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Abstract. Propagation of elastic waves is studied in a 1D medium containing

N cracks modeled by nonlinear jump conditions. The case N = 1 is fully

understood. When N > 1, the evolution equations are written as a system of
nonlinear neutral delay differential equations, leading to a well-posed Cauchy

problem. In the case N = 2, some mathematical results about the existence,

uniqueness and attractivity of periodic solutions have been obtained in 2012 by
the authors, under the assumption of small sources. The difficulty of analysis

follows from the fact that the spectrum of the linear operator is asymptotically
closed to the imaginary axis. Here we propose a new result of stability in the

homogeneous case, based on an energy method. One deduces the asymptotic

stability of the zero steady-state. Extension to N = 3 cracks is also considered,
leading to new results in particular configurations.

1. Introduction. Understanding the interactions between ultrasonic waves and
contact defects have crucial applications in the field of mechanics, especially as
far as the nondestructive testing of materials is concerned. When the cracks are
much smaller than the wavelengths, they are usually replaced by interfaces with
appropriate jump conditions. Here we consider realistic models describing cracks
with finite compressibility, in a 1D geometry (section 2).

The case of N = 1 crack, which involves a nonlinear ordinary differential equa-
tion, has been completely analysed in [7]. When tackling with N > 1 cracks, the
analysis becomes much more intricate. The successive reflections of waves between
the cracks are described mathematically by a system of N nonlinear neutral-delay
differential equations (NDDE) with forcing [5]. The main features of such systems
are already contained in the following scalar NDDE:

x
′
(t) + x

′
(t− 1) + f (x(t)) = s(t), (1)
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where f is a smooth increasing nonlinear function and s is the forcing. Proving the
existence and uniqueness of periodic solutions to (1) is not trivial. The difficulties
follow from the weak stability of periodic solutions: if we consider a null forcing
s = 0 and a linear function f(x) = x, then many authors [1, 2, 4, 5, 9, 12] show
that 0 is asymptotically stable but not exponentially stable.

In [8], we have analyzed the existence and uniqueness of periodic solutions in
the case of N = 2 cracks. Results were obtained in the case of small sources and
particular ratios τ/T , where τ is the traveltime between the crack, and T is the
period of the forcing. But the stability of periodic solutions was not addressed.
In the present paper, we propose new results on that subject, in the case of null
forcing. For this purpose, an energy method is followed, extending a technique
developped for scalar NDDE [9]. Asymptotic stability is obtained whatever the
spacings between the cracks (Section 3.3). Another new result is given for N = 3
cracks, but for particular configurations (Section 4).

The paper is organized as follows. The physical motivation of the study is given
in Section 2. The case of N = 2 cracks is investigated in Section 3. After recalling
known properties, a new result of asymptotic stability is given. An extension for
N = 3 cracks is proved in Section 4.
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Figure 1. Cracks αk separating elastic media Ωk and Ωk+1. The
physical parameters are the density ρk and the sound speed ck.

2. Physical motivation. Let us consider a 1D cracked elastic domain Ω = ∪Ωk.
The physical parameters of the subdomain Ωk are the density ρk and the elastic
speed of the compressional waves ck. These piecewise constant parameters may
be discontinuous across the crack at αk. Wave propagation is modeled by the 1-D
linear elastodynamics

ρ
∂ v

∂ t
=
∂ σ

∂ x
,

∂ σ

∂ t
= ρ c2

∂ v

∂ x
, (2)

where v = ∂ u
∂ t is the elastic velocity, u is the elastic displacement, and σ is the

elastic stress. The magnitude of the source is described by the amplitude v0 of the
elastic velocity.

Two independent jump conditions are required around each crack at x = αk to
obtain a well-posed problem. First, the stress is continuous across each crack:

[σ(αk, t)] = 0 ⇒ σ(α+
k , t) = σ(α−k , t) = σ∗k(t). (3)

Secondly, experimental studies have yielded the following conclusions [10]:

• the elastic displacement can be discontinuous across the cracks, depending on
the stress applied;
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• at small stress levels, a linear model is relevant

σ∗k(t) = Kk [u(αk, t)] , (4)

where Kk > 0 is the interfacial stiffness;
• the jump in elastic displacement satisfies the inequality

[u(αk, t)] ≥ −dk, (5)

where dk > 0 is the maximum allowable closure. As the loading increases, the
crack tends to become completely closed: [u(αk, t)]→ −d+

k when σ∗k → −∞;
• concave stress-closure laws are measured.

