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Abstract

The cops-and-robber (CR) game has been used in mobile robotics as a discretized model
(played on a graph G) of pursuit/evasion problems. The “classic” CR version is a perfect
information game: the cops’ (pursuer’s) location is always known to the robber (evader)
and vice versa. Many variants of the classic game can be defined: the robber can be
invisible and also the robber can be either adversarial (tries to avoid capture) or drunk
(performs a random walk). Furthermore, the cops and robber can reside in either nodes or
edges of G. Several of these variants are relevant as models or robotic pursuit / evasion.
In this paper, we first define carefully several of the variants mentioned above and related
quantities such as the cop number and the capture time. Then we introduce and study
the cost of visibility (COV'), a quantitative measure of the increase in difficulty (from the
cops’ point of view) when the robber is invisible. In addition to our theoretical results, we
present algorithms which can be used to compute capture times and COV of graphs which
are analytically intractable. Finally, we present the results of applying these algorithms to
the numerical computation of COV.

1 Introduction

Pursuit / evasion (PE) and related problems (search, tracking, surveillance) have been the
subject of extensive research in the last fifty years and much of this research is connected to
mobile robotics [7]. When the environment is represented by a graph!, the original PE problem
is reduced to a graph game played between the pursuers and the evader.

In the current paper, inspired by Isler and Karnad’s recent work [21], we study the role
of information in cops-and-robber (CR) games, an important version of graph-based PE. By
“information” we mean specifically the players’ location. For example, we expect that when the
cops know the robber’s location they can do better than when the robber is “invisible”. Our
goal is to make precise the term “better”.

Reviews of the graph theoretic CR literature appear in [3, 5, 12]. In the “classical” CR
variant [30] it is assumed that the cops always know the robber’s location and vice versa. The
“invisible” variant, in which the cops cannot see the robber (but the robber always sees the

IFor instance, a floorplan can be modeled as a graph, with nodes corresponding to rooms and edges corre-
sponding to doors. Similarly, a maze can be represented by a graph with edges corresponding to tunnels and
nodes corresponding to intersections.



cops) has received less attention in the graph theoretic literature; among the few papers which
treat this case we mention [20, 21, 22, 9] and also [1] in which both cops and robber are invisible.

Both the visible and invisible CR variants are natural models for discretized robotic PE
problems; the connection has been noted and exploited relatively recently [20, 21, 38|. If it is
further assumed that the robber is not actively trying to avoid capture (the case of drunk robber)
we obtain a one-player graph game; this model has been used quite often in mobile robotics
[13, 16, 17, 26, 35] and especially (when assuming random robber movement) in publications such
as [19, 25, 32, 36, 37|, which utilize partially observable Markov decision processes (POMDP,
[15, 27, 29]). For a more general overview of pursuit/evasion and search problems in robotics,
the reader is referred to [7]; some of the works cited in this paper provide a useful background
to the current paper.

This paper is structured as follows. In Section 2 we present preliminary material, notation
and the definition of the “classical” CR game; we also introduce several node and edge CR
vartants. In Section 3 we define rigorously the cop number and capture time for the classical
CR game and the previously introduced CR variants. In Section 4 we study the cost of visibility
(COV). In Section 5 we present algorithms which compute capture time and optimal strategies
for several CR variants. In Section 6 we further study COV using computational experiments.
Finally, in Section 7 we summarize and present our conclusions.

2 Preliminaries

2.1 Notation

1. We use the following notations for sets: N denotes {1,2,...}; Ny denotes {0, 1,2,...}; [K]
denotes {1,...,K}; A—B={x:x € A, x ¢ B}, |A| denotes the cardinality of A (i.e., the
number of its elements).

2. A graph G = (V, E) consists of a node set V and an edge set E, where every e € E has
the form e = {x,y} C V. In other words, we are concerned with finite, undirected, simple
graphs; in addition we will always assume that G is connected and that G contains n
nodes: |V| = n. Furthermore, we will assume, without loss of generality, that the node
set is V. = {1,2,...,n}. Welet VK =V xV x...xV. We also define V3 C V? by

K times

VA ={(x,z): x € V} (it is the set of “diagonal” node pairs).

3. A directed graph (digraph) G = (V, E) consists of a node set V and an edge set E, where
every e € E has the form e = (z,y) € V x V. In other words, the edges of a digraph are
ordered pairs.

4. In graphs, the (open) neighborhood of some x € V'is N (z) = {y : {z,y} € E}; in digraphs
it is N(z) = {y: (z,y) € E}. In both cases, the closed neighborhood of x is N [x] =
N (z) U{z}.

