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SUMMARY

This papempresentainewschemdor sensofault tolerantcontrolfor nonlinearsystems$asednthe Takagi-
Sugenomodeling.First, a structuredresidualgeneratoraiming at detectingand isolating sensorfaults is
designed A bank of observerscontrolled either by only one systemoutput or a set of outputsis then
implementedeadingto a setof stateestimatesThe paralleldistributedcompensatiostructureis adoptedo
designthefault tolerantcontroller. The noveltyin this paperis thatthe estimatedstateusedin the controller
is a weightedstatevector obtainedfrom all the estimatedstatesprovidedby the different observersThe
weighting functions dependon the residualvector signalsdeliveredby the residualgenerator.They are
designedo avoid crispswitchesin the controllaw. Indeed the interestingfeatureof the proposedapproach
is to avoid the commonlyusedswitchingstrategy For eachresidualcomponentthe greaterit's magnitude
is, the lessthe weight affectedto the correspondingstateestimateis. Consequentlythe controller only
usesestimationscomputedon the basisof healthymeasurementd.he closed-loopstability is studiedwith
the Lyapunovtheoryandthe obtainedconditionsare expresse@sa setof Linear Matrix Inequalities.The
proposedesidualgeneratiorandfault tolerantcontrollerareappliedto a vehiclelateraldynamicsaffected
by sensor faultsCopyright®© 2014 JohrWiley & Sons,Ltd.
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1. INTRODUCTION

Faultdiagnosisakesa primordial placein the moderncontrol systemsindeed,humansafetyand
system performangareservatiorare cruciakpecificationsvhich should be taken into account
upstreanof thecontroldesign Forthatpurposeafault detectiorandisolationsystemnis requiredto
detectoccurred faults in the process. However, a diagnosis system is not sufficient to preserve
system

performancesndhumansecurity.The controllermustbe designedo guarante¢he stability of the
systemevenin faulty situations.This secondaskis commonlycalledFault TolerantControl (FTC)
and has been classified into two differetdsses: the first one, call@assive Fault Tolerant
Control

(PFTCQ)is anextensiorof the well-known robustcontrol. It requiresthe knowledgeof all possible
faults which may affect the system(generallythe magnitudeof thesefaults). The structureof the
controlleris chosera priori in orderto berobustto all inventoriedfaults(no adaptations performed
online). This type of controlis interestingsinceno fault diagnosisnoduleis neededHoweverits



man disadvantages is the impossibility to consider unknown faults and the conservativeness of
design conditions. Unlike the PFTC techniques, the Active Fault Tolerant Control (AFTC) offers
some flexibilities in the design task. It can be assimilated to a variable structure technique since the
structure of the controller can be automatically modified and reconfigured when a fault occurs. In
addition, it is no longer necessary to list all possible faults in the system. A Fault Detection and
Isolation (FDI) module is incorporated in the control unit. It provides information on the occurred
faults to the FTC unit which reconfigures the control strategy to compensate and to accommodate
them.

In the recent years, the rapid growth of demand in terms of performance and safety for the
systems as well as the human operator requires to consider more realistic models of the studied
systems. Therefore, nonlinear mathematical models are often developed. Because of the complexity
of such models, there is no general framework for their analysis, control and diagnosis. Thus, only
specific classes of nonlinear models are studied (Lipschitz systems, Linear Parameter Varying (LPV)
systems, output or state feedback linearizable systems, ...). In the proposed work, the considered
models are in the Takagi-Sugeno’s form (T-S).

This kind of model is mainly used with regards to its property of “universal approximator” of
any nonlinear system based on the sector nonlinearity appraadmdeed, any nonlinear system
can be approximated with a given accuracy or represented exactly with such a striptérd{S
model can be obtained using three main methods: linearization around a set of operatingZpoints [
identification [3,4] and sector nonlinearity transformation approadh [1

The analysis and control of nonlinear systems via T-S modeling have attracted many researchers.
This model allows the study of many stability and stabilization probleims,[6, 7]. The common
core of the proposed approaches is the use of the Lyapunov theory to establish stability conditions
which are often expressed in terms of Linear Matrix Inequalities (LMIs). This fact constitutes one
of the advantages of the T-S approach. Indeed, the particular structure of the T-S models allows the
exploitation and the extension to nonlinear domain of some theories, tools and methods, initially
developed for linear systems. Firstly, classic quadratic Lyapunov functions were considered but
it soon became clear that such functions often lead to conservative conditions, especially for a
large number of sub-models. The concern to reduce this conservatism led to develop other types of
Lyapunov functions (poly-quadratic, non-quadratic,3,)9] and other approaches such as Tuan’s
relaxation [LO] or Polya’s theorem [11]. These approaches are extended inlR,2,4, 15] for
observer design applied to state and unknown input estimation. These observers are used for fault
diagnosis in 3, 15, 16, 17]. The design of fault tolerant control for T-S systems has also been
studied. State trajectory tracking is proposediB][for actuator faults.

