≤ C

γ3
(t ∨ 1)Q10eCtQ

3

× ‖f‖3,∞ ×
1

n1/14
(84)

Proof. The equation (82) is the equation (66) with

dn(z, x) = z1/2f(x)1[ 1
n ,

2
n )(z) en(z, x) = ze(x)1[ 2

n ,
3
n )(z) cn(z, x) = z3/2c(x)1[ 3

n ,1)(z),

ξn(z, x) = ξ(x)1[ 1
n ,

2
n )(z) βn(z, x) = β(x)1[ 2

n ,
3
n )(z) γn(z, x) = γ(x)1[ 3

n ,∞)(z)

and with measures νn(dz) = 1[ 1
n ,

2
n )(z)µ(dz), ηn(dz) = 1[ 2

n ,
3
n )(z)µ(dz) and En = [ 3

n , 1). And, with the

notation from (68) we have a(x) = an(x) = ln 2 × f2(x)ξ(x), b(x) = bn(x) = 0, c(z, x) = cn(z, x) =
z3/2c(x) and g(x) = gn(x) = ln( 3

2 ) × e(x)β(x). Moreover, γn(z, x) = γ(z, x) = γ(x). So, with the

notation from (69), we have ε1(n) = ε2(n) = 0 and ε0(n) ≤ CQ4n−1/2. We also have (see (63) and
(65)) C∗ ≤ CQ2 and Cn ≤ CQ3.
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Finally, for ε < 3
n we take Gε = (ε, 1] and we estimate α3,3(t, Gε) defined in (38) with respect to

the coefficients of the equation (83). So we will use the notation from (33), (34), (35), (36) and (37).
Notice first that for every p ≥ 1 and q ≤ 3 one has cq,p(Gε) ≤ CQ3 so that θ3,3(Gε) ≤ CQ3. We also
have

γ̃j(Gε) ≤ CQj ×
∫ 1

ε

dz

z2
≤ CQj

ε

γ(Gε) ≤ CQ×
∫ 1

ε

dz

z2
≤ CQ

ε

and in the same way γ(Gε) ≤ CQε−1 and γ3,6(Gε) ≤ CQε−1. We conclude (see (38)) that

α3,3(t, Gε) ≤
C

γ3
(t ∨ 1)Q6eCtQ

3

× ε−3.

We also have (see (14))

λmax(Gcε) ≤ Q

∫ ε

0

z3/2 × dz

z2
= CQε1/2,

λmax(Gε8En) ≤ Q

∫ 3/n

ε

z3/2 × dz

z2
= CQn−1/2

So, with the notation from (70),

ε∗(n) = inf
En⊂Gε⊂E

(λmax(Gc) + α3,3(G)(C2
∗ + C2

n)(λmax(G8En) +

2∑
i=0

εi(n))

≤ C

γ3
(t ∨ 1)Q10eCtQ

3

× inf
0<ε<3/n

(ε1/2 +
1

ε3
× n1/2).

Then we take ε = n−1/7 and we obtain

ε∗(n) ≤ C

γ3
(t ∨ 1)Q10eCtQ

3

× 1

n1/14
.

Now (73) yields (84). �

6 Appendix: Moments estimates

We assume in this section that µ(E) <∞. This is just to simplify notation - in concrete applications
we will replace µ by 1Gµ with µ(G) <∞. Then we consider an indexes set Λ and we denote by α the
elements of Λ. Moreover we consider a family of processes V αt ∈ Rd, α ∈ Λ such that

sup
t≤T

E(|V αt |
2p

) <∞ ∀p ∈ N, ∀T > 0

and which verify the following equation

V αt = V α0 +

m∑
l=1

∫ t

0

(Hα
l (s) + 〈∇σl(Xs), V

α
s 〉)dW l

s (85)

+

∫ t

0

(hαl (s) + 〈∇b(Xs), V
α
s 〉)ds

+

∫ t

0

∫
E×(0,Γ)

(Qα(s−, z) +
〈
∇xc(z,Xs−), V αs−

〉
)1{u≤γ(a,Xs−)}dNµ(s, u, z).

Here Xy is the solution of the equation (9) and Hα
l , h

α
l and Qα are previsible processes which verify

E(

∫ T

0

(|Hα
l (s)|2 + |hαl (s)|+ sup

x∈Rd

∫
E

|Qα(s, z)| γ(z, x)dµ(z))ds) <∞.

