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ON A GENERALIZED METRIC DIMENSION WITH PARTIALLY
KNOWN GRAPH TOPOLOGY

SABINA ZEJNILOVIĆ1,2, DIETER MITSCHE3, JOÃO GOMES1, AND BRUNO SINOPOLI2

Abstract. The metric dimension of a connected graph G is the minimum number
of vertices in a subset S of the vertex set of G such that all other vertices are uniquely
determined by their distances to the vertices in S. We introduce and analyze the
concept of generalized metric dimension of a disconnected graph, which corresponds
to the minimum number of vertices in a subset S such that all other vertices have
unique distances to it in all connected graphs that result from completing a given
disconnected graph. This generalization allows for incomplete knowledge of the un-
derlying graph in applications such as identifying sources of infection. We quantify
the generalized metric dimension exactly when the disconnected components are trees,
cycles, grids, complete graphs and give general upper bounds on this number in terms
of the boundary of the graph.

1. Introduction

Let G be a finite, simple, connected graph with |V (G)| = n vertices. 1 For a subset
R ⊆ V (G) with |R| = r, and a vertex v ∈ V (G), define d(v,R) to be the r-dimensional
vector whose i-th coordinate d(v,R)i is the length of the shortest path between v and
the i-th vertex of R. We call a set R ⊆ V (G) a resolving set if for any pair of vertices
v, w ∈ V (G), d(v,R) 6= d(w,R). Clearly, the entire vertex set V (G) is always a
resolving set, and so is R = V (G) \ {v} for every vertex v. The metric dimension
β(G) is then the smallest cardinality of a resolving set. We have the trivial inequalities
1 ≤ β(G) ≤ n−1, with the lower bound attained for a path, and the upper bound for the
complete graph. The metric dimension was introduced by Slater [1] in the mid-1970s,
and by Harary and Melter [2]. As a start, Slater [1] determined the metric dimension
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of trees. Two decades later, Khuller, Raghavachari and Rosenfeld [3] gave a linear-time
algorithm for computing the metric dimension of a tree, and characterized the graphs
with metric dimensions 1 and 2. The metric dimension for many graph classes is known,
including random graphs [4], and its calculation has also been extensively studied from
a computational complexity point of view (see [5, 3, 6]).

In this paper we introduce and analyze the concept of generalized metric dimension:
we are given a finite, simple, disconnected graph F = (V,E) with |V | = n consisting of k
connected components, denoted by Ci, for i = 1, . . . k. Denote the class H(F ) to be the
class of all possible connected graphs that can be constructed by adding k−1 edges. For
a graph H1 ∈ H(F ), a vertex u ∈ V and a set O ⊆ V , denote by dH1(u,O) the distance
vector of u to the set O in the graph H1, that is, (dH1(u,O))i is the length of the shortest
path between u and the i-th vertex of O in the graph H1. By a generalized resolving
set of a disconnected graph F , we denote a set of vertices O such that for any two
different vertices u and v, and any two graphs H1, H2 ∈ H(F ), dH1(u,O) 6= dH2(v,O).
Denote by γ(F ), the so called generalized metric dimension, the cardinality of a smallest
generalized resolving set of a graph F . Note that maxHi∈H(F ) β(Hi) ≤ γ(F ) ≤ n− 1.

Motivation. The introduction of resolving set by Slater [1] was motivated by the
application of placement of a minimum number of sonar detectors in a network, while
Khuller, Raghavachari and Rosenfeld [3] were interested in finding the minimum number
of landmarks needed for robot navigation on a graph. Recently, the problem of finding
the minimum number of agents whose infection times need to be observed in order to
identify the first infected agent for a simplified diffusion model was cast as finding the
metric dimension of the graph [7]. Similarly, to identify a rumor source in a network
based on the times when the nodes first heard a rumor, observed nodes should form a
resolving set.

However, in many practical applications, the network topology is only partially
known. Often, local connections within communities are well known, while the connec-
tions between them are not always observed. This may happen when diseases spread
from one community to another through random contact, rather than a known friend-
ship connection, or when novel information is spread through weak, rather than strong,
social ties. Hence, the problem of finding the minimum number of network devices or
agents needs to be considered for scenarios where not all the edges of the graph are
known. We model this incomplete knowledge by assuming that the graph of interest
is disconnected, with k components and k − 1 unobserved edges connecting the com-
ponents, and we consequently introduce the concept of generalized metric dimension.
In order to identify the source of infection or a rumor in such a setting, the group of
agents that needs to be observed should form a generalized resolving set. Since the
resources for observations are often limited, finding the smallest such group of agents,
or equivalently, the generalized metric dimension of the graph, becomes a problem of
interest.