In [19], a bank of controllers is implemented, each of them is designed separatkedyenarates
a control law based on the state estimgté). Based on a residual analysis, a switching strategy is
then developed in order to select the control law relying on a fault-free state estimate. Unfortunately,
the stability of the whole closed-loop system is not studied. Only the stability of each observer-based
controller is provided and no stability at the switching instants is guaranteed (it is well known that
stable sub-systems do not necessarily lead to stable switched systpm [

Similar and more interesting approach is proposed?ity where linear discrete-time system is
considered. The approach is based on constructing controllers from each output, the control input
applied to the system is selected by an adequate switching strategy in the presence of sensor faults.
The switching mechanism is designed in such a way to guarantee a minimal cost and select the
adequate controller that eliminates the effect of the occurred fault with guaranteed cost.

In the present paper a new FTC design for nonlinear systems affected by disturbance and sensor
faults is proposed. The overall idea is to use fault diagnosis in order to distinguish between faulty
and healthy sensors and then only use the measurements provided by the later ones to produce a
state estimate and a control law. Firstly, an observer based residual generator is designed. Secondly,
a bank of observers is constructed where each observer is fed with all the inputs and only one
measured output. As a consequence the state estimate produced:dyabserver is only affected
by the k** sensor fault. Thirdly, a state estimate is obtained by blending the different estimates
with time varying weights computed from the residual in order to mainly use the ones based



on healthy sensors: if a given sensor fault is isolated, the weight of the corresponding estimated
state is lowered. Thus, the influence of corrupted measures in the state estimation is minimized.
Finally, a FT parallel distributed control (PDC) law is computed based on this blended state estimate.

Notations. The termg),, andI,, respectively define the null square matrix and the identity matrix
with dimension:. The non square null matrix is defined &y, with dimensiorp x n. In order to
shorten the summation, the following notations for polytopic matrices are defined

Xu=d (€)X and X =303 () (E(1) Xy

i=1 j=1

Lemma 1
For any matricest andY with appropriate dimensions and any symmetric positive definite matrix
A, the following inequality holds

Xy +vTX < XTA'X +YTAY (1)

Lemma 2
(Congruence lemma) Consider two matricéandY. If X is positive (resp. negative) definite and
Y is full column rank thert’ XY 7' is positive (resp. negative) definite.

Lemma 3
For any scalap, matrix @ and symmetric postive definite matmx the following inequalities hold

(Q@-BA ) A(Q-BA) 206 -QTAQ < —B(Q+QT) + A @)

2. TAKAGI-SUGENO MODELING
A nonlinear dynamic system affected by disturbance and additive sensor fault is generally

represented by:
{ #(t) = g(a(t), u(t), (1)) 3)
y(t) = h(xz(t),d(t) + f(t)

wherex(t) € R™ denotes the state vectai(t) € IR™ is the control input ang(t) € R? represents

the system output vectai(t) € IR™? is the disturbance vector (noises, external perturbations,...) and
f(t) € R?, the additive sensor fault vector. The functignand are nonlinear smooth functions
satisfyingg(0,0,0) = 0 andh(0,0) = 0. As explained in the previous section, the Takagi-Sugeno
model is an interesting alternative to study nonlinear systems. It describes nonlinear behaviors
while having a structure based on linear models allowing the extension of some tools from the
linear domain to the nonlinear one. Using identificati@n4], linearization [2, or the so-called

sector nonlinearity transformation [22], a T-S model for the system)(8an be obtained under the
following form:

i(t) = 3 m(E®) (Asa(t) + Bou(t) + Eid(t)) “
z:l 4
y(t) = 3 mal€(0) (Crx(t) + Gad(1) + F(1)

where 4; € R™™"™, B, ¢ R™*™, C; € RP*™, E; ¢ R*™*™ and G, € RP*"¢ are the matrices
describing the so-called” sub-model. The integer represents the number of sub-models. If the
T-S model is obtained by identification or linearization, the accuracy of the model depends on the
numberr of sub-models. Indeed, a more accurate T-S model is obtained when increasing the value
of r. If the T-S model is obtained by sector nonlinearity transformatiatepends on the numbet

of nonlinearities in the modeBj andr = 2. The weighing functiong; are nonlinear and depend

on the premise variablg(t) which can be measurable (ewgi) or y(¢)) or not measurable (e.g.

x(t)). It is commonly assumed in LPV and switched systems that these parameters are not known
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Figure 1. Sensor fault tolerant control scheme

a priori but available at real-time. The same assumption is made in the present paper where the
premise variablg(t) is supposed to be measurable.
The weighting functions satisfy the following convex sum property:

D omiE) =1, 0< pi(€(t) <1, Y, Vi=1,...,7 (5)
i=1

This property allows the generalization of the tools developed for linear systems to nonlinear
systems.

