Open Archive TOULOUSE Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ Eprints ID : 12648

To cite this version : Herzig, Andreas Logics for multi-agent systems: a critical overview. (2013) In: International Joint Conference on Artificial Intelligence - IJCAI 2013, 3 August 2013-9 August 2013 (Beijing, China).

Any correspondance concerning this service should be sent to the repository administrator: staff-oatao@listes-diff.inp-toulouse.fr

Logics for MAS: a critical overview

Andreas Herzig

CNRS, University of Toulouse, IRIT, France

IJCAI 2013, August 9, 2013

Introduction

Introduction

Multi-Agent Systems (MAS): agents with imperfect knowledge perform actions in order to achieve goals

- philosophical logic/KR view:
- what are the main concepts?
- what properties do they have?
- how do they relate?
- formal, logical analysis
\Rightarrow logics of action and knowledge
\Rightarrow extensions of propositional logic by modal operators

Introduction: modal operators of knowledge

- knowledge of individual $i \in$ Agt 2 :
$\mathrm{K}_{i} \varphi=$ "agent i knows that φ "
- knowledge of group $J \subseteq$ Agt ${ }^{29}$:
$\mathrm{EK}_{J \varphi}=$ "it is shared knowledge in J that φ "
$=$ "every agent in J knows that φ "
$\mathrm{CK}_{J} \varphi=$ "it is common knowledge in J that φ "
$=\mathrm{EK}_{J} \varphi \wedge \mathrm{EK}_{J} \mathrm{EK}_{J} \varphi \wedge \mathrm{EK}_{J} \mathrm{EK}_{J} \mathrm{EK}_{J} \varphi \wedge \ldots "$
$\mathrm{DK}_{J} \varphi=$ "it is distributed knowledge in J that φ "
$=$ "if each agent in J tells all he knows to J then $\mathrm{CK}_{J} \varphi$ "

Introduction: modal operators of action and ability

- nonstrategic (ceteris paribus)

$\langle\pi\rangle \varphi=$ "there is an execution of program π after which φ "
$\langle J\rangle_{\varnothing}=$ "coalition I can achieve of (while onnonents don't act)"
- strategic ('ceteris agentis','ceteris mutandis')

> $\langle\langle J\rangle\rangle \varphi=$ "coalition J can achieve φ (whatever opponents do)" Stit $J \varphi=$ "coalition J achieves φ (whatever opponents do)"

Introduction: modal operators of action and ability

- nonstrategic (ceteris paribus)

$\langle\pi\rangle \varphi=$ "there is an execution of program π after which φ " $\langle J\rangle \varphi=$ "coalition J can achieve φ (while opponents don't act)"
- strategic ('ceteris agentis','ceteris mutandis')

Introduction: modal operators of action and ability

- nonstrategic (ceteris paribus)

$\langle\pi\rangle \varphi=$ "there is an execution of program π after which φ " $\langle J\rangle \varphi=$ "coalition J can achieve φ (while opponents don't act)"
- strategic ('ceteris agentis','ceteris mutandis')

$《 J\rangle \varphi=$ "coalition J can achieve φ (whatever opponents do)" $\operatorname{Stit}_{J} \varphi=$ "coalition J achieves φ (whatever opponents do)"

Introduction: the grid of MAS logics

- aim of talk: overview the main MAS logics and highlight problematic points
- KR point of view: which logical language?
- semantic-free
- the grid of MAS logics:

no uncertainty	$\begin{gathered} \mathrm{S} 5^{\mathrm{C}} \\ \mathrm{~S} 5 \end{gathered}$	$\begin{gathered} \mathrm{PAL}^{\mathrm{C}} \\ \text { PAL } \\ \text { PDL, CL-PC } \end{gathered}$	ATEL ${ }^{\text {C }}$ ATEL ATL
knowledge action	no actions	nonstrategic	strategic

Outline

(1) No uncertainty, nonstrategic actions
(2) No uncertainty, strategic actions

3 Individual knowledge, no actions

- Individual knowledge, nonstrategic actions
(5) Individual knowledge, strategic actions
- Group knowiedge, no actions
(7) Group knowledge, nonstrategic actions
(3) Group knowledge, strategic actions

No uncertainty, nonstrategic actions: PDL

- language of Propositional Dynamic Logic PDL:
$\langle\pi\rangle \varphi=$ "there exists a possible execution of π after which φ "
$[\pi] \varphi=$ "for every possible execution of $\pi \ldots$...
where π is a program (alias complex action):

$$
\pi::=a|\pi ; \pi| \pi \cup \pi\left|\pi^{*}\right| \varphi ?
$$

\Rightarrow "while φ do $\pi "=(\varphi ? ; \pi)^{*} ; \neg \varphi$?