Notation. For a connected graph G, i, j ∈ V (G), denote an i − j-path to be a
sequence of all different vertices v0 = i, v1, . . . , v` = j, such that for i = 0, . . . , ` − 1,
{vi, vi+1} ∈ E(G). Let L (Ci) denote the set of all leaves of component Ci, and K (Ci)
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the set of vertices of degree 3 or more that are connected by paths to one or more leaves,
when Ci is a tree. For a fixed component Cj of F , denote by Sj a minimum cardinality
resolving set of Cj (so that β(Cj) = |Sj|.) The M × N -grid with M,N ≥ 2, is the
graph whose vertices correspond to the points in the plane with integer coordinates,
x-coordinates being in the range 0, . . . ,M − 1, y-coordinates in the range 0, . . . , N − 1,
and two vertices are connected by an edge whenever the corresponding points are at
Euclidean distance 1. The four vertices of degree two are called corner vertices.

For a connected graph G, a vertex v is a boundary vertex of u if dG(w, u) ≤ dG(v, u),
for all w that are neighbors of v [8]. A vertex v is a boundary vertex of G if it is a
boundary vertex of some vertex of G. The set of all boundary vertices of a vertex u is
denoted as ∂(u). The boundary of graph G, ∂(G), is the set of all boundary vertices
of G. It is well known that the boundary is a resolving set, see [9]. For example, the
boundary of a tree is the set of its leaves, whereas the boundary of a grid is the set of
its 4 corner vertices, and the boundary of a cycle is the whole vertex set [9].

Statements of results. We state the main results of this paper which are then proved
in the following sections.

Theorem 1.1. Let F be a graph of k components, where each component is a tree.
Then γ(F ) = minj

∑k
i=1,i 6=j |L (Ci) | + |Sj|, unless all components are isolated vertices,

in which case γ(F ) = k−1. In the first case, we may assume without loss of generality,
that the minimum is attained for j = k. Then the set consisting of all leaves from
components 1, . . . , k − 1 together with a minimum cardinality resolving set of the k-th
component is a minimum cardinality generalized resolving set of the graph F .

Theorem 1.2. Let F be a graph of k components, where each component is a complete
graph of at least 3 vertices. Then γ(F ) = n− k. A set consisting of all but one vertex
of each component is a minimum cardinality generalized resolving set of the graph F .

Theorem 1.3. Let F be a graph of k components, where each component is a grid.
Then γ(F ) = 3k − 1. Let Oi = {ri1, ri2, ri3} denote a set of three corner vertices from
component Ci. Then O = ∪k−1i=1Oi ∪ Sk is a minimum cardinality generalized resolving
set of F .

Theorem 1.4. Let F be a graph of k components, where each component is a cycle
of size greater than 3. Let ke denote the number of components with an even number
of vertices. Then γ(F ) = 2k + ke − 1, if ke > 0, and γ(F ) = 2k, otherwise. For a
component Ci with an even number of vertices ni, define Oi = {ri1, ri2, ri3}, where ri1,
ri2 are two neighboring vertices in Ci and ri3 is a vertex at distance at least ni−2

2
from

both of them, also in Ci. For a component Ci with an odd number of vertices ni, define
Oi = {ri1, ri2}, where ri1 and ri2 are two vertices of Ci that are at distance ni−1

2
from each

other. If ke = 0, ∪ki=1Ok is a minimum cardinality generalized resolving set of F . If
ke > 0, assume without loss of generality that Ck is a component with an even number
of vertices. Then O = ∪k−1i=1Oi ∪ Sk is a minimum cardinality generalized resolving set
of F .

For general graph classes we have the following results, the second one tightening the
first one, as the boundary of a graph can be very large.
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(a) Both components have a leaf
which is not included in O.

(b) All leaves of Ci are in
O and Cj is not a path.

(c) All leaves of
Ci are in O and Cj

is a path.

Figure 1. Case I in the Proof of Theorem 1.1: Constructing trees H1

and H2 when both components Ci and Cj have at least two nodes.

Theorem 1.5. For any arbitrary graph F with k connected components, the set O =
∪k−1

i=1 ∂(Ci) ∪ Sk is a generalized resolving set for F .

Theorem 1.6. Let F be an arbitrary graph with k connected components, let ∂(Si)
denote the boundary of the resolving set Si, and let Oi = Si ∪ ∂(Si). Then O =
∪k−1

i=1Oi ∪ Sk is a generalized resolving set for F .