3. FAULT TOLERANT CONTROLLER DESIGN FOR T-S SYSTEMS

3.1. Outline of the proposed approach

The proposed fault tolerant control strategy is described in the fiyjuiighe residual generator

aims at detecting and isolating each sensor fault based on a dedicated residual signal. Eagh of the
observers is designed to estimate the state vector of the system from one ofitpets. Hence, if a

given sensor is faulty, the estimated state provided by the corresponding observer is corrupted but the
others are healthy. The controller is the well known observer-based one but the used estimated state
is obtained from a weighted sum of the estimated states provided by each observer. The weighting
functions that weight each state vector are designed in such a way to satisfy the convex sum property
and the continuity to avoid the switching phenomenon. These functions depend on the residual
vector. If a given sensor is faulty then the corresponding weighting function goes to zero and only
healthy estimated states are used in the closed-loop feedback, then the sensor fault does not affect
the nominal operating of the closed-loop system. In the following sections, the design of such fault
tolerant controller is detailed.

3.2. Residual generator for sensor fault detection and isolation

The robust residual generator design is based on the same framew@&]aste gains of the
residual generator are determined in order to minimize Ahegain of the transfer from the
disturbance vector(t) = [dT(t) fT(¢)]" to the fault estimation error.(t) = r(t) — f(t). As a
consequence, the obtained residu@a) is an estimation of the fault, achieving both its detection
and isolation.



Based on the modetl], the following residual generator is then proposed
2(t) = ; pi(§(8)) (Ai(t) + Biu(t) + Li(y(t) — 9(t)))
i) = 3 (€Ot (®)

r(t) = M(y(t) = 9(t))

This residual generator is designed for providing a residual ve¢tpsuch that itg*” component
is only sensitive to the!" sensor fault (residual structuration). The gain matridésand L;
of the residual generator satisfying the specifications of sensor fault estimation and perturbation
attenuation are determined by solving the optimization problem given in the thdorem

Theorem 1

The robust residual generatds)(exists if there exists a symmetric and positive definite matrix
P = PT >0, matricesL; and M, and a positive scalay, solution to the following optimization
problem

min ¥ (7)
P, Li, M
under the following LMI constraints
X < 0, 1=1,..,r (8)
%X11+X1]+le<0, g =1,...,m7, Z;éj

whereX;;, for (i, j) € {1,...,r}, are defined by
ATP+PA, - LC; - CILT PE;—L,G; —L; C/M"

X = EI'P—-GTLT —I 0 G#Aﬂ“ )
E —LT 0 I MT -1
MC; MG, M—-1 I

The residual generator gains are givenlhy= P~'L; and M. The attenuation level from(t) to
the fault estimation errof, (t) is given by~.

Proof

The LMI (9) are obtained using the well-known Bounded Real Lemma and the TuaXatieta
The proof is omitted but the reader can refer to [28] where that residual generator is studied in
details. O

3.3. Sensor fault tolerant control design

After generating the residual vectd) that estimates the sensor faults, the objective is now to use
it in order to actively reconfigure the control law by eliminating (or at least minimizing) the fault
effect on the system. This section describes the three steps in designing the fault tolerant controller:
the first step concerns the design of an observer bank that estimates the state vector from each
output separately, the second step concerns the choice of the structure of the controller that uses a
new estimated state vector derived from the weighted estimated state vectors obtained at the first
step. Finally, the third step is devoted to the stability analysis of the closed loop system with the
observer-based controller and LMI conditions are established for design purpose.

Firstly, an observer bank is designed. TH& observer is fed with the control input vectoft)
and thek!" system outpug”(¢) as illustrated in the figuré. If a fault occurs on a sensor different
of the k" one, the observer using thi&" output provides a fault-free state vector estimation.

Thek!” observer (k= 1, ..., p) has the following form:

()= 32 mil€(1)) (A () + Buu(t)+ LF (v () -3* (1)) o)
7,?1 10
()= £ mle)Clit 1)



whereC¥ is thek'" row of the matrixC; corresponding to thé!* sensor and*(t) represents the
k" entry of they(t) vector. Thek!" observer provides the estimated state veetdt) based on the
knowledge of the input and thé" output. The different state estimat&gt), k = 1,...,p are then
blended to build a representative state estimation veié{@y according to:

) =3 hr(t)# (1) (11)
k=1

The blending is ensured by the weighting nonlinear functiors(t)) depending on the residual
vectorr(t) (6). These functions satisfy the smoothness and the convex sum propécty allbw
the derivation of LMI design conditions in the next. The design of such functions is based on the
idea that if thek!” sensor is faulty, thé! component of the residual vector, namejyt), deviates
from zero. Consequently, the corresponding weighting fungtidin(¢)) has to converge to zero in
order to decouple the state estimatét) from the fault acting on thé*" sensor. Hencei, (t) is
turned to a convex weighted sum of the estimated states excegttbae. The effect of the fault is
then minimized. Different structures of the weighting functignscan be proposed. In this paper,
the chosen weighting functioris,, for k. = 1, ..., p are defined by:

wi(re(t)) = exp(—r,%(t /ok) (12a)

)
 wi(re(1))
hr) = S (1) (125)

where the parameters, are used to take into account the spreading around zerg, dhe k"
component of the residual vectoft). The Gaussian weight function (12a) exponentially decreases
to zero whenr, deviates from zero. Equation (IRkensures the normalization of the different
functions such that the convex sum propeByholds.