- in focus: reasoning about action/program effects

$$
(\text { ActionTheory } \wedge \text { Init }) \rightarrow\left\langle a_{1} ; \cdots ; a_{n}\right\rangle \text { Goal }
$$

No uncertainty, nonstrategic actions: PDL

- PDL action theories must be augmented by frame axioms BlockRed \rightarrow [moveBlock $\left.{ }_{L_{1}, L_{2}}\right]$ BlockRed
\Rightarrow PDL doesn't solve the frame problem [McCarthy \& Hayes 1969]
- a lot of dedicated logical formalisms

SitCalc, EventCalc, FluentCalc, $\mathcal{A}, \mathcal{B}, C, \mathcal{C}+, \mathcal{B C}$, separation logic, \ldots
$\forall x([x]$ BlockRed $\leftrightarrow(x=$ paintRed $\vee($ BlockRed $\wedge x \neq$ paintBlue $)))$

No uncertainty, nonstrategic actions: PDL

- PDL action theories must be augmented by frame axioms

$$
\text { BlockRed } \rightarrow\left[\text { moveBlock }_{L_{1}, L_{2}}\right] \text { BlockRed }
$$

\Rightarrow PDL doesn't solve the frame problem [McCarthy \& Hayes 1969]

- a lot of dedicated logical formalisms

SitCalc, EventCalc, FluentCalc, $\mathcal{A}, \mathcal{B}, C, \mathcal{C}+, \mathcal{B C}$, separation logic, \ldots

- SitCalc basic action theories [Reiter 1991]:
$\forall x([x]$ BlockRed $\leftrightarrow(x=$ paintRed $\vee($ BlockRed $\wedge x \neq$ paintBlue $)))$

DL-PA: a dialect of PDL solving the frame problem

- Reiter's basic action theories can be expressed in

Dynamic Logic of Propositional Assignments DL-PA
[van Ditmarsch, H \& de Lima, JLC 2011]

- atomic programs: assign propositional variables to formulas

$$
\text { BlockAt }_{L_{1}}:=\perp
$$

- successor state axioms become DL-PA programs:

$$
\begin{aligned}
& \quad \text { moveBlock }_{L_{1}, L_{2}}=\left(\text { Free?; BlockAt } L_{L_{1}}:=\perp ; \text { BlockAt }_{L_{2}}:=T\right) \\
& \text { hyp.: in } \forall x\left([x] p \leftrightarrow \gamma_{p}(x)\right) \text {, if } a \notin \gamma_{p}(x) \text { then } \gamma_{p}(a) \leftrightarrow p
\end{aligned}
$$

- nice properties
[Balbiani, H \& Troquard, LICS 2013]
- complexity of satisfiability just as PDL
- model checking as complex as satisfiability checking
- Kleene star eliminable
- every formula reducible to a boolean formula
- claim: DL-PA = Assembler language for logics of change.. .

No uncertainty, nonstrategic actions: CL-PC

- language of Coalition Logic of Propositional Control CL-PC:
$\langle J\rangle \varphi=$ "coalition J can achieve φ by modifying its variables (while opponents don't act)"
- each propositional variable controlled by some agent; action of $i=$ change of some of i 's variables (cf. bool. games)
[van der Hoek \& Wooldridge, AIJ 2005; JAIR 2010]
- in focus: reasoning about nonstrategic (ceteris paribus) ability
(AbilityTheory \wedge Init $) \rightarrow\left\langle\left\{i_{1}, \ldots, i_{n}\right\}\right\rangle$ Goal

No uncertainty, nonstrategic actions: CL-PC

- captures strategic ability
$\langle J\rangle[\bar{J}] \varphi=$ " J can achieve φ whatever the opponents in \bar{J} do"
- can be embedded into DL-PA:

$$
\langle i\rangle \varphi=\left\langle\pi_{i, \varphi}\right\rangle \varphi
$$

with $\pi_{i, \varphi}$ polynomial in φ

Outline

(1) No uncertainty, nonstrategic actions
(2) No uncertainty, strategic actions
(3) Individual knowledge, no actions
4. Individual knowledge, nonstrategic actions
(3) Individual knowledge, strategic actions

6 Group knowledge, no actions
(Group knowledge, nonstrategic actions
8 Group knowledge, strategic actions

No uncertainty, strategic actions: ATL

- language of Alternating-time Temporal Logic ATL: $\left\langle\langle J\rangle X_{\varphi}=\quad\right.$ "the agents in J have a strategy such that whatever the other agents do, next φ "
$\langle J\rangle\rangle \mathcal{G} \varphi=" \ldots$, henceforth φ " $\langle\langle J\rangle \varphi \mathcal{U} \psi=\quad " \ldots, \varphi$ until ψ "
- in focus: reasoning about the existence of strategies

$$
(\text { AbilityTheory } \wedge \text { Init }) \rightarrow\left\langle\left\langle\left\{i_{1}, \ldots, i_{n}\right\}\right\rangle\right\rangle \text { Goal }
$$

