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1 Abstract

We study the asymptotic behaviour of a sequence of Piecewise Constant Markov Processes (in short
PDMP) in which three different scales are at work: a rapid, a medium and a slow one. At the limit
the rapid scale gives rise to a diffusion part (this is a CLT type regime), the medium scale produces a
drift part (this is the law of large numbers type regime) and the slaw rate gives a finite variation jump
process. So at the limit we obtain a stochastic differential equation which is similar to the PDM P
evolution but now, in-between two jumps the equation evolutes as a general diffusion process including
a Brownian part and moreover, an infinity of jumps occur in each finite time interval. This type of
equations seems to be new in the literature and our first goal is to prove existence and uniqueness of
the solution for them. Afterwords we study the regularity of the semigroup and we use it in order to
prove the convergence result mentioned in the beginning.

2 Introduction

In this paper we introduce the following class of jump type stochastic equations:

= =z v ta s ! t <)ds
X, = +;/0 l(X>dWs+/Ob<X>d (1)

t
—|—/// (2, Xs— ) fu<y(z,x, )3 Nu(ds, dz, du).
0 JE J(0,00)

Here E is a measurable space, N, (ds, dz,du) is a homogeneous Poisson point measure on E x (0, c0)
with intensity measure 11(dz) X 1(g,00)(u)du and the coefficients are y,b: R* — R® and ¢: R? x E —
R% v : R*x E — [0,00). Suppose for a moment that y is a finite measure and o; = 0,1 = 1,...,m.
Then the solution of the above equation is a Piecewise Deterministic Markov Process (PDMP in
short) and existence and uniqueness of the solution are well known. But, if u is an infinite measure
and we have a non null diffusion component, this type of equations have not been considered in the
literature. So our first aim is to prove that under reasonable hypothesis equation (1) has a unique
solution - this is done Theorem 3. The proof is based on some non trivial L' estimates (we thank to
Nicolas Fournier who gave us an important hint in this direction).
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The equation (1) naturally appears as the limit of sequences of PDM P’s with three different
regimes, that we describe now. We consider a sequence of processes X{*,n € N, which solve

3 t
X =a+ Z/O /E/(O )c(i)m(z,X;L_)1{u§7(i)’n(z7xsi)}Nu(i),” (ds,dz, du) (2)
i=1 100

where NV,

H(i)7n(ds, dz,du),i = 1,2,3 are three independent Poisson point measures of intensities

M(i),n(dz) X 1(0,00)(U)du-

Each of them represents a different regime. For ¢ = 1 we consider a CLT type regime, described by
the following hypothesis:

1 [ )€l () X 20102001 0(2) = 7 (2) 3)

where ¢ is the matrix with columns oy, = 1,...,m and ¢* designs the transposed matrix. Moreover
we assume that

. 3
hm/ !c(l)yn(z,x)| X Y1), (2, 2)dpy,n(2) = 0. 4)
" JE
For i = 2 we have a Law of Large Numbers type regime: we assume that
i [ w)(2:2) % 20,02 2)ia)0 (2) = i) (5)
and
. 2
hm/ |c(2)7n(z,x)’ X Y2),n (2, 2)dp(2) n(2) = 0. (6)
" JE

Finally, for i = 3 we have a "finite variation” type regime: we assume that js) ,(dz) = 1g, (2)du(2)
where p is the intensity measure which appears in the limit equation (1) and E,, T E is a sequence of
measurable sets such that p(FE,) < oo and

lim le(z, 2) |y (2, x)du(z) = 0. (7)
" JE\E,
And we assume that
i | (211002 D) n(2) = [ clenr(zadn) s)

We stress that the convergence in (3),(5) and (8) has to be given in a more precise and quantitative
way (see (69)) - here we just give the general direction. Some other technical hypothesis are in force.
Then we are able to prove that, for f € C3(R?), one has

lim E(f(X]")) = E(f(X4))

and to control the speed of convergence.

The weak convergence of Markov chains to diffusion processes has been widely discussed in the
literature (see e.g. [Kur71], [Kur78], [Kus84], [JS03])) but in our framework we have the following
specific difficulty. In the case of standard jump type equations (that is: 1g,<+(.,x,_); does not
appear in the equation (1)) the flow z — X, () is differentiable and consequently, if f € CJ(R?), then
x — E(f(X¢(z))) is three times differentiable as well. Using this, one proves in a straightforward way
the convergence of the semigroups and moreover, obtains an estimate of the error. But, because of the
indicator function, this is not true here - and so a key point in our approach is to study the regularity
of x = E(f(X¢(x))). This is done in Theorem 7 and 12.

We also mention that PDM P’s with several regimes have recently been considered in the literature
for modelling and numerically solving problems in gene networks (see [CDMR12] and [ACT*04],



[ACT™05]) and chemical networks (see [BKPRO6]). However we do not enter in our paper in the
specific framework on such physical phenomenons.

The paper is organized as follows: In Section 3 we prove existence and uniqueness for the solution
of equation (1) and in Section 4 we prove the regularity of © — FE(f(X;(z))). In Section 5 we prove
the convergence result and in the Appendix we give some moment inequalities used in the paper.

Acknowledgements: We are grateful to Nicolas Fournier and to Eva Locherbach for their useful
suggestions and commentaries.

3 Existence and uniqueness

3.1 Notation and main result

We consider a measurable space (E,&) and, for a o finite measure p on E we denote by N, the
Poisson point measure on F X [0,00) of compensator ﬁ#(dt, dz,du) = dt x p(dz) x du (we refer to
Tkeda Watanabe [IW89] for definitions and notation concerning Poisson point measures). Moreover we
consider a m dimensional Brownian motion W = (W1, ..., W™) which is independent of the Poisson
measure N, and we look to the d dimensional stochastic equation

= x v to s ! t s)ds
X, = +;/0 l(X)dWS—F/Ob(X)d (9)

t+
+/ / (2, Xs— ) fu<ry(z,x, )3 Nu(ds, dz, du).
0 Ex[0,00)

with 0y,b: R?* - RYand ¢: E x R — R% ~v: E x R* = [0,00).

Definition 1 A process (X;)i>o is called a L' solution of the equation (9) if it is adapted, cadlag
and, for every T >0

sup E(|X¢|) < oc. (10)
t<T

Remark 2 We precise that X;,t > 0 is a cadlag process if it is right continuous and has finite left
hand limits almost surely. In particular Xy may not blow up in finite time: if T = inf{t : | X;| > R}
then supg TR = 00 (indeed, if SUpp TR = Too < T, then Xpar, - = 00).

We give now the hypothesis which are needed in order to obtain existence and uniqueness for a L'
solution of the above equation. We assume that there exist a constant L € R, and some functions
le,ly : E— Ry such that, for every x,y € R?

() = b(y)| + D o) — ouly)| < La —y| (11)
=1

and for every z,y € R and z € E

le(z,2) —c(z,9)] <le(2) e =yl v(z2) =7(z9)| <L(2) [¢ -yl (12)



Moreover we assume that

Cul36) = sup /E (1 (2) lelz, )] + Le(2)1(2, 2))di(z) < . (13)

For a measurable set G C E and I' > 1 we denote

NG = suwp [ ) 2 (z)du(2), (14)
rzERIJG
BI) = sup / ez 2)[ 12 2) L ooy dia(2) (15)
r€ERIJE
and we assume that
AME) <o and Fle B(T) =0. (16)

Our main result is the following:

Theorem 3 Suppose that (11),(12), (13) and (16) hold. Then the equation (9) has a unique L*
solution.