5. Given a graph G = (V, E), its line graph L(G) = (V', E’) is defined as follows: the
node set is V' = F, i.e., it has one node for every edge of G; the edge set is defined by



having the nodes {u, v}, {x,y} € V' connected by an edge {{u,v},{z,y}} if and only if
{u,v} N{z,y}| =1 (i.e., if the original edges of G are adjacent).

6. We will write f (n) = o(g (n)) if and only if lim,, % = 0. Note that in this asymptotic

notation n denotes the parameter with respect to which asymptotics are considered. So
in later sections we will write o (n), o (M) etc.

2.2 The CR Game Family

The “classical” CR game can be described as follows. Player C controls K cops (with K > 1)
and player R controls a single robber. Cops and robber are moved along the edges of a graph
G = (V,E) in discrete time steps t € Ng. At time ¢, the robber’s location is ¥; € V' and the
cops’ locations are X, = (X}, X?,..., X[J) € VK (for t € Ny and k € [K]). The game is played
in turns; in the O-th turn first C places the cops on nodes of the graph and then R places the
robber; in the ¢-th turn, for ¢ > 0, first C moves the cops to X; and then R moves the robber to
Y;. Two types of moves are allowed: (a) sliding along a single edge and (b) staying in place; in
other words, for all ¢ and k, either {X} |, X} € F or X} | = X[; similarly, {Y;_1,Y;} € E or
Y;_1 = Y;. The cops win if they capture the robber, i.e., if there exist ¢ € Ny and k € [K] such
that Y; = XF; the robber wins if for all t € Ny and k € [K] we have Y; # XF. In what follows
we will describe these eventualities by the following “shorthand notation”: Y; € X; and Y; ¢ X,
(i.e., in this notation we consider X; as a set of cop positions).

In the classical game both C and R are adversarial: C plays to effect capture and R plays
to avoid it. But there also exist “drunk robber” versions, in which the robber simply performs
a random walk on G such that, for all Yu,v € V' we have

L if and only if u € N(v)

1 1
Pr (Yb = u) = E and Pr (Y;E—l-l = UD/t = U) — { [N (v)] (]_)

0 otherwise

In this case we can say that no R player is present (or, following a common formulation, we can
say that the R player is “Nature”).

If an R player exists, the cops’ locations are always known to him; on the other hand, the
robber can be either visible (his location is known to C) or inwisible (his location is unknown).
Hence we have four different CR variants, as detailed in Table 1.

Adversarial Visible Robber | av-CR
Adversarial Invisible Robber | ai-CR
Drunk Visible Robber dv-CR
Drunk Invisible Robber di-CR

Table 1: Four variants of the CR game.

In all of the above CR variants both cops and robber move from node to node. This is a
good model for entities (e.g., robots) which move from room to room in an indoor environment.
There also exist cases (for example moving in a maze or a road network) where it makes more
sense to assume that both cops and robber move from edge to edge. We will call the classical
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version of the edge CR game edge av-CR; it has attracted attention only recently [10]. Edge
ai-CR, dv-CR and di-CR variants are also possible, in analogy to the node versions listed in
Table 1. Each of these cases can be reduced to the corresponding node variant, with the edge
game taking place on the line graph L (G) of G.

3 Cop Number and Capture Time

Two graph parameters which can be obtained from the av-CR game are the cop number and the
capture time. In this section we will define these quantities in game theoretic terms 2 and also
consider their extensions to other CR variants. Before examining each of these CR variants in
detail, let us mention a particular modification which we will apply to all of them. Namely, we
assume that (every variant of) the CR game is played for an infinite number of rounds. This is
obviously the case if the robber is never captured; but we also assume that, in case the robber
is captured at some time t*, the game continues for t € {t* + 1,t* + 2,...} with the following
restriction: for all t > t*, we have Y; = X¥ (where k* is the number of cop who effected the

capture)?.

3.1 The Node av-CR Game

We will define cop number and capture time in game theoretic terms. To this end we must first
define histories and strategies.

A particular instance of the CR game can be fully described by the sequence of cops and
robber locations; these locations are fully determined by the C and R moves. So, if we let
x; € VE (resp. y; € V) denote the nodes into which C (resp. R) places the cops (resp. the
robber) at time ¢, then a history is a sequence xoyox1y; ... . Such a sequence can have finite
or infinite length; we denote the set of all finite length histories b HiK); note that there exists
an infinite number of finite length sequences. By convention HT also includes the zero-length
or null history, which is the empty sequence?, denoted by A. Finally, we denote the set of all
infinite length histories by H.