ATL: the problem of strategy revocability

- problem: strategies can be canceled
$\langle i\rangle\rangle \mathcal{G}($ married $\wedge\langle\langle i\rangle\rangle \mathcal{X} \neg$ married $)$ is satisfiable
\Rightarrow reason: strategies are "unsung heroes" [van Benthem]
- solution: commit to a strategy
- ATL with irrevocable strategies
[Ågotnes et al., TARK 2007]
- ATL with strategy contexts
[Brihaye et al., LFCS 2009]
- make adoption and canceling of strategies explicit
- undecidable
[Troquard \& Walther, JELIA 2012]
- Strategy Logic (SL) [Mogavero et al., FSTTCS 2010]
- uses strategy variables; undecidable
- ATL with explicit strategies
[Walther et al., TARK 2007] $\left\langle\langle\{i\}\rangle_{i: \sigma} \mathcal{G}\left(\right.\right.$ married $\wedge\left\langle\langle\{i\}\rangle_{i: \sigma} \mathcal{X} \neg\right.$ married $) \rightarrow \perp$
- more principled: commit to an action
- ATLEA $=$ ATL + Explicit Actions [H, Lorini \& Walther, LORI 2013] $《\{i\rangle\rangle_{i: \text { staymarried }} \mathcal{G}\left(\right.$ married $\wedge\left\langle\langle\{i\}\rangle_{: \text {staymarried }}{ }^{\infty} \mathcal{X} \neg\right.$ married $) \rightarrow \perp$
- same complexity as ATL

No uncertainty, strategic actions: STIT

- language of Seeing-To-It-That Logic STIT
[Belnap et al. 2001; Horty 2001]

$$
\begin{aligned}
\operatorname{Stit} J \varphi== & \text { "by following their current strategy } \\
& \text { the agents in } J \text { guarantee that } \varphi \text { is true, } \\
& \text { whatever the other agents do" } \\
\diamond \varphi= & \text { "it is historically possible that } \varphi \text { " } \\
\mathcal{F} \varphi= & \text { "..." (temporal operators) }
\end{aligned}
$$

- in focus: reasoning about causality ('agency')

$$
\text { Cond } \rightarrow \operatorname{Stit}_{\left\{i_{1}, \ldots, i_{n}\right\}} \text { Fact }
$$

- reasoning about strategic ability à la ATL:

$$
\langle J\rangle\rangle X \psi=\diamond \operatorname{Stit}_{J} X \psi
$$

- satisfiability undecidable
[H \& Schwarzentruber, AiML 2008]

Outline

(1)No uncertainty, nonstrategic actions

ด No uncertainty, strategic actions
(3) Individual knowledge, no actions
4. Individual knowledge, nonstrategic actions
(5) Individual knowledge, strategic actions
2. Group knowledgo, no actions
(7) Group knowledge, nonstrategic actions

8 Group knowledge, strategic actions

Individual knowledge 2, no actions

- language of modal logic S5:
$\mathrm{K}_{i} \varphi=$ "agent i knows that φ is true"
- principles
- $\mathrm{K}_{i} \top$
- $\left(\mathrm{K}_{i} \varphi \wedge \mathrm{~K}_{i}(\varphi \rightarrow \psi)\right) \rightarrow \mathrm{K}_{i} \psi$
- $\mathrm{K}_{i} \varphi \rightarrow \varphi$
- $\mathrm{K}_{i} \varphi \rightarrow \mathrm{~K}_{i} \mathrm{~K}_{i} \varphi$
- $\neg \mathrm{K}_{i} \varphi \rightarrow \mathrm{~K}_{\mathrm{i}} \neg \mathrm{K}_{i} \varphi$
(omniscience)
(omniscience)
(knowledge implies truth)
(positive introspection)
(negative introspection)
- "the" logic of knowledge?
- generally adopted in AI
- but.

Individual knowledge 2, no actions

- language of modal logic S5:
$\mathrm{K}_{i} \varphi=$ "agent i knows that φ is true"
- principles
- $\mathrm{K}_{i} \top$
- $\left(\mathrm{K}_{i} \varphi \wedge \mathrm{~K}_{i}(\varphi \rightarrow \psi)\right) \rightarrow \mathrm{K}_{i} \psi$
- $\mathrm{K}_{i} \varphi \rightarrow \varphi$
- $\mathrm{K}_{i} \varphi \rightarrow \mathrm{~K}_{i} \mathrm{~K}_{i} \varphi$
- $\neg \mathrm{K}_{i} \varphi \rightarrow \mathrm{~K}_{\mathrm{i}} \neg \mathrm{K}_{i} \varphi$
(omniscience)
(omniscience)
(knowledge implies truth)
(positive introspection)
(negative introspection)
- "the" logic of knowledge?
- generally adopted in AI
- but...

