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Introduction and problem set-up

Finite element methods are currently used to approximate the unilateral contact problems (see, e.g., [START_REF] Haslinger | Numerical methods for unilateral problems in solid mechanics, volume 4 of Handbook of Numerical Analysis[END_REF][START_REF] Kikuchi | Contact problems in elasticity: a study of variational inequalities and finite element methods[END_REF][START_REF] Laursen | Computational contact and impact mechanics: fundamentals of modeling interfacial phenomena in nonlinear finite element analysis[END_REF][START_REF] Wohlmuth | Variationally consistent discretization schemes and numerical algorithms for contact problems[END_REF][START_REF] Wriggers | Computational contact mechanics[END_REF]). Such problems show a nonlinear boundary condition, which roughly speaking requires that (a component of) the solution u is nonpositive (or equivalently nonnegative) on (a part of) the boundary of the domain Ω (see [START_REF] Signorini | Questioni di elastostatica linearizzata e semilinearizzata[END_REF]). This nonlinearity leads to a weak formulation written as a variational inequality which admits a unique solution (see [START_REF] Fichera | Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno[END_REF]) and the regularity of the solution shows limitations whatever the regularity of the data is (see [START_REF] Moussaoui | Régularité des solutions d'un problème mêlé dirichlet-signorini dans un domaine polygonal plan[END_REF]). A consequence is that only finite element methods of order one and of order two are of interest which is the scope of this work.

This paper is focused on the contact configurations of two bodies whose respective meshes may not coincide on the contact interface, the so called "nonmatching meshes". This situation which often occurs in engineering computations has been considered and studied from a theoretical point of view in the last twenty years. It is now known that the local node-on-segment contact conditions in 2D or the equivalent node-on-face conditions in 3D produce solutions with oscillations which degrade the accuracy and slow down the convergence of the computations. On the contrary the mortar domain decomposition method [START_REF] Bernardi | A new non conforming approach to domain decomposition: The mortar element method[END_REF] handles in an optimal way the non matching meshes and its adaptation to contact problems gave promising theoretical and numerical results at the end of the 90's (see [START_REF] Bayada | Éléments finis avec joints pour des problèmes de contact avec frottenment de Coulomb non local. (french) [on the mortar finite element method for contact problems with nonlocal Coulomb law[END_REF][START_REF] Ben Belgacem | Approximation of the unilateral contact problem by the mortar finite element method[END_REF][START_REF] Ben Belgacem | Extension of the mortar finite element method to a variational inequality modeling unilateral contact[END_REF][START_REF] Hild | Problèmes de contact unilatéral et maillages éléments finis incompatibles[END_REF][START_REF] Hild | Numerical implementation of two nonconforming finite element methods for unilateral contact[END_REF]). To summarize, this initial approach directly inspired from [START_REF] Bernardi | A new non conforming approach to domain decomposition: The mortar element method[END_REF], considered a global L 2 projection of linear finite element functions from a mesh to another mesh on the contact area in two-dimensions. From a numerical point of view, this mortar concept has been adapted and extended to many contact configurations such as friction, quadratic finite elements, large deformations, three-dimensional problems... see, e.g. [START_REF] Chernov | hp-mortar boundary element method for two-body contact problems with friction[END_REF][START_REF] Cichosz | Consistent treatment of boundaries with mortar contact formulations using dual Lagrange multipliers[END_REF][START_REF] Dostál | A scalable feti-dp algorithm with non-penetration mortar conditions on contact interface[END_REF][START_REF] Farah | Segment-based vs. element-based integration for mortar methods in computational contact mechanics[END_REF][START_REF] Hartmann | A mortar based contact formulation for non-linear dynamics using dual Lagrange multipliers[END_REF][START_REF] Krause | A nonsmooth multiscale method for solving frictional two-body contact problems in 2D and 3D with multigrid efficiency[END_REF][START_REF] Laursen | Mortar contact formulations for deformabledeformable contact: past contributions and new extensions for enriched and embedded interface formulations[END_REF][START_REF] Popp | Dual quadratic mortar finite element methods for 3D finite deformation contact[END_REF][START_REF] Puso | A mortar segment-to-segment frictional contact method for large deformations[END_REF][START_REF] Puso | A segment-to-segment mortar contact method for quadratic elements and large deformations[END_REF][START_REF] Temizer | A mixed formulation of mortarbased contact with friction[END_REF][START_REF] Temizer | Three-dimensional mortarbased frictional contact treatment in isogeometric analysis with NURBS[END_REF][START_REF] Tur | A mortar-based frictional contact formulation for large deformations using Lagrange multipliers[END_REF][START_REF] Wohlmuth | An abstract framework for a priori estimates for contact problems in 3D with quadratic finite elements[END_REF] and the references therein.

Our aim in this study, is to propose the simplest contact condition which on the one hand gives optimal convergence results in the energy norm and on the other hand can be easily implemented in a industrial finite element code for various finite elements (3 and 6-node triangles, 4 and 8-node quadrangles in 2D and 4 and 10-node tetrahedra, 8, 20 and 27-node hexahedra in 3D). So we consider a discrete contact condition which requires, that the jump of the displacement denoted [u h N ] is nonpositive in average on some local patches (comprising one or several contact elements of one of the trace meshes) that form a partition of the contact zone and we call this approach Local Average Contact (LAC). The main benefit of this approach is that it naturally leads to a local method which makes the implementation in an industrial FE code easier, in particular Code Aster [START_REF] De | Finite element Code Aster , analyses de structures Thermo-Elastiques pour des Etudes et des Recherches[END_REF] in which we are interested. The paper is organized as follows:

• Section 2 deals with the two-dimensional unilateral contact problem between two elastic bodies in the general case of nonmatching meshes. First, we introduce a new operator denoted π h 1 which locally preserves the average on the contact zone. We then perform the error analysis of the problem using the LAC condition on any patch. The results proved in this section are optimal without using any other assumption than the Sobolev regularity of the solution of the continuous problem.

• In section 3, we extend the previous results to the three-dimensional case without any loss on the convergence rates using only one mesh requirement hypothesis. This assumption can be easily fulfilled from a practical point of view.

• Section 4 is devoted to establish the links between our contact condition and an equivalent formulation with Lagrange multipliers: we introduce the corresponding mixed formulation of the problem using the LAC condition, and then discuss on the inf-sup condition which holds.

• In section 5, we show some numerical results of the method implemented in the industrial study and research finite element software of Electricité de France (EDF), Code Aster . The Taylor patch test and the Hertz contact are considered. These computations involve 3 and 6-node triangles, 4 and 8-node quadrangles in 2D and 4 and 10-node tetrahedra, 8, 20 and 27-node hexahedra in 3D.

Next, we specify some notations we shall use. Let ω be a Lebesgue-measurable subset of R d with nonempty interior ; the generic point of ω is denoted x. The classical Lebesgue space L 2 (ω) and the standard Sobolev space H m (ω), m ∈ N (we adopt the convention H 0 (ω) = L 2 (ω)) are endowed with the norms:

ψ L 2 (ω) = ω |ψ(x)| 2 dx 1/2 , ψ m,ω =   0≤|α|≤m ∂ α ψ 2 L 2 (ω)   1/2
,

where α = (α 1 , . . . , α d ) is a multi-index in N d , |α| = α 1 + • • • + α d and the symbol ∂ α represents a partial derivative. The fractional Sobolev space H τ (ω), τ ∈ R + \ N with τ = m + ν, m
being the integer part of τ and ν ∈ (0, 1) is defined by the norm (see [START_REF] Auliac | Quadratic finite elements with non-matching grids for the unilateral boundary contact[END_REF]):

ψ τ,ω =   ψ 2 m,ω + |α|=m |∂ α ψ| 2 ν,ω   1/2
, where for ν ∈ (0, 1) the seminorm is defined by: The problem consists in finding the displacement field u = (u 1 , u 2 ) :

|ψ| ν,ω = ω ω (ψ(x) -ψ(y)) 2 |x -y| d+2ν dx dy 1/2 . Let Ω 1 and Ω 2 in R d , d = 2,
Ω 1 × Ω 2 → R d satisfying (1)-(6) with = 1, 2: -div σ (u ) = f in Ω , (1) σ(u ) = A ε(u ) in Ω , (2) σ (u )n = F on Γ N , (3) 
u = 0 on Γ D , (4) 
where n stands for the outward unit normal to Ω on ∂Ω . On Γ C , we decompose the displacement and the stress vector fields in normal and tangential components as follows:

u N = u .n , u T = u -u N n , σ N = (σ (u )n ).n , σ T = σ (u )n -σ N n ,
and we denote by

[u N ] = u 1 N + u 2 N
the jump of the normal displacement across the contact interface. The unilateral contact condition on Γ C is expressed by the following complementarity condition:

[u N ] ≤ 0, σ 1 N = σ 2 N = σ N ≤ 0, [u N ]σ N = 0, (5) 
where a vanishing gap between the two elastic solids has been chosen in the reference configuration.