So the corresponding stochastic integrals in (85) make sense.
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Proposition 21 We suppose that

|Qα(s, z)| ≤ q(z,Xs) |Rαs | (86)

for some previsible processes Rα and some measurable function q : E ×Rd → R+ and we denote

ĉ(p) = sup
x∈Rd

∫
E

(q(z, x) + |∇xc(z, x)|)(1 + q(z, x) + |∇xc(z, x)|)2p−1γ(z, x)dµ(z). (87)

For every p ∈ N and 0 ≤ t ≤ T there exists an universal constant Cp such that

E(|V αt |
2p

) ≤ exp(Cpt(1 + ‖∇σ‖2p∞ + ‖∇b‖2p∞ + ĉ(p))) (88)

×(|V α0 |
2p

+ Cp

∫ t

0

(E(

m∑
l=1

|Hα
l (s)|2p + |hα(s)|2p + ĉ(p)

∣∣Rαs−∣∣2p)ds).
Proof. Using Itô’s formula for f(x) = x2p we obtain

|V αt |
2p

= |V α0 |
2p

+Mα
t + Iαt + Jαt

with

Mα
t =

m∑
l=1

∫ t

0

2p(V αs )2p−1(Hα
l (s) + 〈∇σl(Xs), V

α
s 〉)dW l

s,

Iαt =

m∑
l=1

∫ t

0

p(2p− 1)(V αs )2p−2(

m∑
l=1

Hα
l (s) + 〈∇σl(Xs), V

α
s 〉)2ds

+2p

∫ t

0

(V αs )2p−1(hα(s) + 〈∇b(Xs), V
α
s 〉)ds

and

Jαt =

∫ t

0

∫
E×(0,Γ)

(
∣∣V αs− +Qα(s−, z) +

〈
∇xc(z,Xs−), V αs−

〉∣∣2p − ∣∣V αs−∣∣2p)1{u≤γ(z,Xs−)}dNµ(s, u, z).

Using the trivial inequality aubv ≤ au+v + bu+v we obtain

E(|Iαt |) ≤ Cp

∫ t

0

E(
m∑
l=1

|Hα
l (s)|2p + |hα(s)|2p)ds

+Cp(1 + ‖∇σ‖2p∞ + ‖∇b‖2p∞)

∫ t

0

E(|V αl (s)|2p)ds.

We estimate now Jαt . We will use the elementary inequality

(a+ b)2p − a2p ≤ Cp |b| (|a|2p−1
+ |b|2p−1

)

with
a = V αs−, b = Qα(s−, a) +

〈
∇xc(a,Xs−), V αs−

〉
.

Since |Qα(s−, z)| ≤ q(z,Xs−)
∣∣Rαs−∣∣ we have

|b| ≤ (q(z,Xs−) + |∇xc(z,Xs−)|)(
∣∣Rαs−∣∣+

∣∣V αs−∣∣)
so we obtain ∣∣V αs− +Qα(s−, z) +

〈
∇xc(z,Xs−), V αs−

〉∣∣2p − ∣∣V αs−∣∣2p
≤ Cp(q(a,Xs−) + |∇xc(z,Xs−)|)(1 + q(z,Xs−) + |∇xc(z,Xs−)|)2p−1

×(
∣∣Rαs−∣∣2p +

∣∣V αs−∣∣2p).
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Then

E(|Jαt |) ≤ CpE(

∫ t

0

∫
E×(0,1)

(q(z,Xs−) + |∇xc(z,Xs−)|)(1 + q(z,Xs−) + |∇xc(z,Xs−)|)2p−1

×(
∣∣Rαs−∣∣2p +

∣∣V αs−∣∣2p)1{u≤γ(a,Xs)}dudµ(z)ds

= CpE(

∫ t

0

∫
E

(q(z,Xs−) + |∇xc(z,Xs−)|)(1 + q(z,Xs−) + |∇xc(z,Xs−)|)2p−1γ(z,Xs)

×(
∣∣Rαs−∣∣2p +

∣∣V αs−∣∣2p)dµ(z)ds

≤ Cpĉ(p)

∫ t

0

E(
∣∣Rαs−∣∣2p +

∣∣V αs−∣∣2p)ds.
Since Mα is a martingale we obtain

E(|V αt |
2p

) = |V α0 |
2p

+ E(Iat ) + E(Jat )

≤ |V α0 |
2p

+ Cp

∫ t

0

(E(

m∑
l=1

|Hα
l (s)|2p + |hαl (s)|2p + ĉ(p)

∣∣Rαs−∣∣2p)ds
+Cp(1 + ‖∇σ‖2p∞ + ‖∇b‖2p∞ + ĉ(p))

∫ t

0

E(|V αl (s)|2p ds

and Gronwall’s lemma gives (88). �

7 Appendix: Proof of Proposition 18

We first notice that the isometry property yields

E(|Xn
t − x|

2
) ≤ Ct× (‖b‖∞ + sup

x∈Rd

∫
E×[0,1]

(|dn(z, x)|2 ξn(z, x)dνn(z) (89)

