
HAL Id: hal-01143716
https://hal.science/hal-01143716v1

Submitted on 27 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Sensor fault tolerant control of nonlinear Takagi-Sugeno
systems. Application to vehicle lateral dynamics

Dalil Ichalal, Benoît Marx, José Ragot, Saïd Mammar, Didier Maquin

To cite this version:
Dalil Ichalal, Benoît Marx, José Ragot, Saïd Mammar, Didier Maquin. Sensor fault tolerant control
of nonlinear Takagi-Sugeno systems. Application to vehicle lateral dynamics. International Journal
of Robust and Nonlinear Control, 2016, 26 (7), pp.1376-1394. �10.1002/rnc.3355�. �hal-01143716�

https://hal.science/hal-01143716v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Sensor fault tolerant control of nonlinear Takagi-Sugeno systems.
Application to vehicle lateral dynamics
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SUMMARY

This paper presents a new scheme for sensor fault tolerant control for nonlinear systems based on the Takagi-
Sugeno modeling. First, a structured residual generator aiming at detecting and isolating sensor faults is 
designed. A bank of observers controlled either by only one system output or a set of outputs is then 
implemented leading to a set of state estimates. The parallel distributed compensation structure is adopted to 
design the fault tolerant controller. The novelty in this paper is that the estimated state used in the controller 
is a weighted state vector obtained from all the estimated states provided by the different observers. The 
weighting functions depend on the residual vector signals delivered by the residual generator. They are 
designed to avoid crisp switches in the control law. Indeed, the interesting feature of the proposed approach 
is to avoid the commonly used switching strategy. For each residual component, the greater it’s magnitude 
is, the less the weight affected to the corresponding state estimate is. Consequently, the controller only 
uses estimations computed on the basis of healthy measurements. The closed-loop stability is studied with 
the Lyapunov theory and the obtained conditions are expressed as a set of Linear Matrix Inequalities. The 
proposed residual generation and fault tolerant controller are applied to a vehicle lateral dynamics affected 
by sensor faults. Copyright c© 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Fault diagnosis takes a primordial place in the modern control systems. Indeed, human safety and
system performance preservation are crucial specifications which should be taken into account
upstream of the control design. For that purpose, a fault detection and isolation system is required to
detect occurred faults in the process. However, a diagnosis system is not sufficient to preserve 
system
performances and human security. The controller must be designed to guarantee the stability of the
system even in faulty situations. This second task is commonly called Fault Tolerant Control (FTC)
and has been classified into two different classes: the first one, called Passive Fault Tolerant 
Control
(PFTC) is an extension of the well-known robust control. It requires the knowledge of all possible
faults which may affect the system (generally the magnitude of these faults). The structure of the
controller is chosen a priori in order to be robust to all inventoried faults (no adaptation is performed
online). This type of control is interesting since no fault diagnosis module is needed. However, its



main disadvantages is the impossibility to consider unknown faults and the conservativeness of
design conditions. Unlike the PFTC techniques, the Active Fault Tolerant Control (AFTC) offers
some flexibilities in the design task. It can be assimilated to a variable structure technique since the
structure of the controller can be automatically modified and reconfigured when a fault occurs. In
addition, it is no longer necessary to list all possible faults in the system. A Fault Detection and
Isolation (FDI) module is incorporated in the control unit. It provides information on the occurred
faults to the FTC unit which reconfigures the control strategy to compensate and to accommodate
them.

In the recent years, the rapid growth of demand in terms of performance and safety for the
systems as well as the human operator requires to consider more realistic models of the studied
systems. Therefore, nonlinear mathematical models are often developed. Because of the complexity
of such models, there is no general framework for their analysis, control and diagnosis. Thus, only
specific classes of nonlinear models are studied (Lipschitz systems, Linear Parameter Varying (LPV)
systems, output or state feedback linearizable systems, ...). In the proposed work, the considered
models are in the Takagi-Sugeno’s form (T-S).

This kind of model is mainly used with regards to its property of “universal approximator” of
any nonlinear system based on the sector nonlinearity approach [1]. Indeed, any nonlinear system
can be approximated with a given accuracy or represented exactly with such a structure [1]. A T-S
model can be obtained using three main methods: linearization around a set of operating points [2],
identification [3,4] and sector nonlinearity transformation approach [1].

The analysis and control of nonlinear systems via T-S modeling have attracted many researchers.
This model allows the study of many stability and stabilization problems [1, 5, 6, 7]. The common
core of the proposed approaches is the use of the Lyapunov theory to establish stability conditions
which are often expressed in terms of Linear Matrix Inequalities (LMIs). This fact constitutes one
of the advantages of the T-S approach. Indeed, the particular structure of the T-S models allows the
exploitation and the extension to nonlinear domain of some theories, tools and methods, initially
developed for linear systems. Firstly, classic quadratic Lyapunov functions were considered but
it soon became clear that such functions often lead to conservative conditions, especially for a
large number of sub-models. The concern to reduce this conservatism led to develop other types of
Lyapunov functions (poly-quadratic, non-quadratic,...) [8, 9] and other approaches such as Tuan’s
relaxation [10] or Polya’s theorem [11]. These approaches are extended in [12,13, 14, 15] for
observer design applied to state and unknown input estimation. These observers are used for fault
diagnosis in [13, 15, 16, 17]. The design of fault tolerant control for T-S systems has also been
studied. State trajectory tracking is proposed in [18] for actuator faults.

In [19], a bank of controllers is implemented, each of them is designed separately and generates
a control law based on the state estimatex̂k(t). Based on a residual analysis, a switching strategy is
then developed in order to select the control law relying on a fault-free state estimate. Unfortunately,
the stability of the whole closed-loop system is not studied. Only the stability of each observer-based
controller is provided and no stability at the switching instants is guaranteed (it is well known that
stable sub-systems do not necessarily lead to stable switched system [20]).