3.2 The basic estimate

In this section we give the main estimate which allows to prove Theorem 3. We will work with
some truncated versions of the equation (9) that we construct now. We consider a family of smooth
functions ¢r : Ry — [0,T] such that

Yr(z)=2 if z<T -1, (17)
=TI if =z>T

and such that the derivatives of any order of ¢r are bounded, unifromely with respect to I'. Then we
construct

r(z,2) = Yr(y(z, x)). (18)

This is a smooth version of I' A y(z, x).
For a measurable set G C E and a constant I' > 1 we denote by X' the L! solution (if such a
solution exists) of the equation

m t t
X2t = x+2/ Ul(XSG’F)dWsl+/ b(XE)ds (19)
=170 0

t+
+/ / la(2)e(z, X wirn(zxe T Nu(ds, dz, du).
0 o M e (e, x 00 N

Remark 4 Notice that we accept the case G = E and I' = co and then XtG’F = X; the solution of
the equation (9).

Remark 5 If 4(G) < 0o and T' < oo then it is easy to prove that the equation (19) has a unique
L' solution: indeed if Ty, k € N are the jump times of the Poisson process t — N,(t,G) then, for
t € [Ty—1,T)) one solves the standard diffusion equation dX&T = 3" (XD dW! + b(XFT)ds
and then defines XQCJ;’F = X%_ + C(ZkaXfir)l{ngyp(z,Xf_)} where Zy, ~ ﬁlg(z)u(dz) and Uy ~

%1[0,F] (u)du



Lemma 6 Suppose that (11),(12),(13) and (16) hold. Let Gy C Gy C E be two measurable sets
and 1 < Ty < Ty (the case G1 = Gy = E and 'y = T'y = oo is included) and let X} = XtGl’Fl
and X? = X25G2’F2 be two L' solutions of the equation (19) (corresponding to G1,T1 respectively to
G49,Ts). There exists an universal constant C' such that for every T > 0 one has

sup B(| X}~ XF|) < CTexp(CT(L + C,(7.6))) x (B(T) + A(G2\G) (20)

with L, Cy(7,¢), B(T'1) and AN(G2\G1) defined in (11), (13),(14) and (15). Moreover for every p > 0

P(sup | X} — X}?| > p) < % exp(CT(L + C,(v,¢))) x (B(T1) + A(G2\Gh)). (21)

t<T

Proof. Step 1. We will use a cut-off procedure inspired from [BF11]. Let us introduce some
notation. Let ¢(z) = al(_11)(z)exp(—12=z) with a such that [¢(z)dz = 1, and, for € > 0 let

¢e(z) = 2p(£). We also denote h.(z) = 2¢ V |z| and we define
Ge(@) = he xpe(z), and fe(z) = ¢c(|2]).

The basic property of f. is the following: there exists an universal constant C' such that for every
e>0

gﬁj(z)' < C and (22)
C

*f.
< =
’5%3%‘ (z)' L

Proof. We have

afa o ’ Zi

L) = ol and

P (g GOEDY 5 s ()
s = (o) - L) 2 g, D

Since ¢ is bounded, (22) follows. Let us check (23). If |z] < e then ¢.(|z]) = ¢”(|z]) = 0so f-(z) = 0.
If € < |2| < 3¢ then ¢.(|z]) < C and ¢7(|z]) < L so that
f-
627;82]'

(z)’ <ty <

NEL

Finally, if > 3¢ then ¢L(z) = 1 and ¢”(x) = 0 so we obtain (23) for |z| > 3¢ as well .
Step 2. We denote

Ajoe = (XD —0y(X2), Ab = b(X})—H(X?) and (24)
‘Z;IchFz (Z,’LL) = 1G1 (Z)c(zath—)l{ugwpl(z,X}_)} - 1G2 (Z)C(Zath—)]-{ugF'yFQ(z,Xf_)}'

Then Z; := X} — X7 verifies the equation

m t ¢ o+
Zy = Z/ Azadesl +/ Abgds +/ / H§i7F2<Z7u)NN(d8,dz7du)_
1=170 0 0 Ex[0,1]

For R > 0 we define the stopping time
tr =inf{t: |X}| Vv |X?| > R}
and we notice that limg_, o, TR = 00 (see Remark 2). We denote

R
Zt = Zt/\‘f'R'



Using It6’s formula we write

3
F(Z) = £(28) = M(t A TR) + >INt A TR) (25)
i—1
with
[ Of- ;
=YY [ FEEhaioaw]
i—11=170 9%
and
1 d m t an R )
Il — - € i J
SRS S5 o) = ST

d
EURE 3 - I
i—1 /0 %
2(t) = /H/ (f-(Zoe + H 22 (2,0)) — fo(Zo=))dN (s, 2, 1)
0o JEx(,1)

Since |Afcrs| < L|Zsnrp| < 2LR and 9, f. is bounded, the process M, is a martingale and this gives
E(M.(t A7g)) = 0. Then (we have f.(Zf) = f-(0) =€)

3
|BE(f(2F)] < e+ Y |BULt ATr))|-

i=1
We will prove that
3 t
S E(ILt ATR)|) S HBT1) + MG2Gh)) + C(L + Cpu(v,0)) /0 E(|ZE|)ds. (26)
i=1

We estimate the terms in the RHS of the above inequality. Since o; is Lipschitz continuous, for
s <t ATr we have |Aloy| < L|ZE|. Then, using (23) we obtain

t
12t A g)| gCL/ |25 ds
0

and using (22) we get a similar upper bound for [I2(t A 7g)|. So (26) is verified for i =1,2.
We estimate now I2. Since N(ds,dz, du) is a positive measure and f. is Lipschitz continuous

(tATR)+
|I§’(t/\7‘R)| SC’/ / |H§1’F2(z,u)|dN(s,z,u)
0 Ex(0,00)
and then, using the isometry property
tATR
E(|2(tAnTR)|) < E(/ / |H M2 (2, u)| du(2)duds) < Jy + J
0 Ex(0,00)
with
tATR
no= B[ [ )~ B0 da(e)duds)
0 Ex(0,1)

tATR
Jo = E(/ / |H® % (z,u)| dp(z)duds).
0 Ex(0,1)



Then

tATR
ho< B / / ez, X2)| 72 X2)dpu()ds)
0 Ga\Gq
tATR
LB / / (1 (2) [z, X)) + L(2)y(z X2)) | X2 — X7 du(z)ds)
0 Gl
INTR
< INGGL) + Culy, ) E( / |27 ds).
0
And
with
INTR . . .
K < B / /G ez X5)] (12, X1) — e (2 XE))dp(2)ds)
0 i

IN

tATR ) )
B( / /G ez X5 92 X1 (1, <e ety dpi(2)ds) < BT,
0 i

So (26) is proved. In particular we obtain

|E(f-(Z]))| < e+ t(B(T1) + AM(G2\Gh)) +C(L+Cu(%0))/0 E(|Z{)ds.

We have lim._,q f-(2) = |z|, so, using Fatou’s lemma

E(ZE)) < t(B(T'1) + MGAGL)) + O(L + Culr,0)) / B(|ZE|)ds.

Then, by Gronwall’s lemma
E(|ZF]) < CHB(TY) + N(GG1)) exp(CHL + C(1,6)- (27)

We recall that limg_, o, TR = 00 so, using again Fatou’s lemma, we pass to the limit with R — oo
and we obtain

B(Z)) = Ellimp . |ZF]) < CHBT1) + A(GAG)) exp(CHL + C,(7,6)))

so (20) is proved.
Step 3. Let us prove (21). Using (25) and the fact that f is Lipschitz continuous, we obtain

3
E(IM.(tAR)) < E(f(28) - £2(Z8)) + > E(Iit ATr)))
i=1
3
CE(|Z§|)+ZE(]I;’(MTR)\)

Ct(B(T'1) + A(G2\G1)) exp(CH(L + Cu(7,0)))

IN

IN

the last inequality being a consequence of (26) and (27).
We take now p > 0 and we use Doob’s inequality and Chebyshev’s inequality in order to get

3

P(sup |f-(Zf)| > p) < P(sup|M-(t A7R)| > g) + Y Psup It ATR)| >
t<T t<T i—1 =T

)