The frictionless condition on Γ C reads as: for = 1, 2

σ T = 0. ( 6 
)
Let us introduce the following Hilbert spaces:

V = v ∈ (H 1 (Ω )) d : v = 0 on Γ D , V = V 1 × V 2 .
The set of admissible displacements satisfying the noninterpenetration conditions on the contact zone is:

K = {v ∈ V : [v N ] ≤ 0 on Γ C } .
Let be given the following forms for any u

= (u 1 , u 2 ) and v = (v 1 , v 2 ) in V : a(u, v) = 2 =1 Ω A ε(u ) : ε(v ) dΩ , l(v) = 2 =1 Ω f .v dΩ + Γ N F .v dΓ .
From the previous assumptions it follows that a(•, •) is a bilinear symmetric V -elliptic and continuous form on V × V and l is a linear continuous form on V . The weak formulation of Problem (1)-( 6) is:

Find u ∈ K satisfying: a(u, v -u) ≥ l(v -u), ∀ v ∈ K. (7) 
Problem [START_REF] Ben Belgacem | Extension of the mortar finite element method to a variational inequality modeling unilateral contact[END_REF] admits a unique solution according to Stampacchia's Theorem.

Remark 1 It is known that the unilateral contact condition generates singularities at contactnoncontact transition points: the work in [START_REF] Moussaoui | Régularité des solutions d'un problème mêlé dirichlet-signorini dans un domaine polygonal plan[END_REF] is restricted to R 2 and considers the Laplace operator on a polygonal domain and allows us to conclude that the solution to the Signorini problem is H 5/2-ε regular in the neighborhood of Γ C . If Γ C is not straight, e.g., Γ C is a union of straight line segments, then additional singularities appear (see section 2.3 in [START_REF] Auliac | Quadratic finite elements with non-matching grids for the unilateral boundary contact[END_REF] for a study in the twodimensional case). In the three-dimensional case the references [START_REF] Athanasopoulos | Optimal regularity of lower dimensional obstacle problems[END_REF][START_REF] Andersson | Optimal regularity for the Signorini problem and its free boundary[END_REF][START_REF] Guillen | Optimal regularity for the Signorini problem[END_REF] prove local C 1,1/2 regularity results.

The Local Average Contact (LAC) in two dimensions (d=2)

Let V h ⊂ V be a family of finite dimensional vector spaces indexed by h coming from a regular family T h of triangulations or quadrangulations of the domain Ω , = 1, 2 (see [START_REF] Brenner | The mathematical theory of finite element methods[END_REF][START_REF] Ciarlet | The finite element method for elliptic problems[END_REF][START_REF] Ern | Theory and practice of finite elements[END_REF]). The notation h represents the largest diameter among all (closed) elements T ∈ T h . We choose standard continuous and piecewise affine or quadratic functions, i.e.:

V h = v h ∈ (C(Ω )) 2 : v h | T ∈ P k (T ), ∀T ∈ T h , v h = 0 on Γ D ,
where k = 1 or k = 2. We set

V h = V h 1 × V h 2 .
The discrete set of admissible displacements satisfying the average noninterpenetration conditions on the contact zone is given by

K h = v h ∈ V h : I m [v h N ] dΓ ≤ 0 ∀I m ∈ I M .
When k = 1 then I M is a one-dimensional macro-mesh constituted by macro-segments I m comprising (see Definition 1 hereafter) two adjacent segments of T h 1 ∩ Γ C (i.e., the one-dimensional mesh on Γ C inherited by T h 1 ). When k = 2 then I M is simply the trace mesh on Γ C inherited by T h

1 . The only requirement (when k = 1 or k = 2) is that any element of I M admits an internal degree of freedom. Note that we choose the trace mesh of T h 1 but the symmetrical definition of I M using T h 2 could be another choice. The discrete variational inequality issued from [START_REF] Ben Belgacem | Extension of the mortar finite element method to a variational inequality modeling unilateral contact[END_REF] is

Find u h ∈ K h satisfying: a(u h , v h -u h ) ≥ l(v h -u h ), ∀ v h ∈ K h . ( 8 
)
According to Stampacchia's Theorem, problem (8) admits also a unique solution.

Remark 2 The approximation using a local average contact condition on the macro-mesh I M is said to be nonconforming since obviously K h ⊂ K.

Remark 3 This remark gives some answers to the question "why this new method ?". In the particular case of matching meshes the noninterpenetration condition in our method is still:

I m [v h
N ]dΓ ≤ 0 on any macro-element I m . When k = 2 this approximation has already been studied in the matching case in [START_REF] Drouet | Optimal convergence for discrete variational inequalities modelling Signorini contact in 2D and 3D without additional assumptions on the unknown contact set[END_REF]. In the linear case k = 1 with matching meshes the above condition differs from the two conventional and well-known noninterpenetration conditions when using linear finite elements:

[v h N ] ≤ 0 on Γ C , (9) 
and

T ∩Γ C [v h N ]dΓ ≤ 0 on any contact element T ∩ Γ C . ( 10 
)
So a question we try to answer is: why does our method in the case of matching meshes and k = 1 not reduce to one of both previous classical ones ?

The first condition (9) in the matching case

[v h N ] = v h 1 N + v h 2 N ≤ 0 on Γ C can
be extended in many ways to the nonmatching case. It is well known that keeping exactly the same symmetrical definition as above does not lead to any convergence analysis in the nonmatching case. In fact the symmetrical definitions of discrete interpenetration are not adapted to the known techniques of convergence analysis. A possibility to impose symmetry is to use, stabilized mixed methods as in [START_REF] Hild | A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics[END_REF] but in the latter case the discrete noninterpenetration condition is not given explicitly on the contact area.

Nevertheless the (nonsymmetrical) extensions of the type v h

1 N + O h 1 (v h 2 N ) ≤ 0 on Γ C where O h
1 is an operator mapping onto W h 1 (the normal trace space of V h 1 on Γ C ) lead to the two most famous methods for nonmatching meshes: if O h 1 is the Lagrange interpolation operator then the method is local (this is the well-known node-on-segment in 2D or node-on-face approach in 3D which are known to be suboptimal). If O h 1 is a L 2 (Γ C )-projection operator then the method is the mortar-contact method which converges in an optimal way and has a global character. We recall that we are interested in a simple local approach for computational purposes, see the introduction, so the powerful modified mortar methods such as the dual one (see [START_REF] Hüeber | A primal-dual active set strategy for non-linear multibody contact problems[END_REF][START_REF] Krause | Monotone multigrid methods on nonmatching grids for nonlinear multibody contact problems[END_REF][START_REF] Popp | Dual quadratic mortar finite element methods for 3D finite deformation contact[END_REF][START_REF] Wohlmuth | An abstract framework for a priori estimates for contact problems in 3D with quadratic finite elements[END_REF]) are not the best solution in our case. These methods are either non-local or too complex to be implemented in an simple and generic way in an industrial FE code at the moment. Unfortunately we have not found a third operator O h 1 which has a local character and leads to good convergence rates: a local operator close to the one studied hereafter (i.e., π h 1 ) does not lead to interesting results. Consider now the second condition [START_REF] Bernardi | A new non conforming approach to domain decomposition: The mortar element method[END_REF] whose most obvious extension to nonmatching meshes would be

T ∩Γ C [v h N ]dΓ ≤ 0 on any contact element T ∩ Γ C
where we choose = 1 or = 2. If we adopt this definition when k = 1 we cannot perform the error analysis (contrary to the case k = 2), in particular we are not able to estimate the approximation error since we cannot find in the 2D case (and also in the 3D case) an operator mapping onto W h 1 (see definition above) and which is average preserving on any element (since there are more elements than degrees of freedom (d.o.f.)) But if we slightly enlarge the area where the average is considered, in particular if we choose macro-meshes with an internal d.o.f. then we can perform such an analysis by keeping a local character of the noninterpenetration condition. Finally let us notice that our definition is not symmetrical since we choose one of both meshes to build the macro-mesh.

The average preserving operator

We are going to define an operator denoted π h 1 . We begin with the linear case k = 1 and the quadratic case k = 2 will then be handled straightforwardly. We then show that the operator π h 1 preserves the average on any macro-segment I m , it is H s (Γ C )-stable for any s ∈ [0, 1] and it fulfills other convenient properties. This operator will allow us to obtain an optimal approximation error term in the forthcoming error analysis. Let W h 1 be the normal trace space of V h 1 on Γ C . We denote by x i , i = 1, ..., n the nodes of the triangulation T h 1 located on Γ C and by φ i the corresponding basis function of

W h 1 . The support of φ i (in Γ C ) is denoted ∆ i .
We also suppose that the trace mesh T h 1 ∩ Γ C is quasi-uniform (although there exists some less restrictive assumptions, see, e.g., [START_REF] Crouzeix | The stability in l p and of w 1,p the l 2 -projection onto finite element function spaces[END_REF]). We denote respectively h c , h i and h I m the largest mesh length on Γ C , the length of the segment ∆ i and the length of the segment I m . We denote by C a positive generic constant which does neither depend on the mesh size nor on the function v.