Similar and more interesting approach is proposed in [21] where linear discrete-time system is
considered. The approach is based on constructing controllers from each output, the control input
applied to the system is selected by an adequate switching strategy in the presence of sensor faults.
The switching mechanism is designed in such a way to guarantee a minimal cost and select the
adequate controller that eliminates the effect of the occurred fault with guaranteed cost.

In the present paper a new FTC design for nonlinear systems affected by disturbance and sensor
faults is proposed. The overall idea is to use fault diagnosis in order to distinguish between faulty
and healthy sensors and then only use the measurements provided by the later ones to produce a
state estimate and a control law. Firstly, an observer based residual generator is designed. Secondly,
a bank of observers is constructed where each observer is fed with all the inputs and only one
measured output. As a consequence the state estimate produced by thekth observer is only affected
by the kth sensor fault. Thirdly, a state estimate is obtained by blending the different estimates
with time varying weights computed from the residual in order to mainly use the ones based



on healthy sensors: if a given sensor fault is isolated, the weight of the corresponding estimated
state is lowered. Thus, the influence of corrupted measures in the state estimation is minimized.
Finally, a FT parallel distributed control (PDC) law is computed based on this blended state estimate.

Notations. The terms0n andIn respectively define the null square matrix and the identity matrix
with dimensionn. The non square null matrix is defined by0p×n with dimensionp× n. In order to
shorten the summation, the following notations for polytopic matrices are defined

Xµ =

r∑

i=1

µi(ξ(t))Xi and Xµµ =

r∑

i=1

r∑

j=1

µi(ξ(t))µj(ξ(t))Xij

Lemma 1
For any matricesX andY with appropriate dimensions and any symmetric positive definite matrix
Λ, the following inequality holds

XTY + Y TX ≤ XTΛ−1X + Y TΛY (1)

Lemma 2
(Congruence lemma) Consider two matricesX andY . If X is positive (resp. negative) definite and
Y is full column rank thenY XY T is positive (resp. negative) definite.

Lemma 3
For any scalarβ, matrixQ and symmetric postive definite matrixΛ, the following inequalities hold

(
Q− βΛ−1

)T
Λ
(
Q− βΛ−1

)
≥ 0 ⇔ −QTΛQ ≤ −β

(
Q+QT

)
+ β2Λ−1 (2)

2. TAKAGI-SUGENO MODELING

A nonlinear dynamic system affected by disturbance and additive sensor fault is generally
represented by:

{
ẋ(t) = g(x(t), u(t), d(t))
y(t) = h(x(t), d(t)) + f(t)

(3)

wherex(t) ∈ IRn denotes the state vector,u(t) ∈ IRm is the control input andy(t) ∈ IRp represents
the system output vector,d(t) ∈ IRnd is the disturbance vector (noises, external perturbations,...) and
f(t) ∈ IRp, the additive sensor fault vector. The functionsg andh are nonlinear smooth functions
satisfyingg(0, 0, 0) = 0 andh(0, 0) = 0. As explained in the previous section, the Takagi-Sugeno
model is an interesting alternative to study nonlinear systems. It describes nonlinear behaviors
while having a structure based on linear models allowing the extension of some tools from the
linear domain to the nonlinear one. Using identification [3, 4], linearization [2], or the so-called
sector nonlinearity transformation [1,22], a T-S model for the system (3) can be obtained under the
following form:







ẋ(t) =
r∑

i=1

µi(ξ(t)) (Aix(t) +Biu(t) + Eid(t))

y(t) =
r∑

i=1

µi(ξ(t)) (Cix(t) +Gid(t)) + f(t)
(4)

where Ai ∈ IRn×n, Bi ∈ IRn×m, Ci ∈ IRp×n, Ei ∈ R
n×nd and Gi ∈ R

p×nd are the matrices
describing the so-calledith sub-model. The integerr represents the number of sub-models. If the
T-S model is obtained by identification or linearization, the accuracy of the model depends on the
numberr of sub-models. Indeed, a more accurate T-S model is obtained when increasing the value
of r. If the T-S model is obtained by sector nonlinearity transformation,r depends on the numbernl
of nonlinearities in the model (3) andr = 2nl. The weighing functionsµi are nonlinear and depend
on the premise variableξ(t) which can be measurable (e.g.u(t) or y(t)) or not measurable (e.g.
x(t)). It is commonly assumed in LPV and switched systems that these parameters are not known
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Figure 1. Sensor fault tolerant control scheme

a priori but available at real-time. The same assumption is made in the present paper where the
premise variableξ(t) is supposed to be measurable.

The weighting functions satisfy the following convex sum property:

r∑

i=1

µi(ξ(t)) = 1, 0 ≤ µi(ξ(t)) ≤ 1, ∀t, ∀i = 1, . . . , r (5)

This property allows the generalization of the tools developed for linear systems to nonlinear
systems.

3. FAULT TOLERANT CONTROLLER DESIGN FOR T-S SYSTEMS

3.1. Outline of the proposed approach

The proposed fault tolerant control strategy is described in the figure1. The residual generator
aims at detecting and isolating each sensor fault based on a dedicated residual signal. Each of thep
observers is designed to estimate the state vector of the system from one of thep outputs. Hence, if a
given sensor is faulty, the estimated state provided by the corresponding observer is corrupted but the
others are healthy. The controller is the well known observer-based one but the used estimated state
is obtained from a weighted sum of the estimated states provided by each observer. The weighting
functions that weight each state vector are designed in such a way to satisfy the convex sum property
and the continuity to avoid the switching phenomenon. These functions depend on the residual
vector. If a given sensor is faulty then the corresponding weighting function goes to zero and only
healthy estimated states are used in the closed-loop feedback, then the sensor fault does not affect
the nominal operating of the closed-loop system. In the following sections, the design of such fault
tolerant controller is detailed.

