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The metric dimension of a connected graph G is the minimum number of vertices in a subset S of the vertex set of G such that all other vertices are uniquely determined by their distances to the vertices in S. We introduce and analyze the concept of generalized metric dimension of a disconnected graph, which corresponds to the minimum number of vertices in a subset S such that all other vertices have unique distances to it in all connected graphs that result from completing a given disconnected graph. This generalization allows for incomplete knowledge of the underlying graph in applications such as identifying sources of infection. We quantify the generalized metric dimension exactly when the disconnected components are trees, cycles, grids, complete graphs and give general upper bounds on this number in terms of the boundary of the graph.

Introduction

Let G be a finite, simple, connected graph with |V (G)| = n vertices. 1 For a subset R ⊆ V (G) with |R| = r, and a vertex v ∈ V (G), define d(v, R) to be the r-dimensional vector whose i-th coordinate d(v, R) i is the length of the shortest path between v and the i-th vertex of R. We call a set R ⊆ V (G) a resolving set if for any pair of vertices v, w ∈ V (G), d(v, R) = d(w, R). Clearly, the entire vertex set V (G) is always a resolving set, and so is R = V (G) \ {v} for every vertex v. The metric dimension β(G) is then the smallest cardinality of a resolving set. We have the trivial inequalities 1 ≤ β(G) ≤ n-1, with the lower bound attained for a path, and the upper bound for the complete graph. The metric dimension was introduced by Slater [START_REF] Slater | Leaves of trees[END_REF] in the mid-1970s, and by Harary and Melter [START_REF] Harary | The metric dimension of a graph[END_REF]. As a start, Slater [START_REF] Slater | Leaves of trees[END_REF] determined the metric dimension of trees. Two decades later, Khuller, Raghavachari and Rosenfeld [START_REF] Khuller | Landmarks in graphs[END_REF] gave a linear-time algorithm for computing the metric dimension of a tree, and characterized the graphs with metric dimensions 1 and 2. The metric dimension for many graph classes is known, including random graphs [START_REF] Bollobás | Metric dimension for random graphs[END_REF], and its calculation has also been extensively studied from a computational complexity point of view (see [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF][START_REF] Khuller | Landmarks in graphs[END_REF][START_REF] Díaz | On the complexity of metric dimension[END_REF]).

In this paper we introduce and analyze the concept of generalized metric dimension: we are given a finite, simple, disconnected graph F = (V, E) with |V | = n consisting of k connected components, denoted by C i , for i = 1, . . . k. Denote the class H(F ) to be the class of all possible connected graphs that can be constructed by adding k -1 edges. For a graph H 1 ∈ H(F ), a vertex u ∈ V and a set O ⊆ V , denote by d H 1 (u, O) the distance vector of u to the set O in the graph H 1 , that is, (d H 1 (u, O)) i is the length of the shortest path between u and the i-th vertex of O in the graph H 1 . By a generalized resolving set of a disconnected graph F , we denote a set of vertices O such that for any two different vertices u and v, and any two graphs

H 1 , H 2 ∈ H(F ), d H 1 (u, O) = d H 2 (v, O).
Denote by γ(F ), the so called generalized metric dimension, the cardinality of a smallest generalized resolving set of a graph F . Note that max

H i ∈H(F ) β(H i ) ≤ γ(F ) ≤ n -1.
Motivation. The introduction of resolving set by Slater [START_REF] Slater | Leaves of trees[END_REF] was motivated by the application of placement of a minimum number of sonar detectors in a network, while Khuller, Raghavachari and Rosenfeld [START_REF] Khuller | Landmarks in graphs[END_REF] were interested in finding the minimum number of landmarks needed for robot navigation on a graph. Recently, the problem of finding the minimum number of agents whose infection times need to be observed in order to identify the first infected agent for a simplified diffusion model was cast as finding the metric dimension of the graph [START_REF] Zejnilovic | Network observability and localization of the source of diffusion based on a subset of nodes[END_REF]. Similarly, to identify a rumor source in a network based on the times when the nodes first heard a rumor, observed nodes should form a resolving set.