Definition 1 Suppose that Γ C ∩ Γ 1 D = ∅. 1. Assume that n = 2p + 1. Set I M = {[x 1 , x 3 ], [x 3 , x 5 ], • • • , [x n-2 , x n ]}. The operator π h 1 : L 1 (Γ C ) -→ W h 1 is as follows: for any v ∈ L 1 (Γ C ), π h 1 v is defined locally on every I m = [x i , x i+2 ] ∈ I M by π h 1 v = i+2 j=i α j (v)φ j , where                      α j (v) = ∆ j v dΓ |∆ j | , j = i, i + 2, α i+1 (v) = I m v dΓ - I m α i (v)φ i dΓ - I m α i+2 (v)φ i+2 dΓ I m φ i+1 dΓ . ( 11 
) 2. Assume that n = 2p. Set I M = {[x 1 , x 3 ], [x 3 , x 5 ], • • • , [x n-5 , x n-3 ], [x n-3 , x n ]}. The definition of π h 1 v on any I m is the same as in (11) except for I m = [x n-3 , x n ]
where

π h 1 v = n j=n-3 α j (v)φ j , with                      α j (v) = ∆ j v dΓ |∆ j | , j = n -3, n -2, n, α n-1 (v) = I m v dΓ - I m α n-3 (v)φ n-3 dΓ - I m α n-2 (v)φ n-2 dΓ - I m α n (v)φ n dΓ I m φ n-1 dΓ . x 1 x 2 x 3 x 4 x 5 x 6 x n-2 x n-1 x n I 1 I 2 I n-1 2 I 2 T h 1 ∩ Γ C I M Figure 1: The trace mesh T h 1 ∩ Γ C and the macro-mesh I M Remark 4 If Γ C ∩ Γ 1 D = ∅
, the definition of I M is done as in the previous definition (depending on the even or odd number of contact segments on Γ C ). The only difference (with the previous case) in the definition of π h 1 v comes from the Dirichlet condition on the boundary node x 1 (and/or x n ). In that case we just need to define α 1 (v) = 0 (and/or α n (v) = 0) so that π h 1 preserves the boundary conditions (i.e., π h 1 v(x 1 ) = 0 and/or π h

1 v(x n ) = 0).
Proposition 1 The operator π h 1 is linear and satisfies

I m π h 1 v -v dΓ = 0, ∀v ∈ L 1 (Γ C ), ∀I m ∈ I M .
Proof. The linearity of π h 1 is obvious, the average preserving property on I m follows directly from the definition of π h 1 .

Proposition 2 Let Γ C ∩ Γ D = ∅. For any s ∈ [0, 1], the operator π h 1 is H s (Γ C )-stable, i.e., there exists C > 0 such that for any v ∈ H s (Γ C ) π h 1 v s,Γ C ≤ C v s,Γ C .
Proof. First we show that for any v ∈ L 2 (Γ C ):

|α i (v)| ≤ Ch -1 2 c v 0, Ĩm , ∀i = 1, • • • , n, (12) 
where Ĩm is the patch surrounding I m : Ĩm = i:x i ∈I m ∆ i (see Figure 1). Let x j ∈ I m , we have either

|α j (v)| = ∆ j v dΓ |∆ j | -1 ≤ h -1 j ∆ j |v| dΓ ≤ h -1 2 j v 0,∆ j ≤ Ch -1 2 c v 0, Ĩm (13) 
or

|α j (v)| = I m v dΓ - k =j:x k ∈I m I m α k (v)φ k dΓ I m φ j dΓ -1 ≤ Ch -1 I m h 1 2 I m v 0,I m + h 1 2 c v 0, Ĩm + h 1 2 c v 0, Ĩm ≤ Ch -1 2 c v 0, Ĩm ,
where we use [START_REF] Chernov | hp-mortar boundary element method for two-body contact problems with friction[END_REF] together with |φ i | ≤ 1 on Γ C and Cauchy-Schwarz inequality. Next, we prove the local L 2 -stability (on Γ C ) of π h 1 .

π h 1 v 0,I m = j:x j ∈I m α j (v)φ j 0,I m ≤ j:x j ∈I m |α j (v)| φ j 0,I m ≤ Ch 1 2 I m j:x j ∈I m |α j (v)| ≤ C v 0, Ĩm . (14) 
So we deduce from ( 14) the L 2 (Γ C )-stability of π h 1 :

π h 1 v 2 0,Γ C = I m ∈I M π h 1 v 2 0,I m ≤ C I m ∈I M v 2 0, Ĩm ≤ C v 2 0,Γ C . ( 15 
)
We now need to prove the H 1 (Γ C )-stability of π h 1 . We assume that v ∈ H 1 (Γ C ) and we show that

(π h 1 v) 0,Γ C ≤ C v 0,Γ C
, where the notation v denotes the derivative of v. First we notice that

(π h 1 a) | I m = a | I m , ∀a ∈ P 0 ( Ĩm ), ∀I m ∈ I M .
Using the definition of (π h 1 v) 0,I m , an inverse estimate and the local L 2 (I m )-stability ( 14) of π h 1 we get, for all I m ∈ I M and all a ∈ P 0 ( Ĩm ):

(π h 1 v) 0,I m = (π h 1 (v -a)) 0,I m ≤ Ch -1 I m π h 1 (v -a) 0,I m ≤ Ch -1 I m v -a 0, Ĩm .
We set

a = | Ĩm | -1 Ĩm v dΓ.
Using the standard inequality va 0, Ĩm ≤ Ch Ĩm v 0, Ĩm [START_REF] Coorevits | Mixed finite element methods for unilateral problems: convergence analysis and numerical studies[END_REF] we deduce that (π h 1 v) 0,I m ≤ C v 0, Ĩm , and by summation

(π h 1 v) 0,Γ C ≤ C v 0,Γ C . ( 17 
)
Thanks to [START_REF] Cichosz | Consistent treatment of boundaries with mortar contact formulations using dual Lagrange multipliers[END_REF] and [START_REF] Crouzeix | The stability in l p and of w 1,p the l 2 -projection onto finite element function spaces[END_REF], we obtain

π h 1 v 2 1,Γ C = π h 1 v 2 0,Γ C + (π h 1 v) 2 0,Γ C ≤ C( v 2 0,Γ C + v 2 0,Γ C ) = C v 2 1,Γ C . ( 18 
)
Using the last bound together with [START_REF] Cichosz | Consistent treatment of boundaries with mortar contact formulations using dual Lagrange multipliers[END_REF] and an hilbertian interpolation argument (see [START_REF] Lions | Problemes aux limites non homogenes et applications[END_REF][START_REF] Triebel | Interpolation theory, function spaces, differential operators[END_REF]) allows us to prove the H s (Γ C )-stability of π h 1 for all s ∈ (0, 1).

Remark 5 If Γ C ∩ Γ 1 D = ∅,
the previous results can be easily extended. Obviously the estimates (12), ( 14) and ( 15) still remain valid. Suppose first that

Γ C ∩ Γ 1 N = ∅ (so α 1 (v) = α n (v) = 0) . In that case we need to prove that (π h 1 v) 0,Γ C ≤ C v 0,Γ C for v ∈ H 1 0 (Γ C
). This only requires to establish the local estimates (π h 1 v) 0,I m ≤ C v 0, Ĩm for both extreme segments I m containing x 1 and x n (here π h 1 does not preserve the constant functions on the boundary segments). Since v vanishes on Ĩm , we write

(π h 1 v) 0,I m ≤ Ch -1 I m π h 1 v 0,I m ≤ Ch -1 I m v 0, Ĩm ≤ C v 0, Ĩm .
This bound allows us to obtain estimate [START_REF] Crouzeix | The stability in l p and of w 1,p the l 2 -projection onto finite element function spaces[END_REF] and then [START_REF] De | Finite element Code Aster , analyses de structures Thermo-Elastiques pour des Etudes et des Recherches[END_REF] for any v ∈ H 1 0 (Γ C ). The stability result in any interpolation space between L 2 (Γ C ) and H 1 0 (Γ C ) follows. The case where only one extremity of Γ C is submitted to a Dirichlet condition is handled in a similar way.

The extension to the quadratic case k = 2 is straightforward. The macro-mesh simply reduces to the trace mesh and π h 1 is defined on any quadratic segment I m = [x i , x i+2 ] as in Definition 1.1. in which the midpoint x i+1 allows to preserve the average. It is easy to check that Propositions 1, 2 and Remarks 4 and 5 still hold.