Individual knowledge 2, no actions

- negative introspection axiom $\neg \mathrm{K}_{i} \varphi \rightarrow \mathrm{~K}_{i} \neg \mathrm{~K}_{i} \varphi$ too strong
[Lenzen 1978, Voorbraak 1993]
- suppose $B_{i} K_{i} p$
- i strongly believes to know p
- should not imply $\mathrm{K}_{\mathrm{i}} \mathrm{p}$
(2) suppose $\neg p$
(3) then $\neg \mathrm{K}_{i} p$
(4) then $\mathrm{K}_{i} \neg \mathrm{~K}_{i} p$
(6) then $\mathrm{B}_{i} \neg \mathrm{~K}_{i} \mathrm{p}$
(\perp
(knowledge implies truth)
(neg. introspection)
(knowledge implies belief)
$\Rightarrow\left(\mathrm{B}_{i} \mathrm{~K}_{i} \mathrm{p} \wedge \neg \mathrm{p}\right) \rightarrow \perp$?!?
(belief consistent)
- logic of knowledge should rather be S4.2
\Rightarrow dynamic epistemic logics get more involved.

Individual knowledge 2, no actions

- negative introspection axiom $\neg \mathrm{K}_{i} \varphi \rightarrow \mathrm{~K}_{i} \neg \mathrm{~K}_{i} \varphi$ too strong [Lenzen 1978, Voorbraak 1993]
- suppose $B_{i} K_{i} p$
- i strongly believes to know p
- should not imply $\mathrm{K}_{\mathrm{i}} \mathrm{p}$
(2) suppose $\neg p$
(3) then $\neg \mathrm{K}_{i} \mathrm{p}$
(knowledge implies truth)
(a) then $\mathrm{K}_{i} \neg \mathrm{~K}_{i} p$
(6) then $\mathrm{B}_{i} \neg \mathrm{~K}_{i} p$
(\perp (neg. introspection)
(knowledge implies belief)
$\Rightarrow\left(\mathrm{B}_{i} \mathrm{~K}_{i} \mathrm{p} \wedge \neg \mathrm{p}\right) \rightarrow \perp$?!?
- logic of knowledge should rather be S4.2
[Lenzen 1978]
\Rightarrow dynamic epistemic logics get more involved.

Individual knowledge \&, no actions

- negative introspection axiom $\neg \mathrm{K}_{i} \varphi \rightarrow \mathrm{~K}_{i} \neg \mathrm{~K}_{i} \varphi$ too strong
[Lenzen 1978, Voorbraak 1993]
- suppose $B_{i} K_{i} p$
- i strongly believes to know p
- should not imply $\mathrm{K}_{\mathrm{i}} \mathrm{p}$
(2) suppose $\neg p$
(3) then $\neg K_{i} p$
(knowledge implies truth)
(a) then $\mathrm{K}_{i} \neg \mathrm{~K}_{i} p$ (neg. introspection)
(6) then $\mathrm{B}_{i} \neg \mathrm{~K}_{i} p$
(knowledge implies belief)
(6) \perp
(belief consistent)
$\Rightarrow\left(\mathrm{B}_{i} \mathrm{~K}_{i} \mathrm{p} \wedge \neg \mathrm{p}\right) \rightarrow \perp$?!?
- logic of knowledge should rather be S4.2
[Lenzen 1978]
\Rightarrow dynamic epistemic logics get more involved...

Outline

0No uncertainty, nonstrategic actions
(2) No uncertainty, strategic actions
(3) Individual knowledge, no actions
4. Individual knowledge, nonstrategic actions
(5) Individual knowledge, strategic actions

6 Group knowledge, no actions
? Group knowledge, nonstrategic actions
8) Group knowledge, strategic actions

Individual knowledge 2, nonstrategic actions:

PAL

- Public Announcement Logic PAL
$\langle\psi!\rangle \varphi=$ "the truthful public announcement of ψ can be made and φ will be true afterwards"
- reduction axioms (aka regression):

$$
\begin{aligned}
\langle\psi!\rangle p & \leftrightarrow \psi \wedge p \quad \text { facts don't change (epistemic change only) } \\
\langle\psi!\rangle \mathrm{K}_{i} \varphi \leftrightarrow \psi \wedge \mathrm{~K}_{i}[\psi!] \varphi &
\end{aligned}
$$

- complexity of satisfiability:
- same as underlying epistemic logic
[Lutz, AAMAS 2006]
- but more succinct
[French et al., IJCAI 2011]

Individual knowledge 2, nonstrategic actions: the problem of closure under updates in PAL

- most papers choose S5 as the logic of knowledge
- others adopt K for generality
- S5-based PAL 'works' because the set of S5 models is closed under updates by announcements
- holds also in modal logic K
- fails in logic of belief KD45 and in logic of knowledge S4.2
[Balbiani, van Ditmarsch \& H, AiML 2012]
- reason: confluence node may be eliminated by update