3.2. Residual generator for sensor fault detection and isolation

The robust residual generator design is based on the same framework as [23]. The gains of the
residual generator are determined in order to minimize theL2 gain of the transfer from the
disturbance vectorν(t) = [dT (t) fT (t)]T to the fault estimation errorre(t) = r(t)− f(t). As a
consequence, the obtained residualr(t) is an estimation of the fault, achieving both its detection
and isolation.



Based on the model (4), the following residual generator is then proposed






˙̂x(t) =
r∑

i=1

µi(ξ(t)) (Aix̂(t) +Biu(t) + Li(y(t)− ŷ(t)))

ŷ(t) =
r∑

i=1

µi(ξ(t))Cix̂(t)

r(t) =M(y(t)− ŷ(t))

(6)

This residual generator is designed for providing a residual vectorr(t) such that itsith component
is only sensitive to theith sensor fault (residual structuration). The gain matricesM and Li

of the residual generator satisfying the specifications of sensor fault estimation and perturbation
attenuation are determined by solving the optimization problem given in the theorem1.

Theorem 1
The robust residual generator (6) exists if there exists a symmetric and positive definite matrix
P = PT > 0, matricesL̄i andM , and a positive scalarγ, solution to the following optimization
problem

min
P, L̄i, M

γ (7)

under the following LMI constraints
{

Xii < 0, i = 1, ..., r
2

r−1Xii +Xij +Xji < 0, i, j = 1, ..., r, i 6= j
(8)

whereXij , for (i, j) ∈ {1, . . . , r}, are defined by

Xij =







AT
i P + PAi − L̄iCj − CT

j L̄
T
i PEi − L̄iGj −L̄i CT

j M
T

ET
i P −GT

j L̄
T
i −γI 0 GT

i M
T

−L̄T
i 0 −γI MT − I

MCj MGi M − I −γI







(9)

The residual generator gains are given byLi = P−1L̄i andM . The attenuation level fromν(t) to
the fault estimation errorre(t) is given byγ.

Proof
The LMI (9) are obtained using the well-known Bounded Real Lemma and the Tuan’s relaxation.
The proof is omitted but the reader can refer to [23,24] where that residual generator is studied in
details.

3.3. Sensor fault tolerant control design

After generating the residual vectorr(t) that estimates the sensor faults, the objective is now to use
it in order to actively reconfigure the control law by eliminating (or at least minimizing) the fault
effect on the system. This section describes the three steps in designing the fault tolerant controller:
the first step concerns the design of an observer bank that estimates the state vector from each
output separately, the second step concerns the choice of the structure of the controller that uses a
new estimated state vector derived from the weighted estimated state vectors obtained at the first
step. Finally, the third step is devoted to the stability analysis of the closed loop system with the
observer-based controller and LMI conditions are established for design purpose.

Firstly, an observer bank is designed. Thekth observer is fed with the control input vectoru(t)
and thekth system outputyk(t) as illustrated in the figure1. If a fault occurs on a sensor different
of thekth one, the observer using thiskth output provides a fault-free state vector estimation.

Thekth observer (k= 1, ..., p) has the following form:






˙̂xk(t)=
r∑

i=1

µi(ξ(t))
(
Aix̂

k(t)+Biu(t)+L
k
i

(
yk(t)−ŷk(t)

))

ŷk(t)=
r∑

i=1

µi(ξ(t))C
k
i x̂

k(t)
(10)



whereCk
i is thekth row of the matrixCi corresponding to thekth sensor andyk(t) represents the

kth entry of they(t) vector. Thekth observer provides the estimated state vectorx̂k(t) based on the
knowledge of the input and thekth output. The different state estimatesx̂k(t), k = 1, . . . , p are then
blended to build a representative state estimation vectorx̂b(t) according to:

x̂b(t) =

p
∑

k=1

hk(r(t))x̂
k(t) (11)

The blending is ensured by the weighting nonlinear functionshk(r(t)) depending on the residual
vectorr(t) (6). These functions satisfy the smoothness and the convex sum property which allow
the derivation of LMI design conditions in the next. The design of such functions is based on the
idea that if thekth sensor is faulty, thekth component of the residual vector, namelyrk(t), deviates
from zero. Consequently, the corresponding weighting functionhk(r(t)) has to converge to zero in
order to decouple the state estimatex̂b(t) from the fault acting on thekth sensor. Hence,̂xb(t) is
turned to a convex weighted sum of the estimated states except thekth one. The effect of the fault is
then minimized. Different structures of the weighting functionshk can be proposed. In this paper,
the chosen weighting functionshk, for k = 1, . . . , p are defined by:

ωk(rk(t)) = exp(−r2k(t)/σk) (12a)

hk(r(t)) =
ωk(rk(t))

∑p

ℓ=1 ωℓ(rℓ(t))
(12b)

where the parametersσk are used to take into account the spreading around zero ofrk, the kth

component of the residual vectorr(t). The Gaussian weight function (12a) exponentially decreases
to zero whenrk deviates from zero. Equation (12b) ensures the normalization of the different
functions such that the convex sum property (5) holds.

The second step deals with the choice of the control law. Here, the proposed control law is a
classical observer-based PDC control law, but the estimated state vector (given by one observer
in the classical version of this structure) is replaced by the weighted state vectorx̂b(t) which is
fault-free. The control law is then given by:

u(t) = −
r∑

j=1

µj(ξ(t))Kj x̂
b(t) (13)

Contrarily to [19], where the stability of the closed loop system with the switching mechanism
between the different dedicated controllers is not guaranteed, the proposed approach aims at the
stabilization of the closed loop system, including the controller bank and the weighting strategy.