Remark 6

The operator π h 1 does not preserve the continuous piecewise affine functions of

W h 1 : if v h ∈ W h 1 then π h 1 v h = v h in general, so π h
1 is not a projection operator. Moreover it is easy to check that π h 1 is not positivity preserving. Note that the operator π h 1 shows some similarities with the one in [START_REF] Chen | Residual type a posteriori error estimates for elliptic obstacle problems[END_REF] (although π h 1 is average preserving whereas the operator in [START_REF] Chen | Residual type a posteriori error estimates for elliptic obstacle problems[END_REF] preserves affine functions).

Error analysis in two dimensions

The forthcoming theorem shows that the local average contact conditions in K h give optimal convergence rates in the case of the unilateral contact of two elastic bodies with (and without) nonmatching meshes on the contact zone Γ C . Denoting by u

= (u 1 , u 2 ) with u = u | Ω we set u 2 s,Ω 1 ,Ω 2 = u 1 2 s,Ω 1 + u 2 2
s,Ω 2 . We recall that h 1 and h 2 denote the largest mesh sizes of T h 1 and T h 2 . Theorem 1 Let u and u h be the solutions to Problems [START_REF] Ben Belgacem | Extension of the mortar finite element method to a variational inequality modeling unilateral contact[END_REF] and ( 8) respectively. Assume that u ∈ (H τ (Ω 1 )) 2 × (H τ (Ω 2 )) 2 with 3/2 < τ ≤ min(k + 1, 5/2), k = 1, 2. Then, there exists a constant C > 0 independent of h 1 , h 2 and u such that

u -u h 1,Ω 1 ,Ω 2 ≤ C(h τ -1 1 + h τ -1 2 ) u τ,Ω 1 ,Ω 2 . ( 19 
)
Remark 7 Note that the same convergence rates could be proved for the standard mortar method applied to the two-dimensional unilateral contact between two elastic bodies when considering nonmatching meshes by using techniques of [START_REF] Drouet | Optimal convergence for discrete variational inequalities modelling Signorini contact in 2D and 3D without additional assumptions on the unknown contact set[END_REF] and the standard tools from the mortar method. As already mentioned in the introduction our aim in this study is to propose a method where the noninterpenetration conditions are handled locally contrary to the standard mortar approach.

Proof. The use of Falk's Lemma in the case K h ⊂ K gives (see, e.g., [START_REF] Belgacem | Hybrid finite element methods for the Signorini problem[END_REF]):

α u -u h 2 1,Ω 1 ,Ω 2 ≤ inf v h ∈K h u -v h 2 1,Ω 1 ,Ω 2 + Γ C σ N [v h N -u N ] dΓ + inf v∈K Γ C σ N [v N -u h N ] dΓ (20) 
with α > 0. First, we will prove that the approximation error, i.e., the first infimum in [START_REF] Drouet | Optimal convergence for discrete variational inequalities modelling Signorini contact in 2D and 3D without additional assumptions on the unknown contact set[END_REF] is bounded in an optimal way. We choose v h ∈ V h as follows

v h 1 = I h 1 u 1 + R h 1 (π h 1 ([u N ] -I h 1 u 1 .n 1 -I h 2 u 2 .n 2 )), v h 2 = I h 2 u 2 ,
where I h is the Lagrange interpolation operator mapping onto V h , π h 1 : L 1 (Γ C ) → W h 1 is the operator defined in the previous section and R h 1 is a discrete extension operator from W h 1 into V h 1 . Note that the discrete extension operators can be obtained by combining a standard continuous extension operator with a local regularization operator (see, e.g., [START_REF] Scott | Finite element interpolation of nonsmooth functions satisfying boundary conditions[END_REF][START_REF] Bernardi | A local regularization operator for triangular and quadrilateral finite elements[END_REF]). First, we show that v h belongs to

K h . Let I m ∈ I M I m [v h N ] dΓ = I m v h 1 .n 1 + v h 2 .n 2 dΓ = I m I h 1 u 1 .n 1 -π h 1 (I h 1 u 1 .n 1 ) dΓ + I m I h 2 u 2 .n 2 -π h 1 (I h 2 u 2 .n 2 ) dΓ + I m π h 1 [u N ] dΓ = I m π h 1 [u N ] dΓ 3 
The LAC in three dimensions (d=3)

In this section we extend the LAC approach to the three-dimensional case. The polyhedral domains Ω 1 and Ω 2 have a common candidate contact zone Γ C which is is a polygon. We denote by T h the regular tetrahedra or hexaheda family discretizing the domain Ω and by h the largest mesh size. In the following we will consider four nodes linear tetrahedra (TETRA 4), ten nodes quadratic tetrahedra (TETRA 10), eight nodes linear hexahedra (HEXA 8), twenty and twentyseven nodes quadratic hexahedra (HEXA 20 and HEXA 27).

To deal with the error analysis we have to extend the definition of the operator π h 1 (see Definition 1) to the two-dimensional case. We also need that the main properties of π h 1 (linearity, average preserving, H s (Γ C )-stability) remain true in this case. We have to introduce the "internal degree of freedom hypothesis" which is needed to construct π h 1 and to carry out the convergence analysis.

Hypothesis 1 (internal d.o.f.) There exists a macro-mesh T M of Γ C whose elements are unions of elements of T h ∩ Γ C such that for every macro-element T m ∈ T M , there exists (at least) a degree of freedom x i of V h such that supp(φ i ) ⊂ T m , where φ i is the basis function associated to x i . Moreover there exists a constant C such that the largest mesh size of the macro-mesh is lower than Ch (this last requirement is made to avoid a too coarse macro-mesh).

From a theoretical point of view one could try to show that this hypothesis can be generally fulfilled by gathering some elements on Γ C but such a strategy would not be interesting from a practical numerical point of view. We choose another strategy which consists of a local refinement of the contact mesh T h ∩ Γ C whose aim is that the mesh T h ∩ Γ C before refinement becomes the macro-mesh. For HEXA 27 elements, no refinement is needed and the trace mesh can be chosen as macro-mesh since there is already an internal degree of freedom. For the other elements the refinement strategy consists of adding (at least) an internal d.o.f. by refining the contact elements as suggested in Figure 2.

Remark 8 1. The refinement strategy is local and only concerns the elements which have a face on the contact area (see Figure 3 where a tetrahedra mesh is refined).

2. One can either choose to refine the mesh of one or of the other body.

3. The refinement does not affect the regularity and the quasi-uniformness properties of the meshes.

The average preserving operator

We next suppose that T M is a macro-mesh of Γ C satisfying Hypothesis 1 and built from the mesh of

T h 1 ∩ Γ C . Let W h be the normal trace space of V h = {v h ∈ (C(Ω )) 3 : v h | T ∈ P k (T ), ∀T ∈ T h , v h = 0 on Γ D } on Γ C ⊂ R 2 with k = 1, 2.
Let φ i be the basis functions associated to the degrees of freedom of W h 1 . We denote x i , i = 1, .., n the corresponding nodes of T h 1 ∩ Γ C and ∆ i = supp(φ i ). is as follows for any v ∈ L 1 (Γ C ). If x i is a node in Γ C ∩ Γ 1 D , then π h 1 v(x i ) = 0. Then π h 1 v is defined locally on every macro-element T m ∈ T M having as nodes x i , i = 1, ..., m (x i ∈ Γ C ∩ Γ 1 D ) and as internal d.o.f. x m+1 by 

Definition 2 Assume that Hypothesis 1 holds. The operator

π h 1 : L 1 (Γ C ) -→ W h 1
π h 1 v = m+1 j=1 α j (v)φ j , where                        α j (v) = ∆ j v dΓ |∆ j | , j = 1, ..., m α m+1 (v) = T m v dΓ - m j=1 T m α j (v)φ j dΓ
T m π h 1 v -v dΓ = 0, ∀v ∈ L 1 (Γ C ), ∀T m ∈ T M .
2. For any s ∈ [0, 1], the operator π h 1 is H s (Γ C )-stable, i.e., there exists C > 0 such that for any

v ∈ H s (Γ C ) π h 1 v s,Γ C ≤ C v s,Γ C .
Proof. The linearity of π h 1 is obvious. The average preserving property on T m follows directly from the definition of π h 1 . When Γ C ∩ Γ 1 D = ∅ then the proof of the stability is obtained from a similar calculation as in the one-dimensional case. It is easy to check that for any j, we have

|α j (v)| ≤ C|∆ j | -1/2 v 0, T m ≤ Ch -1 c v 0, T m (27) 
where T m = i:

x i ∈T m ∆ i . Therefore the local L 2 -stability: π h 1 v 0,T m ≤ C v 0, T m and hence the global L 2 -stability π h 1 v 0,Γ C ≤ C v 0,Γ C follow.
As in the one-dimensional case, the local L 2 -stability of the gradient:

∇π h 1 v 0,T m ≤ C ∇v 0, T m (28)
is a direct consequence of the property ∇π h 1 a = 0 on T m for all a ∈ P 0 ( T m ) and of the error estimate [START_REF] Coorevits | Mixed finite element methods for unilateral problems: convergence analysis and numerical studies[END_REF] in two dimensions (see [START_REF] Belgacem | Some nonstandard finite element estimates with applications to 3D Poisson and Signorini problems[END_REF]).