- similar problem with other modal logics

Individual knowledge 2, nonstrategic actions: variants of PAL

- DEL = Dynamic Epistemic Logic [Baltag \& Moss, Synthese 2004]
- agents perceive events only incompletely
\Rightarrow event models
- GAL = PAL plus Group announcements
$\langle J\rangle \varphi=$ " J can achieve φ by announcing some known formulas"
$\Rightarrow \mathrm{cf}$. ATL, CL
- APAL = PAL plus Arbitrary announcements
[Balbiani et al., RSL 2008]

$$
\langle!\rangle \varphi=\text { "there is a } \psi \text { such that }\langle\psi!\rangle \varphi "
$$

Individual knowledge 2, nonstrategic actions: the problem of uniform choices in APAL

- You don't see B's and C's cards, and they only see their cards.
- Among the ace of spades and the ace of clubs, B has one and C has one, but You don't know who has which.
- You want agent B to know both Spades and Clubs, but not C.
- Is there a public announcement doing the job?

Individual knowledge 2, nonstrategic actions: the problem of uniform choices in APAL

- in S5:

Init $=\mathrm{K}_{Y}$ Spades $\wedge \mathrm{K}_{Y}$ Clubs $\wedge \mathrm{K}_{Y}\left(\left(\mathrm{~K}_{B}\right.\right.$ Spades $\wedge \neg \mathrm{K}_{C}$ Spades $) \vee$ $\left(\mathrm{K}_{B}\right.$ Clubs $\wedge \neg \mathrm{K}_{C}$ Clubs $)$)
Goal $=K_{B}($ Spades \wedge Clubs $) \wedge \neg \mathrm{K}_{C}($ Spades \wedge Clubs $)$

- provable in PAL:
$\left(\mathrm{K}_{B}\right.$ Spades $\wedge \neg \mathrm{K}_{C}$ Spades $) \rightarrow\langle$ Spades \rightarrow Clubs! \rangle Goal $\left(\mathrm{K}_{B}\right.$ Clubs $\wedge \neg \mathrm{K}_{C}$ Clubs $) \rightarrow$ 〈Clubs \rightarrow Spades!〉Goal
- so Init $\rightarrow \mathrm{K}_{Y}\langle\exists$! \rangle Goal, . . . but you don't know what to say!
- in Group Announcement Logic GAL:

Individual knowledge 2, nonstrategic actions: the problem of uniform choices in APAL

- in S5:

Init $=\mathrm{K}_{Y}$ Spades $\wedge \mathrm{K}_{Y}$ Clubs $\wedge \mathrm{K}_{Y}\left(\left(\mathrm{~K}_{B}\right.\right.$ Spades $\wedge \neg \mathrm{K}_{C}$ Spades $) \vee$ $\left(\mathrm{K}_{B}\right.$ Clubs $\wedge \neg \mathrm{K}_{C}$ Clubs $)$)
Goal $=K_{B}($ Spades \wedge Clubs $) \wedge \neg \mathrm{K}_{C}($ Spades \wedge Clubs $)$

- provable in PAL:
$\left(\mathrm{K}_{B}\right.$ Spades $\wedge \neg \mathrm{K}_{C}$ Spades $) \rightarrow\langle$ Spades \rightarrow Clubs! \rangle Goal (K_{B} Clubs $\wedge \neg \mathrm{K}_{C}$ Clubs) \rightarrow 〈Clubs \rightarrow Spades!〉Goal
- so Init $\rightarrow \mathrm{K}_{Y}\langle\exists$! \rangle Goal, . . . but you don't know what to say!
- in Group Announcement Logic GAL:

$$
\mathrm{K}_{y}\langle\{Y\}\rangle \varphi \text { vs. }\langle\{Y\}\rangle \mathrm{K}_{Y} \varphi
$$

Outline

0No uncertainty, nonstrategic actionsNo uncertainty, strategic actions
(3) Individual knowledge, no actions
4. Individual knowledge, nonstrategic actions
(5) Individual knowledge, strategic actions
6. Group knowledge, no actions
(7) Group knowledge, nonstrategic actions
(8) Group knowledge, strategic actions

Individual knowledge 2, strategic actions

- Alternating-time Temporal Epistemic Logic ATEL
[van der Hoek \& Wooldridge, Studia Logica 2003]
$\langle\langle J\rangle \varphi=$ "coalition J can achieve φ (whatever opponents do)"
$\mathrm{K}_{i} \varphi=$ "agent $i \in$ Agt knows that φ "
- problem of uniform strategies
- same as problem of uniform choice for APAL, v.s.

$$
\mathrm{K}_{i}\langle\langle i\rangle\rangle X \text { safeOpen }
$$

- solution in ATELEA = ATEL with Explicit Actions

$$
\mathrm{K}_{i}\langle\langle I\rangle\rangle_{i: d i a l}^{1234} \text { XsafeOpen }
$$