However, in many practical applications, the network topology is only partially known. Often, local connections within communities are well known, while the connections between them are not always observed. This may happen when diseases spread from one community to another through random contact, rather than a known friendship connection, or when novel information is spread through weak, rather than strong, social ties. Hence, the problem of finding the minimum number of network devices or agents needs to be considered for scenarios where not all the edges of the graph are known. We model this incomplete knowledge by assuming that the graph of interest is disconnected, with k components and k -1 unobserved edges connecting the components, and we consequently introduce the concept of generalized metric dimension. In order to identify the source of infection or a rumor in such a setting, the group of agents that needs to be observed should form a generalized resolving set. Since the resources for observations are often limited, finding the smallest such group of agents, or equivalently, the generalized metric dimension of the graph, becomes a problem of interest.

Notation. For a connected graph G, i, j ∈ V (G), denote an i -j-path to be a sequence of all different vertices v 0 = i, v 1 , . . . , v = j, such that for i = 0, . . . , -1, {v i , v i+1 } ∈ E(G). Let L (C i ) denote the set of all leaves of component C i , and K (C i ) the set of vertices of degree 3 or more that are connected by paths to one or more leaves, when C i is a tree. For a fixed component C j of F , denote by S j a minimum cardinality resolving set of C j (so that β(C j ) = |S j |.) The M × N -grid with M, N ≥ 2, is the graph whose vertices correspond to the points in the plane with integer coordinates, x-coordinates being in the range 0, . . . , M -1, y-coordinates in the range 0, . . . , N -1, and two vertices are connected by an edge whenever the corresponding points are at Euclidean distance 1. The four vertices of degree two are called corner vertices.

For a connected graph G, a vertex v is a boundary vertex of u if d G (w, u) ≤ d G (v, u), for all w that are neighbors of v [START_REF] Chartrand | Boundary vertices in graphs[END_REF]. A vertex v is a boundary vertex of G if it is a boundary vertex of some vertex of G. The set of all boundary vertices of a vertex u is denoted as ∂(u). The boundary of graph G, ∂(G), is the set of all boundary vertices of G. It is well known that the boundary is a resolving set, see [START_REF] Hernando | Some structural, metric and convex properties on the boundary of a graph[END_REF]. For example, the boundary of a tree is the set of its leaves, whereas the boundary of a grid is the set of its 4 corner vertices, and the boundary of a cycle is the whole vertex set [START_REF] Hernando | Some structural, metric and convex properties on the boundary of a graph[END_REF].

Statements of results. We state the main results of this paper which are then proved in the following sections.

Theorem 1.1. Let F be a graph of k components, where each component is a tree. Then γ(F

) = min j k i=1,i =j |L (C i ) | + |S j |,
unless all components are isolated vertices, in which case γ(F ) = k -1. In the first case, we may assume without loss of generality, that the minimum is attained for j = k. Then the set consisting of all leaves from components 1, . . . , k -1 together with a minimum cardinality resolving set of the k-th component is a minimum cardinality generalized resolving set of the graph F . Theorem 1.2. Let F be a graph of k components, where each component is a complete graph of at least 3 vertices. Then γ(F ) = n -k. A set consisting of all but one vertex of each component is a minimum cardinality generalized resolving set of the graph F . Theorem 1.3. Let F be a graph of k components, where each component is a grid. Then γ(F ) = 3k -1.

Let O i = {r i 1 , r i 2 , r i 3 } denote a set of three corner vertices from component C i . Then O = ∪ k-1 i=1 O i ∪ S k is a minimum cardinality generalized resolving set of F .
Theorem 1.4. Let F be a graph of k components, where each component is a cycle of size greater than 3. Let k e denote the number of components with an even number of vertices. Then γ(F ) = 2k + k e -1, if k e > 0, and γ(F ) = 2k, otherwise. For a component C i with an even number of vertices n i , define

O i = {r i 1 , r i 2 , r i 3 }, where r i 1 , r i 2 are two neighboring vertices in C i and r i 3 is a vertex at distance at least n i -2
2 from both of them, also in C i . For a component C i with an odd number of vertices n i , define

O i = {r i 1 , r i 2 }, where r i 1 and r i 2 are two vertices of C i that are at distance n i -1 2 from each other. If k e = 0, ∪ k i=1 O k is a minimum cardinality generalized resolving set of F . If k e > 0, assume without loss of generality that C k is a component with an even number of vertices. Then O = ∪ k-1 i=1 O i ∪ S k is a minimum cardinality generalized resolving set of F .
For general graph classes we have the following results, the second one tightening the first one, as the boundary of a graph can be very large. 