When Γ C ∩Γ 1 D = ∅, the estimate (27) remains true for any j. It suffices then to prove the local stability [START_REF] Hauret | A stabilized discontinuous mortar formulation for elastostatics and elastodynamics problems, Part 2: discontinuous Lagrange multipliers[END_REF] still holds when T m has at least a node in Γ 1 D (in that case the constant functions are not preserved on T m ). So

∇π h 1 v 0,T m ≤ Ch -1 c π h 1 v 0,T m ≤ Ch -1 c v 0, T m ≤ C ∇v 0, T m
where the last bound follows from Poincaré inequality and since v vanishes on a set of positive measure in ∂ T m . Denoting by

H 1 0,Γ 1 D (Γ C ) the functions of H 1 (Γ C ) vanishing on Γ C ∩ Γ 1 D , we deduce that π h 1 is stable in any interpolation space between L 2 (Γ C ) and H 1 0,Γ 1 D (Γ C ).

Error analysis in three dimensions

The forthcoming result shows that the use of the discrete cone K h of admissible displacements in the three-dimensional case (see definition hereafter) leads to optimal convergence in the energy norm. As previously, we set

u 2 s,Ω 1 ,Ω 2 = u 1 2 s,Ω 1 + u 2 2 s,Ω 2 where u = (u 1 , u 2 ) and u = u | Ω . We recall that V h = V h 1 × V h 2 and we define K h as K h = v h ∈ V h : T m [v h N ] dΓ ≤ 0 ∀T m ∈ T M .
Let u h be the unique solution of the three-dimensional discrete problem Find u h ∈ K h satisfying:

a(u h , v h -u h ) ≥ l(v h -u h ), ∀ v h ∈ K h . ( 29 
)
Theorem 2 Let u and u h be the solutions to Problems ( 7) and ( 29) respectively. Assume that Hypothesis 1 is verified and that

u ∈ (H τ (Ω 1 )) 3 × (H τ (Ω 2 )) 3 with 3/2 < τ ≤ min(k + 1, 5/2), k = 1, 2.
Then, there exists a constant C > 0 independent of h 1 , h 2 and u such that

u -u h 1,Ω 1 ,Ω 2 ≤ C(h τ -1 1 + h τ -1 2 ) u τ,Ω 1 ,Ω 2 .
Remark 10 For the "standard mortar" approach, we would need to take care of the extreme nodes of Γ C in order to get the optimal convergence rate when considering non matching meshes.

In fact the new result coming from [START_REF] Drouet | Optimal convergence for discrete variational inequalities modelling Signorini contact in 2D and 3D without additional assumptions on the unknown contact set[END_REF] cannot be extended straightforwardly to the 3D "standard mortar" framework (contrary to the 2D case).

Proof. From Falk's Lemma, we get the abstract error estimate [START_REF] Drouet | Optimal convergence for discrete variational inequalities modelling Signorini contact in 2D and 3D without additional assumptions on the unknown contact set[END_REF]. Due to the properties of π 1 h , we can bound the approximation error term in an optimal way as in the previous section by choosing v h ∈ V h such that

v h 1 = I h 1 u 1 + R h 1 (π h 1 ([u N ] -I h 1 u 1 .n 1 -I h 2 u 2 .n 2 )), v h 2 = I h 2 u 2 .
As in the two-dimensional case it is easy to check that v h ∈ K h and to obtain the bound for the approximation error when 3/2 < τ ≤ min(k + 1, 5/2):

inf v h ∈K h u -v h 2 1,Ω 1 ,Ω 2 + Γ C σ N [v h N -u N ] dΓ ≤ C(h 2(τ -1) 1 + h 2(τ -1) 2 ) u 2 τ,Ω 1 ,Ω 2 .
The consistency error is handled as in the two-dimensional case by using the techniques of [START_REF] Drouet | Optimal convergence for discrete variational inequalities modelling Signorini contact in 2D and 3D without additional assumptions on the unknown contact set[END_REF].

We obtain for 3/2 < τ ≤ 5/2:

inf v∈K Γ C σ N [v N -u h N ] dΓ ≤ Ch 2(τ -1) 1 u 2 τ,Ω 1 ,Ω 2 + α 2 u -u h 2 1,Ω 1 ,Ω 2 .
Both previous bounds and ( 20) prove the theorem.

the best convergence rate we need to prove that β h is independent of the mesh size h = (h 1 , h 2 ). Next, we show the link between Hypothesis 1, the operator π h 1 and the mesh-independent inf-sup condition: there is a constant β such that: inf

µ h ∈X h 1 sup v h ∈V h b(µ h , v h ) µ h W v h 1,Ω 1 ,Ω 2 ≥ β > 0, ( 38 
)
that is the aim of the following proposition.

Proposition 5 There exists a positive constant β which does not depend on the mesh size such that: for all µ h ∈ X h 1 , there exists

v h ∈ V h , v h = 0 such that b(µ h , v h ) ≥ β µ h W v h 1,Ω 1 ,Ω 2 . ( 39 
)
Proof. Note first that ( 39) and ( 38) are equivalent. Let µ h belong to X h 1 . Since X h 1 ⊂ W , we can use the continuous inf-sup condition (see, e.g., [START_REF] Haslinger | Numerical methods for unilateral problems in solid mechanics, volume 4 of Handbook of Numerical Analysis[END_REF]): there is a constant β such that

inf µ∈W sup v∈V b(µ, v) µ W v 1,Ω 1 ,Ω 2 ≥ β > 0. ( 40 
)
So, for all µ h ∈ X h 1 there exists v ∈ V such that:

b(µ h , v) ≥ β µ h W v 1,Ω 1 ,Ω 2 .
To prove [START_REF] Laursen | Computational contact and impact mechanics: fundamentals of modeling interfacial phenomena in nonlinear finite element analysis[END_REF] it is sufficient to show that there exists v h ∈ V h satisfying the two following conditions:

b(µ h , v h ) = b(µ h , v), (41) v h 1,Ω 1 ,Ω 2 ≤ C v 1,Ω 1 ,Ω 2 . ( 42 
)
In fact if [START_REF] Lions | Problemes aux limites non homogenes et applications[END_REF] and ( 42) hold, we get [START_REF] Laursen | Computational contact and impact mechanics: fundamentals of modeling interfacial phenomena in nonlinear finite element analysis[END_REF] 

with β = β/C, i.e., b(µ h , v h ) = b(µ h , v) ≥ β µ h W v 1,Ω 1 ,Ω 2 ≥ β C µ h W v h 1,Ω 1 ,Ω 2 .
In order to satisfy the condition (41), we set

v h = (v h 1 , v h 2 ) such that v h 1 = R h 1 π h 1 [v N ], v h 2 = 0,
where R h 1 ia a discrete extension operator. Since π h 1 preserves the average on every macro-element T m , v h satisfies:

T m [v h N ] dΓ = T m π h 1 [v N ] dΓ = T m [v N ] dΓ, ∀T m ∈ T M .
By summing over the T m and since µ h is constant on any T m , we get (41):

b(µ h , v h ) = Γ C µ h [v h N ] dΓ = Γ C µ h [v N ] dΓ = b(µ h , v).
To finish the proof, it remains to show that v h verifies [START_REF] Moussaoui | Régularité des solutions d'un problème mêlé dirichlet-signorini dans un domaine polygonal plan[END_REF]. Thanks to the H 1 2 (Γ C )-stability of π h 1 and the trace theorem, we have

v h 1,Ω 1 ,Ω 2 = R h 1 π h 1 [v N ] 1,Ω 1 ≤ C π h 1 [v N ] 1/2,Γ C ≤ C [v N ] 1/2,Γ C ≤ C v 1,Ω 1 ,Ω 2 .
We observe that the research of sufficient conditions on the meshes in order to construct the stable average preserving operator π h 1 is similar to the research of discrete approximation spaces satisfying the inf-sup condition. Besides note that the three-dimensional refinement procedure proposed for tetrahedra and hexahedra (whose aim is to obtain a simple macro-mesh) could also be chosen in the linear two-dimensional case by dividing any contact element in two elements but this is not necessary since it is simpler (and equivalent) to consider a segment with two contact elements as in Section 2.

Remark 11 Here we can see some similarities (in the linear case) with the discontinuous mortar domain decomposition studied in [START_REF] Hauret | A stabilized discontinuous mortar formulation for elastostatics and elastodynamics problems, Part 2: discontinuous Lagrange multipliers[END_REF][START_REF] Hauret | A discontinuous stabilized mortar method for general 3D elastic problems[END_REF] when considering its adaptation to the contact problem. The main difference is that the inf-sup condition directly comes from the definition of the macro-mesh T M instead of being fulfilled by the introduction of a bubble enrichment of one of the approximation space V h .