1

3
< %(E(|M5(t ANTR)|) + ZE(sup [1L(t A TR))

i=1 ST

< %(B(Fl) +)\(G2\G1))exp(ct(L+Cp,('77c))))'

Using Fatou’s lemma we pass to the limit with ¢ — 0 and with R — oo and we obtain(21). O



3.3 Proof of Theorem 3

Uniqueness of the solution immediately follows from (20) with G; = G2 = E and I'y = T'y = co. Let
us prove existence. We take a sequence of subsets E,, 1 E such that u(E,) < oo and T';, = n. By (16)

lim (B(T') + AN(EN\Ep)) = 0.

n,M—00
Since p(E,) < 00,T,, < 0o we may construct a solution X7 := X»" and then, by (21),

lim sup|X]'—X/"|=0

n,Mm—00 T

in probability. Passing to a subsequence, the above convergence holds almost surely, so we may
construct a process X; such that

lim sup|X: — X;'| = 0 almost surely.
n—oo t<T

Since X;* are adapted and cadlag processes, so is X;.
Using (20) we conclude that for every n

sup E(|X{'|) < CA(En) (28)
t<T

and using (20) again we get
sup E(|X|) < CA(E). (29)
t<T

It remains to check that X verifies the equation (9) which reads
Xy=a+M@E)+I'() + () (30)

where

_ ¥ to ! L) = t s
v = 3 | axgawt 1o = [,

t+
IQ(t) A /EX[O )c(z,XS,)l{ugw(zst_)}Nu(d&dz,du).

In a similar way we write
X =a+ M,(t)+ I} (t) + I2(t) (31)

where
m t t
M) = Y [amawt, fe = [ seeds
1=1"0 0

t+
I2(t) = / / (2, X2 )Mtz (zxn )y Nu(ds, dz, du).
0 JE,x[0,00) o

Since (31) holds true and Xj* — X; almost surely, it remains to prove that the terms in the right side
of (31) converge in probability also. We have

t
BP0 - O <B([ [ HE )| du)duds)
0 JEx(0,00)
with H2*» (2 u) defined as in (24) with Gy = E,T; = co and Gy = E,,,T,, = n. Using (26)

B(22(t) - 2(1)]) < CH(BT,) + AE) + / E(X, — X7|)ds).



since lim, E(| X, — X7|) = 0 for every s, we use Lebesgue’s theorem (recall (28) and (29)) and we
conclude that I2(t) — I?(t) in L'. The same is true for I} ().
Let us now treat My, (t). We denote A, = {sup,<, |Xs — X[ <1} and, for p > 0, we write

P(IM(t) = M(t)] > p) < P(AS) + P(Ay N {[Ma(t) = M(1)] > p}).

On A,, we have

M) - M) =3 [ ©10X) XD,y
=1
so that
P(A, A {IMa(t) - M(t)] > p}) < ;lim / (X)X ey V2
< (;(E(/Ot X — X7 1(x.—xn)<1yds)) /2
< f(E(/Ot X, — X7|ds))V/2 = 0.

We also have lim,, o, P(A%) = 0 so that lim,_, . P(|M,(t) — M ()| > p) =0.0

4 Regularity of the semigroup

Our aim is to study the regularity of the semigroup P, f(z) := E(f(X(z))) where X, (z) is the solution
of the equation (9) which starts from Xy = z. We have to introduce some more notation. For a function
f: R4 — R which is k time differentiable we denote

£l = sup > 105 f(2)]. (32)

d
TER la| <k

For a function f: E x RY — R which is ¢ times differentiable with respect to a, for a set G C E and
for p > 1 we denote

Fon(@=sip 3 /G 102 £ (2, 2) P (2 ) du(2) (33)

d
2€RT 1 <lal<q

Moreover, for ¢ € N and p > 1, we define (with o,b and ¢ the coefficients in the equation (9))

00p(G) = 1+ |72 + B, + 51 (G) + 2y (D). (34)
We also denote
Y(G) = inf{y(z,z):z € R z€G}, (35)
7G) = s [ (e a)dute), (36)
e = ¥ g s [ 1029 (z.0) ) (37)
and
g p(t,G) =C(tV 1)(M +0,(G)etar(@) (1 4 76 Zq: @) (38)

74(G) 71(G)

A j=1

Here C' is an universal constant.



In the following we will repeatedly use the following inequalities:

sup / 102 £ (2,2) 0 (2, 2)du(2) < T, (G) (39)
z€R? 1<]a|<q
and )
> —— sup [ 090 (z )| dp(z) < CF,(G). (40)
1harzg 1) “Rd/

The first one is a consequence of v < v and the second one follows from the definition yr = ¥r(y)
and the fact that iy has derivatives which are bounded uniformly with respect to I'.

Theorem 7 Let ¢ € N and G C E with u(G) < co. We assume that (11), (12), (13) and (16) hold,
that o € CIT (RY),b € CJ(RY), c(o, 2) € CY(RY),~(o,2) € CH(RY) and Y(G) > 0. Let ' > 1 be such
that ) (2.2)
v(z,x
mgf::—/l/\ du(z) <1 41
0=~ [ 10 T ) (a1)
and let PET f(z) = B(f(XE"(2)) where X° (x) is the solution of equation (19) which starts from
x. There exits some constants Cy and ly, depending on q only, such that for every f € Cg(Rd) one
has

o
|BET||, < T a6 1l (42)

1 —mg(I)

For ¢ =1,2,3 we have l; = q.

Remark 8 Notice that oy q,(t,G) appears as the constant which controls the regularity of x —
PtG’Ff(x). Roughly speaking we expect that oy g, (t,G) < 0o if u(G) < oo. But in the following we will
consider a sequence of sets En, T E such that pu(E,) < oo and ag q, (t, E,) < 00 but oy q, (t, E,) T 0.
So we have regqularity for the semigroup of the truncated equations but we loose control when passing
with n — oo. This is the delicate point in our approach. The rate of the blow up agq,(t, E,) T 00
becomes critical ; see also Remark 13.

In order to prove Theorem 7 we need some preparation. Since u(G) < oo we have an alternative
representation of the solution XtG T of the equation (19) by means of a compound Poisson process:
we consider a Poisson process J; with parameter u(G)I' < oo and we denote by Ty, k € N the jump
times of J; (since G and I' are fixed, we do not mention them in the notation). Moreover we take a
sequence Zy, Uy, k € N of independent random variables (which are independent of W and of J) with
laws

1
P(Z, € dz) = lg(2)p(dz), P(Ug € du) = f1(07p)(u)du.

1
u(@)
Then the equation (19) may be represented as

Xl () = x+2/ o1 (XET (z))dw! + / b(XET (z))ds (43)

+Z (Zg, X Tk— z))1 {UL<yr (23, X8 (2)}
k<J,

We give now a second representation which does no more contain the indicator function 1 {Un < (Z1, X

and so it is suitable when discussing the regularity with respect to z. We denote by @, s(z),0 <t < s
the solution of the standard diffusion equation

D, (x) =x+ [ o1(®y () dW] + ) b(®y - (x))dr. (44)
> J

10

Ty —

ol (@)}



Notice that, since o € C{T'(R%) and b € CJ(R?), we may choose a version of ® which is ¢ times
differentiable with respect to = (see [IW89]). Moreover we consider a sequence (z) := (2x)ken With
zr € E, we denote

2P = (21,0, 21)
and we construct a process z(z, (2)) in the following way: we put z¢(z) = = and, if 27, _(z,2*71) is
given, we define
rr (2, 2%) = xp_(x, "N +e(ern,_ (x, 2", ) 1a(21) (45)
zi(2,2%) = g i(r, (2, 27)) Tp <t <Tpta.