In the third step, the stability of the closed-loop system is studied using classical approaches
developed for T-S models. Thekth state estimation errorek(t) = x(t)− x̂k(t) is generated by the
following differential equation, obtained from (4) and (10):

ėk(t) =

r∑

i=1

r∑

j=1

µi(ξ(t))µj(ξ(t))
(
(Ai − Lk

iC
k
j )e

k(t) + (Ei − Lk
iGj)d(t)− Lk

i f(t)
)

(14)

The closed-loop system is then described by the following equations (obtained from equations
(4) and (13))

ẋ(t) =

r∑

i=1

r∑

j=1

p
∑

k=1

hk(r(t))µi(ξ(t))µj(ξ(t))
(
Aix(t)−BiKj x̂

k(t) + Eid(t)
)

(15)

=

r∑

i=1

r∑

j=1

p
∑

k=1

hk(r(t))µi(ξ(t))µj(ξ(t))
(
(Ai −BiKj)x(t) +BiKje

k(t) + Eid(t)
)

(16)



Defining the augmented state vector

xTa (t) =
(
xT (t) e1T (t) . . . epT (t)

)
(17)

the following closed-loop system is obtained (from equations (14) and (16))

ẋa(t) =

r∑

i=1

r∑

j=1

µi(ξ(t))µj(ξ(t)) ((Aij +∆Aij(t))xa(t) + Eijν(t)) (18)

where

Aij=











Ai−BiKj 0 0 . . . 0
0 Ai−L1

iC
1
j 0 . . . 0

0 0 Ai−L2
iC

2
j

...
...

...
...

...
... 0

0 0 . . . 0 Ai−Lp
iC

p
j











(19)

and

∆Aij(t)=











0 h1(r(t))BiKj h2(r(t))BiKj . . . hp(r(t))BiKj

0 0 0 . . . 0

0 0 0
...

...
...

...
...

... 0
0 0 . . . 0 0











(20)

Dij =
(
ET

i (Ei − L1
iGj)

T (Ei − L2
iGj)

T · · · · · · (Ei − Lp
iGj)

T
)T

(21)

Fij =
(
0 (−L1

i )
T (−L2

i )
T · · · · · · (−Lp

i )
T
)T

(22)

Eij =
(
Dij Fij

)
(23)

The controller is then designed in such a way to minimize the effect of the perturbation termν(t)
on the fault estimation error. Finally, the computation of the gains of the observers and those of the
controller are obtained by solving the following constrained optimization theorem.

Theorem 2
Given the system (4) and a positive scalarβ, the sensor fault tolerant observer based controller
(10)-(13) ensures the asymptotic stability of the system in the presence of sensor faults(with no
disturbances) and a bounded stability with an attenuation level (L2-gain)η of the transfer function
from the perturbation vectorν(t) to the state estimation error, if there are symmetric and positive
definite matricesQ, Pk (k = 1, ..., p), matricesFi andMk

i and positive scalarsε andλk solution to
the following optimization problem

min
Q,P1,...,Pp,Fi,...,Fr,M

1

1
,...,M

p
1
,...,M1

r ,...,M
p
r ,ε,λ1,...,λp

η̄

s.t.

{
Hii < 0 i = 1, ..., r
2

r−1Hii +Hij +Hji < 0 i, j = 1, ..., r, i 6= j
(24)

where

Hij =
















Ξ̃ij 0 0 R̃ij Ei 0 0 Q

0 Mij 0 0 S̃ij
˜̃Sij 0 0

0 0 −εIn 0 0 0 0 0

R̃T
ij 0 0 −2βQ̃ 0 0 βI 0

ET
i S̃T

ij 0 0 −η̄Ind
0 0 0

0 ˜̃ST
ij 0 0 0 −η̄Ip 0 0

0 0 0 βI 0 0 −Λ̃ 0
Q 0 0 0 0 0 0 −In
















(25)



and

Ξ̃ij = QAT
i +AiQ−BiFj − FT

j B
T
i (26)

Mij = diag(Ω1ij , ...,Ω
p
ij) (27)

Ωk
ij = AT

i Pk + PkAi −Mk
i C

k
j −

(
Mk

i C
k
j

)T
+ (λk + 1) I, k = 1, ..., p (28)

R̃ij =




 BiFj · · · BiFj
︸ ︷︷ ︸

p terms




 (29)

S̃T
ij =

(
(Ei −M1

i Gj)
T · · · (Ei −Mp

i Gj)
T
)

(30)

˜̃ST
ij =

(
−(M1

i )
T · · · −(Mp

i )
T
)

(31)

Λ̃ = diag(λ1In, ..., λpIn) (32)

Q̃ = diag(Q, ..., Q
︸ ︷︷ ︸

p terms

) (33)

The gains of the controller and the observers are derived fromKi = FiQ
−1 andLk

i = P−1
k Mk

i .
The transfer fromν(t) to xa(t) is quantified by the gainη =

√
η̄.

Proof
It is well known that theL2-gain fromν(t) to xa(t) is bounded byη if there exists a Lyapunov
function satisfying [25]

V̇ (xa(t)) + xTa (t)xa(t)− η2νT (t)ν(t) < 0 (34)

Consider the quadratic Lyapunov functionV (xa(t)) = xTa (t)Pxa(t) whereP = PT > 0 is given
by the diagonal structureP = diag(X,P̃ ), with P̃ = diag(P1, ..., Pp). With (18), the inequality (34)
becomes

xTa
(
AT

µµP+PAµµ+∆AT
µµ(t)P+P∆Aµµ(t) + In

)
xa(t) + 2xTa (t)PEµµν(t))− η2νT (t)ν(t) < 0

(35)
The time varying matrices∆Aij(t) in (35) can be written as∆Aij(t) = KijΣ(t) with

Σ(t) = diag(0n, h1(r(t)), . . . , hp(r(t))) and Kij =









0 BiKj · · · BiKj

0 0
...

...
...

