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Abstract. Geophysical turbulent flows are characterized by their self-organisation

into large scale coherent structures, in particular parallel jets. We will present a

theory in order to describe the effective statistics and dynamics of these jets. We prove

that this closure is exact in the limit of a time scale separation between the forcing

and the inertial dynamics, which is rare in a turbulent flow. The equation obtained

describes the attractors for the dynamics (alternating zonal jets), and the relaxation

towards those attractors. At first order, these attractors are the same as the ones

obtained from a quasi-Gaussian closure, already studied. Our work thus justifies this

approximation and the corresponding asymptotic limit. We also present a new, very

efficient algorithm to compute the terms appearing in this equation. The theory also

goes beyond the quasi-Gaussian approximation, and indeed it can also describe the

stationary distribution of the jets (fluctuations and large deviations).
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1. Introduction

The emergence of large-scale, long-lived, coherent structures is the main aspect of

geophysical and astrophysical flows (Bouchet and Venaille 2012). The common pictures

of Jupiter perfectly illustrate this fact: the surface flow is clearly organised into parallel,

alternating zonal jets (parallel to the equator), with also a presence of giant and very

stable vortices such as the Great Red Spot. Such large scale features are on one hand

slowly dissipated, mainly due to a large-scale friction mechanism, and on the other

hand maintained by the small-scale turbulence, through the Reynolds’ stress. The main

mechanism is thus a transfer of energy from the forcing scale (due to barotropic and

baroclinic instabilities, or to small-scale convective activity) to the turbulent scales and

until the scale of the jets. An important point in this phenomenology is the fact that

the turbulent fluctuations are of very weak amplitude compared to the amplitude of the

zonal jet, and that they evolve much faster. This means that the typical time scale of

advection and shear of the fluctuations by the jet is much smaller than the typical time

scale of formation or dissipation of the whole jet. This time scale separation is a very

specific property of the geophysical large-scale structures, and it is a crucial element

that will be stressed throughout the paper.

Numerical simulations of atmosphere flows can illustrate this phenomenon (figure 1,

O’Gorman and Schneider 2007), and it is observed that the fully non-linear dynamics is

not necessary to describe the formation of jets. The so-called quasi-linear approximation

seems to be sufficient in order to reproduce quantitatively the dynamics of the jets.
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(b) Quasi-linear approximation.

Figure 1. Examples of direct numerical simulations of an atmospheric flow (primitive

equations). The colors represent the intensity of the Reynolds’ stress divergence (in

units 10−6m.s−2), and the solid lines are the isolines of the zonally averaged flow (in

units m.s−1). We clearly see the formation of intense jets (25 m/s) in high altitudes

and midlatitudes (∼ 30◦). The result of the full simulations (left panel) is in very good

agreement with the simulation of the quasi-linear dynamics (right panel), particularly

when it comes to the averaged velocity (solid lines). Courtesy Farid Ait Chaalal.

In this turbulent context, the understanding of jet formation requires averaging out

the effect of rapid turbulent degrees of freedom in order to describe the slow evolution
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of the jet structure. Such a task, an example of turbulent closure, is usually extremely

hard to perfom for turbulent flows. We prove that it can be performed explicitly in this

problem. It gives at leading order a quasi-Gaussian closure, which is naturally related to

the quasi-linear dynamics presented above. The success of this approach strongly relies

on the time scale separation mentionned earlier. We present in this paper the derivation

of this closure (all the technical details of the derivation can be found in Bouchet et al

2013) and in section 3.2, we also present a new numerical algorithm used to simulate

the quasi-linear dynamics.

Such linear or quasi-linear approaches have been commonly studied for decades in

many theoretical discussions of geostrophic turbulence. Specifically for the problem of

jet formation, such a quasi-linear approach is at the core of Stochastic Structural Sta-

bility Theory (S3T) first proposed in Farrell and Ioannou (2003) for quasi-geostrophic

turbulence. More recently, an interpretation in terms of a second order closure (CE2)

has also been given (Marston et al 2008, Tobias and Marston 2013). All these dif-

ferent forms of quasi-linear approximations have thoroughly been studied numerically,

sometimes with stochastic forces and sometimes with deterministic ones (Marston et al

2008). Very interesting empirical studies (based on numerical simulations) have been

performed recently in order to study the validity of this type of approximation (Marston

et al 2008, Tobias and Marston 2013, Srinivasan and Young 2012), for the barotropic

equations or for more complex dynamics. The S3T equations have also been used to

study theoretically the transition from a turbulence without a coherent structure to a

turbulence with zonal jets (Srinivasan and Young 2012).