= ∪ k-1 i=1 ∂(C i ) ∪ S k
is a generalized resolving set for F . Theorem 1.6. Let F be an arbitrary graph with k connected components, let ∂(S i ) denote the boundary of the resolving set S i , and let

O i = S i ∪ ∂(S i ). Then O = ∪ k-1 i=1 O i ∪ S k is a generalized resolving set for F .

Proofs of main results for special graph classes

Proof of Theorem 1.1. We first prove the claim of sufficiency. If both u and v are any two vertices in the same component, then u and v are distinguishable as the set of all the leaves of a tree is a resolving set. Hence we may assume u ∈ V (C i ) and v ∈ V (C j ) for i = j. Let p be a vertex in C i and q a vertex in C j , such that any path from a vertex in C i to any vertex in C j in H 2 contains the subpath p -q. Note that

d H 2 (p, q) ≥ 1. If u is a leaf, as it is contained in L (C i ), it is distinguishable from v, since 0 = d H 1 (u, u) < d H 2 (u, v). If u is not a leaf, and u = p, then for any leaf r ∈ L (C i ), d H 2 (r, v) = d H 2 (r, p) + d H 2 (p, q) + d H 2 (q, v) ≥ d H 1 (r, p) + d H 2 (p, q) > d H 1 (r, p).
Thus, the two distance vectors are not equal either. Otherwise, if u is not a leaf, and u = p, let r be a leaf in L (C i ) such that u is on the path from r to p (such a leaf clearly exists). Then

d H 2 (r, v) = d H 2 (r, u)+d H 2 (u, p)+d H 2 (p, q)+d H 2 (q, v) > d H 1 (r, u)+d H 1 (u, p) > d H 1 (r, u).
Thus, the two distance vectors also in this case are not equal, which completes the proof of sufficiency. Now, we prove the claim of necessity. Let O be an arbitrary generalized resolving set. We will show that O has to be at least of the size given by the sufficient condition.

Case I: Let C i and C j be two components with at least 2 vertices, such that both have a leaf which is not included in O. Let u be such a leaf in component C i with neighbor u and v be a leaf in C j with neighbor v , such that u, v / ∈ O. We claim that u and v are indistinguishable, as illustrated in Figure 1a. We can construct H 1 by connecting u with v , and u with some vertex z of any other component C (if there are more than 2 components). H 2 is then constructed by connecting v with u and v with the same vertex z as in H 1 ; the other newly added edges are the same in H 1 and H 2 . Now, we have Case II: C i consists of only one vertex, u, and C j has more than 2 vertices. With the same arguments as in Case I, it can be seen that at least |S j | vertices from component C j have to be included in O. We will show now that u has to be included in O as well. In the first sub-case, when C j is not a path, then H 1 is constructed by connecting u with a vertex c in K (C j ), and then connecting c to any other component C , = i, j. Let v be the leaf associated with c, but not in O and let v be a neighbor of c in C j which lies on the path c -v . Then u is indistinguishable within H 1 from v, as shown in Figure 2a. As for the second sub-case, when C j is a path, H 1 can be constructed by connecting u with the terminal vertex c of C j where c ∈ O, and then connecting c to a vertex z of any other component C . Let v be a vertex in C j which is a neighbor of c.

d H 1 (u, O) = d H 2 (v, O), as follows. For any vertex r ∈ C i \{u}, we have d H 1 (u, r) = (a) C j is not a path. (b) C j is a path.
1 + d H 1 (u , r), and d H 2 (v, r) = d H 2 (u , r) + 1 = d H 1 (u , r) + 1. For any vertex r ∈ C j , we have d H 1 (u, r) = d H 1 (v , r)+1, and d H 2 (v, r) = d H 2 (v , r)+1 = d H 1 (v , r)+1. Finally, for a vertex r ∈ C , = i, j, we have d H 1 (u, r) = 1 + d H 1 (z, r) = 1 + d H 2 (z, r) = d H 2 (v,
If u is not chosen, u is indistinguishable within H 1 from v, as can be seen in Figure 2b. Hence, u must also be included in O.

Case III: Both C i and C j contain only one vertex. Call these u and v, respectively. At least one of them has to be included in O: otherwise, we can construct H 1 by connecting both u and v to some vertex z from any other component C , = i, j, and then u and v are indistinguishable within H 1 .

Therefore, for any pair of components C i and C j , a generalized resolving set O has to include all leaves from one component and a resolving set from the other, unless both have size 1, in which case only 1 vertex is enough. Hence, if there exists at least one component which has 2 or more vertices, from all but one component all the leaves have to be taken, and from the remaining component, at least a resolving set. If all k components have only one vertex, the set O has to contain k -1 vertices.