...
... 0

0 · · · 0 0









(36)

Recalling that the functionshk(r(t)) satisfy the convex sum property (5), it follows that

ΣT (t)Σ(t) ≤ diag(0n, Inp) (37)

Using the lemma1, the termxTa (t)(∆AT
µµ(t)P + P∆Aµµ(t))xa(t) in (35) can be bounded as

follows

xTa (t)
(
∆AT

µµ(t)P + P∆Aµµ(t)
)
xa(t) ≤ xTa (t)

(
ΣT (t)ΛΣ(t) + PKµµΛ

−1KT
µµP

)
xa(t) (38)

whereΛ = diag(εIn, λ1In, . . . , λpIn), with ε, λ1, . . . , λp > 0, is a diagonal positive definite matrix.
The termΣTΛΣ can be bounded by using the inequality (37), this leads toΣTΛΣ ≤ Λ̄ where
Λ̄ = diag(0, λ1In, ..., λpIn) and it follows

xTa (t)
(
∆AT

µµ(t)P + P∆Aµµ(t)
)
xa(t) ≤ xTa (t)

(
Λ̄ + PKµµΛ

−1KT
µµP

)
xa(t) (39)



Considering the augmented vectorx̃(t) =
(
xTa (t) ν

T (t)
)T

, with (39), the inequality (35) is
satisfied if the following inequality holds

(
AT

µµP + PAµµ + Λ̄ + PKµµΛ
−1KT

µµP + I PEµµ
ET
µµP −η2I

)

< 0 (40)

Applying the Schur complement Lemma [25], the inequality (40) is equivalent to





AT
µµP + PAµµ + Λ̄ + I PKµµ PEµµ

KT
µµP −Λ 0

ET
µµP 0 −η2I



 < 0 (41)

Keeping in mind thatP = diag(X,P̃ ) with P̃ = diag(P1, ..., Pp), the inequality (41) can be
detailed as











Ξµµ 0 0 XRµµ XEµ 0

0 Mµµ 0 0 P̃Sµµ P̃ S̃µµ

0 0 −εIn 0 0 0

RT
µµX 0 0 −Λ̃ 0 0

ET
µX ST

µµP̃ 0 0 −η2Ind
0

0 S̃T
µµP̃ 0 0 0 −η2Ip











< 0 (42)

whereΛ̃ = diag(λ1In, . . . , λpIn) and

Ξµµ = AT
µX +XAµ −XBµKµ −KT

µB
T
µX + I (43)

Mµµ = diag(Ω1
µµ, ...,Ω

p
µµ) (44)

Ωk
µµ = AT

µPk + PkAµ − PkL
k
µC

k
µ −

(
PkL

k
µC

k
µ

)T
+ (λk + 1) I (45)

Rµµ =




 BµKµ · · · BµKµ
︸ ︷︷ ︸

p terms




 (46)

ST
µµ =

(
(
Eµ − L1

µGµ

)T · · ·
(
Eµ − Lp

µGµ

)T
)

(47)

S̃T
µµ =

(
(
−L1

µ

)T · · ·
(
−Lp

µ

)T
)

(48)

The inequality (42) is a sufficient condition for a boundedL2-gain from ν(t) to xa(t).
Unfortunately, it is not linear in the unknown matrices and it is time varying because of the weighting
functionsµi(.). In the remaining of the proof, sufficient LMI conditions are derived. Let us define
the matrixW by

W = diag(Q, Inp, In, Q̃, Ind
, Ip)

whereQ = X−1 andQ̃ = diag(Q, · · · , Q
︸ ︷︷ ︸

p matrices

). In order to obtain LMI, let us defineη2 = η̄ and apply

the congruence lemma2 to (42) by pre and post multiplying byW , it follows











QΞµµQ 0 0 RµµQ̃ Eµ 0

0 Mµµ 0 0 P̃Sµµ P̃ S̃µµ

0 0 −εIn 0 0 0

Q̃RT
µµ 0 0 −Q̃Λ̃Q̃ 0 0

ET
µ ST

µµP̃ 0 0 −η̄Ind
0

0 S̃T
µµP̃ 0 0 0 −η̄Ip











< 0 (49)



By using the lemma3 on the matrix block−Q̃Λ̃Q̃ as well as a Schur complement, inequality (49)
is implied byHµµ < 0 with

Hµµ =













QΞµµQ 0 0 RµµQ̃ Eµ 0 0

0 Mµµ 0 0 P̃Sµµ P̃ S̃µµ 0
0 0 −εIn 0 0 0 0

Q̃RT
µµ 0 0 −2βQ̃ 0 0 βI

ET
µ ST

µµP̃ 0 0 −η̄Ind
0 0

0 S̃T
µµP̃ 0 0 0 −η̄Ip 0

0 0 0 βI 0 0 −Λ̃













(50)

whereβ is a positive scalar. Consequently, if the inequalityHµµ < 0 holds, then inequality (35)
holds too. Due to the convex sum property of the weighting functions, an obvious but conservative
set of sufficient conditions is given byHij < 0 (for i, j = 1, . . . , r). The conservativeness is
considerably reduced by applying the result proposed by Tuan in [10]: the sufficient conditions
are the following

{

Hii < 0, i = 1, ..., r
2

r−1Hii +Hij +Hji < 0, i, j = 1, ..., r, i 6= j
(51)

whereHij is defined by

Hij =













QΞijQ 0 0 RijQ̃ Ei 0 0

0 Mij 0 0 P̃Sij P̃ S̃ij 0
0 0 −εIn 0 0 0 0

Q̃RT
ij 0 0 −2βQ̃ 0 0 βI

ET
i ST

ijP̃ 0 0 −η̄Ind
0 0

0 S̃T
ijP̃ 0 0 0 −η̄Ip 0

0 0 0 βI 0 0 −Λ̃













(52)

The variable changesFj = KjQ andMk
i = PkL

k
i are used and a Schur complement on the term

QQ in the(1, 1) block is performed to obtain the LMI conditions of the theorem2, which ends the
proof.