The simplest model that leads to the formation of such jets is the one layer

barotropic equations, on a beta-plane or over a topography, with stochastic forcing

(Vallis 2006)

∂tq + v · ∇q = −λω − νn,d (−∆)n ω +
√
ση, (1)

with the non-divergent velocity v = ez ×∇ψ, the vorticity ω = ∆ψ and the potential

vorticity q = ω + βdy, where ψ is the stream function. We consider a doubly periodic

domain D = [0, 2πLlx)× [0, 2πL) with aspect ratio lx, but the results also apply for the

dynamics in a channel, or in any bounded domain. λ is the Ekman friction coefficient,

νn,d is a (hyper-)viscosity coefficient and βd is the mean gradient of potential vorticity.

η is a white in time gaussian random noise, with spatial correlation

E [η(r1, t1)η(r2, t2)] = C(r1 − r2)δ(t1 − t2),

which parametrizes the effect of baroclinic and barotropic instabilities. The correlation

function C is assumed to be normalised such that σ represents the average energy

injection rate, so that the average energy injection rate per unit of mass is ǫ = σ/4π2L2lx.

In the regime we are interested in, the main energy dissipation mechanism is the linear

friction, and the (hyper-)viscosity is negligible.
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The evolution of the energy (averaged over noise realizations) E is given by

dE

dt
= −2λE + σ.

In a stationary state we have E = Estat = σ/2λ, expressing the balance between forcing

and dissipation. This expression gives the typical velocity of the coherent structure

U ∼
√
Estat/L ∼

√

ǫ/2λ. Then the typical time scale of advection of a perturbation

by the coherent structure is τ = L/U . We can thus build a non-dimensional parameter

α as the ratio of the advective time scale and the dissipative one (1/λ) on which large

scale structures typically evolve:

α = λτ = L

√

2λ3

ǫ
.

This parameter α is the small parameter by which the kinetic theory will be developed.

Many works in literature (Vallis 2006 for instance) suggest that, when the beta effect

and the non-linear effects are of the same order of magnitude, the largest relevant scale

of the flow is given by the Rhines scale

LR = (U/βd)
1/2 =

(

ǫ/β2
dλ
)1/4

.

The time-scale of advection of a perturbation over this distance is τR = LR/U , then

the ratio of the advective and dissipation time scales is given by αR = λτR ∝ (Rβd
)−5

where Rβd
= β

1/10
d ǫ1/20λ−1/4 is the zonostrophy index introduced in Danilov and Gurarie

(2004) or Galperin et al (2010). The regime αR ≪ 1 thus coincides with the zonation

regime Rβd
≫ 1, which is known to be the regime where the quasi-linear approximation

is accurate (Tobias and Marston 2013).

In this regime, we have αR < α. Then, in the regime α ≪ 1 considered in this work, we

recover the zonation regime αR ≪ 1.

The equations adimensionalized with the time scale τ and the length scale L read

∂tq + v · ∇q = −αω − νn (−∆)n ω +
√
2αη, (2)

where νn = νn,dτ/L
2n, β = (L/LR)

2 with νn ≪ α ≪ 1. In the following, we will consider

viscosity, n = 1, but the main results can be generalized to any type of hyper-viscosity.

2. Stochastic averaging

2.1. Rescaled dynamics

For the barotropic equations (2), the regime corresponding to the emergence of large-

scale jets is given by α≪ 1 (dynamical time scale of the jets much larger than the time

scale of the turbulent fluctuations) and ν ≪ α (turbulent regime). This is the regime

we consider in the following.

The large scale zonal jets are charecterized by either a zonal velocity field vz(r) =

U(y)ex or its corresponding zonal potential vorticity qz(y) = −U ′(y) + h(y). For

reasons that will become clear in the following discussion (we will explain that this

is a natural hypothesis and prove that it is self-consistent in the limit α ≪ 1), the
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non-zonal perturbation to this zonal velocity field is of order
√
α. We then have the

decomposition

q(r) = qz(y) +
√
αωm(r) , v(r) = U(y)ex +

√
αvm(r) (3)

where the zonal projection is defined by 〈f〉 (y) = 1
2πlx

∫ 2πlx
0 dx f(r).