Proof of Theorem 1.2. First, we prove the claim of sufficiency. Let us denote the set of all but one vertex on component C i by O i . If u and v are in the same component, they are distinguishable, since each O i is a resolving set of component C i [START_REF] Khuller | Landmarks in graphs[END_REF]. Hence, let us assume that vertex u ∈ V (C i ) is not included in O i , and that vertex v ∈ V (C j ) is not included in O j . Let p ∈ V (C i ) and q ∈ V (C j ), such that p -q is the path connecting components C i and C j in H 2 , so that d H 2 (p, q) ≥ 1. We prove the claim by contradiction and assume that the following relations hold:

d H 1 (u, r) = 1 = d H 2 (v, r) = d H 2 (v, q) + d H 2 (q, p) + d H 2 (p, r),
for every r ∈ O i . Then d H 2 (p, r) = 0 would have to hold for all r ∈ O i , which is not possible, and proves the claim.

To prove the claim of necessity, we assume that in one component C i there are two vertices, u and v, that are not included in O i . We construct H 1 by adding the edges between a fixed vertex z ∈ V (C i )\{u, v} and some fixed vertex in each other component. Then we have d H 1 (u, r) = d H 1 (v, r) for all r ∈ O l , l = 1, . . . , k, and this completes the proof. The theorem for trees discusses the case when all the components have 1 or 2 vertices.

Proof of Theorem 1.3. Let us denote the size of the grid C i as x i × y i . We assume that each vertex l ∈ V (C i ) has assigned to it a position vector (x l , y l ) which represents its location in the integer lattice C i , with the first selected corner vertex r i 1 at position (0, 0), r i 2 at (x i , 0) and r i 3 at (0, y i ). First, let us prove the claim of sufficiency. If u and v are in the same component, they are distinguishable, since any two corner vertices having the same value in one coordinate form a resolving set of a grid [START_REF] Khuller | Landmarks in graphs[END_REF]. Hence, let us assume that u ∈ V (C i ) and v ∈ V (C j ), for i = j and i < k. Let p be a vertex in C i and q a vertex in C j , such that pq is the edge that connects components C i and r,u). Therefore u and v are distinguishable. For u = p, let us prove the claim by contradiction. Assuming

C j in H 2 , with d H 2 (p, q) ≥ 1. If u = p, then for all r ∈ O i we have d H 2 (v, r) = d H 2 (r, p) + d H 2 (p, q) + d H 2 (q, v) > d H 2 (r, p) = d H 1 (
d H 1 (u, O i ) = d H 2 (v, O i )
, we obtain the following equations:

d H 1 (u, r i 1 ) = x u + y u = d H 2 (v, r i 1 ) = x p + y p + d H 2 (p, q) + d H 2 (q, v) d H 1 (u, r i 2 ) = x i -x u + y u = d H 2 (v, r i 2 ) = x i -x p + y p + d H 2 (p, q) + d H 2 (q, v) d H 1 (u, r i 3 ) = x u + y i -y u = d H 2 (v, r i 3 ) = x p + y i -y p + d H 2 (p, q) + d H 2 (q, v). ( 1 
)
The system of equations ( 1) has a single solution x u = x p and y u = y p , and

d H 2 (p, q) + d H 2 (q, v) = 0, contradicting d H 2 (p, q) ≥ 1. The set ∪ k-1 i=1 O i ∪ S k
is a set of cardinality 3k -1, and this completes the sufficiency claim.

For the claim of necessity, let us assume that there exist two components C i and C j , such that from each of them, only two vertices are chosen. Let {r i 1 , r i 2 } be the set of two vertices from C i and let r j 1 , r j 2 be the set of two vertices from C j that are included in O.