Tuan’s Lemma [10] has been considered in the previous section to relax the stability conditions
of the proposed sensor fault tolerant observer based controller. Obviously, there exists many other
relaxation techniques. Particularly, the quadratic Lyapunov function can be replaced by a non-
quadratic one. Here is only mentionned an interesting approach, described in [11], where the authors
have provided asymptotic necessary and sufficient conditions for the negativity of the double sum
inequalityx̃(t)TYµµx̃(t) < 0. In the following, the Polya’s theorem is recalled (as given in [11]) and
applied to the proposed result in the theorem2. Knowing that

(
r∑

i=1

µi(ξ(t))

)q

= 1 (53)

whereq is a positive integer, the inequality (50) is equivalent to
(

r∑

i=1

µi(ξ(t))

)q

Hµµ < 0 (54)

By developing (54) with respect to the weighting functions, relaxed LMI conditions are obtained.
Furthermore, ifq → ∞, asymptotic necessary and sufficient conditions are obtained [11]. For
example, assumingq = 1 the LMI constraints (24) are replaced by

{
Hii < 0, i = 1, ..., r
Hii +Hij +Hji < 0, i, j = 1, ..., r, i 6= j

(55)



The LMIs (55) are clearly less conservative than the Tuan’s ones. Of course whenq increases, the
number of LMIs increases too but the number of variables remains the same (there is no additional
slack variables).

3.4. Fault tolerant control design algorithm

The design of the proposed sensor fault tolerant controller can be summarized as follows.

1. Compute the gains of the residual generator by solving the optimization problem under LMI
constraints given by (8).

2. Compute the gains of the FT controller by solving the optimization problem under LMI
constraints given by (24).

3. Implement the residual generator (6) that providesr(t) and the weighting functions (12).
4. Implement the observers (10), compute the blended state estimation (11) and finally the FT

controller (13).

Remark 1
It is important to point out that the use of the Dedicated Observer Structure (DOS) in the FTC
block requires the observability of each pair(Ai, C

k
j ) which is not always satisfied. A solution to

overcome such a problem is to use the Generalized Observer Structure (GOS). Consequently, before
designing the FTC strategy, it is necessary to check the observability of the system state from each
output separately. If the state is not observable from a set of outputs, the GOS structure may be
suitable. Doing so, it is possible to identify the sensor set with possible fault compensation before
designing the FTC.

4. AN ALTERNATIVE APPROACH

The proposed approach consists in designing a bank of observers to construct a weighted state vector
which is used by a PDC controller. In this section, a slight modification of the previous controller
structure is briefly considered. This FTC strategy is different in the sense that a bank of observer-
based controllers is designed as in classical point of view and each control signal is associated to a
weighting function depending on the residual signal. Then, if a fault occurs in thekth sensor, the
corresponding control signaluk(t) is disabled by forcing the weighting functionhk(r(t)) to zero.
The applied control signal to the system is then expressed by

ub(t) =

p
∑

k=1

hk(r(t))u
k(t) (56)

This approach is illustrated in the figure2 which can be compared to those of figure1. The
equations related to this new structure are

RG :







˙̂x(t) =
r∑

i=1

µi(ξ(t))
(
Aix̂(t) +Biu

b(t) + Li(y(t)− ŷ(t))
)

ŷ(t) = Cx̂(t)

r(t) =M(y(t)− ŷ(t))

(57)

and

FTC :







˙̂xk(t) =
r∑

i=1

µi(ξ(t))
(
Aix̂

k(t) +Biu
b(t) + Lk

i (y
k(t)− ŷk(t))

)

ŷk(t) = Ckx̂k(t)

uk(t) = −
r∑

i=1

µi(ξ(t))K
k
i x̂

k(t)

ub(t) =
p∑

k=1

hk(r(t))u
k(t)

(58)
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Figure 2. Sensor fault tolerant control scheme 2

The residual generator RG and the weighting functionshi(r(t)) are designed in the same manner
as in the first approach. The closed-loop system is then described by the following equation:

ẋ(t) =

r∑

i=1

r∑

j=1

p
∑

k=1

µi(ξ(t))µj(ξ(t))hk(r(t))
(
Aix(t)−BiK

k
j x̂

k(t) + Eid(t)
)

(59)

=

r∑

i=1

r∑

j=1

p
∑

k=1

µi(ξ(t))µj(ξ(t))hk(r(t))
((
Ai −BiK

k
j

)
x(t) +BiK

k
j e

k(t) + Eid(t)
)

(60)

The equation (60) is similar to the equation (16) of the first approach where the matricesKj of
the controller are simply replaced byKk

j . Therefore, stability conditions expressed in terms of LMI
can be established using the same reasoning.

5. VEHICLE LATERAL DYNAMICS SENSOR FTC

In this section, some simulations are provided to illustrate the proposed FTC approach. The lateral
dynamics control of a vehicle in the presence of sensor faults is considered. Firstly, a T-S model
is established from the model of the vehicle lateral dynamics by considering the longitudinal
velocity vx as time-varying. Secondly, a residual generator is constructed and validated with real
data measurements. Finally, the FTC controller is designed and simulated with real data affected by
simulated faults.

5.1. Vehicle lateral dynamics model

To illustrate the proposed approach and the design of the sensor fault tolerant controller, let us
consider the lateral dynamics model described by the following equations

{
v̇y(t) =

1
m
(Fyf (t) + Fyr(t))− vx(t)ψ̇(t)

ψ̈(t) = 1
Iz

(afFyf (t)− arFyr(t)) +
1
Iz
u(t)

(61)

wherevy(t) andψ̇(t) denote, respectively, the lateral velocity and the yaw rate,Fyf (t) andFyr(t)
are the lateral forces acting, respectively, on the front and rear wheels. The parameteraf (resp.
ar) represent the distance from the front (resp. rear) wheel to the center of gravity.Iz is the yaw
moment of inertia,m is the total mass of the vehicle andvx(t) is the longitudinal velocity. The
control input is defined byu(t) which represents a force moment generated by differential braking



on the vehicle rear wheels. This control input aims at stabilizing the yaw motion. All the variables
and the parameters are summarized in the tableI