The second step deals with the choice of the control law. Here, the proposed control law is a
classical observer-based PDC control law, but the estimated state vector (given by one observer
in the classical version of this structure) is replaced by the weighted state vig¢tpmwhich is
fault-free. The control law is then given by:

u(t) = —Z i (€(1) K ;2°(2) (13)

Contrarily to [L9], where the stability of the closed loop system with the switching mechanism
between the different dedicated controllers is not guaranteed, the proposed approach aims at the
stabilization of the closed loop system, including the controller bank and the weighting strategy.

In the third step, the stability of the closed-loop system is studied using classical approaches
developed for T-S models. ThHé" state estimation erraf* (t) = z(t) — 2*(t) is generated by the
following differential equation, obtained frord)(and (10):

eM(t) = Z Z pa(€(0)us (E(1)) ((As — LECH)eM (1) + (B — L{Gy)d(t) — Li f(t))  (14)

The closed-loop system is then described by the following equations (obtained from equations
(4) and (13)

B(t) =Y DN ha(r(8) i (E(6) i (€(1)) (Asa(t) — BiEK;a%(t) + Eqd(t)) (15)

i=1 j=1 k=1

= OSSO €Oy (€) (A — B )o(t) + B ek (t) + Eid(t))  (16)

i=1 j=1 k=1



Defining the augmented state vector

zL(t) = (a:T(t) e Tt) ... epT(t)) a7

a

the following closed-loop system is obtained (from equatiddy and (16))

Ea(t) = 3 D m€O)s (E(0)) (Ay + Ay O)za(t) + Ev (1)) (18)
where
A~BiK; 0 0 0
0 A-LlC! 0 0
A= 0 0 A-L2C? . : (19)
. . _ .
0 0 0 A~LPCP
and
0 h(r()BiK; ha(r(t)BiK ho(r(1)) B,
0 0
AA;(t)=|0 0 0 : (20)
: : 0
0 0 0 0
Dy =( Bl (B;—LIG)T (B —L}G)T - - (B-LG)T )" (21)
Fiy=(0 (-LDT (<LHT o (<LDT ) (22)
&j=(Diy Fij) (23)

The controller is then designed in such a way to minimize the effect of the perturbation(igrm
on the fault estimation error. Finally, the computation of the gains of the observers and those of the
controller are obtained by solving the following constrained optimization theorem.

Theorem 2

Given the system4() and a positive scala®, the sensor fault tolerant observer based controller
(10)-(13) ensures the asymptotic stability of the system in the presence of senso(wéhliso
disturbances) and a bounded stability with an attenuation I&gegi&in)n of the transfer function
from the perturbation vectar(t) to the state estimation error, if there are symmetric and positive
definite matrice®), P, (k = 1, ..., p), matricesF; and M} and positive scalarsand )\, solution to

the following optimization problem

min 7
Q,P1,...., Py Fy .., Fr M}, MY MY MP e X1, A
Hii <0 i=1,..,r
s.t.{ TleiiJrHij +H;; <0 hLi=1,.,r i#] (24)
where . ~
2 0 0 Ry B0 0 Q
0 M 0 0 ij ij 0 0
R 0 0 -28Q 0 0 BI 0
Jp— 17 »
Ho=|pgf 50 0 0 g, 0 0 0 (25)
0 ShH 0 0 0 —ql, 0 0
o 0o o0 pI 0 0 —-A 0
Q@ 0 0 0 0 0 0 —I,



and

Bij = QAl + AiQ — BiF; — F/'Bf (26)
./\/lij = dlag(Q}j,,QZ) (27)
Q. = A{Pk+PkAi—Mfcf—(Mfo)TJr(AkH)L k=1,..p (28)
Ry = B;F; --- B;F; (29)
p terms
SEo= ((Bi—MG)T - (B —MIGH)T) (30)
Sho= (—@hHT o —(M)T) (31)
A = diag(\ Iy, ...; \pI,) (32)
Q = diag(Q,...Q) (33)
N——
pterms

The gains of the controller and the observers are derived fiors F;Q~! and Lt = P, ' MF.
The transfer fromv(t) to z,(t) is quantified by the gain = /7.

Proof
It is well known that thel,-gain fromu(t) to z,(t) is bounded byy if there exists a Lyapunov
function satisfying 5]

V(a(t) + 25 (za(t) — v (t)u(t) < 0 (34)
Consider the quadratic Lyapunov functibifz, (t)) = 1 (t) Pz, (t) whereP = PT > 0 is given

by the diagonal structurB = diag(X,P), with P = diag(P,, ..., P,). With (18), the inequality (34)
becomes

xl (AfﬂP—f—PAW—&—AAZM(t)P—&—PAAW(t) + 1) zo(t) + 28] () PELv () — v (t)v(t) <0

The time varying matricea .4, ,(¢) in (35) can be written adA;; (t) = IC;; X(t) with %)
0 BK; --- BK;
S(t) = diag(On, b (r(1)), .., hp(r(t)) and Ky = |° P 5 (36)
o0
Recalling that the functionk, (r(t)) satisfy the convex sum property)( it follows that
ST ()3(t) < diag(0,, 1) (37)