Case I: In at least one component, the vertices included in O are not two corner vertices with one identical coordinate. Let us assume that this is the case with C i . We claim that there exist two vertices u and v in C i which are indistinguishable by r i 1 and r i 2 . Denote by (x r i 1 , y r i 1 ) and by (x r i 2 , y r i 2 ) the positions at which r i 1 and r i 2 are located in the grid. First, let us consider the sub-case when r i 1 and r i 2 differ in both coordinates, as shown in Figure 3a. Without loss of generality, let us assume that y r i 1 < y r i 2 . Then let u be a vertex at (x r i 2 , y r i 1 ) and v be a vertex at position (x r i 1 , y

r i 1 + |x r i 2 -x r i 1 |). Now we have d C i (u, r i 1 ) = |x r i 2 -x r i 1 | = d C i (v, r i 1 ) and d C i (u, r i 2 ) = y r i 2 -y r i 1 = d C i (v, r i 2 )
, and hence the vertices u and v are indistinguishable. In the second sub-case, r i 1 and r i 2 differ in only one coordinate, as Figure 3b illustrates. Then, let u and v be two neighbors of r i 1 , which are not on the shortest path r i 1 -r i 2 . These two vertices exist, as all vertices on the grid, except the corner vertices, have at least 3 neighbors. Now, we have

d C i (u, r i 1 ) = 1 = d C i (v, r i 1 ) and d C i (u, r i 2 ) = 1 + d C i (r i 1 , r i 2 ) = d C i (v, r i 2 )
. Therefore, there always exist two vertices u and v, such that they are not distinguishable by any two vertices of C i which are not two corner vertices with one identical coordinate. Constructing a tree H 1 by connecting any vertex z from any other component C , = i, with either r i 1 or r i 2 , we see that u and v still are indistinguishable by any vertex in O. Case II: From both components C i and C j , two corner vertices with one identical coordinate are included in O. Let u be a vertex on C i that is a neighbor of r i 1 such that it shares one coordinate with both r i 1 and r i 2 . Then let u be a neighbor of u such that it does not share any coordinates with u . Similarly, let v be a vertex in C j that is a neighbor of r j 1 such that is shares one coordinate with both r j 1 and r j 2 . Then let v be a neighbor of v such that it does not share any coordinates with v . We can construct H 1 by connecting u with v and u with any vertex z of any other component (if there are more than 2 components). Then H 2 is constructed by connecting v with u and v with the same vertex z as in H 1 , as shown in Figure 3c. The distances of u and v from 

d H 1 (u, r i 1 ) = d H 2 (v, r i 1 ) = 2 d H 1 (u, r i 2 ) = d H 2 (v, r i 2 ) = 1 + d H 1 (u , r i 2 ) d H 1 (u, r j 1 ) = d H 2 (v, r j 1 ) = 2 d H 1 (u, r j 2 ) = d H 2 (v, r j 2 ) = 1 + d H 2 (v , r j 2 ) d H 1 (u, r) = d H 2 (v, r) = 1 + d H 1 (z, r),
for r ∈ C , = i, = j. Hence the vertices u and v are indistinguishable.

Therefore, at least 3 vertices of component C i or component C j have to be included in O. Without loss of generality, let us assume that 3 vertices in C i are included in O. Now we assume that only |S j | -1 = 1 vertices are selected from C j . Then there exist two vertices u and v in component C j , which are at the same distance from the only vertex r included from S j . We construct H 1 by connecting any vertex z from any other component to vertex r in component C j . Observe that the vertices u and v are still not distinguishable within H 1 , and hence at least |S j | = 2 vertices have to be included from component C j . In conclusion, for any two components, at least 3 vertices from one and 2 vertices from the other one have to be included in O, and thus |O| ≥ 3(k -1) + 2 = 3k -1.

Proof of Theorem 1.4. First, let us prove the claim of sufficiency. As in Theorem 1.3, let us assume that vertex u is located in component C i and vertex v is in component C j (when u and v belong to the same component, they are clearly distinguishable, as any two neighboring vertices of an even cycle and any two vertices at distance (n i -1)/2 in the case of an odd cycle form a resolving set of a cycle). Let components C i and C j be connected through the path p -q, with p ∈ V (C i ), and q ∈ V (C j ). If the vertices u and v are not distinguishable by O i , then

d H 1 (u, r) = d H 2 (v, r) = d H 1 (p, r) + d H 2 (p, q) + d H 2 (q, v
) holds for some H 1 and H 2 and all r ∈ O i . Therefore, Case II: All shortest paths from u to p, and consequently to v, do not pass through u. Let b be the vertex closest to u on this path, such that the path b -u is common to both paths p -u and r -u . Note that b might coincide with u , but not with u, as this is already handled by Case I. Next, we claim that at least one shortest path r -b passes through u.