Since ® and c(o, z) are ¢ times differentiable with respect to x, so is x — x;(x, 2¥).
We take now function ¢ : E — Ry such that ¢(z) =0 for z € G and [ dp = 1 and we construct
the probability density

1 .
ger(z,x) = Qg(x)w(z)—&—mlg(z)’yp(z,x) with (46)

o ),
- —=7 [ w(zx)u(dz).
n(@I Ja
By the very definition of O r(z) we have [}, qqr(z z)du(z) = 1. And since mg(I') < 1 we have
9@71'*(50) >1- mG(F) > 0. . .
We construct a sequence of random variables Zj in the following way. Z; has conditional law

QG,F(JJ)

P(Zy € dz |z, - (2) = y) = qa,r(2,y)p(dz).
Then, if Z;,i < k — 1 are given, we construct Z; to be a random variable with conditional law

—k—1

P(Zyedz|on (2.2 ) =y) = qa.r(z y)u(dz) (47)

where Z° = (Z1, ..., Zx). Notice that the density of the law of Z" with respect to p(dz1)...u(dzy,) is
given by

pn(xa 21y eeny ZTL) - H QG(kaf(x, FARRES Zkfl)v Zk)- (48)
k=1
Finally we define
—G.T —k—1
Xt (w) = xt(x, 7 ), T 1 <t<Ty (49)
and we notice that, according to (45)
-G, —=G,T’ — ==G,I —
X, (2) = Xqo () +c(Zp, Xp,—(2))16(Zk) (50)
—G.T —G.T
Xt (1’, Zk) = (I)Tk,t(XTk ((17)) Tk <t< Tk+1-

Remark 9 In mathematical physics the above equation are known as ”transport equations” and the
equation (43) is called the "fictive chock” representation and the recurrence relation (50) is the "real
chock” representation: see [LPS98] pg 49. The above book gives a complete view of the numerical
methods used in the Monte Carlo approach to such equations as well as several possible applications.

Lemma 10 The law of XZ'T(2) coincides with the law of Y?F(x) Moreover, for any non negative
and measurable function ¥ the law of Sy = Zile \IJ(Zk)l{Uk<W(Zk xe.ryy coincides with the law of
= X

Si =0, w(Zy).

Proof. We have

E(f(xg") | Xgl=a)
= E(f(z+c(Zj,2)1c(Zi) Vv, <yr(2;,2)y) T E(F(@) v, 54025 ,2)))
= I+ J

11



A simple computation shows that P(U; > v(Z;,x)) = 0g r(z) and moreover

I = // flx+c(z,7)1a(z ))1{“<’YF(Z z)} (G)du'u’(dz)
= [ 1+ eee @) )
so that
1
B(f(XET) | X§T=2)= /E o+ el 216 (), 2) s ()
Har(@)f(z) = /E @+ ez 0)16(2))aer(z 2)uldz) = B(f(X7 ) | Xg = ).

We conclude that the laws of X, G coincides with the law of YG’F In order to check that the law of
S; and of S, are the Same we just use the previous result for the couple (XG T8,) and (X, St)
The process X7 : ( ) satisty the equation:

7G’Fx = =z o ! t 7G’F:17 s
X +Z / J(XET (@))aw! + / b(X (2))d (51)
Jt
+ 3 e(Zi, X5, (@)16(Z0).
k=1

. S . . G, o . ..
Since & — x4(z, 2*)is differentiable, so is x — X, (). Our first aim is to estimate the derivatives of
this process.

Proposition 11 A. For every q,p € N there exists some constants C (depending on q and p), and
lq (depending on q) such that, for every multi-index o with |a| = ¢

E(|0rX7 " (@)]) < by, (G)e! el (52)

with 8, ,(G) defined in (34). One has ly <27 and, for g =1,2,3, one has l; = gq.
B. Moreover, with 5(G) defined in (36),

Jt
E() 16(Z)

k=1

—G,T p _
X (x)‘ ) < CF(G) % O, (G)e!COu01a (D), (53)

Proof. We treat the first derivatives. We have (with e¢; = (0,...,0,1,0,...,0) with 1 on the 'th
position)

X () = ez—f—Z/ Vo (X9 (@), 0, X5 ()>dW; (54)

Using the identity of laws given in Lemma 10 for the system (Y?F (), VCEY?’F (x))i>0 we conclude
that the law of this process coincides with the law of the process (X7 (z), Vi1),¢(x))s>0 where X2 (2)

12



is the solution of the equation (19) and V(i1),t € R%i=1,...,d solves the equation
Viyele) = e+ Z/ (Vo (XET (), Viay o (x)) dW! (55)

o [ (TOXET @), Vo) s

0

Jt
G,r
+3 <Vwc(Z;c, X$T (@), ‘/'(1)ka,(33)> L6(Zi) 1, <o (20 XS ()

T, —
k=1 k

We will use Proposition 21 from the Appendix (with E replaced by G) in order to estimate the
moments of V) ;(z). In order to identify notations we mention that the index set is now A = {1, ..., d}
and o = i. Moreover V(ﬁm =e¢; and H' = h* = Q" = 0 so, in particular, ¢ = 0 and R* = 0. Let us
now identify ¢(;)(p) which is defined in (87):

) = sup [ [Vaelzrm) L+ [Vacle )27 ez, 2)duz) < 00,5(C).
z€RYJG
Here the lower index in ¢(1)(p) indicates that we are dealing with the solutions of (55) which concern
the first order derivatives. And we have used the inequality |09 (z,x)| < C'|0%7(z, z)]| .
Then, using the identity of law and (88) we obtain

—G,T’

B(|o. X7 @] ") = BV @] ) = expliCy6,(6)

0 (52) is proved. And

Zlg Z)

p p

1{Uk§’YF(Zk,X$k’1: (I))})

az‘XTk—( )

Ji
) = B 16(20) Vi g (@)
k=1
! i p a,r
= B [ Vom @ X @)
t ) 2p
sup [ 2(z)dutz) [ BV (e s
r€RIJ G 0
o (53) is also proved (with I3 = 1).

We estimate now the second order derivatives. We take derivatives in (54) and we obtain

IN

mooet t Jeo
amaziy?m(a:):Z / H;” (s)dW! + / R (s)ds + Y QY (L= Z)16(Zy)  (56)
k=1
+z/ Vo (@), 00000 X (@) !

- / t (VX" (@), 0000 X () ds
0

Je
(Voe(Zi, X5, (@), 0rs 00 X7, (2)) 16:(Z).
k=1
with
m(s) = Zaa/ol (2))0,: X< ()0, X0 (@),
rr(’i 1
B = Y 0,0,0(X (2)0,: X0 (2)0, XS (),
rr =1

13



and

d
—1i,] — — ==G,I' -G, I',r —G,I'r’
Q7(s,Zk) = Y 0w 0 c(Zr, X, (2))0u X, (2)00 X, (2).
ror/=1

Using the identity of laws given in Lemma 10 for the system (Y?F(xL VzYE;’F(x), Viftg’r ())e>0 we
conclude that the law of this process coincides with the law of the process (XtG’F (), Vit (), Vi) 1 (x))e>0
where X' (z) is the solution of the equation (19), V(il),t € R%i = 1,...,d solves the equation (55)
and V5! (z) € R%,i,j =1, ...,d solves the following equation:

(2),t
.. m t .. t L.
Vi) = X [P @awt+ [rs 57)
=1
I
+ZQi7j(Tk_,Zk)lG(Zk)l{ng'yp(Zk, Xg _(x).)}
k=1
m + t
+;/0 (Vou(XET (@), Vi ) dW! + /0 (VBXET (@), V3, ) ds
I
ar ij
+kzl<vmc(zk’XTk(”))vV<2§,Tk>1G(Zk) {Ue < (2, X500 (2))}
with
Hi(s) = 3 0,000(XET (@) (Vi ) @)V )" @),
ror/=1
B(s) = 3 0,00b(XET @)V ) @)(VE, ) (@),
ror/=1
and

QM (s, ax) = Zam, e Z, XET @) (Vi ) (@) (V) )7 (@)

r,r/=1
We will again use Proposition 21 (with £ = G) in order to estimate the moments of V(s ,(x). Now
the index set is A = {(4,7);4,7 = 1,...,d} and a = (i, j). Moreover V(Q) o = 0and H" K" Q" are
given above. In particular we have |Q™ (s, Zi)| < q(Zk, X§)R™ (s) with q(z,z) = D laj=2 107 c(z, )|
and R%I = |V(1),s|2. So

en® = sup /G( S @)1+ S 0%z ) )2t (2, 2)dp(z)

d
eeh 1<]al<2 1<|a|<2

IN

‘9271)((;)

Moreover, using the estimates for V(1) ; we obtain

t m
/0 (ECY HE () + 08 ()] + oy () | RO (58)
=1
t
4
< / Colllo 122 + D122 + 02,5 (G E(|Viay o] P)ds
< G (1012 + DI + 02,5 (G)) exp(tCybr 20 (G)).
Then
—G,T 2p i 2p
E( aﬂcjaa:"'Xt (55) ):E( t )Stcp‘g?,p(G)eXp(tCPGQQP(G))

14



So the proof of (52) is finished and then (53) follows as above. Notice that lo = 2 here.