We now project the barotropic equation (2) into zonal and non-zonal part, assuming

for simplicity that the random forcing does not act directly on the zonal degrees of

freedom‡ (〈C〉 = 0):

∂qz
∂t

= −α ∂

∂y

〈

v(y)m ωm

〉

− αωz + ν
∂2ωz

∂y2
, (4)

∂ωm

∂t
+ LU [ωm] =

√
2η −

√
αvm.∇ωm +

√
α 〈vm.∇ωm〉 , (5)

where

LU [ωm] = U(y)∂xωm + ∂yqz(y)∂xψm

is the linearized dynamics operator around the zonal base flow U . We see that the

zonal potential vorticity is coupled to the non-zonal one through the zonal average of

the advection term ∂
∂y

〈

v(y)m ωm

〉

. If our rescaling of the equations is correct, we clearly

see that the natural time scale for the evolution of the zonal flow is 1/α. By contrast,

the natural time scale for the evolution of the non-zonal perturbation is one. These

remarks show that in the limit α ≪ 1, we have a time scale separation between the

slow zonal evolution and a rapid non-zonal evolution. Our aim is to use this remark

in order to describe precisely the stochastic behavior of the Reynold stress in this limit

(by integrating out the non-zonal turbulence), and to prove that our rescaling of the

equations and this time scale separation hypothesis is a self-consistent hypothesis.

2.2. Adiabatic elimination of fast variables

We will use the remarks that we have a time scale separation between zonal and non-

zonal degrees of freedom in order to average out the effect of the non-zonal turbulence.

This amounts to treating the zonal degrees of freedom adiabatically. This kind of

problems are described in the theoretical physics literature as adiabatic elimination

of fast variables (Gardiner 1994) or may also be called stochastic averaging in the

mathematics literature. Our aim is to perform the stochastic averaging of the barotropic

flow equation and to find the equation that describes the slow evolution of zonal flows.

In this stochastic problem, it is natural to work at the level of the probability density

function (PDF) of the flow, P [q] = P [qz, ωm]. Then, the dynamical equations (2) or (4)

and (5) are equivalent to the so-called Fokker-Planck equation for P .

‡ This assmption is not necessary for the theory, it is just for convenience.



6

Complete Fokker-Planck equation The evolution equation for the PDF reads

∂P

∂t
= L0P +

√
αLnP + αLzP, (6)

where

L0P ≡
∫

dr1
δ

δωm(r1)

[

LU [ωm] (r1)P +
∫

dr2Cm(r1 − r2)
δP

δωm(r2)

]

(7)

is the Fokker-Planck operator that corresponds to the linearized dynamics close to the

zonal flow U , forced by a Gaussian noise, white in time and with spatial correlations

C. This Fokker-Planck operator acts on the non-zonal variables only and depends

parametrically on U . This is in accordance with the fact that on time scales of order

1, the zonal flow does not evolve and only the non-zonal degrees of freedom evolve

significantly. It should also be remarked that this term contains dissipation terms of

order α and ν. These dissipation terms can be included in L0 because in the limit

ν ≪ α ≪ 1, the non-zonal dynamics is dominated by the interaction with the mean flow,

thanks to the so-called Orr mechanism (Orr 1907). This crucial point will be discussed

in the following paragraph. At order
√
α, the nonlinear part of the perturbation

LnP ≡
∫

dr1
δ

δωm(r1)
[(vm.∇ωm(r1)− 〈vm.∇ωm(r1)〉)P ] (8)

describes the non-linear interactions between non-zonal degrees of freedom. At order α,

the zonal part of the perturbation

LzP ≡
∫

dy1
δ

δqz(y1)

[(

∂

∂y

〈

v(y)m ωm

〉

(y1) + ωz(y1)−
ν

α
∆ωz(y1)

)

P (9)

+
∫

dy2Cz(y1 − y2)
δP

δqz(y2)

]

(10)

contains the terms that describe the large-scale friction and the coupling between the

zonal and non-zonal flow.