Error estimate

The following theorem shows that we can obtain the same convergence rates for the solution to the mixed problem (30) than those stated in Theorem 1 and Theorem 2 for the variational inequality problem.

Theorem 3 Let (u, λ = σ N ) and (u h , λ h ) be the solutions to the continuous Problem [START_REF] Ben Belgacem | Extension of the mortar finite element method to a variational inequality modeling unilateral contact[END_REF] and to the discrete Problem (30) respectively. Let d = 2, 3 and k = 1, 2. Assume that Hypothesis 1 is verified when

d = 3 and that u ∈ (H τ (Ω 1 )) d × (H τ (Ω 2 )) d with 3/2 < τ ≤ min(k + 1, 5/2). Then, there exists a constant C > 0 independent of h = (h 1 , h 2 ) and u such that λ -λ h 1/2, * ,Γ C + u -u h 1,Ω 1 ,Ω 2 ≤ C(h τ -1 1 + h τ -1 2 ) u τ,Ω 1 ,Ω 2 ,
where . 1/2, * ,Γ C stands for the dual norm of . 1/2,Γ C .

Proof. The proof is straightforward and standard. Since the inf-sup condition [START_REF] Krause | Monotone multigrid methods on nonmatching grids for nonlinear multibody contact problems[END_REF] is verified it only remains to bound similar terms to the ones bound in the proof of Theorems 1 and 2 (see, e.g., [START_REF] Hild | Quadratic finite element methods for unilateral contact problems[END_REF]).

Numerical experiments

The LAC method has been implemented in the finite element software of Electricité de France (EDF), Code Aster . For more than 20 years, this FE code is both the repository of the research in solid and structure mechanics led at the R&D department of EDF and the simulation tool used by the engineering divisions to analyze various components of the power plants (nuclear, hydraulic. . . ) and also to justify safety for the French nuclear safety authority (ASN). We choose to use the already implemented full non linear algorithmic framework, so that all the non linearities (material behavior, geometric, and contact) are solved inside a single Newton loop. The locality of the LAC method allows us to implement it in an easy an generic way for the most used finite elements in 2D (3-node linear and 6-node quadratic triangles, 4-node bi-linear and 8-node bi-quadratic quadrangles) and in 3D (4-node linear and 10-node quadratic tetrahedra, 8node bi-linear, 20 and 27-node bi-quadratic hexahedra). So we basically "only" have to make sure that the mesh and macro-mesh satisfy Hypothesis 1, develop a quite similar pairing detection to the one in [START_REF] Puso | A segment-to-segment mortar contact method for quadratic elements and large deformations[END_REF] and finally implement the new elementary matrix computation (which is possible due to the locality of the method). In this section, we will analyse the behavior (in 2D and 3D) of the method facing the well-known contact problems: the Taylor patch test and the Hertzian contact. To conclude the numerical experiments, we will take a look at the numerical convergence rates.

Taylor patch test

Test configuration in 2D

We consider a structure which consists of two identical squares of edge lengths 50mm having a common horizontal edge which is the contact area Γ C . The material characteristics are: a Young modulus E = 2000M P a and a Poisson ratio ν = 0.3. We set symmetric conditions both on the left part and on the lower part of the structure and apply a 25M P a pressure at the top of the upper square. Both squares are meshed independently with 3-node triangles or 4-node quadrangles which leads to nonmatching trace meshes on the contact zone (see Figures 4 and5).

In this case the solution u to the continuous problem is linear and the stress field σ yy in the structure as well as the contact pressure σ N are constant and equal to 25M P a. The mortar method is known to pass successfully this Taylor patch test whereas other methods based on node-to-segment approaches fail when considering the general case of nonmatching meshes (see, e.g., [START_REF] Hild | Numerical implementation of two nonconforming finite element methods for unilateral contact[END_REF][START_REF] Taylor | On a patch test for contact problems in two dimensions[END_REF]).

The numerical results obtained with the LAC condition are depicted in Figure 4 and 5. We get the expected results on the displacement field, the contact pressure (i.e., the Lagrange multiplier) equals 25 ± 10 -9 M P a on Γ C , the gap numerically vanishes on Γ C and the Cauchy stress tensor component σ yy equals 25 ± 10 -9 M P a in the structure.

Remark 12

We see in Figure 4 that the elements of the trace mesh on Γ C of the lower square (which stands for Ω 1 ) are gathered by pairs to form the macro-mesh I M . There are 34 elements in the trace mesh of the lower square and the Lagrange multiplier space P 0 (I M ) admits 17 d.o.f. 

Test configuration in 3D

We now consider a structure which consists of two identical cubes of edge lengths 50mm having a common horizontal face which is the contact area Γ C . The material characteristics are the same as previously: a Young modulus E = 2000M P a and a Poisson ratio ν = 0.3 are chosen. We set symmetric conditions on the two vertical faces -→ Ox -→ Oz and -→ Oy -→ Oz and on the lower part of the structure (Oz stands for the vertical axis). We apply a 25M P a pressure at the top of the upper cube. Both cubes are meshed independently with 4-node tetrahedra or 8-node hexahedra with nonmatching trace meshes on the contact zone (see Figures 6 and7). As in the two-dimensional case, the solution u to the continuous problem is known (linear displacement fields, constant σ zz field and constant Lagrange multipliers both equal to 25M P a). The results are depicted in Figures 6 and7. We obtain the expected results on the displacement field, the contact pressure (Lagrange multipliers) equals 25 ± 10 -9 M P a on Γ C and Cauchy stress tensor component σ zz equals 25 ± 10 -9 M P a in the structure.

Remark 13 In the right picture of Figures 6 and7, we can see the result of the pre-processing work which ensures that the trace mesh on the slave side of the contact zone (i.e., the mesh of Ω 1 on Γ C ) satisfies Hypothesis 1. 

Hertzian contact

Test configuration in 2D

Now we consider a benchmark for contact problems coming from [START_REF] Konter | Advanced finite element contact benchmarks[END_REF]. We consider a structure which consists of a cylinder (diameter equal to 100mm, E = 2.1•10 5 M P a and ν = 0.3) contacting a square foundation (edge length equal to 200mm, E = 7 • 10 7 M P a and ν = 0.3). We use a symmetric condition on the -→ Oy axis and we apply a vertical point load on the top of the cylinder (F=35 kN). This benchmark allows us to test our method when considering a geometric non-linearity and non-linear boundary conditions (deformable-deformable contact with status transition in the supposed contact area) together with quadratic elements. An analytical solution is known for the contact pressure and presented in [START_REF] Konter | Advanced finite element contact benchmarks[END_REF]: we recall that the contact pressure should be equal to

p(x) = p max 1 - x a 2 
where p max = -3585.37M P a, and the half contact width a equals 6.21mm. Both objects are meshed independently with 6-node triangles or 8-node quadrangles with nonmatching trace meshes on the contact zone (see Figures 8 and9). The results are depicted in Figures 8 and9. We get the expected results on the contact pressure (Lagrange multipliers). There is a slight error of 0.21% on p max in the 6-node triangles case and of 0.35% in the 8-node quadrangles case. Since the contact status is only known in average on every macro-element the approximation of the contact area half width is not as accurate as the one given by approach based on nodal contact status ("node-on-segment" or "standard mortar" approaches). Nevertheless, we still get an estimate in good agreement with the analytical solution, the computed half width a ranges between 5.94mm and 7.26mm when considering 6node triangles and 5.22mm and 6.66mm when considering 8-node quadrangles. Note that there are only 4 or 5 true contacting elements, we could get even better results by considering a finer mesh on the contact zone, especially if we want accurate results for the approximation of the contact area half width.

Test configuration in 3D

We now consider two half spheres (radius equal to 100mm, E = 2000M P a, and ν = 0.3), we set symmetric conditions on the two vertical faces -→ Ox -→ Oz and -→ Oy -→ Oz (so we only modeled one eighth of each sphere), we apply a vertical displacement of -1.5mm on the top of the upper sphere and respectively 1.5mm at the bottom of the lower sphere. An analytical solution is known for the contact pressure (see [START_REF] Dumont | Algorithme des contraintes actives et contact unilatéral sans frottement[END_REF]): we recall that the contact pressure should be equal to

p(r) = p max 1 - r a 2 
where p max = -171.362M P a, and the half contact width a equals 12.247mm. It is also known that the maximum Von Mises stress should be observed near the contact zone inside the half spheres. As previously, both objects are meshed independently with 10-node tetrahedra, or 20node hexahedra, or 27-node hexahedra with nonmatching trace meshes on the contact zone (see Figures 10,11 and 12). The results are depicted in Figures 10,11 and 12. We observe a good agreement between the numerical results and the analytical ones. The error on p max ranges between 1.9% and 2.3% depending on the kind and the number of elements used (see also Remark 14). We also get a good localization of the maximum of Von Mises stress. As in the previous case, the detection of the contact half width a is not as accurate as the one obtained with anodal based contact condition. We obtain a computed a for the finer mesh (10-node tetrahedra) which ranges between 12.29mm and 12.55mm. Although the contact contribution is only taken into account on a macro-element scale, we get a good circular shape for the contact area and the expected parabolic contact pressure distribution across this area without any noticeable oscillations as the ones that could occur when using a "node-on-face" approach.