2. Proofs of main results for special graph classes

Proof of Theorem 1.1. We first prove the claim of sufficiency. If both u and v are
any two vertices in the same component, then u and v are distinguishable as the set
of all the leaves of a tree is a resolving set. Hence we may assume u ∈ V (Ci) and
v ∈ V (Cj) for i 6= j. Let p be a vertex in Ci and q a vertex in Cj, such that any path
from a vertex in Ci to any vertex in Cj in H2 contains the subpath p − q. Note that
dH2(p, q) ≥ 1. If u is a leaf, as it is contained in L (Ci), it is distinguishable from v, since
0 = dH1(u, u) < dH2(u, v). If u is not a leaf, and u = p, then for any leaf r ∈ L (Ci),
dH2(r, v) = dH2(r, p)+dH2(p, q)+dH2(q, v) ≥ dH1(r, p)+dH2(p, q) > dH1(r, p). Thus, the
two distance vectors are not equal either. Otherwise, if u is not a leaf, and u 6= p, let r
be a leaf in L (Ci) such that u is on the path from r to p (such a leaf clearly exists). Then
dH2(r, v) = dH2(r, u)+dH2(u, p)+dH2(p, q)+dH2(q, v) > dH1(r, u)+dH1(u, p) > dH1(r, u).
Thus, the two distance vectors also in this case are not equal, which completes the proof
of sufficiency.

Now, we prove the claim of necessity. Let O be an arbitrary generalized resolving
set. We will show that O has to be at least of the size given by the sufficient condition.

Case I: Let Ci and Cj be two components with at least 2 vertices, such that both have
a leaf which is not included in O. Let u be such a leaf in component Ci with neighbor
u′ and v be a leaf in Cj with neighbor v′, such that u, v /∈ O. We claim that u and v
are indistinguishable, as illustrated in Figure 1a. We can construct H1 by connecting
u with v′, and u with some vertex z of any other component C` (if there are more than
2 components). H2 is then constructed by connecting v with u′ and v with the same
vertex z as in H1; the other newly added edges are the same in H1 and H2. Now, we
have dH1(u,O) = dH2(v,O), as follows. For any vertex r ∈ Ci\{u}, we have dH1(u, r) =
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(a) Cj is not a path. (b) Cj is a path.

Figure 2. Case II in the Proof of Theorem 1.1: Constructing trees H1

and H2 when component Ci has only one node.

1 + dH1(u
′, r), and dH2(v, r) = dH2(u

′, r) + 1 = dH1(u
′, r) + 1. For any vertex r ∈ Cj, we

have dH1(u, r) = dH1(v
′, r)+1, and dH2(v, r) = dH2(v

′, r)+1 = dH1(v
′, r)+1. Finally, for

a vertex r ∈ C`, ` 6= i, j, we have dH1(u, r) = 1 + dH1(z, r) = 1 + dH2(z, r) = dH2(v, r).
Thus the vertices u and v are indistinguishable, and the claim holds. Hence, either all
the leaves of component Ci or component Cj have to be included in O. Without loss
of generality, let us assume that all the leaves of Ci are included in O. Now we assume
that only |Sj| − 1 vertices are selected from the component Cj. In the first sub-case,
when Cj is not a path, from [10], we have Sj = |L (Cj) | − |K (Cj) |. If only |Sj| − 1
vertices were taken from Cj, then there exists a vertex c in K (Cj) such that two of its
associated leaves u and v are both not in O. But then there exists a vertex u′ on the
path c − u, and a vertex v′ on the path c − v, such that dCj

(u′, c) = dCj
(v′, c). Note

that u′ might coincide with u, and v′ might coincide with v. The vertices u′ and v′

are indistinguishable from each other in Cj. Constructing a tree H1 by connecting any
vertex z from any other component C`, ` 6= j, with any fixed vertex in K (Cj), we see
that u′ and v′ still are indistinguishable by vertices in O, as shown in Figure 1b. In
the second sub-case, when Cj is a path with terminal vertices u and v, Sj comprises
only one terminal vertex. If neither of the terminal vertices of Cj are in O, H1 can be
constructed by connecting one of its terminal vertices u with any vertex z of any other
component C`, while H2 is constructed by connecting z to the other terminal vertex
v, and vertices u and v are indistinguishable, as Figure 1c shows. Thus, at least |Sj|
vertices have to be taken from Cj.