Using the lemmal, the termz (£)(AAT, (t)P + PAA,,(t))z,(t) in (35) can be bounded as
follows

zo (1) (AAL ()P + PAA (1) 24(t) < xf (1) (ST (0)AS(t) + PR A'KL,P) z4(t)  (38)
whereA = diag(eh,, M 1n, ..., \pIn), Withe, Ay, ..., A\, > 0, is a diagonal positive definite matrix.
The termX7 A% can be bounded by using the inequality (37), this leadS*dX < A where
A =diag0, A\ L, ..., A\, I,,) and it follows

zl (t) (AAL, ()P + PAALL®1)) za(t) < 2l (t) (A + PK AT KL P) 24(t) (39)

Hp B



Considering the augmented vectd(t) = (27'(t) VT(t)>T, with (39), the inequality (35) is
satisfied if the following inequality holds

AL P+ PA, + A+ PR, A KL P+ PE, <0 (40)
EHP —n*l
Applying the Schur complement Lemm24], the inequality (40) is equivalent to
AL P+PA, +A+1 PK,, PE,,
KL P —A 0 <0 (41)

s
Enl 0 —n?I

Keeping in mind thatP = diag(X,P) with P = diag P, ..., P,), the inequality (41) can be
detailed as

CHPN( 0 XR,, XE, 0
0 Muu 0 0 PSHM PSHM
0 0 —el, 0 0 0
REXx o 0o -k 0 o | =Y (42)
T T p
EYX SLP 0 0 =L, O
o SLP 0 0 0 -
whereA = diag(\ I, . .., \,1,,) and
S = AJX+XA,-XB,K,-K.B.X+1I (43)
M, = diagQ,,, ... ) (44)
T
Qp, = AlPi+ PiA, — PLiCY — (PLiCE) + (A + 1)1 (45)
Ry, = | B.K, -- B.K, (46)
p terms
T T
st = ((B-126)" - (126" (47)
o T T
Swo= ()" =) (48)

The inequality (42) is a sufficient condition for a boundéd-gain from v(t) to z,(t).
Unfortunately, itis not linear in the unknown matrices and it is time varying because of the weighting
functionsy;(.). In the remaining of the proof, sufficient LMI conditions are derived. Let us define
the matrixiW by

W = d|ag(Q, l’va In; Q» Inda Ip)

whereQ = X! andQ = diag(Q, --- , Q). In order to obtain LMI, let us defing? = 77 and apply
N—_——

p matrices

the congruence lemniato (42) by pre and post multiplying by, it follows

Z,Q 0 0 Ru@ E, 0
0 My 0 0  PS,, P3,,
0 0 —el, 0 0 0
QRL, 0 0 -QAQ 0 0 <0 (49)
By @gﬁ 0 0 =0l 0
0 SLP 0 0 0 —il,



By using the lemma& on the matrix block-QAQ as well as a Schur complement, inequality (49)
isimplied by#,,,, < 0 with

Eu@Q 0 0 R,@ E, 0 0
0 My, 0 0 PSu PSu 0
0 0 —l, 0 0 0 0
Hy=| QRL, 0 0 =28Q 0 0 BI (50)
ET STP 0 0 —il, 0 0
T .
o SLP 0 0 0 -l 0
0 0 0 pI 0 0 -A

where is a positive scalar. Consequently, if the inequality,, < 0 holds, then inequality35)

holds too. Due to the convex sum property of the weighting functions, an obvious but conservative
set of sufficient conditions is given by;; <0 (for 7,5 =1,...,r). The conservativeness is
considerably reduced by applying the result proposed by TuamGh fhe sufficient conditions

are the following

Hii <0, 1=1,..,r
2 4, o o, (51)
o Hii +Hig +Hyi <0, 4, j=1,.,1r i#]
where#,;; is defined by
QE,Q 0 0 R;Q E 0 0
~0 0 —el,, 0 ) 0 0 0
Hiy=| QRL, 0 0 —28Q 0 0 AI (52)
ET SLP 0 0 —ijl,, 0 0
o SLp 0 0 0 -, 0
0 0 0 BI 0 0 -—A

The variable changes; = K;Q andM} = P, L} are used and a Schur complement on the term
QQ inthe(1,1) block is performed to obtain the LMI conditions of the theor2pwhich ends the
proof. O

Tuan’s Lemma [1Phas been considered in the previous section to relax the stability conditions
of the proposed sensor fault tolerant observer based controller. Obviously, there exists many other
relaxation techniques. Particularly, the quadratic Lyapunov function can be replaced by a non-
guadratic one. Here is only mentionned an interesting approach, descriiédl wlere the authors
have provided asymptotic necessary and sufficient conditions for the negativity of the double sum
inequalityz(t)7Y,,2(t) < 0. In the following, the Polya’s theorem is recalled (as givertit]] and
applied to the proposed result in the theor2nkKnowing that