+ sup
x∈Rd

∫
E×[0,1]

|en(z, x)| (1 + |en(z, x)|)βn(z, x)dηn(z)

+ sup
x∈Rd

∫
E×[0,1]

|cn(z, x)| (1 + |cn(z, x)|)γn(z, x))dµn(z))

≤ Ct× Cn
We denote

kn(x, z, u) = dn(z, x)1{u≤ξn(z,x)}, qn(x, z, u) = en(z, x)1{u≤βn(z,x)}

hn(x, z, u) = cn(z, x)1{u≤γn(z,x)}

Using Itô’s formula, for a function f ∈ C2(R), we obtain

f(Xn
t ) = f(x) +Mn

t (f) + Int (f) + Jnt (f) +Hn
t (f) +Dn

t (f)

with

Mn
t (f) =

∫ t

0

∫
E×(0,1)

〈
∇f(Xn

s−), kn(Xn
s−, z, u)

〉
Ñνn(ds, dz, du),

Int (f) =

∫ t

0

∫
E×(0,1)

f(Xn
s− + kn(Xn

s−, z, u))− f(Xn
s−)−

〈
∇f(Xn

s−), kn(Xn
s−, z, u)

〉
dνn(z)duds

Jnt (f) =

∫ t

0

∫
En×(0,1)

f(Xn
s− + qn(Xn

s−, z, u))− f(Xn
s−)Nηn(ds, dz, du)

Hn
t (f) =

∫ t

0

∫
En×(0,1)

f(Xn
s− + hn(Xn

s−, z, u))− f(Xn
s−)Nµn

(ds, dz, du)

Dn
t (f) =

∫ t

0

〈∇f(Xn
s ), bn(Xn

s )〉 ds.
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Since Mn
t (f) is a martingale we obtain

Pnt f(x)− f(x) = E(Int (f)) + E(Jnt (f)) + E(Hn
t (f)) + E(Dn

t (f)).

We compute each of these terms. Let us estimate E(Int (f)). We denote

l(x, z, u) =
1

2

d∑
i,j=1

∂i∂jf(x)kin(x, z, u)kjn(x, z, u)

φ(x, z, u) = f(x+ kn(x, z, u))− f(x)− 〈∇f(x), kn(x, z, u)〉 − l(x, z, u).

Notice that, by the very definition of an,∫
E×(0,1)

l(x, z, u)dudνn(dz) =
1

2

d∑
i,j=1

∂i∂jf(x)ai,jn (x)

so that

E(Int (f)) =
t

2

d∑
i,j=1

∂i∂jf(x)ai,jn (x) + r1(t, x) + r2(t, x)

with

r1(t, x) =

∫ t

0

∫
E×(0,1)

E(φ(Xn
s−, z, u)))dudνn(dz)ds,

r2(t, x) =
1

2

∫ t

0

∫
E×(0,1)

E(l(Xn
s−, z, u)− l(x, z, u))dudνn(z)ds

=
t

2

d∑
i,j=1

∫ t

0

E(∂i∂jf(Xn
s−)ai,jn (Xn

s−))ds.

We have
|φ(x, z, u)| ≤ C ‖f‖3,∞ |kn(x, z, u)|3 = C ‖f‖3,∞ |dn(z, x)|3 1{u≤ξn(z,x)}

so that

|r1(t, x)| ≤ C ‖f‖3,∞
∫ t

0

∫
E

∫ 1

0

E(
∣∣dn(z,Xn

s−)
∣∣3 1{u≤ξn(z,Xn

s−)})dudνn(z)ds

= C ‖f‖3,∞
∫ t

0

∫
E

E(
∣∣dn(z,Xn

s−)
∣∣3 ξn(z,Xn

s−))dνn(z)ds

≤ C ‖f‖3,∞ t sup
x∈Rd

∫
E

|dn(z, x)|3 ξn(z, x)dνn(z) ≤ C ‖f‖3,∞ tε0(n).

We estimate now r2. We notice that

‖an‖1,∞ ≤ C sup
x∈Rd

∫
E

(|∇xdn(z, x)|2 + |dn(z, x)|2))ξn(z, x) + |dn(z, x)|2 |∇xξn(z, x)|)dνn(z)

≤ C × Cn

so, using (89), we obtain

|r2(t, x)| ≤ C ‖f‖3,∞ Cn ×
∫ t

0

E(
∣∣Xn

s−(x)− x
∣∣)ds

≤ C ‖f‖3,∞ C2
n × t3/2

We conclude that∣∣∣∣∣∣E(Int (f))− t

2

d∑
i,j=1

∂i∂jf(x)ai,jn (x)

∣∣∣∣∣∣ ≤ CC2
nt ‖f‖3,∞ (t1/2 + ε0(n)).
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Let us estimate E(Jnt (f)). The strategy is the same as for Int (f). We denote

l(x, z, u) =

d∑
i=1

∂if(x)qin(x, z, u)

φ(x, z, u) = f(x+ qn(x, z, u))− f(x)− l(x, z, u).