Time varying variables
ψ̇ yaw rate
vx , vy longitudinal and lateral velocities
FS
f , FS

r steady-state front and rear steady state lateral efforts
Ff , Fr front and rear lateral efforts
Constant parameters
rf , rr relaxation length of the front and rear tires
m , Iz mass of the vehicle and the yaw moment
af , ar distances from the front and rear axle to the center of gravity
Bi, Ci,Di andEi, i = {f, r} characteristic matrices of the tires in the Pacejka’s model

Table I. Table of variables and parameters

Due to the characteristics of the tires, it is generally assumed that the forcesFyf (t) andFyr(t)
are generated by dynamical systems described by

{ rf
vx
Ḟyf (t) + Fyf (t) = FS

yf (t)
rr
vx
Ḟyr(t) + Fyr(t) = FS

yr(t)
(62)

which takes into account the transient phase of the tires response. Whereri, i ∈ {r, f} are the
relaxation lengths which are positive scalars. The inputsFS

yf (t) andFS
yr(t) are the steady-state

(static) forces expressed by the “magic formula” of Pacejka [26].

FS
yi(t) = Di sin

(
Ci tan

−1
(
Bi (1− Ei)αi(t) + Ei tan

−1 (Biαi(t))
))
, i ∈ {f, r} (63)

whereBi, Ci, Di andEi are parameters depending on the characteristics of the tires and the road.
αf (t) andαr(t) represent the tire slip angles of the front and the rear wheels respectively which are
expressed by 





αf (t) = − vy(t)
vx(t)

− tan−1
(

af

vx(t)
ψ̇(t) cos

(
vy(t)
vx(t)

))

+ δf (t)

αr(t) = − vy(t)
vx(t)

+ tan−1
(

ar

vx(t)
ψ̇(t) cos

(
vy(t)
vx(t)

)) (64)

whereδf (t) is the front steering angle. The body sideslip angle is defined byβ(t) = tan−1
(

vy(t)
vx(t)

)

.

In normal driving situations, the lateral velocity is small which allows to approximate the sideslip
angle byβ ≈ vy(t)

vx(t)
; this angle is also small in this driving mode. Consequently, the wheel sideslip

anglesαf (t) andαr(t) do not exceed8 degrees, therefore, the equation (64) can be simplified as
follows {

αf (t) = − vy(t)
vx(t)

− af

vx(t)
ψ̇(t) + δf (t)

αr(t) = − vy(t)
vx(t)

+ ar

vx(t)
ψ̇(t)

(65)

Consequently, the forcesFS
yf (αf (t)) andFS

yr(αr(t)) are in the linear zone which can be expressed
by the linear expressions







FS
yf (t) = Cf

(

− vy(t)
vx(t)

− af

vx(t)
ψ̇(t) + δf (t)

)

FS
yr(t) = Cr

(

− vy(t)
vx(t)

+ ar

vx(t)
ψ̇(t)

) (66)

whereCf = DfCfBf andCr = DrCrBr. By using the following change of coordinates






x1(t) = vy(t)

x2(t) = ψ̇(t)
x3(t) =

1
m
(Fyf (t) + Fyr(t))

x4(t) =
1
Iz

(afFyf (t)− arFyr(t))

(67)



the following dynamical system is obtained







ẋ1(t) = −vx(t)x2(t) + x3(t)
ẋ2(t) = x4(t) +

1
Iz
u(t)

ẋ3(t) = − vx(t)
r
x3(t) +

vx(t)
mr

(
FS
yf (t) + FS

yr(t)
)

ẋ4(t) = − vx(t)
r
x4(t) +

vx(t)
Izr

(
afF

S
yf (t)− arF

S
yr(t)

)

(68)

The change of variables aims at scaling the state variables and the matrices in order to reduce
the conservatism related to the LMI constraints. Note also that the relaxation termsrf andrr are
considered identical and denoted byr. By assuming that the longitudinal velocity is time-varying,
which is more realistic than a constant one as commonly used in the literature, and by expressing
the system in matrix formulation, one obtains

ẋ(t) = A(vx(t))x(t) +Bδf (vx(t))δf (t) +Bu(t) (69)

whereu(t) is the control input andδf (t) is known (can thus be provided to the residual generator
and observers) but not controllable (and thus cannot be set by the controller) and where

A(vx(t)) =






0 −vx(t) 1 0
0 0 0 1
a31 a32 a33vx(t) 0
a41 a42 0 a44vx(t)




 , Bδf (vx(t)) =






0
0

b3vx(t)
b4vx(t)




 , B =







0
1
Iz

0
0







and
a31 = −Cf

mr
− Cr

mr
, a32 = Crar

mr
− Cfaf

mr

a33 = a44 = − 1
r
, a41 = arCr

Izr
− afCf

Izr

a42 = −a2

fCf

Izr
− Cra

2

r

Izr

b3 =
Cf

mr
, b4 =

afCf

Izr

Assuming that the vehicle longitudinal velocity is bounded as follows0 < vmin ≤ vx(t) ≤
vmax < +∞, and using the sector nonlinearity approach [1], the following T-S model is obtained

ẋ(t) =

2∑

i=1

µi(vx(t))
(
Aix(t) +Biδf δf +Bu(t)

)
(70)

where the activating functions are defined by

µ1(vx(t)) =
vx(t)− vmin

vmax − vmin
, µ2(vx(t)) =

vmax − vx(t)

vmax − vmin

and the sub-model matrices are given by

A1 =






0 −vmax 1 0
0 0 0 1
a31 a32 a33vmax 0
a41 a42 0 a44vmax




 , B1δf =






0
0

b3vmax

b4vmax






A2 =






0 −vmin 1 0
0 0 0 1
a31 a32 a33vmin 0
a41 a42 0 a44vmin




 , B2δf =






0
0

b3vmin

b4vmin






The vehicle is equipped by sensors providing the measurement of the yaw rateψ̇(t) and the
lateral accelerationay. Sinceay = 1

m
(Fyf (t) + Fyr(t))− vx(t)ψ̇(t) = x3(t)− vx(t)x2(t). Taking

into account the additive sensor faultf(t) possibly affecting each sensor, the output equation is



defined as follows

y(t) =

2∑

i=1

µi(vx(t))Cix(t) + f(t) (71)

where

C1 =

(
0 1 0 0
0 −vmax 1 0

)