For the third order derivatives the proof is similar: now the set of multi-indexes is A = {a =
(i,7,k) : 1 <4,j,k <d} and H*, h*, Q" are defined in a similar way. Moreover one has |H%| + |h%| <
Ol o0+ [16ll) (Vi) |+ [Viey | [Viny ) and Q2] < Cogsy(|Viny|” + |Vigy| [Viy)|)- Using Proposition
21, Holder’s inequality and the recurrence hypothesis one obtains (52) with I3 = 3. For higher order
derivatives the proof is the same, but it is more difficult to give a precise expression for [, - this is
why we keep the bound [; < 27 which is clearly sufficient. [J

We are now ready to give:

Proof of Theorem 7. Recall (45) and (48). Recall also the notation z* = (z1, ..., z;), and recall
that J; represents the number of jumps up to ¢. Then we write

BRY @) = B[ falo =" Dps (o7 uldon), o i ds)
where
i, (x, 27 HQGF o (2, 2°71), 21).
It follows that or
with
d
A = Z /8lf x¢(x, 27 ))&let(x z )th(x z ) (dz1)y ..., p(dzg,))
=1
4 —J, —J,
= Z (6lf(xt(x7z t))axleﬁ(xﬁz t))
1=1
and
B = EB([ flao 2" )0npa (o, uldn). o ild)

= B([ Sl 2700, tp,(057) X pa (.27 ldn). o ()
= E(f xt(xZ ))(%Llant(xZ ))

Let us estimate A. Using (52) (with¢=1,l; =1andp=1)

d
—J —G,T
Al < Ifll e Y E(|0n,2h (2, Z >>=||f\|1,ooE<]vIXt <x>\)
=1
< O flly 0 011(G)e 01D,

Let us estimate B. We have

Ji

Oy, Inpy, (z,27) = Z Y(21)0, n g 1 (v7,— (, 2771))
k=1
Jt
+ Z 1o (21)0p, Iy (2, o7, (2, 277 1)
k=1

2 81 (x, 27t) 4 Sy(x, 27).

Then .
1B < /Il (B(|S1(2,2")

)—i—E(‘Sg(x,ZJt)

)
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Recall that 0g r(z) > 1 —mg() > 0 and |Var(z,2)| < C|Vey(z,x)| . It follows that

Cc
Voo r(z)] < sup —o / V(2 2)| du(z) = 2 x 71(G).
:cERd:u r

Then
C -

| < m%(G) X |Voan - (z, 21|

|81.i Inbc r(zr, —(z, 2kl

and consequently

Jt

c .
k=1
Using (53) we get
—Ji C ~ & —G,T
B|$1@ 7" < g @) Wl B VX5 (@)
k=1

IN

C ~ tCOq 1(G)
SO ] % 0@

We estimate now Sg(x,ZJt). If z € G then vy(z,2) > v(G) for every x so that

1

Blse7) < e

)

IA
N

O B3 160 [V TG @)
k=1

IN

@)
53" 160 [V.XEE ) ).

Using the identity of laws

J 2 Ji . 9
E(>_16(Z4) [Varr(Ze, Xo, @) ) = E(Y16(20) [Varr(Ze X, - ()| Lo 2058
k=1 k=1

< swp / Ve (2, 2) 240z, 2)dpa(z) = 71.5(G)
z€RYJG

with 7, 5(G) defined in (33). And using (53)

Ji
= —G, 2 _
E(Y16(Z) |[VaX 5= (@) ) < CB(G) x 01,5(G)eltV Do),

k=1
So o
B([$a0.Z77)]) < 55 (07(G) X 012(G)e @) 4 7,,(G))
Collecting all these we obtain
0, PES @) = |on BUFCRT ()]
C(tv1) 12(G)

1 —mg(T)

0 (42) is proved in the case ¢ = 1.

7(G)
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The proof for higher order derivatives is similar but cumbersome, so we live it out. We just precise
that in order to obtain the specific powers in the definition of o, , (¢, G) we used the following standard
estimate: if F'(z) =1n f(g(x)) and f > C, > 0, then

q
1
1Pl < 7 annq o Zuguq A

O
Our aim now is to give a regularity criterion for x — P;f(z). We denote B = {z : |z| < R} and
WP(Bg) is the standard Sobolev space on Bg.

Theorem 12 We assume that (11),(12),(13) and (16) hold. Moreover we assume that there exists
€ > 0 such that for every measurable set G C E with p(G) < 0o
lim mg(T) <1—e. (59)
I'—oo

where ma(T) is given in (41). Let m € N, and ¢ € N be fived. Suppose that there exists a sequence
E, 1T E such that u(E,) < oo and such that, for some n > qH, one has

t,B,) x A(ES) < oc. (60)

SUD O (2m )l

Then, for every f € C;™YY(R?) one has P,f € W% (Bg) for every p > 1 and R > 0.

Remark 13 In [Rab15] Rabiet proved that under an uniform ellipticity condition (given in terms of
YV .c) one has P f(z) = [pi(x,y)f(y)dy with (x,y) — pi(x,y) differentiable. A similar result has
been obtained before by Bally and Caramellino [BC14] in the particular case o = 0 (so there is no
Brownian part). In contrast, here we assume no ellipticity condition and we study the propagation of
reqularity only. Notice that there is a significant loss of regularity between the initial condition f and
P, f. This seems rather unusual because, at list under some non-degeneracy conditions, the semigroup
has a regularization effect. But here there is no such mon-degeneracy condition and this is the only
thing that we can prove in this framework (we do not pretend that our result is optimal). We recall
that Qom g1y, (En) controls the regularity of PE» f but may blow up as n — oco.

Proof. We will use Theorem 2.3 from [BC14] that we recall here. For a function ¢ : RY — R we
denote

gy = > ([ (A+lal s @) da)' .

0<|a|<2mtq

Moreover, for ¢, : R — R, we consider the Forté Mourier distance

o) =suwl| [ swotas— [ s

Then Theorem 2.3 in [BC14] asserts the following: let ¢ € N,m € N, and p > 1 be given. Suppose
that one may find a sequence of functions ¢,, : R? — R such that (with p, the conjugate of p)

e + 1V Al < 13-

14 d/p.
>q++/p
m

(61)

sup H(bn‘lngrq,Qm,p d1(¢n7 ¢) < 00, with
n

Then ¢ € W9P(R?).
Now, for each fixed n we choose I';, such that 3(T',,) < A(E) and mg, (I';,) < 1—e (this is possible
by (59)). We will use Theorem 2.3 in [BC14] with

$(z) = 1pp(2)Pif(x), and  ¢n(x) = 1p, (@) P f(a).