Case II: Ci consists of only one vertex, u, and Cj has more than 2 vertices. With the
same arguments as in Case I, it can be seen that at least |Sj| vertices from component
Cj have to be included in O. We will show now that u has to be included in O as well.
In the first sub-case, when Cj is not a path, then H1 is constructed by connecting u
with a vertex c in K (Cj), and then connecting c to any other component C`, ` 6= i, j.
Let v′ be the leaf associated with c, but not in O and let v be a neighbor of c in Cj

which lies on the path c− v′. Then u is indistinguishable within H1 from v, as shown
in Figure 2a. As for the second sub-case, when Cj is a path, H1 can be constructed by
connecting u with the terminal vertex c of Cj where c ∈ O, and then connecting c to a
vertex z of any other component C`. Let v be a vertex in Cj which is a neighbor of c.
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If u is not chosen, u is indistinguishable within H1 from v, as can be seen in Figure 2b.
Hence, u must also be included in O.

Case III: Both Ci and Cj contain only one vertex. Call these u and v, respectively. At
least one of them has to be included in O: otherwise, we can construct H1 by connecting
both u and v to some vertex z from any other component C`, ` 6= i, j, and then u and
v are indistinguishable within H1.

Therefore, for any pair of components Ci and Cj, a generalized resolving set O has
to include all leaves from one component and a resolving set from the other, unless
both have size 1, in which case only 1 vertex is enough. Hence, if there exists at least
one component which has 2 or more vertices, from all but one component all the leaves
have to be taken, and from the remaining component, at least a resolving set. If all k
components have only one vertex, the set O has to contain k − 1 vertices. �

Proof of Theorem 1.2. First, we prove the claim of sufficiency. Let us denote the set
of all but one vertex on component Ci by Oi. If u and v are in the same component,
they are distinguishable, since each Oi is a resolving set of component Ci [3]. Hence,
let us assume that vertex u ∈ V (Ci) is not included in Oi, and that vertex v ∈ V (Cj)
is not included in Oj. Let p ∈ V (Ci) and q ∈ V (Cj), such that p − q is the path
connecting components Ci and Cj in H2, so that dH2(p, q) ≥ 1. We prove the claim by
contradiction and assume that the following relations hold:

dH1(u, r) = 1 = dH2(v, r) = dH2(v, q) + dH2(q, p) + dH2(p, r),

for every r ∈ Oi. Then dH2(p, r) = 0 would have to hold for all r ∈ Oi, which is not
possible, and proves the claim.

To prove the claim of necessity, we assume that in one component Ci there are two
vertices, u and v, that are not included in Oi. We construct H1 by adding the edges
between a fixed vertex z ∈ V (Ci)\{u, v} and some fixed vertex in each other component.
Then we have dH1(u, r) = dH1(v, r) for all r ∈ Ol, l = 1, . . . , k, and this completes the
proof. The theorem for trees discusses the case when all the components have 1 or 2
vertices. �

Proof of Theorem 1.3. Let us denote the size of the grid Ci as xi× yi. We assume that
each vertex l ∈ V (Ci) has assigned to it a position vector (xl, yl) which represents its
location in the integer lattice Ci, with the first selected corner vertex ri1 at position
(0, 0), ri2 at (xi, 0) and ri3 at (0, yi). First, let us prove the claim of sufficiency. If
u and v are in the same component, they are distinguishable, since any two corner
vertices having the same value in one coordinate form a resolving set of a grid [3].
Hence, let us assume that u ∈ V (Ci) and v ∈ V (Cj), for i 6= j and i < k. Let
p be a vertex in Ci and q a vertex in Cj, such that pq is the edge that connects
components Ci and Cj in H2, with dH2(p, q) ≥ 1. If u = p, then for all r ∈ Oi we have
dH2(v, r) = dH2(r, p) + dH2(p, q) + dH2(q, v) > dH2(r, p) = dH1(r, u). Therefore u and
v are distinguishable. For u 6= p, let us prove the claim by contradiction. Assuming
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dH1(u,Oi) = dH2(v,Oi), we obtain the following equations:

dH1(u, r
i
1) = xu + yu

= dH2(v, r
i
1) = xp + yp + dH2(p, q) + dH2(q, v)

dH1(u, r
i
2) = xi − xu + yu

= dH2(v, r
i
2) = xi − xp + yp + dH2(p, q) + dH2(q, v)

dH1(u, r
i
3) = xu + yi − yu

= dH2(v, r
i
3) = xp + yi − yp + dH2(p, q) + dH2(q, v). (1)

The system of equations (1) has a single solution xu = xp and yu = yp, and dH2(p, q) +
dH2(q, v) = 0, contradicting dH2(p, q) ≥ 1. The set ∪k−1

i=1Oi ∪ Sk is a set of cardinality
3k − 1, and this completes the sufficiency claim.