(Z m(f(ﬂ)) =1 (53)

whereq is a positive integer, the inequalit$() is equivalent to

wi(§(t) | Hun <0 (54)
(35nco)
i=1

By developing $4) with respect to the weighting functions, relaxed LMI conditions are obtained
Furthermore, ifg — oo, asymptotic necessary and sufficient conditions are obtaineld IFbt
example, assuming = 1 the LMI constraintsZ4) are replaced by

{ Hii <0, i=1,...,r (55)

His +Hij +Hjij <0, 4,5 =1,...,7, i #]



The LMIs (55) are clearly less conservative than the Tuan’s ones. Of coursegihenreases, the
number of LMIs increases too but the number of variables remains the same (there is no additional
slack variables).

3.4. Fault tolerant control design algorithm

The design of the proposed sensor fault tolerant controller can be summarized as follows.

1. Compute the gains of the residual generator by solving the optimization problem under LMI
constraints given byg).

2. Compute the gains of the FT controller by solving the optimization problem under LMI
constraints given by (94

3. Implement the residual generat) ¢hat provides:(¢) and the weighting functions (12).

4. Implement the observers (10), compute the blended state estimation (11) and finally the FT
controller (13).

Remark 1

It is important to point out that the use of the Dedicated Observer Structure (DOS) in the FTC
block requires the observability of each péait;, C’f) which is not always satisfied. A solution to
overcome such a problem is to use the Generallzed Observer Structure (GOS). Consequently, before
designing the FTC strategy, it is necessary to check the observability of the system state from each
output separately. If the state is not observable from a set of outputs, the GOS structure may be
suitable. Doing so, it is possible to identify the sensor set with possible fault compensation before
designing the FTC.

4. AN ALTERNATIVE APPROACH

The proposed approach consists in designing a bank of observers to construct a weighted state vector
which is used by a PDC controller. In this section, a slight modification of the previous controller
structure is briefly considered. This FTC strategy is different in the sense that a bank of observer-
based controllers is designed as in classical point of view and each control signal is associated to a
weighting function depending on the residual signal. Then, if a fault occurs ih*thgensor, the
corresponding control signal(¢) is disabled by forcing the weighting functidn,((¢)) to zero.

The applied control signal to the system is then expressed by

u(t) =Y ha(r(t)u”(t) (56)

k=1

This approach is illustrated in the figuBewhich can be compared to those of figureThe
equations related to this new structure are

(1) = 3 () (4 (1) + Bt (1) + Lilw(®) - (1))
BG4 00y = Catr &0
r(t) = M(y(t) - §(0))
and
(1) = 32 ml€(0) (A 0) + B (1) + LA (1) — (1)
Jh(t) = CFa (1)
FTO ub(t) = = 37 pale) KB ) (58)
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Figure 2. Sensor fault tolerant control scheme 2

The residual generator RG and the weighting functiofis(t)) are designed in the same manner
as in the first approach. The closed-loop system is then described by the following equation:

T P

i) = 330 S w(E )y €hur(®) (Aia(t) — BiK A (1) + Eid() (59)

i=1 j=1 k=1

=33 i) €@ hi(r (1)) ((As — BiKF) w(t) + BiKFe" (1) + Eid(t))  (60)

i=1 j=1 k=1

The equation@0) is similar to the equation (16) of the first approach where the matigest
the controller are simply replaced lﬁg/f Therefore, stability conditions expressed in terms of LMI
can be established using the same reasoning.

5. VEHICLE LATERAL DYNAMICS SENSOR FTC

In this section, some simulations are provided to illustrate the proposed FTC approach. The lateral
dynamics control of a vehicle in the presence of sensor faults is considered. Firstly, a T-S model
is established from the model of the vehicle lateral dynamics by considering the longitudinal
velocity v, as time-varying. Secondly, a residual generator is constructed and validated with real
data measurements. Finally, the FTC controller is designed and simulated with real data affected by
simulated faults.

5.1. Vehicle lateral dynamics model

To illustrate the proposed approach and the design of the sensor fault tolerant controller, let us
consider the lateral dynamics model described by the following equations

{ 0y (1) = 7 (Fy (1) + Fyr(1)) — va()(2) (61)
V() = 1 (apFyr(t) — arFye(1) + 7-ult)

whereu, (t) andy)(t) denote, respectively, the lateral velocity and the yaw r&je(t) and F,,.(t)

are the lateral forces acting, respectively, on the front and rear wheels. The param@esp.

a,) represent the distance from the front (resp. rear) wheel to the center of gravigythe yaw
moment of inertiayn is the total mass of the vehicle and(¢) is the longitudinal velocity. The
control input is defined by(¢) which represents a force moment generated by differential braking



on the vehicle rear wheels. This control input aims at stabilizing the yaw motion. All the variables
and the parameters are summarized in the table