By (20)
' 01(6 ) < C(BTW) + ME)) < CA(ES)
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with C a constant which depends on R and ¢ but not on n. Moreover, by (42)

and consequently, for every p > 1

E,.T, _
Pt f” < C1(15 1aq+2m,(q+2m)lq+2m (ta En)t ||qu+2m,oo

q+2m 00

||¢n||q+2m,2m,p < Cq,p‘?i1aq+2m,(q+2m)lq+2m (t, En)t ||f||q+2m,oo‘

Now (60) guarantees that (61) is verified and so the conclusion follows. [

5 PDMP’s with three regimes: the convergence result

5.1 Main result

In this section we construct a sequence of PDM P’s which converge weakly to the solution of our
equation (9) which we recall here:

= - tO’ B ! t s s)ds
X, = +;/ l<X>dW5+/ob<X>+g(X>d (62)

t+
+/ / (2, Xs— )l fu<y(z,x. )3 Vu(ds, dz, du).
0 Ex[0,1]

Notice that instead of the drift coefficient b in (9), here we have b+ g. This is because b and g appear
as a limit of different components.

In order to obtain this convergence result we need an hypothesis on the coefficients which is stronger
then the one in Section 3 : we assume

Cui= 1+ 3 ol + [ + 9l + 510 [ (el 9271+ Vel () < 0. (69)
=1 rERC

We construct now the approximation PDM P’s. We consider two sequences of non negative and
finite measures v, n,,n € N on E, and a sequence of sets F,, T E and we denote p,,(dz) = 1g, (2)dpu(z)
where p is the one which appears in the equation (62). Moreover we consider a sequence of coefficients
by, : R* = R c,,dy,e,: Ex R = R* and v,,,&,, Bn 0 E x RT — [0,00) and we denote

Ig,'y = 1g,(IVavnllenl + (IVacn| + lenl + |Cn|2)7n>7 (64)
Jie Vbl ldnl* + (IVadal® + |dn] ),
VBl len] + (Vaen| + len] + |6n|2)5n~

n
e,

Then we assume

Cr := ||bnll] o + sup / Icnv(z,x)du(z) + sup / J;Lg(z,as)dun(z) + sup / K7 5(z,x)dn,(2) < oo.
’ z€RIJE z€R1JE z€RIJE ’
(65)

And we associate the equations
t
X = x+ / by (X7 )ds (66)
0
t ~
+/ / dn(z,X;l_)1{u§§,,L(Z)X:»_)}Nyn(ds,dz,du)
0 JEXx[0,00) l
t
+/ / en(ZaX.?—v)l{ugﬁn(z,X;L)}Nnn(dsvdzvdu)
0 JEx[0,00)]

¢
+/ / en (2, Xeo ) usr, (z.xm )y Ny, (ds, dz, du).
0 JEx[0,00)
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We recall the notation: NN, is a Poisson point measure on £ x [0, co) with compensator N L(dt,dz, du) =

dt x p(dz) x du and N = N, N We assume that the random measures N, , N, and N, are
independent. We also assume that

sup /(\Vzﬁnl +[&nD (dn| + [Vadn|)(z, )drn(2) < oo. (67)

z€RIJE

In particular this means that the integral the with respect to ]\~fl,n =N, — ]\Afl,n may be splitted.
This, together with the assumption C,, < oo guarantees that the hypothesis (11),(12),(13) and (16)
are verified so, for each fixed n, the equation (66) has a unique solution.

We give now the hypothesis which guarantees the weak convergence of X|* to X;. We denote

ai(z) = Zalialj(x) and (68)
=1
W) = [ a6 ),

o)

3

—~
8

~—
Il

and we define

eo(n) = sup/|dn(z,x)|3§n(z,ac)d1/n(z)+ sup/|en(z,x)|2ﬁn(z,x)dnn(z), (69)

zeRYJE zeRYIJE

ei(n) = lla—anll + 10— bnlloc +1lg = gnll

e2(n) = sup/ (el (v =l + v + |e]) e = en]) (2, 2)dp(2).
reRYJE,

We recall that in (38) we associated to the coefficients o,b, ¢, g, of the equation (62) the quantity
aqp(t, Q) (for a set G C E with u(G) < 00). We also recall the notation (see (14))

NG) = sup [ ez )2z )dn(2)

zER4

Then, for every fixed n € N we construct

2
— : c 2 2
ex(n) = EW,ICanCE()\(G ) + as.0(G)(CZ + C2)(AN(G\E),) + ; ei(n (70)

with the infimum taken on the sets G with u(G) < oo.
Finally we will assume that

o € Cy(RY), beCY(RY), c(o,2) € CP(RY), ~(o,2) € CJ(R) (71)
and

cn(0,2) € Cy(RY), dn(0,2) € Cy(RY), en(0,2) € Cy(RY), ulo,2) € Cy(RY) (72)
€n(0,2) € Cy(RT), Bulo,z) € Cy(RY)

Remark 14 In the case azg(E) < 0o one takes G = E and obtains

£+(n) < azo(E)(C2 +C2) Zsi(n).
=0

But in the case when as o(E) = oo (and this is the interesting situation) we have to find an equilibrium
between A(G) (which is small) and aso(G) (which is large). This is the idea behind the construction
of e«(n). See Example 1.
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We are now able to give our main result:

Theorem 15 We assume that (11), (12), (13),(16),(71),(72) and (67) hold. We also assume that,
for every measurable set G C E with u(G) < oo,

. : (2, )
1 r=1 1 1.
i mo(®) = Jim oy sup [ 18 LBt <

A. There exists an universal constant C such that for every n € N and every f € Cj(R%)
1Pf = P flloo < Ct][fll5,00 &+(7) (73)

where Py f(x) = E(f(X¢(x))) and P} f(x) = E(f(X} ().
B. Moreover, if lim,, o £+(n) = 0, then, for every x € R and every t > 0, X[*(x) converges in
law to Xi(x).

Remark 16 Notice that if aszo(t,G) = oo for every E,, C G C E then ,(n) = oo so (73) says
nothing.

Remark 17 Notice that the estimate (73) is not asymptotic. This in contrast with the assertion B.
In B P]'f appears as an approximation of P,f. But in A we may think in the converse way: we
consider Xy as an approzimation of X' obtained by replacing “small jumps” (the one corresponding
to v,) by the Brownian motion W. This is the point of view in numeric applications (see [AR01])

5.2 Proof
Before giving the proof of the above theorem we need some preliminary lemmas. We denote
1 N d 4 .
Lof(x) = 5 D 00 f(@)ay! (@) + ) 0:f(x)(by(x) + g, () (74)
i,j=1 i=1

+ / (F(@+ enlz,2)) — F(@))ym (2 )du(z)
E

n

Lemma 18 There exists an universal constant C' such that for every t > 0 and every f € C3(R?)

IPP f(z) = f(2) = tLnfllo < CCH I3 00 (8 + 0(n)) x t (75)

The proof is rather long and technical so we live it for the appendix.
We fix I' > 1 and G C E with u(G) < oo and recall that PO f(z) = E(f(XZ"(2)) where
XET(z) is the solution of the truncated equation (19). We define

d d
LEFf@) = 5 3 00 @)t @) + 30 @)K () + g'()

n / (@ + (2, 2)) — F(@))ye(z 2)dpz).
G

Lemma 19 A. For every f € C3(R?)

[P = PETs|_ < 0rBO) + NG 1 e (77)

POET =g =885 < CC2 |l (7

B. We also have
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Proof. The proof of A is analogues to the proof of (73) so we skip it. And (77) is an immediate
consequence of (20). O

Proof of Theorem 15:

Step 1. We fixn € N, aset G with u(G) < oo such that F,, C G, and I" > 1 such that mg(T) < 1.
It is easy to check that

|27 f = Lufll,. £ C e (BI) + NGVER) + 3 2i(n)).