Since both cops and robber are visible and the players move sequentially, av-CR is a game of
perfect information; in such a game C loses nothing by limiting himself to pure (i.e., determinis-
tic) strategies [24]. A pure cop strategy is a function s¢ : o) K ; a pure robber strategy is
a function sg : H) 5 V. In both cases the idea is that, given a finite length history, the strat-
egy produces the next cop or robber move®; for example, when the robber strategy sz receives
the input xg, it will produce the output yo = sg (z¢); when it receives xgyox1, it will produce
y1 = Sgr (xoyox1) and so on. We will denote the set of all legal cop strategies by S(CK) and the

set of all legal robber strategies by SEQK); a strategy is “legal” if it only provides moves which

2While this approach is not common in the CR literature, we believe it offers certain advantages in clarity of
presentation.

3This modification facilitates the game theoretic analysis presented in the sequel. Intuitively, it implies that
after capture, the k*-th cop forces the robber to “follow” him.

4This corresponds to the beginning of the game, when neither player has made a move, just before C places
the cops on G.

5Note the dependence on K, the number of cops.



respect the CR game rules. The set géK) C S(CK) (resp. gS%K) C SE%K) ) is the set of memoryless
legal cop (resp. robber) strategies, i.e., strategies which only depend only on the current cops
and robber positions; we will denote the memoryless strategies by Greek letters, e.g., o¢, og
etc. In other words

oc € g(cK) = [Vt : 21 = 0c (Toyo - - - -Teyr) = o ()],

ORr € g%K) = [W " Yt+1 = OR (xoyo ce -ItytIH-l) = OR (yt$t+1)] .

It seems intuitively obvious that both C and R lose nothing by playing with memoryless
strategies (i.e., computing their next moves based on the current position of the game, not on
its entire history). This is true but requires a proof. One approach to this proof is furnished
in [6, 14]. But we will present another proof by recognizing that the CR game belongs to the
extensively researched family of reachability games [4, 28].

A reachability game is played by two players (Player 0 and Player 1) on a digraph G = (V, E);
each node v € V is a position and each edge is a move; i.e., the game moves from node to node
(position) along the edges of the digraph. The game is described by the tuple (VO,Vl,E, F),
where VUV, =V, VoNnV;=0and F CV. Fori € {0,1}, V; is the set of positions (nodes)
from which the i-th Player makes the next move; the game terminates with a win for Player 0
if and only if a move takes place into a node v € F (the target set of Player 0); if this never
happens, Player 1 wins®. The following is well known [4, 28].

Theorem 3.1 Let (VO,Vl,E, F) be a reachability game on the digraph D = (V, E) Then V.
can be partitioned into two sets W and Wy such that (fori € {0,1}) player i has a memoryless
strategy o; which is winning whenever the game starts in u € W,.

We can convert the av-CR game with K cops to an equivalent reachability game which is
played on the CR game digraph. In this digraph every node corresponds to a position of the
original CR game; a (directed) edge from node u to node v indicates that it is possible to get
from position u to position v in a single move. The CR game digraph has three types of nodes.

1. Nodes of the form u = (z,y, p) correspond to positions (in the original CR game) with the
cops located at x € V&, the robber at y € V and player p € {C, R} being next to move.

2. There is single node v = (A, A\, C') which corresponds to the starting position of the game:
neither the cops nor the robber have been placed on Gj it is C’s turn to move (recall that
A denotes the empty sequence).

3. Finally, there exist n nodes of the form u = (x, A\, R): the cops have just been placed in
the graph (at positions z € V) but the robber has not been placed yet; it is R’s turn to
move.

6Here is a more intuitive description of the game: each move consists in sliding a token from one digraph
node to another, along an edge; the i-th player slides the token if and only if it is currently located on a node
v eV, (i €{0,1}); Player 0 wins if and only if the token goes into a node u € F'; otherwise Player 1 wins.