Time varying variables

P yaw rate

Vg, Uy longitudinal and lateral velocities

FJ§ , ES steady-state front and rear steady state lateral efforts

F; ,F, front and rear lateral efforts

Constant parameters

e Ty relaxation length of the front and rear tires

m, 1, mass of the vehicle and the yaw moment

ag, ar distances from the front and rear axle to the center of gravity

B;, C;, D;andE;,i = {f,r} characteristic matrices of the tires in the Pacejka’s model

Table I. Table of variables and parameters

Due to the characteristics of the tires, it is generally assumed that the Byeg$ and F),,.(¢)
are generated by dynamical systems described by

%Fyf(t) + Fyf(t) = Fq}g (t)
{ 5By (8) + Fyt) = Fo.1) (62)

which takes into account the transient phase of the tires response. Where {r, f} are the
relaxation lengths which are positive scalars. The indUls(t) and F;).(t) are the steady-state
(static) forces expressed by the “magic formula” of Pacepé.[

F,i(t) = D;sin (CZ- tan~* (Bi (1— E;)a;(t) + E;tan™* (Biai(t)))) , ie{f,r} (63)

whereB;, C;, D; and E; are parameters depending on the characteristics of the tires and the road.
ay(t) ande,(t) represent the tire slip angles of the front and the rear wheels respectively which are
expressed by

o (t) = 2 a1 (24500 cos (242) ) + 55()
a(t) = —Ziég +tan~! (U:'("t)zb(t) cos (Zzgg))
whered¢(t) is the front steering angle. The body sideslip angle is defineg(hy= tan—! (Z;—%)
In normal driving situations, the lateral velocity is small which allows to approximate the sideslip

angle bys ~ 7t (t) ; this angle is also small in this driving mode. Consequently, the wheel sideslip
anglesa(t) andar( ) do not excee® degrees, therefore, the equati@a) can be simplified as

follows © _
Qagf (t) 1)1,(1;) Ua{t) ¢( ) + 6f (t) (65)
o () = — 20 4 i ()

Consequently, the forcdéff(af(t andEﬁ(aT( )) are in the linear zone which can be expressed
by the linear expressions

(64)

Fip(t) = Cr (=405 — 4y (0) +65(1))

: (66)
Fit) = Co (248 + 2500
whereCy = D;C; By andC, = D,.C, B,. By using the following change of coordinates
21(t) = vy (%)
2(t) = (1)
22(t) = & (Fyy (1) + Fyn(1) 7
w4(t) = 7. (anyf(t) —a,; Fy.(t))

z



the following dynamical system is obtained

i1 (t) = —va ()22(t) + w3(1)

o (t) = wa(t) + T-ult)

(1) = — =0, 1) 4 =0 (F5(1) + (1) ©9
ia(t) = ==y (t) + =L (a5, (t) — a, Fo.(t))

The change of variables aims at scaling the state variables and the matrices in order to reduce
the conservatism related to the LMI constraints. Note also that the relaxationteramsr, are
considered identical and denotedhyBy assuming that the longitudinal velocity is time-varying,
which is more realistic than a constant one as commonly used in the literature, and by expressing
the system in matrix formulation, one obtains

@(t) = A(ve(t))z(t) + Bs, (v2(t))d5 (t) + Bu(t) (69)

whereu(t) is the control input and;(t) is known (can thus be provided to the residual generator
and observers) but not controllable (and thus cannot be set by the controller) and where

0 —ug(t) 1 0 0 0
[ o0 0 0 1 B 0 o
A(U(E(t)) - asi a3 a33Ux(t) 0 5 B(Sf (Um(t)) = b3vy(t) R B = 0
asg1 a2 0 a4404(t) bav, () 0
and
Cy
az =~k — o ag = G énaf
= 1 _ a,Cp _ ayCy
33 = Q44 = — 3,41 = 7o Tor
a0y C.d?
Q42 = — I.r é;r
by = oL by = 4L

I.r

Assuming that the vehicle longitudinal velocity is bounded as follOws vy, < v, (t) <
Umax < 400, and using the sector nonlinearity approat} {he following T-S model is obtained

i(t) = 3 m(va(t)) (Asz(t) + Bis, 0y + Bu(t)) (70)

where the activating functions are defined by

i (va(t)) = 2 Emin (1)) = e = ell)

Umax — Umin Umax — Umin

and the sub-model matrices are given by

0  —VUmax 1 0 0
0 0 0 1 0
A = 0 v B, =
asi as2 a33Umax 3VUmax
a41 a42 0 A44Umax b4vmax
0 —Umin 1 0 0
0 0 0 1 0
Ay = 0 » Bas, =y
a31 a32 @33Umin ’ 3Umin
41 Q42 0 (144 Vmin baVmin

The vehicle is equipped by sensors providing the measurement of the yawi(ratand the
lateral acceleration,. Sincea, = = (F,¢(t) + Fy.(t)) — va(£)0(t) = z3(t) — vy (t)x2(t). Taking
into account the additive sensor faylft) possibly affecting each sensor, the output equation is



defined as follows

Z.uz Ugc )+f() (71)

0 1 0 0 0 1 0 0
Cl o ( 0 —Umax 1 0 ) ’ C2 a ( 0 —Umin 10 )

Note that in {1), f(¢) describes an additive fault but it can also represents a class of parametric
faults. Indeed assume that parametric faults occur, this can be represented as follows

where

(0 1+pi(2) 0 0
y(t) = ( 0 p%t) L+pa(t) 0 )x(t) (72)
(0 1 00 pi(t)z(t)
- < 0 we(t) 1 0 )I(tH < p2(t)xs(t) ) (79)
N——
C(va(t)) f(t)

where p; (t) and p,(t) are sensor parametric faults. The longitudinal velocity is assumed to be
available at real-time and fault-free. The proposed fault tolerant controller can now be implemented.