2
i=0
This, together with the previous two lemmas give (for every every ¢ > 0)

2
‘Péc:,rf(x) _ szf(x)‘ < C(C2+C2)5(6"2 + BI) + AMGE,) + > () [1f]15.5 (78)

i=0
Step 2. Using (77)

|Pf = Pl < | POT S = P

|+ Ot (BT) + A
Step 3. Let 6 > 0,t = ké and Asf(x) = PP f(x) — PE f(x). We write

|Prfa) - PEFl < D [P, AaPEE| < 3 11AsPESL, -
k<t/5 k<t/5

By (78) first and by (42) then

2

|AsPSFll. < CIPS |, o (C24 C2EY? + BI) + MGE,) + Y &i(n))s
=0
2
< Cago(G)[|flls p0 (C2+ C2)(0Y2 + BD) + NG\EL) + Y &i(n))d.

i=0
Summing over k =1, ...,t/d we obtain

2

Cas9(G) || flls o (CF + C2)(6Y2 + B(L) + A(G\E,) + Y i(n))

=0

1B5f = Pl

IN

2

= Cagg(@) | fllz.00 (C2+ CRBT) + MGAED) + ) €i(n))

=0

the last inequality being obtained by taking 6'/2 = B(T') + A(G\E,,) + Z?:o g;(n). We conclude that

1Pf =P flle < CG)+B(I)) (79)
2

+Ca39(G) | fll3.00 (CF + CRYNGNE,) + BT) + Y &i(n)).

=0

This estimate holds for every E, C G C E, with I" > 1 chosen such that mg(I') < 1 (so I' depends
on G).
Suppose now that .(n) < e. Then we may choose a set G. such that

MGE) + a39(Ge)(C2 + C2)(MGAE,) + > ei(n)) <e.

i=0
Since limp—_, o me, (I') < 1 we may chose I'. such that mg_(T') <1 for I' > I'.. And, since

lim B(T) =0,

I'—oo
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we pass to the limit with T' — oo in (79) (with G = G¢) and we obtain

2
IPf = PP flle < CMGE) + Caso(Ge) [ £llg 00 (C2+ C2YAGAE,) + Y ei(n))
1=0
< Ce..

Then we pass to the limit with e | €,(n) and we conclude.
It is easy to check that the sequence X'(x),n € N is tight and so, if lim,, £.(n) = 0 the convergence
in law follows. OJ

5.3 Example

We give here the simplest possible example which illustrates the convergence result from the previous
section. We consider some C?(R) functions f,e,c: R — R and &, 3,7: R — [0, %] and we denote

Q= [£ll3,00 + llells 00 + llells o0 + 11€ll5 00 + 181500 + 17ll5,00 < 0 (80)
We also assume that
y(w) >y > 0. (81)
We define
ho(z,) = 22F(@)11 2)(2) + ze(@) 12 3y(2) + 2% e(@) s 1) (2),
(z) = @)1 2)(2) + B@) (2,3 (2) + (@)1 51 (2):

We also take the measure p(dz) = 1(9,1)(2)dz and we associate the equations

t+ 1 1
Xr o= a4 /0 /O /0 (2, X2 )L gz y N (ds, 2, du) (82)
t
SVER(WVE 1) [ (7 x 9xD)ds
0

and

X, = :c+1n2/0 (f x \/g)(XS)dWS+ln(g)/O (e x B)(X,)ds (83)

t+ o) 1
+/ / / z3/20(XS,)1{u§7(X57)}Nﬂ(ds,dz,du)
o Jo Jo

Proposition 20 Suppose that (80) and (81) hold. There exists an universal constant C such that for
every f € C3(R) and t >0

C
~3

1

C 3
(EV1)Q ™ X |Ifllg 00 X~z

[E(f(X2) = E(f(X)] <

(84)

=2

Proof. The equation (82) is the equation (66) with

dn(za‘r) = Zl/2f(x)1[%,3)(z) en(z7x) = Ze(z)l[%,%)(z) Cn(Z,I) = ZB/QC(I)l[%,l)(Z)a

n

Eulz2) = @)1 2)(2) Bulza) = Bz 3)(2) An(za) = H2)s ) (2)

n

and with measures vy, (dz) = 1[1 2 (2)p(dz),mn(d2) = 1j2 3)(2)u(dz) and E, = [2,1). And, with the
notation from (68) we have a(z) = a,(z) = In2 x f2(2)é(x),b(z) = by(z) = 0,c(2,2) = cp(z,2) =
23/%c(z) and g(z) = gn(z) = In(3) x e(z)B(x). Moreover, v,(z,2) = v(z,z) = v(z). So, with the
notation from (69), we have £1(n) = e2(n) = 0 and g9(n) < CQ*n~/2. We also have (see (63) and
(65)) C\ < CQ? and C,, < CQ3.
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Finally, for ¢ < 2 we take G. = (g,1] and we estimate a3 3(t, G.) defined in (38) with respect to
the coefficients of the equation (83). So we will use the notation from (33), (34), (35), (36) and (37).
Notice first that for every p > 1 and ¢ < 3 one has ¢, ,(G.) < CQ? so that 5 3(G.) < CQ3. We also
have

_ , Ydz  oqi
GG 0@« [ G <<
1
HG)<cQx [ L9
z 13

S

and in the same way 5(G.) < CQe~! and 753 4(G:) < CQe~'. We conclude (see (38)) that

aalt,Go) £ S50V D@ x e
We also have (see (14))
hl ) = Q [ 22 5 = Qe
3/n
)\max(Gs\En) < Q/ S = CQ -1/
So, with the notation from (70),
2
ex(n) = inf  (Amax(G) 4+ a33(G)(C2 + C2) Amax (G\E,,) + Z gi(n))

E,CG:CE :
=0

C 3 1
< CEvnEee @24 L),
- 73( JQ e 0<£3/n(6 +€3 n)

~1/7 and we obtain

e(n) <

Then we take e = n
1
nl/ia

7

Now (73) yields (84). O

6 Appendix: Moments estimates

We assume in this section that u(E) < co. This is just to simplify notation - in concrete applications
we will replace p by 1gp with u(G) < oco. Then we consider an indexes set A and we denote by « the
elements of A. Moreover we consider a family of processes V,* € R% a € A such that

sup E(|VA*?) < 00 Vp € N,YT >0
t<T
and which verify the following equation

ve = Vg +Z / (HP (3) + (Vou(X.), V) dW! (85)

/(h%) (VB(X.), V))ds

/ / (s—,2) + (Vac(z, Xs2), VI fu<r(a,x. 3dNL (s, u, 2).
Ex(0, 1")

Here X, is the solution of the equation (9) and H*, hj*and Q® are previsible processes which verify

T
E(/O ([HP ()" + A7 (s)| + sup / 1Q%(s, 2)| v(z, x)dp(z))ds) <

z€R4

So the corresponding stochastic integrals in (85) make sense.
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Proposition 21 We suppose that
|Q%(s, 2)| < q(z, Xs) |RS| (86)

for some previsible processes R® and some measurable function q : E x R* — R, and we denote

c(p) = sup /((J(Z7$)+|Vm0(2,$)|)(1+Q(Z»l‘)+|Vz0(27w)\)g”_lv(%x)dﬂ(@- (87)
z€R? JE

For everyp € N and 0 <t <T there exists an universal constant C, such that
E(VEP) < exp(Cpt(L+[[Vol22 + VB2 +2(p))) (88)

(Vg + Cp/o (ECY_ [HP ()7 + [ (s)[*F + &(p) | RE_| ) ds).
=1

Proof. Using 1t6’s formula for f(z) = 2?” we obtain

|Vo¢|2p ‘Va|2p+Ma+Ia+Ja

with
Mz =Y [V )+ (Vo (X, Vi,
1=170
Z/ (2 — V=23 HP () + (Vou(X.), Vo))
=1 =1
+2p /0 (V)21 (s) + (VB(X,), Vi) )ds
and

Ji _/ /EX(O r (Ve +Q%(s—.2) + (Vaelz, Xao ), VI = [VE ) L fuzr o.x. )y N (5,1, 2).

Using the trivial inequality a“b? < a%T? + b%T? we obtain
t m
B < Gy [ B HF () + |1 (s)*)as
=1

t
+Cp(1+ Vo2 + [ VB[ ) / BV ()| ds.