d H 1 (u, r) > d H 1 (p, r) (2) 
Let us assume the opposite, i.e. there exists a vertex z such that

d H 1 (r, u) + d H 1 (u, b) > d H 1 (r, z) + d H 1 (z, b). (4) 
If there are several such z, we pick any vertex z minimizing the right hand side. This vertex z can also be vertex p itself. Now let a be a vertex that immediately precedes b on the (directed) path u -u , as illustrated in Figure 6. Such a vertex exists, as b cannot be vertex u under the assumptions of Case II. Then ). This implies that again the shortest path r -u could be extended only to r -a, and not to r -b, which contradicts our assumptions and proves the claim. Since at least one shortest path r -b passes through u, we have

d H 1 (r, a) = min {d H 1 (r, z) + d H 1 (z, b) + 1, d H 1 (r, u) + d H 1 (u, b) -1}. Indeed, d H 1 (r, a) cannot be smaller than d H 1 (r, u) + d H 1 (u, b) -1,
d H 1 (r, u) + d H 1 (u, b) ≤ d H 1 (r, p) + d H 1 (p, b). (5) 
Since (3) holds, from (5) it follows that

d H 1 (u, b) < d H 1 (p, b). (6) Now, d H 2 (v, u ) = d H 2 (v, p) + d H 2 (p, b) + d H 2 (b, u ) > d H 2 (v, p) + d H 2 (u, b) + d H 2 (b, u ) > d H 1 (u, u ).
The first inequality follows from [START_REF] Díaz | On the complexity of metric dimension[END_REF], and the second inequality uses the fact that d

H 2 (v, p) = d H 2 (v, q) + d H 2 (q, p) ≥ 1.
Therefore, u and v have different distances to the boundary vertex u , and they are thus distinguishable by a boundary vertex of a vertex belonging to the resolving set. The theorem follows.

Remark 3.2. Inspecting the proofs of Theorems 1.1, 1.3, 1.4, we see that when comparing two vertices from C i and C j , in fact only the structure of C i and of its resolving set matters. Therefore, whenever one of the components of the observed disconnected graph F is a tree, (cycle, or grid, respectively), then instead of including a resolving set and its boundary vertices, it is sufficient to choose all leaves in the case the component is a tree (two neighboring vertices together with vertex at distance at least n-2 2 from both of them in the case of the even cycle on n vertices, two vertices at distance n-1 2 from each other in the case of an odd cycle on n vertices, and three corner vertices in the case of the grid, respectively). Note that this might be better than the bound claimed by Theorem 1.6, which for example in the case of the grid requires all four corner points to be chosen.

Concluding remarks

We have introduced and analyzed the concept of a generalized metric dimension for different graph classes. The proposed metric enables the introduction of uncertainty in graph topology in problems modeled with metric dimension. One such problem is to find the minimum number of observed nodes needed for identification of the source node of network diffusion, in the settings where knowing the full network topology is not feasible.

We have given exact answers on this generalized metric dimension for trees, cycles, grids, and complete graphs, and have given general upper bounds for arbitrary graphs in terms of their boundary. Needless to say, it would be interesting to determine this number exactly for other graph classes, such as bipartite graphs, or to find tighter bounds. Additionally, in practical scenarios involving network diffusion, links connecting the vertices of the network represent stochastic propagation times of some rumor or a virus. Hence, it would be of practical interest to analyze a suitably defined stochastic version of both the standard and generalized metric dimension problems.
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 a Both components have a leaf which is not included in O. (b) All leaves of C i are in O and C j is not a path. (c) All leaves of C i are in O and C j is a path.

Figure 1 .

 1 Figure 1. Case I in the Proof of Theorem 1.1: Constructing trees H 1 and H 2 when both components C i and C j have at least two nodes.

Figure 2 .

 2 Figure 2. Case II in the Proof of Theorem 1.1: Constructing trees H 1 and H 2 when component C i has only one node.

  r). Thus the vertices u and v are indistinguishable, and the claim holds. Hence, either all the leaves of component C i or component C j have to be included in O. Without loss of generality, let us assume that all the leaves of C i are included in O. Now we assume that only |S j | -1 vertices are selected from the component C j . In the first sub-case, when C j is not a path, from[START_REF] Chartrand | Resolvability in graphs and the metric dimension of a graph[END_REF], we haveS j = |L (C j ) | -|K (C j ) |. If only |S j | -1vertices were taken from C j , then there exists a vertex c in K (C j ) such that two of its associated leaves u and v are both not in O. But then there exists a vertex u on the path c -u, and a vertex v on the path c -v, such that d C j (u , c) = d C j (v , c). Note that u might coincide with u, and v might coincide with v. The vertices u and v are indistinguishable from each other in C j . Constructing a tree H 1 by connecting any vertex z from any other component C , = j, with any fixed vertex in K (C j ), we see that u and v still are indistinguishable by vertices in O, as shown in Figure1b. In the second sub-case, when C j is a path with terminal vertices u and v, S j comprises only one terminal vertex. If neither of the terminal vertices of C j are in O, H 1 can be constructed by connecting one of its terminal vertices u with any vertex z of any other component C , while H 2 is constructed by connecting z to the other terminal vertex v, and vertices u and v are indistinguishable, as Figure1cshows. Thus, at least |S j | vertices have to be taken from C j .