The relation
σ∗k(t) = Kk dk Fk ([u(αk, t)]/dk) (6)

satisfies these requirements, where Fk is a smoothly increasing concave function

Fk : ]− 1, +∞[→]−∞, Fk max[, lim
X→−1

Fk(X) = −∞, 0 < Fk max ≤ +∞,

Fk(0) = 0, F
′

k(0) = 1, F
′′

k < 0 < F
′

k.
(7)

Two models illustrate the nonlinear relation (6): the model 1 proposed writes

σ∗k(t) =
Kk [u(αk, t)]

1 + [u(αk, t)] /dk
⇔ Fk(X) =

X

1 +X
, Fk max = 1, (8)

and the model 2 writes

σ∗k(t) = Kk dk ln (1 + [u(αk, t)]/dk) ⇔ Fk(X) = ln(1 +X), Fk max = +∞. (9)

These two models are sketched in figure 2. The straight line with a slope K tan-
gential to the curves at the origin gives the linear jump conditions (4).
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Figure 2. Jump conditions (6). Left: model 1 (8), right: model 2 (9).

3. Mathematical results for N = 2 cracks.

3.1. System of NDDE. Wave propagation in the configuration of figure 1 involves
a linear system of partial differential equations (2), and two jump conditions (3)-(6)
at each crack. Based on the method of characteristics, it can be transformed into a
system of two NDDE [8]. Setting

y1(t) =
[u(α1, t)]

d1
, y2(t) =

[u(α2, t)]

d1
, r =

d2

d1
> 0, τ =

α2 − α1

c1

f1(y) = −F1(y), f2(y) = −rF2

(y
r

)
, fk min = −Fk max < 0, y1 min = −1, y2 min = −r,

(10)
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one obtains the Cauchy problem
y

′

1(t) + y
′

2(t− τ) = β1 f1(y1(t)) + γ2 f2(y2(t− τ)) + s(t), t > 0, (11a)

y
′

2(t) + y
′

1(t− τ) = β2 f2(y2(t)) + γ1 f1(y1(t− τ)) + s(t− τ), t > 0, (11b)

yk(t) = φk(t) ∈ C1 ([−τ, 0], ]yk min, +∞[) , −τ ≤ t ≤ 0. (11c)

The constant delay τ is the traveltime between the cracks. The coefficients βk and
γk depend on the elastic properties of the media Ωk. The assumptions are

βk > 0, 0 ≤ |γk| < βk, yk min < 0,

fk ∈ C2 (]yk min, +∞[→]fk min, +∞[) , lim
y→yk min

fk(y) = +∞, −∞ ≤ fk min < 0,

fk(0) = 0, f
′

k(0) = −1, qk =
f

′′

k (0)

2
> 0, f

′

k(y) < 0 < f
′′

k (y)

(12)

3.2. Known results. One recalls the main theoretical results obtained in [8]. First,
existence and uniqueness of global solutions of the NDDE (11) is proven.

Proposition 1. There exists a unique solution y = (y1, y2)T to (11)-(12), with
yk ∈ C1 ([0, +∞[, ]yk min, +∞[), except at instants t = k τ , k ∈ N, where the
derivatives may be discontinuous.

Second, let us assume that periodic solutions exist. The mean value of the
solution during one period is denoted

yk =
1

T

∫ T

0

yk(t) dt, k = 1, 2. (13)

Proposition 2. The mean values of periodic solution y = (y1, y2)T to (11)-(12)
are strictly positive:

yk > 0, k = 1, 2. (14)

Proposition 2 states that a positive mean jump of the elastic displacement occurs
across each crack: in other words, a perioding forcing generates a mean dilatation
of the cracks. This phenomenon is purely induced by the nonlinear jump condition
(6). For linear conditions, or equivalently for infinitesimal forcing, one has yk = 0.
Figure 3 illustrates this property. The mean spatial values of the displacements in
each of the subdomains are denoted by horizontal dotted lines.

Concerning the existence and uniqueness of periodic solutions, two cases must
be distinguished, depending on the ratio

θ =
τ

T
=
α2 − α1

c1 T
=
α2 − α1

λ1
> 0, (15)

where λ1 is the wavelength in medium Ω1. Existence and uniqueness of periodic
solution is proven in the two following cases:

• for source of arbitrarily large amplitude if 2 θ is an integer;
• for small sources otherwise, if θ satisfies also a Diophantine condition.