5.2. Residual generator

In order to perform fault detection and isolation, the following residual generator is constructed by
solving the optimization problem given in the theorém

z(t) = Z pi(va(t)) (Aiw(t) + Bis, 07 (t) + Bu(t) + Li(y(t) — 5(1)))

i(t) = Ci(t
r(t) = M(y(t) —4(t))

After solving the optimization problem of the theordmthe gains of the residual generator are
computed and the simulations results are depicted in the figurethis simulation, the inputs;,
v, Of the residual generator are taken from real data measurements (see3jigune the outputs
y(t) are those simulated by the nonlinear system with nonlinear tire fdrgeandF,,,. and sideslip
anglesa; ande,.. Two faults f1 (¢) and f(t) are added to system outputs. From figdrene can
see that the residual signals estimate perfectly the faults and f5(¢).

(74)

5 —— Longitudinal velocity (m/s) | |

-0.05- -

—0.1l I I I I I I I

40
time (s)
Figure 3. Real input data for the residual generator
In order to validate the residual generator with real data, the considered oyt also real

obtained from adequate sensors (central unit). The fgu(ts and f»(¢) are not real but artificially
included in the measurement outputs. The obtained residual signals are depicted in the figure
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Figure 4. Residual generation: (top) fayit(¢) affecting the sensor 1 and the residu@{t) detectingf; (¢),
(bottom) faultf; (¢) affecting the sensor 2 and the residug(t) detectingfa(t)
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Figure 5. Residual generator validation with real measuntsne

5.3. Fault tolerant controller

After generating the residual signals, fault tolerant controller is designed. Firstly, the following
weighting functionsh, ((t)) andhy(r(t)) are defined according ta2) witho; = o2 = 0.001. The

fault tolerant controller is designed by solving the optimization probl2#) {n the theoren2 with

B = 2. A comparison between the states of the closed-loop system in both fault-free and faulty
cases is illustrated in the figufe In this simulation, the real measurements pénd v,, are used

but the outputg(t) are generated by the nonlinear system explained in the previous sub-section
(residual generation). One can see that the effect of the faults are completely eliminated in the state
signals. The weighting functions, the faults and their estimates are depicted in theffigucan

be seen that when the first sensor is faulty, the weighting funétign(¢)) is close to to zero and
disables the faulty state obtained from the observer 1 using the first output. Similarly, when the fault
f2(t) occurs in the second sensor, the state provided by the observer 2 is disabled by the weighting
functionha(r(t)).

In order to compare the obtained result, a classical observer-based controller is designed by using
the two outputs of the systeri,[27] without taking into account the faults. In the same simulation
conditions, the closed-loop system is simulated in fault-free and faulty cases as illustrated in the
figure 8. One can see that, with this classical closed-loop control, the faults clefaty tife state
vector. Integrating the yaw raig(t) form the initial angle(0) = 0, the vehicle trajectory from its
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Figure 8. Classical control in both faulty and fault-free situations

initial positionz(0) = y(0) = 0 can be computed from the following equations

2(t) = [ (cos(ih(t))vL(t) — sin(y(t))v, (1)) dt
(75)

y(t) = [ (sin(e(t))va(t) + cos(v(t))vy () dt

o Lo



The trajectories of the fault-free vehicle in open-loop, the faulty sensors with FTC and the faulty
sensors with classical control are illustrated in the figurAs an illustration of the efficiency of the
proposed FT controller, in the faulty case with FTC the trajectory is close to the one in the fault free
case, whereas a classical controller cannot counteract the effect of the fault on the vehicle trajectory.
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Figure 9. Vehicle trajectories

6. CONCLUSIONS

In this paper, a novel approach is proposed to design a sensor fault tolerant controller for nonlinear
systems represented by a T-S model. The approach is based on a bank of observer-based controllers,
a residual generator for diagnosis and a smooth selecting mechanism to choose an adequate state
estimate to compensate the effects of the faults on the measurements. The stability of the whole
system is studied by the Lyapunov theory and LMI constraints are provided to design the gain
matrices of the different components of the proposed FTC scheme. For future works, it will be
interesting to consider the case of T-S systems with unmeasurable premise variables. It is also
interesting to study the choice of the functiohg(r(¢)). Finally, the dedicated scheme may be
inapplicable in some cases since the system state needs to be reconstructed based on each output.
Consequently the proposed strategy could be extended using a Generalized Observer Scheme.
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