Let us now define

Vi = {9, C) e VEU A}, ye VUML),

VﬁK) ={(z,y.R):z e VEU{A\},y e VU{A\}}

v = o

and let B consist of all pairs (u,v) where u,v € V) and the move from u to v is legal.
Finally, we recognize that C’s target set is

= {(z,y,p):xe Vi ye (Vna),pe{C R}}.

i.e., the set of all positions in which the robber is in the same node as at least one cop.
With the above definitions, we have mapped the classical CR game (played with K cops

on the graph G) to the reachability game (VéK),VgK),F(K),F(K)) By Theorem 3.1, Player ¢

(with ¢ € {0,1}) will have a winning set WEK) - V(K), i.e., a set with the following property:
whenever the reachability game starts at some u € WEK), then Player ¢ has a winning strategy

(it may be the case, for specific G and K that either of W((]K), WﬁK) is empty). Recall that in
our formulation of CR as a reachability game, Player 0 is C. In reachability terms, the statement

“C has a winning strategy in the classical CR game” translates to “(\, A, C) € WéK)” and, for
a given graph G, the validity of this statement will in general depend on K . It is clear that
W(()K) is increasing with K:

Ki<Ky=W, " " CW; . (2)

It is also also clear that
“IMN0) e W((]WD” is true for every G = (V, E), (3)

because, if C has |V| cops, he can place one in every u € V and win immediately”.

Based on (2) and (3) we can define the cop number of G to be the minimum number of cops
that guarantee capture; more precisely we have the following definition (which is equivalent to
the “classical” definition of cop number [2]).

Definition 3.2 The cop number of G is
— i : 77
c(G) = mln{K. (M C) e W }

While a cop winning strategy sc guarantees that the token will go into (and remain in) F(K),

we still do not know how long it will take for this to happen. However, it is easy to prove that,
if K > ¢(G) and C uses a memoryless winning strategy, then no game position will be repeated
until capture takes place. Hence the following holds.

—(|V —(K .
"In fact, for K = |V|, we have Wé‘ D _ V( ), because from every position (z,y,p), C can move the cops so
that one cop resides in each u € V', which guarantees immediate capture.



Theorem 3.3 For every G, let K > ¢(G) and consider the CR game played on G with K cops.
There exists a a memoryless cop winning strategy oc_and a number T (K;G) < oo such that,
for every robber strategy sr, C wins in no more than T (K;G) rounds.

Let us now turn from winning to time optimal strategies. To define these, we first define the
capture time, which will serve as the CR payoff function.

Definition 3.4 Given a graph G, some K € N and strategies s¢ € S(CK), SR € SS%K) the av-CR
capture time is defined by

T%) (50, sr|G) = min {t:3k € [K] such that Y, = X[} ; (4)
in case capture never takes place, we let TY (s¢, sp|G) = .

We will assume that R’s payoff is T'5) (s¢, sg|G) and C’s payoff is —T5) (s¢, sg|G) (hence
av-CR is a two-person zero-sum game). Note that capture time (i) obviously depends on K and
(ii) for a fixed K is fully determined by the s and sg strategies. Now, following standard game
theoretic practice, we define optimal strategies.

Definition 3.5 For every graph G and K € N, the strategies sg() € S(CK) and SS%K) € Sg{) are
a pair of optimal strategies if and only if

sup  inf T (s¢,s|G) = inf  sup TE) (s¢,s5|G). (5)

K K
srest) scesy’ s0€SG spes)

The value of the av-CR game played with K cops is the common value of the two sides of (5)
and we denote it T <S(CK), sg_-iK)|G>.

We emphasize that the validity of (5) is not known a priori. C (resp. R) can guaran-
tee that he loses no more than inf LestF) SUD, g0 T5) (s¢, sg|G) (resp. gains no less than
s c § R

SUP,, cg () infsCes(Cm TH (s¢, sr|G)). We always have

sup  inf TE) (sq,s5|G) < inf  sup T (sq,sg|G). (6)

K K
SRESgO sc€S<C ) SCES(C ) SRESE;{)

But, since av-CR is an infinite game (i.e., depending on s¢ and sg, it can last an infinite number
of turns) it is not clear that equality holds in (6) and, even when it does, the existence of optimal

strategies (S(CK), S%K)) which achieve the value is not guaranteed.

In fact it can be proved that, for K > ¢ (G), av-CR has both a value and optimal strategies.
The details of this proof will be reported elsewhere, but the gist of the argument is the following.
Since av-CR is played with K > ¢(G) cops, by Theorem 3.3, C has a memoryless strategy
which guarantees the game will last no more than T (K; G) turns. Hence av-CR with K > ¢ (G)
essentially is a finite zero-sum two-player game; it is well known [31] that every such game has
a value and optimal memoryless strategies. In short, we have the following.