For rigorous statements of these results, the reader is refered to [8].
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Figure 3. Snapshots of the elastic displacement u obtained with
model 1 (8) for various amplitudes v0 of the incident elastic velocity:
10−4 m/s (a), 2 10−3 m/s (b). The vertical solid lines denote the
locations of the cracks. The red, green and navy dotted horizontal
lines denote the mean spatial value u in each subdomain.

3.3. Stability in the homogeneous case. Here we propose a new result of sta-
bility in the homogeneous case. For the sake of simplicity, the delay is taken τ ≡ 1.
The following notations are introduced (k = 1, 2):

E(t) = E1(t) + E2(t), Ek(t) =

∫ t

t−1

(
y

′

k(η) + βk fk(yk(η))
)2

dη ≥ 0,

F (t) = F1(t) + F2(t), Fk(t) = 2 (βk − γk)

∫ yk(t)

0

fk(z) dz ≥ 0,

G(a, b) = G1(a, b) +G2(a, b), Gk(a, b) = (β2
k − γ2

k)

∫ b

a

f2
k (yk(η)) dη ≥ 0.

(16)

Theorem 3.1. Assume that the initial data φ1 and φ2 belong to the Sobolev space
H1((−1, 0),R). Let Y = (y1, y2) be the solution of (11)-(12) without source term:
s ≡ 0. Then one has

sup
t>0

E(t) + sup
t>0

F (t) + sup
t>0

G(0, t) < +∞, (17)

with E, F and G defined in (16). It follows the asymptotic stability of the origin:

lim
t→+∞

Y (t) = 0. (18)
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Proof. Taking the square of (11a) yields(
y

′

1(t) + β1 f1(y1(t))
)2

=
(
y

′

2(t− 1) + γ2 f2(y2(t− 1))
)2

,

=
(
y

′

2(t− 1) + β2 f2(y2(t− 1))− (β2 − γ2) f2(y2(t− 1))
)2

,

=
(
y

′

2(t− 1) + β2 f2(y2(t− 1))
)2

− (β2
2 − γ2

2)f2
2 (y2(t− 1))

−2 (β2 − γ2) y
′

2(t− 1) f2(y2(t− 1)).

(19)

Integrating (19) on [T − 1, T ] gives

E1(T ) = E2(T − 1)− [F2(t− 1)]TT−1 −G2(T − 2, T − 1). (20)

Similarly, (11b) provides

E2(T ) = E1(T − 1)− [F1(t− 1)]TT−1 −G1(T − 2, T − 1). (21)

From (16), (20) and (21), it follows

E(T ) = E(T − 1)− [F (t− 1)]
T
T−1 −G(T − 2, T − 1). (22)

Summing (22) for T = 1, · · · , n, one obtains

E(n) + F (n− 1) +G(−1, n− 1) = E(0) + F (−1) ≡ C0 > 0. (23)

Each term E, F and G in (23) is positive and bounded. From the uniform bound
for E(n) with respect to n, we get that (y1(n), y2(n)) is uniformly bounded. We
also know that the sequences (y1(n + s), y2(n + s)) are uniformly bounded in
H1((−1, 0),R) and thus equicontinuous: F (t) is then uniformly continuous. Lastly
G(0,+∞) ≤ E(0). Since (y1(t), y2(t)) are uniformly continuous and bounded, hence
((f2

1 (y1(t)), f2
2 (y2(t))) converge towards zero. It follows that (y1(t), y2(t)) converges

towards zero, which concludes the proof.

4. Preliminary results for N = 3 cracks. In the case of N = 3 cracks, the
method of characteristics yields a system of 3 NDDE with two constant delays
τ12 = (α2 − α1)/c1 and τ23 = (α3 − α2)/c2. Up to now, we have not proven the
asymptotic stability of the origin whatever the delays. On the contrary, we focus
on the particular case τ12 = τ23 without forcing. Under a suitable change of time
variable, the homogeneous system can then be written [6]

y
′

1(t) + y
′

2(t− 1) + y
′

3(t− 2) + β1f1(y1(t)) = 0, (24a)

y
′

2(t) + y
′

1(t− 1) + y
′

3(t− 1) + β2f2(y2(t)) = 0, (24b)

y
′

3(t) + y
′

1(t− 2) + y
′

2(t− 1) + β3f3(y3(t)) = 0, (24c)

yk(t) = φk(t), k = 1, 2, 3, −2 ≤ t ≤ 0. (24d)

The assumptions are the same than in (12).