(a) The vertices r i 1 and r i 2

 12 are not corner vertices and they differ in both coordinates. (b) The vertices r i 1 and r i 2 are not corner vertices and they differ in one coordinate.(c) The vertices r i 1 and r i 2 are two corner vertices with one identical coordinate.

Figure 3 .

 3 Figure 3. Proof of Theorem 1.3: Constructing H 1 and H 2 when the components are grids.

Figure 6 .

 6 Figure 6. Proof of Theorem 1.6: Extending the shortest path r -u to a shortest path r -u .

  as otherwise the shortest path r -u could not have been extended to a shortest path r -b. Now, if the first value is smaller, we have d H 1 (r, a) > d H 1 (r, b), which is not possible as the distance from vertex r does not decrease along the extended path r -u . If the second value is smaller or both values are equal, and yet we have that (4) holds, then we have d H 1 (r, u) + d H 1 (u, b) = d H 1 (r, z) + d H 1 (z, b) + 1, and thus d H 1 (r, a) = d H 1 (r, b

This research was partially supported by Fundação para a Ciência e a Tecnologia (project PEst-OE/EEI/LA0009/2013, a PhD grant from the Carnegie Mellon-Portugal program) and EU FP7 project MORPH (grant agreement no. 288704).

Case I: Both components C i and C j have an even number of vertices. Let us first consider the sub-case where both p and u lie in the same half of the cycle, i.e., both lie either on the shorter path r i 2 -r i 3 or on the shorter path r i 1 -r i 3 , as shown in Figure 4a. Suppose without loss of generality that they both lie on the shorter path r i 2 -r i 3 . As one of the vertices out of {u, p} is closer to r i 3 and the other one is closer to r i 2 , (2) cannot hold simultaneously for both r i 2 and r i 3 . The other sub-case that needs to be considered is when u and p lie in different semi-cycles, one on the shorter path r i 2 -r i 3 , and the other on the shorter path r i 1 -r i 3 , as illustrated in Figure 4b. Then either we have

Case II: At least one of the components C i or C j has an odd number of vertices. Let us assume that this is the case with C i . Similarly, as in Case I, let us first consider the sub-case where both p and u lie in the same half of the cycle, i.e. both on the shorter path r i 1 -r i 2 or both on the longer path r i 1 -r i 2 . As before, one of the vertices out of {u, p} is closer to r i 1 , and the other is closer to r i 2 , and thus (2) cannot hold simultaneously for both r i 1 and r i 2 . The other sub-case that needs to be considered is when u and p lie in different semi-cycles, one on the shorter path r i 1 -r i 2 , of length n i -1 2 , and the other on the longer path r i 1 -r i 2 , of length n i +1 2 . Then either we have

In either case, we get that (2) cannot hold for both r = r i 1 and r = r i 2 . Note that when comparing components C i and C j with i = j, only vertices of the generalized resolving set coming from component C i were used to distinguish between any two vertices from components C i and C j . Hence, for one component, say, C k , it is enough to choose a resolving set, that is, a set that distinguishes all vertices within C k (a minimum cardinality resolving set is always of size 2). Hence, if k e > 0, we may assume that C k is an even cycle. Thus only 2 vertices are chosen from C k , and from all other even cycles 3 vertices are chosen. Thus, in this case 2k + k e -1 vertices are enough. If k e = 0, then 2 vertices are chosen from each component, giving the bound 2k in this case. Now, we prove the claim of necessity. Observe first that clearly at least 2 vertices of each cycle have to be chosen, as otherwise the two neighbors of the chosen vertex r cannot be separated; one can construct a graph H 1 by connecting r with one fixed vertex of each other component, and the two neighbors of r are indistinguishable.