Remark 14 A part of the error on the maximum contact pressure p max is due to the full nonlinear algorithm used to solve the problem. This algorithm takes into account all the "small" non linearities coming from the contact geometry. So, these non-linear contributions slightly take us away from the small strain conditions which are used to get the exact solution. We notice that this "gap" with the analytical contact pressure is more noticeable in the 3D case than in the 2D case. 

Numerical convergence rates

Setting of the test We study the numerical convergence rates of the LAC method and we compare them with the theoretical ones. We consider the Hertzian contact configuration introduced previously in both the 2D and the 3D cases. We compute the L 2 -error in displacement uu h 0,Ω 1 ,Ω 2 and the L 2 -error on the contact pressure λλ h 0,Γ C (seen as a Lagrange multiplier). Although there is to our knowledge no proof of optimal L 2 (Ω 1 ∪ Ω 2 )-error decay on the displacements (the only partial existing results can be found in [START_REF] Coorevits | Mixed finite element methods for unilateral problems: convergence analysis and numerical studies[END_REF][START_REF] Steinbach | Trace and flux a priori error estimates in the finite element approximations of Signorini-type problems[END_REF]) we can nevertheless expect (or believe) that this error behaves like (h 1 + h 2 ) uu h 1,Ω 1 ,Ω 2 as in the linear case where the Aubin-Nitsche argument can be applied. So we compare our numerical convergence rates with these unproved and expected optimal theoretical rates.

Concerning the L 2 (Γ C )-error on the Lagrange multiplier the situation is simpler. By using standard results (inverse inequality and approximation properties as in [START_REF] Coorevits | Mixed finite element methods for unilateral problems: convergence analysis and numerical studies[END_REF][START_REF] Steinbach | Trace and flux a priori error estimates in the finite element approximations of Signorini-type problems[END_REF]) we easily obtain from Theorem 3:

λ -λ h 0,Γ C ≤ Ch -1/2 1 (h τ -1 1 + h τ -1
2 ) u τ,Ω 1 ,Ω 2 , where 3/2 < τ ≤ min(k + 1, 5/2).

Since there does not exist an analytical solution for the displacement field u we will use a numerical reference solution computed with a sufficiently fine mesh. All the results are reported in Tables 1 and2 for the 2D and the 3D cases respectively. Even though the test cases are tough (geometrical non linearity, contact transition, small effective contact zone, deformable-deformable contact), the numerical convergence rates can be compared with the expected ones. 

Conclusion

In order to handle nonmatching meshes on the contact interface between two and three-dimensional elastic bodies, we propose a method using a simple local average noninterpenetration condition for various linear and quadratic finite elements. In the case of the two-dimensional unilateral contact problem the Local Average Contact (LAC) condition allows us to obtain optimal convergence results without any other assumption than the Sobolev regularity of the continuous solution u (as the standard approaches considered with matching meshes, see [START_REF] Drouet | Optimal convergence for discrete variational inequalities modelling Signorini contact in 2D and 3D without additional assumptions on the unknown contact set[END_REF]). Note that the standard mortar approach would also give optimal bounds by using the results of [START_REF] Drouet | Optimal convergence for discrete variational inequalities modelling Signorini contact in 2D and 3D without additional assumptions on the unknown contact set[END_REF]. In the three-dimensional case, our method only requires a minor hypothesis on the mesh (i.e., the averages must be computed on patches containing at least the support of a basis function) to extend the two-dimensional optimal results. These results for non matching meshes are mostly due to the operator π 1 h developed to tackle the error analysis when considering the local average contact condition. The first numerical results, considering 3 and 6-node triangles, 4 and 8-node quadrangles in the 2D case and 4 and 10-node tetrahedra, 8, 20 and 27-node hexahedra in the 3D case, confirm the good behavior of the LAC method and its "developer-friendly" implementation in an industrial FE code. Further numerical experiments and the extension to the dynamic and friction cases should be considered.

  3 stand for two polygonal or polyhedral domains representing the reference configurations of two linearly elastic bodies. The boundaries ∂Ω , = 1, 2 consist of three nonoverlapping open parts Γ N , Γ D and Γ C with Γ N ∪ Γ D ∪ Γ C = ∂Ω . We assume that the measures in R d-1 of Γ C and Γ D are positive and, in order to simplify, that Γ C is a straight line segment when d = 2 or a polygon when d = 3. The bodies are submitted to a Neumann condition on Γ N with a density of loads F ∈ (L 2 (Γ N )) d , a Dirichlet condition on Γ D (the bodies are assumed to be clamped on Γ D to simplify) and to volume loads denoted f ∈ (L 2 (Ω )) d in Ω . Finally, a (frictionless) unilateral contact condition between the bodies holds on Γ C .

Figure 2 :

 2 Figure 2: Upper picture: refinement strategy for linear (TETRA 4) and quadratic (TETRA 10) tetrahedra. Middle picture: refinement strategy for linear (HEXA 8) and quadratic (HEXA 20) hexahedra. Lower picture: for quadratic HEXA 27 hexahedra, no refinement is needed.

1 .

 1 If T M contains more than one internal d.o.f. then we fix one of them which is denoted x m+1 and the other internal d.o.f. are handled as standard nodes.2. If we adopt the procedure depicted in Figure2when choosing TETRA 4, TETRA 10, HEXA 8, HEXA 20, HEXA 27 elements, we have respectively m = 3, m = 9, m = 7, m = 19, m = 8.

Figure 3 :

 3 Figure 3: An example of a refinement on the Ox Oy face of a cube which stands for Γ C : the original mesh on the left side and the refined one on the right side

Figure 4 :

 4 Figure 4: Numerical results obtained with the LAC condition in 2D when considering 3-node triangles: on the left σyy on the deformed shape (scale factor 10), on the right Lagrange multipliers and gap on ΓC .

Figure 5 :

 5 Figure 5: Numerical results obtained with the LAC condition in 2D when considering 4-node quadrangles: on the left σyy on the deformed shape (scale factor 10), on the right Lagrange multipliers and gap on ΓC .

Figure 6 :

 6 Figure 6: Numerical results obtained with the LAC condition in 3D when considering 4-node tetrahedra: on the left σzz on the deformed shape (scale factor 10), on the right Lagrange multipliers on ΓC .

Figure 7 :

 7 Figure 7: Numerical results obtained with the LAC condition in 3D when considering 8-node hexahedra: on the left σzz on the deformed shape (scale factor 10), on the right Lagrange multipliers on ΓC .

Figure 8 :

 8 Figure 8: Numerical results obtained with the LAC condition in 2D when considering 6-node triangles: Von Mises stress on the deformed shape (top). Exact Lagrange multiplier (interpolated on the trace mesh), computed Lagrange multiplier and gap (bottom).

Figure 9 :

 9 Figure 9: Numerical results obtained with the LAC condition in 2D when considering 8-node quadrangles: Von Mises stress on the deformed shape (top). Exact Lagrange multiplier (interpolated on the trace mesh), computed Lagrange multiplier and gap (bottom).

Figure 10 :

 10 Figure 10: Numerical results obtained with the LAC condition in 3D when considering 10-node tetrahedra: Von Mises stress on the deformed shape (top). Exact Lagrange multiplier (interpolated on the trace mesh), computed Lagrange multiplier and gap (bottom left). Trace mesh on ΓC and computed Lagrange multiplier (bottom right).

Figure 11 :

 11 Figure 11: Numerical results obtained with the LAC condition in 3D when considering 20-node hexahedra: Von Mises stress on the deformed shape (top). Exact Lagrange multiplier (interpolated on the trace mesh), computed Lagrange multiplier and gap (bottom left). Trace mesh on ΓC and computed Lagrange multiplier (bottom right).

Figure 12 :

 12 Figure 12: Numerical results obtained with the LAC condition in 3D when considering 27-node hexahedra: Von Mises stress on the deformed shape (top). Exact Lagrange multiplier (interpolated on the trace mesh), computed Lagrange multiplier and gap (bottom left). Trace mesh on ΓC and computed Lagrange multiplier (bottom right).