Stationary distribution of the fast variables The goal of our approach is to get an

equation that describes only the zonal, slowly evolving part of the PDF, but taking into

account the fact that the non-zonal degrees of freedom have rapidly relaxed to their

stationary distribution. The first step is then to determine this stationary distribution

of the non-zonal, fastly evolving degrees of freedom. This stationary distribution is

given by the stationary state of (6), retaining only the first order term: L0P = 0. For

the special case of a determined zonal flow P [qz, ωm] = δ (qz − q0)Q(ωm), L0 is the

Fokker-Planck operator that corresponds to the dynamics of the non-zonal degrees of

freedoms, for quasi-geostrophic equations linearized around the base flow with potential

vorticity q0,

∂ωm

∂t
+ LU [ωm] =

√
2η. (11)

It is a linear stochastic process (Orstein-Uhlenbeck process) with zero average value, so

we know that its stationary distribution is a centered Gaussian, entirely determined by
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the variance of ωm. The variance is the stationary value of the two-points correlation

function of ωm, g(r1, r2, t) = E [ωm(r1, t)ωm(r2, t)]. The evolution of g is given by the

so-called Lyapunov equation, which is obained by applying the Ito formula to (11)

∂g

∂t
+
(

L
(1)
U + L

(2)
U

)

g = 2C. (12)

(L
(i)
U means that the operator is applied to the i-th variable). We now understand that

the asymptotic behaviour of this equation is a crucial point for the whole theory. It

can be proved (Bouchet and Morita 2010, Bouchet et al 2013) that g has a well-defined

limit (in the distributional sense) for t → ∞, even in the absence of any dissipation

mechanism (α = ν = 0). This may seem paradoxical as we deal with a linearized

dynamics with a stochastic force and no dissipation mechanism. This is due to the

Orr mechanism (Orr 1907, Bouchet and Morita 2010) (the effect of the shear through

a non-normal linearized dynamics), that acts as an effective dissipation. The fact that

(12) has a finite limit when α → 0 is the precise justification of the scaling (3), and it

is thus the central point of the theory.

The average of an observable A[qz, ωm] over the stationary gaussian distribution is

still a function of qz, and it is an average over the non-zonal degrees of freedom, taking

into account the fact that they have relaxed to their stationary distribution. In the

following, we denote this average

EU [A] =
∫

D[ωm]A[qz, ωm]G [qz, ωm] , (13)

the subscript U recalling that this quantity depends on the zonal flow. With this

definition, the adiabatic reduction can be performed. The details of the computation,

that follow Gardiner (1994), are reported in Bouchet et al (2013). Only the final result

and its consequences are presented here.

Effective zonal Fokker-Planck equation The final Fokker-Planck equation for the slowly

evolving part of the zonal jets PDF R[qz ] reads:

∂R

∂τ
=
∫

dy1
δ

δqz(y1)

{[

∂F [U ]

∂y1
+ ωz(y1)−

ν

α

∂2ωz

∂y21

]

R[qz] (14)

+
∫

dy2
δ

δqz(y2)

[

CR(y1, y2) [qz]R [qz]
]

}

, (15)

which evolves over the time scale τ = αt, with the drift term

F [U ] = EU

[〈

v(y)m ωm

〉]

(y1) + αF1 [U ] ,

with F1 a functional of qz, and the diffusion coefficient CR(y1, y2) [qz], that also depends

on the zonal flow qz.

This Fokker-Planck equation is equivalent to a non-linear stochastic partial

differential equation for the potential vorticity qz,

∂qz
∂τ

= −∂F
∂y

[U ]− ωz(y1) +
ν

α

∂2ωz

∂y2
+ ζ, (16)
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where ζ is white in time Gaussian noise with spatial correlation CR. As CR depends itself

on the velocity field U , this is a non-linear noise. The main physical consequences and

the numerical implementation of this equation are discussed in the following paragraphs.

3. Physical interpretation of the zonal Fokker-Planck equation

3.1. First order: quasi-linear dynamics

At first order in α, we obtain a deterministic evolution equation for qz:

∂qz
∂t

= −α ∂

∂y
EU

[〈

v(y)m ωm

〉]

− αωz + ν∆ωz . (17)

To summarize, we found that at leading order in α, the zonal flow is forced by

the average of the advection term due to the non-zonal fluctuations (Reynolds’ stress),

and that this quantity is computed from the linearized dynamics for the fluctuations. In

other words, we could have applied the same stochastic reduction technique to the quasi-

linear dynamics ((4) and (5) without non-linear terms), and we would have obtained

at leading order the same deterministic equation (17). The system (17) and (12) is a

quasi-Gaussian (or second-order) closure of the dynamics. Working directly at the level

of the PDF, and using the tools of the stochastic reduction, we have been able to justify

the closure of this problem. This quasi-Gaussian closure has been already studied in

numerical works (SSST in Farrell and Ioannou (2003) and CE2 in Marston et al (2008))

and analytical works (Srinivasan and Young 2012), and is known to give very good

results.