We estimate now J;*. We will use the elementary inequality
(a+b)* —a® < Cy[b] (|a[* " + b ™)

with
a=VY, b=Q%s—,a)+ (Vacla, Xs—), V).

Since |Q*(s—, 2)| < q(z, Xs—) |RS_| we have
bl < (a2, Xs-) + [Vac(z, Xoo ([ RE_] + [VL])
so we obtain

| Y+ Q%(s—,2) + <Vzc(z,Xs_),Vf_>|2p - |Vf_ o
< Cplgla, Xoo) + | Vac(z, Xo o)) (1 + gz, Xoo) + [Vae(z, Xoo)))?P !
<(|R [ + [V ).
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Then

E(J7)

<

CpE(/ / (q(z, Xs—) + |[Vae(z, X)) (1 + q(z, Xs-) + |VIC(Z»X87)|)2P_1
0 JEx(0,1)

<R 4+ Ve ) Lusr axy dud(2)ds

CpE(/o /E(Q(Za Xs—) +|Vael(z, Xs-))(1 +q(z, Xs—) + |Vzc(z,XS,)|)2p_1’y(z,Xs)

(| R + |V )dpu(2)ds

t
Cyat) [ BB+ |V

Since M® is a martingale we obtain

E(VEPP) = |V + E(IY) + E(J7)

IN

t
Vi + Gy [ (B

)ds.

m

STIHP ()P + b () + Ep) | RE_| ) ds

=1

t
+Cp(1+ Va2 + V0|2 +2(p)) / E(|V2(s)|* ds

and Gronwall’s lemma gives (88). O

7 Appendix: Proof of Proposition 18

We first notice that the isometry property yields

We denote

BE(XP —2’) < Ctx(||bll, +

sup
z€R

/ (Idn (2, 2) 2 nl2, 2)dvn (2)
Ex[0,1]

+ sup / en(222)] (L + len (20 2) ) (2 2) 1 (2)
Ex[0,1]

z€R4

+ sup / [en (2, 2)| (1 + |en (2, 2) ) (2, 7)) dpin (2))
Ex[0,1]

rERI

< Ctx(C,
kn(xazvu) = d’ﬂ(z7x)1{“§§n(z»z)}’
hn(2,2,u) = cn(z,2) L {u<, (2,00}

Qn(l‘v 2, U) = €n(2’, x)l{ugﬁn(%z)}

Using Ito’s formula, for a function f € C?(R), we obtain

FXE) = f) + M (F) + I (F) + T (F) + Hi(f) + D ()

with

M (f)
1 ()
Ji(f)
H ()

Di(f)

t
/ / (VX ), k(X7 20)) N, (ds, dz, du),
0 JEx(0,1)

/ t [ X k(X 20 = FXE) = (V00 ha (I 22 10) di () s
0 JEx(0,1)

t
[ RO X s) - SN, (ds,dedu)
0 JE,x(0,1)

t
/ / FXT 4 ho (X2 2 u)) — [(XT )N, (ds, dz, du)
0 JE,x(0,1)

/0 (VF(XT), ba(XT)) ds.
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Since M[*(f) is a martingale we obtain
P f(x) = f(x) = E(IZ () + E( () + E(H () + E(D ()
We compute each of these terms. Let us estimate E(I7*(f)). We denote

Wz, z,u) = 7288]” K (z, 2, u)k (2, 2, u)

3,7=1

(;5(%72,11) = f({L‘ + kn(ac,z,u)) - f(ﬁ) - (Vf(x),kn(m7z,u)> - l(aaz,u).

Notice that, by the very definition of a,,

l(z, z,u)dudv,(dz) = 0;0; f(x
/EX(O,I) ( ) 1221 (@)
so that
Z@@f () +ri(t,x) + ra(t, )
7,] 1
with
t
ri(t,z) = / / E(¢(X], z,u)))dudv,(dz)ds,
0 JEx(0,1)
1 t
ro(t,x) = f/ / EU(X! ,z,u) —l(z, z,u))dudv,(2)ds
Ex(0,1)
= = Z/ E(9;0; f(X)ahi (X™ ))ds.
z] 1
We have ; s
|p(x, 2, u)| < C | fll3,00 [kn(z, 2,0)|” = C | fll3 00 [dn(2: )" Liuze, (z.2)}
so that
t 1 5
ntol < Ol [ [ ] B X0 Vst coxe p)dudin(2)ds

ClIflls oo / /E B(Jdn(z, X1)[* 60z, X7))dvn(2)ds

C | fll3,00  sup / |oln(z,sc)|3 n(2,2)dvn(2) < C||fll5 o teo(n).
z€RJE

IN

We estimate now r5. We notice that

IN

Han”Loo

¢ sup /E(lvxdn(z,fl?)lzﬂLIdn(zvx)IQ))ﬁn(Z,z)ﬂLIdn(z,ilf)IQIVxén(M)l)dvn(Z)

zER4
< CxC,

so, using (89), we obtain

IN

Irs (£, 2)| C||f||3’OOC’n></O B(X" (z) — z|)ds

Cllflls,00 Ca x t3/7

AN

We conclude that

< CCRt [ flls 00 (£72 + €0(n)).

—fZaaf (2)

i,j=1
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Let us estimate E(J*(f)). The strategy is the same as for I}*(f). We denote

lx,z,u) = Z@f x)q! (x, 2z, u)
oz, z,u) = f(a:—l—qn(x,z,u))—f(x)—l(a:,z,u).

By the very definition of g,,

Iz, z,u)dudn, (dz) i f (x
/Ex(O,l) Z

so that
_tZaf x) + 11 (t,x) + ro(t, x)
with
t
r(ta) = / / E($(XT, z,u)))dudn,(dz)ds,
0 JEx(0,1)
t
ro(t,z) = / / El(X?,z,u) = l(z, z,u))dudn, (z)ds
0 JEx(0,1)
d t ) )
- }:/lﬂaﬂXﬁmle)f&ﬂM%@D@
i=170
We have , ,
162, 2,0)] < C [ Fllpm0 1an (2 2 0)]> = C 1 lly.me len (22 Luzpn o)
so that
t 1 9
(to)| < mmuﬂﬁéﬁzm%@Xinuﬁ%ﬂﬁmmmst
t
n 2 n
- 67Hfuzﬂx>/£ j27EX\en(z,J(s_>! Bz X)) diga(2)ds
<

Cllflly00t sup / len(z,2)|* Ba(2,2))dna(2) < C||fl3,00 teo(n).

€RIJE

We estimate now r5. We have

||gn||1,oo < C sup /E(|en(zax)| + |Vxen(2,$)|)ﬁn(2’, x) + |en(z,x)| |Vzﬁn(za 33)| dnn(z)

zERI
< Cx(C,

so, using (89)

t

rat )] < Ctnfnz,oocnx / E(X" (2) - «|)ds
0

C 1 Iy C2 x 132,

IN

We conclude that

< C|\f||20002(t1/2—|—50( )) X t.

—tZ@f
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We estimate now H{*(f). We denote

so that

Notice that

On(z) = /E (f(x +cn(z,2)) = f(2)yn(2, 2)du(z)
E(HI(f)) = / /E E(6,(X"))ds.

d 1
On(x) = ;/En du(z)’yn(z,m)c;(z,w)/o Oif(x 4 Aen(z,2))dA.

Then it is easy to check that

|WWM§CthX/dMMWM&@W%AM+WwwwWM%@+M®Mf%%@)

n

< Cfllz,00 X Cn-

It follows that

Finally

B(HD(f)) — 10n(2)] < / [E(0,(X7)) — 0u(2)] ds

IN

t
C [[flly o0 Cn X / B(XT (z)) - z|)ds

O {1y C2.

IN

t

’E<D?(f)) — [ (V@b @) ds| < Pl 1l | BT ) = alyas < CC22

O
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