Table 1 :

 1 Convergence rates in the 2D case

	Element type	u -u h Expected Numerical Expected Numerical 0,Ω 1 ,Ω 2 λ -λ h 0,Γ C
	3-node triangle	2.0	2.33	0.5 (1) 3	0.71
	6-node triangle	2.5	3.11	1.0	0.91
	4-node quadrangle	2.0	2.04	0.5 (1)	0.76
	8-node quadrangle	2.5	2.24	1.0	0.83
	Element type	u -u h Expected Numerical Expected Numerical 0,Ω 1 ,Ω 2 λ -λ h 0,Γ C
	4-node tetrahedron	2.0	1.97	0.5 (1)	0.83
	10-node tetrahedron	2.5	2.42	1.0	0.97
	8-node hexahedron	2.0	2.24	0.5 (1)	0.83
	20-node hexahedron	2.5	2.36	1.0	0.95
	27-node hexahedron	2.5	2.30	1.0	0.99

Table 2 :

 2 Convergence rates in the 3D case
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In a recent paper[START_REF] Steinbach | Trace and flux a priori error estimates in the finite element approximations of Signorini-type problems[END_REF] the authors prove for a standard conforming linear finite element approximation of the Signorini problem in 2D and 3D that the L 2 (ΓC )-error bound on the multipliers could be improved with a factor h 1/2 . This could explain the better convergence we observe in our framework which is very close to that considered in[START_REF] Steinbach | Trace and flux a priori error estimates in the finite element approximations of Signorini-type problems[END_REF].

Then, thanks to the H 1/2 (Γ C )-stability of π h 1 (see Proposition 2), the trace theorem, and the Lagrange interpolation error estimates, the norm term of the approximation error is bounded in an optimal way:

2 ) u τ,Ω 1 ,Ω 2 , 3/2 < τ ≤ k + 1. [START_REF] Dumont | Algorithme des contraintes actives et contact unilatéral sans frottement[END_REF] In order to deal with the integral term of the approximation error, we consider the space X h 1 of the piecewise constant functions on the macro-mesh I M :

and the classical L 2 (Γ C )-projection operator πh

The operator πh 1 satisfies the following standard estimates for any 0 < r < 1 and any ϕ ∈ H r (Γ C ) (see, e.g., [START_REF] Belgacem | Some nonstandard finite element estimates with applications to 3D Poisson and Signorini problems[END_REF]):

where . 1/2, * ,Γ C stands for the dual norm of . 1/2,Γ C and h c is the maximal length of a trace segment on Γ C . When r = 0 (resp. r = 1) the previous estimates remain true by changing |ϕ| r,• with ϕ 0,• (resp. ϕ 0,• ).

Since for all

we have:

Finally, using Cauchy-Schwarz inequality, the L 2 (Γ C )-stability of π h 1 , the trace theorem, the Lagrange interpolation estimates and Young's inequality we get:

Then, we need to optimally bound the consistency error, the second infimum in [START_REF] Drouet | Optimal convergence for discrete variational inequalities modelling Signorini contact in 2D and 3D without additional assumptions on the unknown contact set[END_REF] in which we choose v = 0. The proof is long and technical and follows exactly the same lines as the consistency error analysis in [START_REF] Drouet | Optimal convergence for discrete variational inequalities modelling Signorini contact in 2D and 3D without additional assumptions on the unknown contact set[END_REF], Theorems 1 and 2. Here we simply summarize this proof in a few lines. Since πh

The first term in [START_REF] Fichera | Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno[END_REF] is bounded by using [START_REF] Ern | Theory and practice of finite elements[END_REF], the trace theorem and Young's inequality:

The second term in [START_REF] Fichera | Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno[END_REF] is bounded on any macro-element I m ∈ I M . We denote by Z C and Z N C the contact and the noncontact sets in I m respectively, i.e.,

otherwise the integral term vanishes) we obtain (see [START_REF] Drouet | Optimal convergence for discrete variational inequalities modelling Signorini contact in 2D and 3D without additional assumptions on the unknown contact set[END_REF]):

By noting that either

, summing over all the macro-elements I m , and then using the trace theorem, we come to the conclusion that:

Combining in [START_REF] Drouet | Optimal convergence for discrete variational inequalities modelling Signorini contact in 2D and 3D without additional assumptions on the unknown contact set[END_REF] the approximation error estimates [START_REF] Dumont | Algorithme des contraintes actives et contact unilatéral sans frottement[END_REF], [START_REF] Farah | Segment-based vs. element-based integration for mortar methods in computational contact mechanics[END_REF] with the consistency error estimates [START_REF] Guillen | Optimal regularity for the Signorini problem[END_REF], [START_REF] Hartmann | A mortar based contact formulation for non-linear dynamics using dual Lagrange multipliers[END_REF] allows us to obtain the optimal estimate [START_REF] Dostál | A scalable feti-dp algorithm with non-penetration mortar conditions on contact interface[END_REF]. [START_REF] Bayada | Éléments finis avec joints pour des problèmes de contact avec frottenment de Coulomb non local. (french) [on the mortar finite element method for contact problems with nonlocal Coulomb law[END_REF] The mixed formulation of the LAC method First, we introduce the equivalent mixed formulation of the variational inequality problem using the LAC condition. Then we will discuss on the link between the macro-mesh of the contact zone (in particular Hypothesis 1) and the inf-sup condition.

The equivalent mixed formulation of the unilateral contact problem using the local average contact condition

Here we are going to show the link between the variational inequality methods ((8) when d = 2 and (29) when d = 3) using the local average noninterpenetration condition and the mixed formulation of the unilateral contact problem. We rather adopt the notations of the 3D case, in particular T m , T M but of course the analysis also applies to 2D when noting I m , I M for the macro-mesh.

where for d = 2, 3 and k = 1, 2:

We choose piecewise constant nonpositive Lagrange multipliers on the macro-mesh T M on Γ C , i.e., in the convex cone M h :

We also introduce the bilinear form b on

Proposition 4 Assume that Hypothesis 1 holds. The problem (29) (or (8) when d = 2) and the problem: find u h ∈ V h and λ h ∈ M h such that

are well-posed and equivalent, i.e., the solution u h of (29) (or (8) when d = 2) coincides with the first component of the solution of [START_REF] Hild | Problèmes de contact unilatéral et maillages éléments finis incompatibles[END_REF].

Lemma 1 Assume that Hypothesis 1 holds. Let µ h belong to X h 1 . We have the following implication

Let T m belong to T M . From Hypothesis 1, there exists φ i such that supp(φ i ) ⊂ T m . Then, we set

So we obtain (31) Proof of the proposition 4. First, we suppose that problem [START_REF] Hild | Problèmes de contact unilatéral et maillages éléments finis incompatibles[END_REF] is well-posed and we prove the equivalence between (29) (or (8) when d = 2) and [START_REF] Hild | Problèmes de contact unilatéral et maillages éléments finis incompatibles[END_REF]. Let (u h , λ h ) ∈ V h × M h be the solution of [START_REF] Hild | Problèmes de contact unilatéral et maillages éléments finis incompatibles[END_REF]. We have, b(µ hλ h , u h ) ≥ 0, ∀µ h ∈ M h .

Taking µ h = 0 and µ h = 2λ h leads to:

Choosing in (33) µ h = -1 on T m and µ h = 0 elsewhere allows us to conclude that u h ∈ K h . From ( 30) and ( 32), we get a(u h , u h ) = l(u h ), [START_REF] Hüeber | A primal-dual active set strategy for non-linear multibody contact problems[END_REF] and for any v h ∈ K h , we obtain

Putting together u h ∈ K h , ( 34) and [START_REF] Kikuchi | Contact problems in elasticity: a study of variational inequalities and finite element methods[END_REF] implies that u h is a solution of Problem [START_REF] Hauret | A discontinuous stabilized mortar method for general 3D elastic problems[END_REF]. Since the problems ( 29) and ( 30) are well-posed, they are equivalent.

Then, we show that Problem (30) is well-posed. The existence of the solution (u h , λ h ) ∈ V h × M h of (30) and the uniqueness of u h come from standard results (see, e.g., [START_REF] Haslinger | Numerical methods for unilateral problems in solid mechanics, volume 4 of Handbook of Numerical Analysis[END_REF]). It remains to prove the uniqueness of the multiplier λ h with the help of Lemma 1. Let (u h , λ h 1 ) ∈ V h × M h and (u h , λ h

2 ) ∈ V h × M h be two solutions of [START_REF] Hild | Problèmes de contact unilatéral et maillages éléments finis incompatibles[END_REF]. Therefore

By subtracting (37) from [START_REF] Konter | Advanced finite element contact benchmarks[END_REF], we get

So, we obtain the uniqueness of λ h and the well-posedness of (30).

The inf-sup condition

Now we see that Hypothesis 1 we use on the contact mesh ensures that the corresponding mixed method using piecewise constant Lagrange multipliers on the macro-mesh T M (or I M in 2D) verifies the inf-sup condition.

The inf-sup condition involved in our formulation is as follows: there is a constant β h such that inf

where W is the normal trace space on Γ C issued from V 1 and W denotes its dual. It is easy to check that Lemma 1 implies the existence of such a constant β h . Moreover it is well known that the inf-sup constant β h also arises in the error analysis of the mixed formulation [START_REF] Hild | Problèmes de contact unilatéral et maillages éléments finis incompatibles[END_REF]. In order to get