Individual knowledge 2, strategic actions

- Alternating-time Temporal Epistemic Logic ATEL
[van der Hoek \& Wooldridge, Studia Logica 2003]
$\langle\langle J\rangle \varphi=$ "coalition J can achieve φ (whatever opponents do)"
$\mathrm{K}_{i} \varphi=$ "agent $i \in$ Agt knows that φ "
- problem of uniform strategies [Schobbens, ENTCS 2004]
- same as problem of uniform choice for APAL, v.s.

$$
\mathrm{K}_{i}\langle\langle i\rangle\rangle X \text { safeOpen }
$$

- solution in ATELEA $=$ ATEL with Explicit Actions

$$
\mathrm{K}_{i}\langle\langle I\rangle\rangle_{i: d i a l}^{1234} \text { XsafeOpen }
$$

Individual knowledge 2, strategic actions

- Alternating-time Temporal Epistemic Logic ATEL
[van der Hoek \& Wooldridge, Studia Logica 2003]
$\langle\langle J\rangle \varphi=$ "coalition J can achieve φ (whatever opponents do)"
$\mathrm{K}_{i} \varphi=$ "agent $i \in$ Agt knows that φ "
- problem of uniform strategies [Schobbens, ENTCS 2004]
- same as problem of uniform choice for APAL, v.s.

$$
\mathrm{K}_{i}\langle\langle i\rangle\rangle X \text { safeOpen }
$$

- solution in ATELEA $=$ ATEL with Explicit Actions

$$
\mathrm{K}_{i}\langle\langle i\rangle\rangle_{i: d i a l_{1234}} \mathcal{X} \text { safeOpen }
$$

Outline

No uncertainty, nonstrategic actions
(2) No uncertainty, strategic actions

3 Individual knowledge, no actions

- Individual knowledge, nonstrategic actions

5. Individual knowledge, strategic actions

6 Group knowledge, no actions
(7) Group knowledge, nonstrategic actions

8 Group knowledge, strategic actions

Group knowledge no actions

- $\mathrm{S5}^{\mathrm{C}}=\mathrm{S} 5$ plus Common knowledge
$\mathrm{CK}_{J} \varphi=$ "it is common knowledge in $J \subseteq$ Agt that φ " $=\mathrm{EK}_{J} \varphi \wedge \mathrm{EK}_{J} \mathrm{EK}_{J} \varphi \wedge \mathrm{EK}_{J} \mathrm{EK}_{J} \mathrm{EK}_{J} \varphi \wedge \cdots$
- fixpoint axiom:

- induction axiom:

$$
\left(\varphi \wedge \mathrm{CK}_{J}\left(\varphi \rightarrow \mathrm{EK}_{\mu} \varphi\right)\right) \rightarrow \mathrm{CK}^{\prime} \varphi
$$

\Rightarrow will be criticized in the next section

Group knowledge no actions

- $\mathrm{S5}^{\mathrm{C}}=\mathrm{S} 5$ plus Common knowledge
$\mathrm{CK}_{J} \varphi=$ "it is common knowledge in $J \subseteq$ Agt that φ " $=\mathrm{EK}_{J} \varphi \wedge \mathrm{EK}_{J} \mathrm{EK}_{J} \varphi \wedge \mathrm{EK}_{J} \mathrm{EK}_{J} \mathrm{EK}_{J} \varphi \wedge \cdots$
- fixpoint axiom:

$$
\mathrm{CK}_{J} \varphi \leftrightarrow \mathrm{EK}_{J}\left(\varphi \wedge \mathrm{CK}_{J} \varphi\right)
$$

- induction axiom:

$$
\left(\varphi \wedge \mathrm{CK}_{J}\left(\varphi \rightarrow \mathrm{EK}_{J} \varphi\right)\right) \rightarrow \mathrm{CK}_{J \varphi}
$$

\Rightarrow will be criticized in the next section

Group knowledge no actions

- $\mathrm{S5}^{\mathrm{C}}=\mathrm{S} 5$ plus Common knowledge
$\mathrm{CK}_{J} \varphi=$ "it is common knowledge in $J \subseteq$ Agt that φ " $=\mathrm{EK}_{J} \varphi \wedge \mathrm{EK}_{J} \mathrm{EK}_{J} \varphi \wedge \mathrm{EK}_{J} \mathrm{EK}_{J} \mathrm{EK}_{J} \varphi \wedge \cdots$
- fixpoint axiom:

$$
\mathrm{CK}_{J} \varphi \leftrightarrow \mathrm{EK}_{J}\left(\varphi \wedge \mathrm{CK}_{J} \varphi\right)
$$

- induction axiom:

$$
\left(\varphi \wedge \mathrm{CK}_{J}\left(\varphi \rightarrow \mathrm{EK}_{J} \varphi\right)\right) \rightarrow \mathrm{CK}_{J \varphi}
$$

\Rightarrow will be criticized in the next section

Outline

(9)No uncertainty, nonstrategic actions
(2) No uncertainty, strategic actions

3 Individual knowledge, no actions

- Individual knowledge, nonstrategic actions
(5) Individual knowledge, strategic actions
- Group knowiedge, no actions
(7) Group knowledge, nonstrategic actions
(8) Group knowledge, strategic actions