For the claim of necessity, let us assume that there exist two components Ci and Cj,
such that from each of them, only two vertices are chosen. Let {ri1, ri2} be the set of two
vertices from Ci and let

{
rj1, r

j
2

}
be the set of two vertices from Cj that are included in

O.
Case I: In at least one component, the vertices included in O are not two corner

vertices with one identical coordinate. Let us assume that this is the case with Ci. We
claim that there exist two vertices u and v in Ci which are indistinguishable by ri1 and
ri2. Denote by (xri1 , yri1) and by (xri2 , yri2) the positions at which ri1 and ri2 are located in

the grid. First, let us consider the sub-case when ri1 and ri2 differ in both coordinates,
as shown in Figure 3a. Without loss of generality, let us assume that yri1 < yri2 . Then

let u be a vertex at (xri2 , yri1) and v be a vertex at position (xri1 , yri1 + |xri2 − xri1|). Now

we have dCi
(u, ri1) = |xri2 − xri1| = dCi

(v, ri1) and dCi
(u, ri2) = yri2 − yri1 = dCi

(v, ri2),

and hence the vertices u and v are indistinguishable. In the second sub-case, ri1 and
ri2 differ in only one coordinate, as Figure 3b illustrates. Then, let u and v be two
neighbors of ri1, which are not on the shortest path ri1− ri2. These two vertices exist, as
all vertices on the grid, except the corner vertices, have at least 3 neighbors. Now, we
have dCi

(u, ri1) = 1 = dCi
(v, ri1) and dCi

(u, ri2) = 1 + dCi
(ri1, r

i
2) = dCi

(v, ri2). Therefore,
there always exist two vertices u and v, such that they are not distinguishable by
any two vertices of Ci which are not two corner vertices with one identical coordinate.
Constructing a tree H1 by connecting any vertex z from any other component C`, ` 6= i,
with either ri1 or ri2, we see that u and v still are indistinguishable by any vertex in O.

Case II: From both components Ci and Cj, two corner vertices with one identical
coordinate are included in O. Let u′ be a vertex on Ci that is a neighbor of ri1 such
that it shares one coordinate with both ri1 and ri2. Then let u be a neighbor of u′ such
that it does not share any coordinates with u′. Similarly, let v′ be a vertex in Cj that is

a neighbor of rj1 such that is shares one coordinate with both rj1 and rj2. Then let v be
a neighbor of v′ such that it does not share any coordinates with v′. We can construct
H1 by connecting u with v′ and u with any vertex z of any other component (if there
are more than 2 components). Then H2 is constructed by connecting v with u′ and v
with the same vertex z as in H1, as shown in Figure 3c. The distances of u and v from
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(a) The vertices ri1
and ri2 are not corner
vertices and they differ
in both coordinates.

(b) The vertices ri1
and ri2 are not corner
vertices and they dif-
fer in one coordinate.

(c) The vertices ri1 and ri2 are two
corner vertices with one identical co-
ordinate.

Figure 3. Proof of Theorem 1.3: Constructing H1 and H2 when the
components are grids.

the vertices in O are

dH1(u, r
i
1) = dH2(v, r

i
1) = 2

dH1(u, r
i
2) = dH2(v, r

i
2) = 1 + dH1(u

′, ri2)

dH1(u, r
j
1) = dH2(v, r

j
1) = 2

dH1(u, r
j
2) = dH2(v, r

j
2) = 1 + dH2(v

′, rj2)

dH1(u, r) = dH2(v, r) = 1 + dH1(z, r),

for r ∈ C`, ` 6= i, ` 6= j. Hence the vertices u and v are indistinguishable.
Therefore, at least 3 vertices of component Ci or component Cj have to be included

in O. Without loss of generality, let us assume that 3 vertices in Ci are included in
O. Now we assume that only |Sj| − 1 = 1 vertices are selected from Cj. Then there
exist two vertices u and v in component Cj, which are at the same distance from the
only vertex r included from Sj. We construct H1 by connecting any vertex z from
any other component to vertex r in component Cj. Observe that the vertices u and
v are still not distinguishable within H1, and hence at least |Sj| = 2 vertices have to
be included from component Cj. In conclusion, for any two components, at least 3
vertices from one and 2 vertices from the other one have to be included in O, and thus
|O| ≥ 3(k − 1) + 2 = 3k − 1. �

Proof of Theorem 1.4. First, let us prove the claim of sufficiency. As in Theorem 1.3,
let us assume that vertex u is located in component Ci and vertex v is in component
Cj (when u and v belong to the same component, they are clearly distinguishable,
as any two neighboring vertices of an even cycle and any two vertices at distance
(ni − 1)/2 in the case of an odd cycle form a resolving set of a cycle). Let components
Ci and Cj be connected through the path p − q, with p ∈ V (Ci), and q ∈ V (Cj).
If the vertices u and v are not distinguishable by Oi, then dH1(u, r) = dH2(v, r) =
dH1(p, r) + dH2(p, q) + dH2(q, v) holds for some H1 and H2 and all r ∈ Oi. Therefore,

dH1(u, r) > dH1(p, r) (2)
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(a) The vertices p and u lie on
the same semi-cycle.