Let us first assume that there exist two components C i and C j both containing an even number of vertices, and from each component, only two vertices are included in O. Denote by r i 1 , r i 2 the chosen from C i and by r j 1 , r j 2 the vertices chosen from C j . If in at least one component, say C i , the two selected vertices r i 1 and r i 2 are at distance exactly n i 2 from each other, let u and v be two neighbors of r i 1 . Note that u and v are equidistant from both r i 1 and r i 2 . Constructing H 1 by connecting any vertex z from any other component C to r i 1 , the vertices u and v are still not distinguishable within H 1 , as shown in Figure 5a. Otherwise, let us assume that in both components C i and C j the vertices selected in O are not at distance exactly n i 2 ( n j 2 , respectively) from each other. Let u then be a neighbor of r i 1 in C i that is on the longer path r i 1 -r i 2 , and let v be a neighbor of r j 1 in C j that is on the longer path r j 1 -r j 2 . We can construct H 1 by connecting u with r j 1 and u with some vertex z of any other component (if there are more than 2 components). H 2 is constructed by connecting v with r i 1 and v with the same vertex z as in H 1 , as shown in Figure 5b. The distances of the vertices u, v from the vertices in O are

for r ∈ O l , l = i, j. Hence the vertices u and v are indistinguishable. Therefore, if both C i and C j have an even number of vertices, at least 3 vertices of component C i or 3 vertices of component C j have to be included in O. Hence, from all but one component with an even number of vertices, 3 vertices have to be chosen, and from the remaining ones, at least 2. This completes the proof.

Proofs of results for general graph classes

We start with the following easy observation. Observation 3.1. Let G be a connected graph. Consider any two vertices r and u of G, and consider a shortest path r -u. Then either u is a boundary vertex for r, or there exists some vertex u such that the shortest path r -u can be extended to a shortest path r -u , with u being a boundary vertex for r.

Proof. If u is not a boundary vertex for r, then by definition there exists a neighbor w of u such that d G (w, r) > d G (u, r). Thus, d G (w, r) ≥ d G (u, r) + 1, and in particular, a shortest path r -u can be extended to w such that along this extended path, the lower bound can be attained, and thus d G (w, r) = d G (u, r) + 1. Hence, the path r -w going through u is also a shortest path r -w. If w is then a boundary vertex for r, we are done, and otherwise we iteratively apply the same argument with w playing the role of u. The claim follows.

We are now ready to show our results in terms of boundary vertices.

Proof of Theorem 1.5. Since the boundary is a resolving set, any two vertices belonging to the same component are distinguishable by a set that contains the boundaries of k -1 component and a resolving set of the k-th component. As before, let u ∈ V (C i ), v ∈ V (C j ), let p ∈ V (C i ) and q ∈ V (C j ) such that any path from a vertex in C i to any vertex in C j in H 2 contains the subpath p -q, and let i < k. As in the previous theorems, we need to show only the case u = p. If u is a boundary vertex for p, let u = u. Otherwise, the shortest path between p and u in component C i can be extended to a shortest path p -u by Observation 3.1, such that u is a boundary vertex of p. For a fixed shortest path p -u we have d

Proof of Theorem 1.6. Let r ∈ S i be a vertex from a resolving set of a component C i . Once more, let u ∈ V (C i ), v ∈ V (C j ), p ∈ V (C i ), q ∈ V (C j ) such that any path from a vertex in C i to any vertex in C j in H 2 contains the subpath p -q, and let i < k. As in the proof of Theorem 1.5, if u is a boundary vertex for r, let u = u . Otherwise, by Observation 3.1, the shortest path between r and u in component C i can be extended to a shortest path r -u , with u being a boundary vertex for r. We need to show that d H 1 (u, u ) = d H 2 (v, u ), for any vertex v belonging to some other component C j (as in the previous theorems, if u and v are in the same component, they are distinguishable by the resolving set of that component). If u is a boundary vertex itself, then we clearly have d H 1 (u, u ) = 0 = d H 2 (v, u ), so we may assume u = u . If r does not distinguish u and v, then d H 1 (u, r) = d H 2 (v, r) = d H 1 (p, r) + d H 2 (p, q) + d H 2 (q, v) and

holds, since d H 2 (p, q) = 1. Case I: There exists a shortest path from u to p, and consequently to v, that passes through u. Then we have d H 2 (u , v) = d H 1 (u , u) + d H 1 (u, p) + d H 2 (p, v) > d H 1 (u , u). Thus u and v have different distances to u , and they are distinguishable.