Theorem 4.1. Assume that φ1, φ2, φ3 belong to the Sobolev space H1((−2, 0),R).
Let Y = (y1(t), y2(t), y3(t)) be a solution of (24)-(12). Then lim

t→+∞
Y (t) = (0, 0, 0).
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Proof. We rewrite the system as in the proof of Theorem 3.1 to isolate the delayed
derivatives: 

y
′

1(t) + β1f1(y1(t)) = −(y
′

2(t− 1) + y
′

3(t− 2)), (25a)

y
′

2(t) + β2f2(y2(t)) = −(y
′

1(t− 1) + y
′

3(t− 1)), (25b)

y
′

3(t) + β3f3(y3(t)) = −(y
′

1(t− 2) + y
′

2(t− 1)). (25c)

Taking the square of equation (25a) yields(
y

′

1(t) + β1f1(y1(t))
)2

=
(
y

′

2(t− 1) + y
′

3(t− 2)
)2

=
(
y

′

2(t− 1)
)2

+
(
y

′

3(t− 2)
)2

+ 2 y
′

2(t− 1) y
′

3(t− 2).

Similarly, (25c) gives(
y

′

3(t) + β3f3(y3(t))
)2

=
(
y

′

2(t− 1)
)2

+
(
y

′

1(t− 2)
)2

+ 2 y
′

2(t− 1) y
′

1(t− 2).

Adding the two previous equalities and finally using (25b) gives(
y

′

1(t) + β1f1(y1(t))
)2

+
(
y

′

3(t) + β3f3(y3(t))
)2

=
(
y

′

1(t− 2)
)2

+
(
y

′

3(t− 2)
)2

+ 2
(
y

′

2(t− 1)
)2

+ 2 y
′

2(t− 1)(y
′

1(t− 2) + y
′

3(t− 2))

=
(
y

′

1(t− 2)
)2

+
(
y

′

3(t− 2)
)2

+ 2 y
′

2(t− 1)(y
′

2(t− 1) + y
′

1(t− 2) + y
′

3(t− 2))

=
(
y

′

1(t− 2)
)2

+
(
y

′

3(t− 2)
)2

+ 2 y
′

2(t− 1)(y
′

2(t− 1)− (y
′

2(t− 1) + g2(y2(t− 1))))

=
(
y

′

1(t− 2)
)2

+
(
y

′

3(t− 2)
)2

− 2 y
′

2(t− 1)β2f2(y2(t− 1)),

which provides(
y

′

1(t) + β1f1(y1(t))
)2

+
(
y

′

3(t) + β3f3(y3(t))
)2

+ 2 y
′

2(t− 1)β2f2(y2(t− 1))

=
(
y

′

1(t− 2)
)2

+
(
y

′

3(t− 2)
)2

.

(26)

The following notations are introduced:

Ek(t) =

∫ t

t−2

y
′2
k (η) dη ≥ 0,

Fk(t) = 2βk

∫ yk(t)

0

fk(z) dz ≥ 0,

Gk(a, b) = β2
k

∫ b

a

f2
k (yk(η)) dη ≥ 0.

(27)

Integration of (26) on [T − 2, T ] gives

E1(T ) + E3(T ) + [F1(y1)]TT−2 + [F3(y3)]TT−2 + [F2(y2)]T−1
T−3

+G1(T − 2, T ) +G3(T − 2, T ) = E1(T − 2) + E3(T − 2).
(28)
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Summing (28) for T = 2, 4, · · · , n (n even) gives

E1(n) + E3(n) + F1(n) + F3(n) + F2(n− 1) +G1(0, n) +G3(0, n)

= E1(0) + E3(0) + F1(0) + F3(1) + F2(−1)

= C0 < +∞.

(29)

We deduce

sup
t>0

E1(t) + sup
T>0

E3(t) +

∫ +∞

0

(β1f1(y1(t)))
2

+ (β3f3(y3(t)))
2
dt < +∞,

which yields lim
t→+∞

(y1(t), y3(t)) = (0, 0). Lastly, the bound on F2 ensures that

y2 ∈ L∞((0,+∞),R). From (25b) and the uniform L2((T − 2, T ),R) bounds of y
′

1

and y
′

3, we obtain sup
T>0

E2(T ) < +∞. Thus, the sequence y2,n(s) = y2(n + s) is

bounded in H1((0, 2),R). Extracting a subsequence y2,n → z for the L∞((0, 2),R)
norm. Passing to the limit in (25a) and (25b), z has to satisfy:

z
′

= 0, z
′
+ β2f2(z) = 0.

Thus z = 0, y2,n has a unique limit and converges towards 0. It amounts to say
lim

t→+∞
y2(t) = 0, which concludes the proof.
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