(b) The vertices p and u lie on
different semi-cycles.

Figure 4. Case I in the Proof of Theorem 1.4: Both cycle components
have an even number of vertices.

(a) The vertices ri1 and ri2 are
exactly at distance ni

2 .

(b) The vertices ri1 and ri2 are
not at distance ni

2 .

Figure 5. Proof of Theorem 1.4: Constructing H1 and H2 when the
components are cycles.

must hold.
Case I: Both components Ci and Cj have an even number of vertices. Let us first

consider the sub-case where both p and u lie in the same half of the cycle, i.e., both lie
either on the shorter path ri2− ri3 or on the shorter path ri1− ri3, as shown in Figure 4a.
Suppose without loss of generality that they both lie on the shorter path ri2−ri3. As one
of the vertices out of {u, p} is closer to ri3 and the other one is closer to ri2, (2) cannot
hold simultaneously for both ri2 and ri3. The other sub-case that needs to be considered
is when u and p lie in different semi-cycles, one on the shorter path ri2 − ri3, and the
other on the shorter path ri1 − ri3, as illustrated in Figure 4b. Then either we have
dH1(u, r

i
1) = dH1(u, r

i
2) + 1 and dH1(p, r

i
1) = dH1(p, r

i
2)− 1, or dH1(u, r

i
1) = dH1(u, r

i
2)− 1

and dH1(p, r
i
1) = dH1(p, r

i
2) + 1. In either case, dH1(u, r) = dH2(v, r) cannot hold for

both r = ri1 and r = ri2.
Case II: At least one of the components Ci or Cj has an odd number of vertices. Let

us assume that this is the case with Ci. Similarly, as in Case I, let us first consider the
sub-case where both p and u lie in the same half of the cycle, i.e. both on the shorter
path ri1−ri2 or both on the longer path ri1−ri2. As before, one of the vertices out of {u, p}
is closer to ri1, and the other is closer to ri2, and thus (2) cannot hold simultaneously
for both ri1 and ri2. The other sub-case that needs to be considered is when u and p
lie in different semi-cycles, one on the shorter path ri1 − ri2, of length ni−1

2
, and the

other on the longer path ri1 − ri2, of length ni+1
2

. Then either we have dH1(u, r
i
2) =
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ni−1
2
−dH1(u, r

i
1) and dH1(p, r

i
2) = ni+1

2
−dH1(p, r

i
1), or dH1(u, r

i
2) = ni+1

2
−dH1(u, r

i
1) and

dH1(p, r
i
2) = ni−1

2
− dH1(p, r

i
1). From dH1(u, r

i
2) > dH1(p, r

i
2) as given by Condition (2),

we obtain dH1(p, r
i
1) > dH1(u, r

i
1) + 1 or dH1(p, r

i
1) > dH1(u, r

i
1) − 1. In either case, we

get that (2) cannot hold for both r = ri1 and r = ri2.
Note that when comparing components Ci and Cj with i 6= j, only vertices of the

generalized resolving set coming from component Ci were used to distinguish between
any two vertices from components Ci and Cj. Hence, for one component, say, Ck, it
is enough to choose a resolving set, that is, a set that distinguishes all vertices within
Ck (a minimum cardinality resolving set is always of size 2). Hence, if ke > 0, we may
assume that Ck is an even cycle. Thus only 2 vertices are chosen from Ck, and from
all other even cycles 3 vertices are chosen. Thus, in this case 2k + ke − 1 vertices are
enough. If ke = 0, then 2 vertices are chosen from each component, giving the bound
2k in this case.

Now, we prove the claim of necessity. Observe first that clearly at least 2 vertices
of each cycle have to be chosen, as otherwise the two neighbors of the chosen vertex
r cannot be separated; one can construct a graph H1 by connecting r with one fixed
vertex of each other component, and the two neighbors of r are indistinguishable.

Let us first assume that there exist two components Ci and Cj both containing an
even number of vertices, and from each component, only two vertices are included in O.
Denote by ri1, r

i
2 the vertices chosen from Ci and by rj1, r

j
2 the vertices chosen from Cj.