Group knowledge , nonstrategic actions

- PAL $^{C}=$ PAL plus Common knowledge
- semantics: same as PAL
- accessibility relation for $\mathrm{CK}_{J}=$ greatest fixpoint of EK_{J} relation
\Rightarrow 'rebuilt' after each update
\Rightarrow no reduction axioms for CK_{J} :

$$
\begin{aligned}
& \vDash \mathrm{CK}_{J}[\psi!] \varphi \rightarrow[\psi!] \mathrm{CK}_{J \varphi} \\
& \not \models[\psi!] \mathrm{CK}_{J} \varphi \rightarrow\left(\neg \psi \vee \mathrm{CK}_{J}[\psi!] \varphi\right)
\end{aligned}
$$

\Rightarrow common knowledge may 'pop up' in an unforeseeable way!

Group knowledge nonstrategic actions: the ignorant compatriots

- Agents B and C are both Italian and don't know each other. They meet during the coffee break and start to talk in English.

$$
\begin{aligned}
\text { Init }= & \mathrm{K}_{B} I T_{B} \wedge \mathrm{CK}_{\{B, C\}}\left(I T_{B} \rightarrow \mathrm{~K}_{B} I T_{B}\right) \wedge\left(\neg I T_{B} \rightarrow \mathrm{~K}_{B} \neg I T_{B}\right) \wedge \\
& \mathrm{K}_{C} I T_{C} \wedge \mathrm{CK}_{\{B, C\}}\left(I T_{C} \rightarrow \mathrm{~K}_{C} I T_{C}\right) \wedge\left(\neg I T_{C} \rightarrow \mathrm{~K}_{C} \neg I T_{C}\right)
\end{aligned}
$$

(1) first scenario:
a third agent truthfully says: "Hey, you are both Italian!"

$$
\text { Init } \rightarrow\left\langle I T_{B} \wedge I T_{C}!\right\rangle \mathrm{CK}_{|B, C|}\left(I T_{B} \wedge I T_{C}\right)
$$second scenario:

a third adent truthfully says: "Hey, you are compatriots!"
Init $\rightarrow\left\langle I T_{B} \leftrightarrow \mid T_{C}!\right\rangle \mathrm{CK}_{\{B, C \mid}\left(I T_{B} \wedge I T_{C}\right)$

Group knowledge nonstrategic actions: the ignorant compatriots

- Agents B and C are both Italian and don't know each other. They meet during the coffee break and start to talk in English.

$$
\begin{aligned}
\text { Init }= & \mathrm{K}_{B} I T_{B} \wedge \mathrm{CK}_{\{B, C\}}\left(I T_{B} \rightarrow \mathrm{~K}_{B} I T_{B}\right) \wedge\left(\neg I T_{B} \rightarrow \mathrm{~K}_{B} \neg I T_{B}\right) \wedge \\
& \mathrm{K}_{C} I T_{C} \wedge \mathrm{CK}_{\{B, C\}}\left(I T_{C} \rightarrow \mathrm{~K}_{C} I T_{C}\right) \wedge\left(\neg I T_{C} \rightarrow \mathrm{~K}_{C} \neg I T_{C}\right)
\end{aligned}
$$

(1) first scenario:
a third agent truthfully says: "Hey, you are both Italian!"

$$
\text { Init } \rightarrow\left\langle I T_{B} \wedge I T_{C}!\right\rangle \mathrm{CK}_{\{B, C\}}\left(I T_{B} \wedge I T_{C}\right)
$$

(2) second scenario:
a third aqent truthfully says: "Hey, you are compatriots!"
Init $\rightarrow\left\langle I T_{B} \leftrightarrow \mid T_{C}!\right\rangle \mathrm{CK}_{\{B, C\}}\left(I T_{B} \wedge I T_{C}\right)$

Group knowledge nonstrategic actions: the ignorant compatriots

- Agents B and C are both Italian and don't know each other. They meet during the coffee break and start to talk in English.

$$
\begin{aligned}
\text { Init }= & \mathrm{K}_{B} I T_{B} \wedge \mathrm{CK}_{\{B, C\}}\left(I T_{B} \rightarrow \mathrm{~K}_{B} I T_{B}\right) \wedge\left(\neg I T_{B} \rightarrow \mathrm{~K}_{B} \neg I T_{B}\right) \wedge \\
& \mathrm{K}_{C} I T_{C} \wedge \mathrm{CK}_{\{B, C\}}\left(I T_{C} \rightarrow \mathrm{~K}_{C} I T_{C}\right) \wedge\left(\neg I T_{C} \rightarrow \mathrm{~K}_{C} \neg I T_{C}\right)
\end{aligned}
$$

(1) first scenario: a third agent truthfully says: "Hey, you are both Italian!"

$$
\text { Init } \rightarrow\left\langle I T_{B} \wedge I T_{C}!\right\rangle \mathrm{CK}_{\{B, C\}}\left(I T_{B} \wedge I T_{C}\right)
$$

(2) second scenario:
a third agent truthfully says: "Hey, you are compatriots!"

$$
\text { Init } \rightarrow\left\langle I T_{B \leftrightarrow} \mid T_{C}!\right\rangle \mathrm{CK}_{\{B, C\}}\left(I T_{B} \wedge I T_{C}\right)
$$

Group knowledge , nonstrategic actions: the ignorant compatriots, ctd.