Using again the results about the Orr mechanism (Orr 1907, Bouchet and Morita

2010, Bouchet et al 2013), some important facts about equation (17) can be proved.

First, we can make sure that the Reynolds’ stress is well-behaved, even in the inertial

limit α, ν → 0, so that the zonal flow equation (17) is always well-defined. We can

also show that the energy in the non-zonal degrees of freedom is of order α. As a

consequence, a vanishing amount of energy is dissipated in the fluctuations and almost

all the energy injected by the stochastic forcing goes to the zonal degrees flow. Moreover,

the dynamics defined by (17) and (12) are much simpler to solve numerically than the

full non-linear dynamics (2). A very efficient algorithm used to compute the forcing

term −α ∂
∂y
EU

[〈

v(y)m ωm

〉]

is presented in the next section 3.2.

3.2. Numerical evaluation of the Reynolds’ stress

In this section we present an efficient algorithm used to compute the forcing term

EU

[〈

v(y)m ωm

〉]

appearing in the first order equation for the slow evolution of zonal jets

(17). We recall that this quantity is the limit for infinite time of the statistical and zonal

average of v(y)m ωm, where ωm evolves according to the linearized stochastic dynamics (11),

with the base flow U held fixed. Equivalently, this quantity can be computed as a linear

transform of the infinite-time limit of the solution of the Lyapunov equation (12). In

the limit ν ≪ α≪ 1, the classical numerical resolution of (12) obtained discretising the
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operators L
(1)
U and L

(2)
U is a very difficult task. Indeed, the discretisation step should be

taken smaller and smaller as ν goes to 0. On the contrary, with the algorithm presented

below, we can directly take the limit ν = 0.

The forcing correlation function can be expanded as Cm(r) =
∑

k>0,l ck,l cos(kx +

ly), with ck,l ≥ 0. Then we can decompose the vorticity field as ωm(r, t) =
∑+∞

k,l=−∞

√
ck,l ωk,l(y, t)e

ikx where the coefficients satisfy

∂tωk,l + LU,k[ωk,l] = eilyηk,l(t), (18)

with

LU,k = ikU − ik(U ′′ − β)∆−1
k + α, (19)

the k−th component of the linear operator LU . The white noises satisfy η∗k,l = η−k,−l

and E[ηk1,l1(t1)η
∗

k2,l2
(t2)] = δk1,k2δl1,l2δ(t1 − t2), and ck,l is defined for k < 0 by

ck,l = c∗
−k,−l = c−k,−l. With this decomposition, the Reynolds’ stress divergence reads

EU

[〈

v(y)m ωm

〉]

=
+∞
∑

k,l=−∞

−ikck,l hk,l(y) =
∑

k>0,l

2kck,l Im[hk,l(y)], (20)

with the vorticity-stream function correlation function hk,l = EU [ωk,lψ
∗

k,l]. In (Bouchet

et al 2013), we presented a numerical scheme for the computation of hk,l based on an

integral equation. This algorithm turns out to be efficient only in very specific cases.

Here we present a much more efficient way to compute hk,l, based on the computation of

the resolvent of the operator LU,k. From the formal solution of the Ornstein-Uhlenbeck

process (18), we have

hk,l(y) =
∫

∞

−∞

dt ω̃k,l(y, t)ψ̃
∗

k,l(y, t), (21)

where ω̃k,l(y, t) is the vorticity field obeying the deterministic initial value problem

∀t > 0, ∂tω̃k,l(y, t) + LU,k [ω̃k,l] (y, t) = 0,

ω̃k,l(y, 0) = eily,

∀t < 0, ω̃k,l(y, t) = 0,

and ψ̃k,l(y, t) is the associated stream function.