If in at least one component, say Ci, the two selected vertices ri1 and ri2 are at distance
exactly ni

2
from each other, let u and v be two neighbors of ri1. Note that u and v are

equidistant from both ri1 and ri2. Constructing H1 by connecting any vertex z from any
other component C` to ri1, the vertices u and v are still not distinguishable within H1,
as shown in Figure 5a. Otherwise, let us assume that in both components Ci and Cj

the vertices selected in O are not at distance exactly ni

2
(
nj

2
, respectively) from each

other. Let u then be a neighbor of ri1 in Ci that is on the longer path ri1 − ri2, and let
v be a neighbor of rj1 in Cj that is on the longer path rj1 − r

j
2. We can construct H1 by

connecting u with rj1 and u with some vertex z of any other component (if there are
more than 2 components). H2 is constructed by connecting v with ri1 and v with the
same vertex z as in H1, as shown in Figure 5b. The distances of the vertices u, v from
the vertices in O are

dH1(u, r
i
1) = dH2(v, r

i
1) = 1

dH1(u, r
i
2) = dH2(v, r

i
2) = 1 + dH1(r

i
1, r

i
2)

dH1(u, r
j
1) = dH2(v, r

j
1) = 1

dH1(u, r
j
2) = dH2(v, r

j
2) = 1 + dH2(r

j
1, r

j
2)

dH1(u, r) = dH2(v, r) = 1 + dH1(z, r),

for r ∈ Ol, l 6= i, j. Hence the vertices u and v are indistinguishable.
Therefore, if both Ci and Cj have an even number of vertices, at least 3 vertices of

component Ci or 3 vertices of component Cj have to be included in O. Hence, from all
but one component with an even number of vertices, 3 vertices have to be chosen, and
from the remaining ones, at least 2. This completes the proof. �
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3. Proofs of results for general graph classes

We start with the following easy observation.

Observation 3.1. Let G be a connected graph. Consider any two vertices r and u of
G, and consider a shortest path r−u. Then either u is a boundary vertex for r, or there
exists some vertex u′ such that the shortest path r−u can be extended to a shortest path
r − u′, with u′ being a boundary vertex for r.

Proof. If u is not a boundary vertex for r, then by definition there exists a neighbor w
of u such that dG(w, r) > dG(u, r). Thus, dG(w, r) ≥ dG(u, r) + 1, and in particular, a
shortest path r−u can be extended to w such that along this extended path, the lower
bound can be attained, and thus dG(w, r) = dG(u, r) + 1. Hence, the path r − w going
through u is also a shortest path r − w. If w is then a boundary vertex for r, we are
done, and otherwise we iteratively apply the same argument with w playing the role of
u. The claim follows. �

We are now ready to show our results in terms of boundary vertices.

Proof of Theorem 1.5. Since the boundary is a resolving set, any two vertices belonging
to the same component are distinguishable by a set that contains the boundaries of
k − 1 component and a resolving set of the k-th component. As before, let u ∈ V (Ci),
v ∈ V (Cj), let p ∈ V (Ci) and q ∈ V (Cj) such that any path from a vertex in Ci to
any vertex in Cj in H2 contains the subpath p − q, and let i < k. As in the previous
theorems, we need to show only the case u 6= p. If u is a boundary vertex for p, let
u′ = u. Otherwise, the shortest path between p and u in component Ci can be extended
to a shortest path p − u′ by Observation 3.1, such that u′ is a boundary vertex of p.
For a fixed shortest path p− u′ we have dH2(u

′, v) = dH2(u
′, p) + dH2(p, q) + dH2(q, v) =

dH1(u
′, u)+dH1(u, p)+dH2(p, q)+dH2(q, v) > dH1(u

′, u), which completes the proof. �

Proof of Theorem 1.6. Let r ∈ Si be a vertex from a resolving set of a component Ci.
Once more, let u ∈ V (Ci), v ∈ V (Cj), p ∈ V (Ci), q ∈ V (Cj) such that any path from
a vertex in Ci to any vertex in Cj in H2 contains the subpath p− q, and let i < k. As
in the proof of Theorem 1.5, if u is a boundary vertex for r, let u = u′. Otherwise, by
Observation 3.1, the shortest path between r and u in component Ci can be extended
to a shortest path r− u′, with u′ being a boundary vertex for r. We need to show that
dH1(u, u

′) 6= dH2(v, u
′), for any vertex v belonging to some other component Cj (as in

the previous theorems, if u and v are in the same component, they are distinguishable
by the resolving set of that component). If u is a boundary vertex itself, then we clearly
have dH1(u, u

′) = 0 6= dH2(v, u
′), so we may assume u 6= u′. If r does not distinguish u

and v, then dH1(u, r) = dH2(v, r) = dH1(p, r) + dH2(p, q) + dH2(q, v) and

dH1(u, r) > dH1(p, r), (3)

holds, since dH2(p, q) = 1.
Case I: There exists a shortest path from u′ to p, and consequently to v, that passes

through u. Then we have dH2(u
′, v) = dH1(u

′, u) + dH1(u, p) + dH2(p, v) > dH1(u
′, u).