By the very definition of gn,∫
E×(0,1)

l(x, z, u)dudηn(dz) =

d∑
i=1

∂if(x)gin(x)

so that

E(Jnt (f)) = t

d∑
i=1

∂if(x)gin(x) + r1(t, x) + r2(t, x)

with

r1(t, x) =

∫ t

0

∫
E×(0,1)

E(φ(Xn
s−, z, u)))dudηn(dz)ds,

r2(t, x) =

∫ t

0

∫
E×(0,1)

E(l(Xn
s−, z, u)− l(x, z, u))dudηn(z)ds

=

d∑
i=1

∫ t

0

E(∂if(Xn
s−)gin(Xn

s−)− ∂if(x)gin(x))ds

We have
|φ(x, z, u)| ≤ C ‖f‖2,∞ |qn(x, z, u)|2 = C ‖f‖2,∞ |en(z, x)|2 1{u≤βn(z,x)}

so that

|r1(t, x)| ≤ C ‖f‖2,∞
∫ t

0

∫
E

∫ 1

0

E(
∣∣en(z,Xn

s−)
∣∣2 1{u≤βn(z,Xn

s−)})dudηn(z)ds

= C ‖f‖2,∞
∫ t

0

∫
E

E(
∣∣en(z,Xn

s−)
∣∣2 βn(z,Xn

s−))dηn(z)ds

≤ C ‖f‖2,∞ t sup
x∈Rd

∫
E

|en(z, x)|2 βn(z, x))dηn(z) ≤ C ‖f‖2,∞ tε0(n).

We estimate now r2. We have

‖gn‖1,∞ ≤ C sup
x∈Rd

∫
E

(|en(z, x)|+ |∇xen(z, x)|)βn(z, x) + |en(z, x)| |∇xβn(z, x)| dηn(z)

≤ C × Cn

so, using (89)

|r2(t, x)| ≤ Ct ‖f‖2,∞ Cn ×
∫ t

0

E(
∣∣Xn

s−(x)− x
∣∣)ds

≤ C ‖f‖2,∞ C2
n × t3/2.

We conclude that ∣∣∣∣∣E(Jnt (f))− t
d∑
i=1

∂if(x)gin(x)

∣∣∣∣∣ ≤ C ‖f‖2,∞ C2
n(t1/2 + ε0(n))× t.
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We estimate now Hn
t (f). We denote

θn(x) =

∫
En

(f(x+ cn(z, x))− f(x))γn(z, x)dµ(z)

so that

E(Hn
t (f)) =

∫ t

0

∫
En

E(θn(Xn
s−))ds.

Notice that

θn(x) =

d∑
i=1

∫
En

dµ(z)γn(z, x)cin(z, x)

∫ 1

0

∂if(x+ λcn(z, x))dλ.

Then it is easy to check that

|∇θn(x)| ≤ C ‖f‖2,∞ ×
∫
En

dµ(z)(|∇xγn(z, x)| |cn(z, x)|+ |∇xcn(z, x)| γn(z, x) + |cn(z, x)|2 γn(z, x))

≤ C ‖f‖2,∞ × Cn.

It follows that

|E(Hn
t (f))− tθn(x)| ≤

∫ t

0

∣∣E(θn(Xn
s−))− θn(x)

∣∣ ds
≤ C ‖f‖2,∞ Cn ×

∫ t

0

E(
∣∣Xn

s−(x))− x
∣∣)ds

≤ Ct3/2 ‖f‖2,∞ C2
n.

Finally∣∣∣∣E(Dn
t (f))−

∫ t

0

〈∇f(x), bn(x)〉 ds
∣∣∣∣ ≤ ‖b‖1,∞ ‖f‖2,∞ ∫ t

0

E(
∣∣Xn

s−(x))− x
∣∣)ds ≤ CC2

nt
3/2.

�

References

[ACT+04] A. Alfonsi, E. Cancès, G. Turinici, B. Di Ventura, and W. Huisinga. Exact simulation
of hybrid stochastic and deterministic models for biochemical systems. Technical Report
RR-5435, INRIA, December 2004.

[ACT+05] A. Alfonsi, E. Cancès, G. Turinici, B. Di Ventura, and W. Huisinga. Adaptive simulation
of hybrid stochastic and deterministic models for biochemical systems. September 2005.
In ESAIM Proceedings, volume 14, pages 1 – 13.

[AR01] Søren Asmussen and Jan Rosiski. Approximations of small jumps of Lévy processes with
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