, C2 =

(
0 1 0 0
0 −vmin 1 0

)

Note that in (71),f(t) describes an additive fault but it can also represents a class of parametric
faults. Indeed assume that parametric faults occur, this can be represented as follows

y(t) =

(
0 1 + p1(t) 0 0
0 −vx(t) 1 + p2(t) 0

)

x(t) (72)

=

(
0 1 0 0
0 vx(t) 1 0

)

︸ ︷︷ ︸

C(vx(t))

x(t) +

(
p1(t)x2(t)
p2(t)x3(t)

)

︸ ︷︷ ︸

f(t)

(73)

wherep1(t) and p2(t) are sensor parametric faults. The longitudinal velocity is assumed to be
available at real-time and fault-free. The proposed fault tolerant controller can now be implemented.

5.2. Residual generator

In order to perform fault detection and isolation, the following residual generator is constructed by
solving the optimization problem given in the theorem1







˙̂x(t) =
2∑

i=1

µi(vx(t))
(
Aix(t) +Biδf δf (t) +Bu(t) + Li(y(t)− ŷ(t))

)

ŷ(t) = Cx̂(t)
r(t) =M(y(t)− ŷ(t))

(74)

After solving the optimization problem of the theorem1, the gains of the residual generator are
computed and the simulations results are depicted in the figure4. In this simulation, the inputsδf ,
vx of the residual generator are taken from real data measurements (see figure3) and the outputs
y(t) are those simulated by the nonlinear system with nonlinear tire forcesFyf andFyr and sideslip
anglesαf andαr. Two faultsf1(t) andf2(t) are added to system outputs. From figure4, one can
see that the residual signals estimate perfectly the faultsf1(t) andf2(t).
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Figure 3. Real input data for the residual generator

In order to validate the residual generator with real data, the considered outputsy(t) are also real
obtained from adequate sensors (central unit). The faultsf1(t) andf2(t) are not real but artificially
included in the measurement outputs. The obtained residual signals are depicted in the figure5.
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Figure 4. Residual generation: (top) faultf1(t) affecting the sensor 1 and the residualr1(t) detectingf1(t),
(bottom) faultf1(t) affecting the sensor 2 and the residualr2(t) detectingf2(t)
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Figure 5. Residual generator validation with real measurements

5.3. Fault tolerant controller

After generating the residual signals, fault tolerant controller is designed. Firstly, the following
weighting functionsh1(r(t)) andh2(r(t)) are defined according to (12) withσ1 = σ2 = 0.001. The
fault tolerant controller is designed by solving the optimization problem (24) in the theorem2 with
β = 2. A comparison between the states of the closed-loop system in both fault-free and faulty
cases is illustrated in the figure6. In this simulation, the real measurements ofδf and vx are used
but the outputsy(t) are generated by the nonlinear system explained in the previous sub-section
(residual generation). One can see that the effect of the faults are completely eliminated in the state
signals. The weighting functions, the faults and their estimates are depicted in the figure7. It can
be seen that when the first sensor is faulty, the weighting functionh1(r(t)) is close to to zero and
disables the faulty state obtained from the observer 1 using the first output. Similarly, when the fault
f2(t) occurs in the second sensor, the state provided by the observer 2 is disabled by the weighting
functionh2(r(t)).

In order to compare the obtained result, a classical observer-based controller is designed by using
the two outputs of the system [1, 27] without taking into account the faults. In the same simulation
conditions, the closed-loop system is simulated in fault-free and faulty cases as illustrated in the
figure8. One can see that, with this classical closed-loop control, the faults clearly affect the state
vector. Integrating the yaw ratėψ(t) form the initial angleψ(0) = 0, the vehicle trajectory from its
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Figure 6. States of the closed-loop system in faulty and fault-freecases with the proposed FT control
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Figure 7. Faults, residual signals and weighting functionshi(r(t))
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Figure 8. Classical control in both faulty and fault-free situations

initial positionx(0) = y(0) = 0 can be computed from the following equations







x(t) =
t∫

0

(cos(ψ(t))vx(t)− sin(ψ(t))vy(t)) dt

y(t) =
t∫

0

(sin(ψ(t))vx(t) + cos(ψ(t))vy(t)) dt

(75)



The trajectories of the fault-free vehicle in open-loop, the faulty sensors with FTC and the faulty
sensors with classical control are illustrated in the figure9. As an illustration of the efficiency of the
proposed FT controller, in the faulty case with FTC the trajectory is close to the one in the fault free
case, whereas a classical controller cannot counteract the effect of the fault on the vehicle trajectory.
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Figure 9. Vehicle trajectories

6. CONCLUSIONS

In this paper, a novel approach is proposed to design a sensor fault tolerant controller for nonlinear
systems represented by a T-S model. The approach is based on a bank of observer-based controllers,
a residual generator for diagnosis and a smooth selecting mechanism to choose an adequate state
estimate to compensate the effects of the faults on the measurements. The stability of the whole
system is studied by the Lyapunov theory and LMI constraints are provided to design the gain
matrices of the different components of the proposed FTC scheme. For future works, it will be
interesting to consider the case of T-S systems with unmeasurable premise variables. It is also
interesting to study the choice of the functionshk(r(t)). Finally, the dedicated scheme may be
inapplicable in some cases since the system state needs to be reconstructed based on each output.
Consequently the proposed strategy could be extended using a Generalized Observer Scheme.
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