Thus u and v have different distances to u′, and they are distinguishable.
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Figure 6. Proof of Theorem 1.6: Extending the shortest path r − u to
a shortest path r − u′.

Case II: All shortest paths from u′ to p, and consequently to v, do not pass through
u. Let b be the vertex closest to u on this path, such that the path b − u′ is common
to both paths p− u′ and r− u′. Note that b might coincide with u′, but not with u, as
this is already handled by Case I. Next, we claim that at least one shortest path r − b
passes through u.

Let us assume the opposite, i.e. there exists a vertex z such that

dH1(r, u) + dH1(u, b) > dH1(r, z) + dH1(z, b). (4)

If there are several such z, we pick any vertex z minimizing the right hand side. This
vertex z can also be vertex p itself. Now let a be a vertex that immediately pre-
cedes b on the (directed) path u − u′, as illustrated in Figure 6. Such a vertex ex-
ists, as b cannot be vertex u under the assumptions of Case II. Then dH1(r, a) =
min {dH1(r, z) + dH1(z, b) + 1, dH1(r, u) + dH1(u, b)− 1}. Indeed, dH1(r, a) cannot be
smaller than dH1(r, u) + dH1(u, b) − 1, as otherwise the shortest path r − u could not
have been extended to a shortest path r − b. Now, if the first value is smaller, we
have dH1(r, a) > dH1(r, b), which is not possible as the distance from vertex r does
not decrease along the extended path r − u′. If the second value is smaller or both
values are equal, and yet we have that (4) holds, then we have dH1(r, u) + dH1(u, b) =
dH1(r, z) + dH1(z, b) + 1, and thus dH1(r, a) = dH1(r, b). This implies that again the
shortest path r−u could be extended only to r−a, and not to r− b, which contradicts
our assumptions and proves the claim.

Since at least one shortest path r − b passes through u, we have

dH1(r, u) + dH1(u, b) ≤ dH1(r, p) + dH1(p, b). (5)

Since (3) holds, from (5) it follows that

dH1(u, b) < dH1(p, b). (6)

Now, dH2(v, u
′) = dH2(v, p) + dH2(p, b) + dH2(b, u

′) > dH2(v, p) + dH2(u, b) + dH2(b, u
′) >

dH1(u, u
′). The first inequality follows from (6), and the second inequality uses the fact

that dH2(v, p) = dH2(v, q) + dH2(q, p) ≥ 1. Therefore, u and v have different distances
to the boundary vertex u′, and they are thus distinguishable by a boundary vertex of
a vertex belonging to the resolving set. The theorem follows. �

Remark 3.2. Inspecting the proofs of Theorems 1.1, 1.3, 1.4, we see that when com-
paring two vertices from Ci and Cj, in fact only the structure of Ci and of its resolving
set matters. Therefore, whenever one of the components of the observed disconnected
graph F is a tree, (cycle, or grid, respectively), then instead of including a resolving set
and its boundary vertices, it is sufficient to choose all leaves in the case the component
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is a tree (two neighboring vertices together with vertex at distance at least n−2
2

from both

of them in the case of the even cycle on n vertices, two vertices at distance n−1
2

from
each other in the case of an odd cycle on n vertices, and three corner vertices in the
case of the grid, respectively). Note that this might be better than the bound claimed by
Theorem 1.6, which for example in the case of the grid requires all four corner points
to be chosen.

4. Concluding remarks

We have introduced and analyzed the concept of a generalized metric dimension for
different graph classes. The proposed metric enables the introduction of uncertainty
in graph topology in problems modeled with metric dimension. One such problem is
to find the minimum number of observed nodes needed for identification of the source
node of network diffusion, in the settings where knowing the full network topology is
not feasible.

We have given exact answers on this generalized metric dimension for trees, cycles,
grids, and complete graphs, and have given general upper bounds for arbitrary graphs
in terms of their boundary. Needless to say, it would be interesting to determine this
number exactly for other graph classes, such as bipartite graphs, or to find tighter
bounds. Additionally, in practical scenarios involving network diffusion, links connect-
ing the vertices of the network represent stochastic propagation times of some rumor or
a virus. Hence, it would be of practical interest to analyze a suitably defined stochastic
version of both the standard and generalized metric dimension problems.
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