- After the announcement of $I T_{B} \leftrightarrow I T_{C}$, is it part of the common ground of the conversation that $I T_{B} \wedge I T_{C}$???
- implicit vs. explicit common knowledge

Init $\rightarrow\left\langle I T_{B} \leftrightarrow I T_{C}!\right\rangle\left(I \mathrm{ICK}_{\{A, B\}}\left(I T_{B} \wedge I T_{C}\right) \wedge \neg \mathrm{ECK}_{\{A, B\}}\left(I T_{B} \wedge I T_{C}\right)\right)$

- implicit common knowledge $=\mathrm{PAL}^{\mathrm{C}}$ common knowiedge
- induction axiom: OK
- reduction axiom: KO
- explicit common knowledge: accessibility relation for ECK J is some fixpoint, but not necessarily the greatest
- induction axiom: KO
- reduction axiom: OK

$$
[\psi!] \mathrm{ECK}_{J} \varphi \leftrightarrow\left(\psi \rightarrow \mathrm{ECK}_{J}[\psi!] \varphi\right)
$$

Group knowledge, nonstrategic actions: the ignorant compatriots, ctd.

- After the announcement of $I T_{B} \leftrightarrow I T_{C}$, is it part of the common ground of the conversation that $I T_{B} \wedge I T_{C}$???
- implicit vs. explicit common knowledge

$$
\text { Init } \rightarrow\left\langle I T_{B \leftrightarrow I}!T_{C}!\right\rangle\left(I \mathrm{ICK}_{\{A, B\}}\left(I T_{B} \wedge I T_{C}\right) \wedge \neg \operatorname{ECK}_{\{A, B\}}\left(I T_{B} \wedge I T_{C}\right)\right)
$$

- implicit common knowledge $=\mathrm{PAL}^{\mathrm{C}}$ common knowledge
- induction axiom: OK
- reduction axiom: KO
- explicit common knowledge: accessibility relation for ECK_{J} is some fixpoint, but not necessarily the greatest
- induction axiom: KO
- reduction axiom: OK

$$
[\psi!] \mathrm{ECK}_{J} \varphi \leftrightarrow\left(\psi \rightarrow \mathrm{ECK}_{J}[\psi!] \varphi\right)
$$

Outline

No uncertainty, nonstrategic actions

No uncertainty, strategic actionsIndividual knowledge, no actions(-) Individual knowledge, nonstrategic actions
5 Individual knowledge, strategic actions
(2) Group knowledge, no actions
(7) Group knowledge, nonstrategic actions

8 Group knowledge, strategic actions

Group knowledge , strategic actions

- $A T E L^{C}=A T E L$ plus common knowledge
- problem: which form of group knowledge required for (uniform) group strategies?
- sometimes distributed knowledge $\mathrm{DK}_{J} \varphi$
- sometimes shared knowledge EK ${ }_{J \varphi}$
- sometimes common knowledge $\mathrm{CK}_{J} \varphi$

Conclusion

no uncertainty	$\begin{gathered} \mathrm{S} 5^{\mathrm{C}} \\ \mathrm{~S} 5 \end{gathered}$	$\begin{gathered} \text { PALC } \\ \text { PAL } \\ \text { PDL, CL-PC } \end{gathered}$	ATEL ${ }^{\text {C }}$ ATEL ATL
knowledge action	no actions	nonstrategic	strategic

Conclusion

no uncertainty			
no		$\mathrm{PAL}^{\mathrm{C}}$	$\mathrm{ATEL}^{\mathrm{C}}$
knowledge action	no actions	nonstrategic	strategic

- revisited logics for MAS and their problems
- S5: inadequate as a logic of knowledge
- $\mathrm{S5}{ }^{\mathrm{C}}$: questionable as the logic of common knowledge
- APAL and ATEL: can't talk about uniform strategies
- ATL: commitment to strategies missing

Thanks

- the SINTELNET network (www. sintelnet.eu)
- based on joint work with:

Philippe Balbiani (U. Toulouse, CNRS), Hans van Ditmarsch (U. Nancy, CNRS),
Tiago de Lima (U. Artois, CNRS),
Emiliano Lorini (U. Toulouse, CNRS),
Frédédric Moisan (U. Toulouse),
François Schwarzentruber (U. Rennes, ENS),
Nicolas Troquard (CNR, Trento),
Dirk Walther (U. Dresden)