We move now to the frequency domain. The Laplace transform of the vorticity is

denoted with

ω̂k,l(y, c) =
∫

∞

0
dt ω̃k,l(y, t)e

ikct =
∫

∞

−∞

dt ω̃k,l(y, t)e
ikct. (22)

For all α > 0, the deterministic vorticity field ω̃k,l decays to 0 for t → ∞. Then,

the Laplace transform defined by (22) for real values of c coincides with the Fourier

transform with respect to t. As a consequence, it can be simply inverted as

ω̃k,l(y, t) =
|k|
2π

∫

∞

−∞

dc ω̂k,l(y, c)e
−ikct. (23)

We stress that this property is valid only for decaying fields ω̃k,l, and thus only when

α 6= 0.
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Figure 2. Numerical results in the case of a parabolic base zonal flow U(y) =

A(y + 2)2 + U0 in a channel geometry, with a forcing at the scale kx = 1, ky = 1

and different values of the friction coefficient α, and ν = 0. We see that in the inertial

limit α → 0, the Reynolds’ stress converges to a well-defined function, and that all the

energy injected in the fluctuations is transferred to the zonal flow (blue line), while the

energy dissipated in the fluctuations vanishes (red line). This constitutes a verification

of the self-consistency of the theory, and relies on the non trivial Orr mechanism.

It is also useful to define the Laplace transform of the stream function ψ̂k,l; this quantity

is usually referred in literature as the resolvent of the operator LU,k. It is related to

ω̂k,l through ω̂k,l(y, c) =
(

d2

dy2
− k2

)

ψ̂k,l(y, c) and is the solution of the linear ordinary

differential equation
(

d2

dy2
− k2

)

ψ̂k,l(y, c)−
U ′′(y)− β

U(y)− c− iα
k

ψ̂k,l(y, c) =
eily

ik
(

U(y)− c− iα
k

) .(24)

Using (23) and (24) in (21), and performing the integration over t, we get

hk,l(y) =
|k|
2π

∫

∞

−∞

dc
(U ′′(y)− β)ψ̂k,l(y, c) + eily/ik

U(y)− c− iα
k

ψ̂∗

k,l(y, c). (25)

The numerical computation of the resolvant ψ̂k,l is a very easy task, an algorithm is

detailed in Bouchet and Morita (2010). For a given value of c, computing ψ̂k,l(y, c)

takes a few seconds on a laptop. Then, the computation of the integral (25) is a matter

of a few minutes, with a very good accuracy (of the order of 10−3). The fact that we

are able to compute the infinite-time limit of a statistical average, in the limit of no

viscosity, so fast and with such accuracy, is an important result in itself. An example

of application of this method is given in figure 2. Using (25) for smaller and smaller

values of α allows to check direclty the theoretical statements of the previous paragraph

3.1: the Reynolds’ stress divergence EU

[〈

v(y)m ωm

〉]

converges to a well-defined function

in the limit α → 0, and all the energy is transferred from the forcing to the zonal flow

in this limit.
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3.3. Next order: corrections and multistability

From the full Fokker-Planck equation (6), we expect the non-linear operator Ln to

produce terms of order α1/2 and α3/2 in the zonal Fokker-Planck equation (15). The

detailed computation shows that these terms exactly vanish (Bouchet et al 2013). As

a consequence, we have proved that the quasi-Gaussian closure (17,12) is correct in the

limit α≪ 1, with correction only at order α2.

We then have a correction F1 to the drift F [U ] due to the non-linear interactions.

At this order, the quasilinear dynamics and non-linear dynamics differ. We also see the

appearance of the noise term, which has a qualitatively different effect than the drift

term. For instance if one is interested in large deviations from the most probable states,

correction of order α to F0 will still be vanishingly small, whereas the effect of the noise

will be essential. This issue is important for the description of the bistability of zonal

jets and phase transitions.

4. Conclusion

We have shown that it is possible to average out the effect of turbulence in the problem

of the jet formation in the barotropic model, when there is a time scale separation

between the evolution of the jets and the turbulent dynamics. Instead of following the

classical route, based on an arbitrary closure in the Reynolds’ hierarchy of equations,

we performed this closure working directly at the level of the probability distribution

function of the vorticity field (Bouchet et al 2013). The main aspects of the equation we

obtain are the following: at first order, it describes the quasi-Gaussian closure, and thus

justifies theoretically the previous studies on the subject. We presented here a new and

very efficient scheme to compute numerically the quantities appearing in this equation.

Then, it predicts the corrections to this approximation, and allows the description of

the bistability of the jets. This last point is the subject of ongoing research.
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