Theorem 3.6 Given any graph G and any K > c¢(G), for the av-CR game there ezists a pair
<O'(CK), a; ) € S(CK X S of memoryless time optimal strategies such that

TE) ( (& K)|G) sup  inf T (s¢,s:|G) = inf  sup T (s¢,s8|G).
GS(K) SCGS( ) sCeS(CK) SRES%K)

Hence we can define the capture time of a graph to be the value of av-CR when played on
G with K = ¢(G) cops.

Definition 3.7 The adversarial visible capture time of G is

ct(G)= sup inf TE) (so,55|G) = inf sup TE) (s¢,s5|G).

spesiF) soesg 50€85" 4 pesli

with K = ¢(G).

3.2 The Node dv-CR Game

In this game the robber is visible and performs a random walk on G (drunk robber) as indicated
by (1). In the absence of cops, Y; is a Markov chain on V| with transition probability matrix
P, where for every u,v € {1,2,...,|V|} we have

Pup=Pr (Vi = ulY; =v).

In the presence of one or more cops, {Y;},2, is a Markov decision process (MDP) [33] with state
space V.U {n + 1} (where n + 1 is the capture state) and transition probability matrix P (X})
(obtained from P as shown in [23]); in other words, X; is the control variable, selected by C.

Since no robber strategy is involved, the capture time on G only depends on the (K-cops
strategy) s¢: namely:

T%) (5¢|G) = min {t: 3k € [K] such that V; = X[}, (7)

which can also be written as
B (sc]G) = Z 1(Y: & Xy), (8)

where 1(Y; ¢ X;) equals 1 if Y; does not belong to X; (taken as a set of cop positions) and
0 otherwise. Since the robber performs a random walk on G, it follows that T (s¢|G) is a
random variable, and C wants to minimize its expected value:

E(T™ (sc|@)) <21 MXt). (9)

The minimization of (9) is a typical undiscounted, infinite horizon MDP problem. Using stan-
dard MDP results [33] we see that (i) C loses nothing by determining X, Xi, ... through a mem-

oryless strategy oc (z,y) and (i) for every K > 1, E (T'®) (6¢|G)) is well defined. Furthermore,

for every K € N there exists an optimal strategy U(c ) which minimizes E (T™) (6¢|G)); hence

we have the following.



Theorem 3.8 Given any graph G and K _ G N for the dv-CR game played on G with K cops
()
there exists a memoryless strategy on ' € S ) such that

E (T(K) <U(CK)\G)> = inf E( (SC|G)) :

sc €S<K)
Definition 3.9 The drunk visible capture time of G is
det (G) = 1nf E (T (SC|G))

Sces
with K = ¢(G).

Note that, even though a single cop suffices to capture the drunk robber on any G, we have
chosen to define dct (G) to be the capture time for K = ¢(G) cops; we have done this to make
(in Section 4) an equitable comparison between ct (G) and dct (G).

3.3 The Node ai-CR Game

This is not a perfect information game, since C cannot see R’s moves. Hence C and R must
use mized strategies sc¢, sg. A mixed strategy sc (resp. sg) specifies, for every ¢, a conditional
probability Pr (X;|Xo, Yo, ..., Yi—2, X;—1,Y;—1) (resp. Pr (Vi Xo, Yo,...,Yi1,X;)) according to
which C (resp. R) selects his t-th move. Let §CK (resp §RK ) be the set of all mixed cop (resp.

robber) strategies. A strategy pair (sg,sc) € SC X S , speciﬁes probabilities for all events
(Xo=20,..., Xt =24, Yo = %0,...,Y:s = y) and these mduce a probability measure Which in

turn determines R’s expected gain (and C’s expected loss), namely F (T (K) (Sc ,s R )\G>>
Let us define

Q(K) = sup inf F (T(K) (307 SR|G))
SRES(K) SCES(C )

74 = inf  sup E(T(K) (sc,sgr|@)) .

(K —
SCES(C’ )SRESSQK)

Similarly to av-CR, C (resp. R) can guarantee an expected payoff no greater than o) (resp.

no less than v%)). If v = ) we denote the common value by v®) and call it the value of
the ai-CR game (played on G, with K cops). A pair of strategies (s(CK), SE,%K)> is called optimal
if and only if F (T(K) ( 5 s |G>) v,

In [22] we have studied the ai-CR game and proved that it does indeed have a value and
optimal strategies. We give a summary of the relevant argument; proofs can be found in [22].

First, invisibility does not increase the cop number. In other words, there is a cop strategy
(involving ¢ (G) cops) which guarantees bounded expected capture time for every robber strategy
sg. More precisely, we have proved the following.

Theorem 3.10 On any graph G let E(CK) denote the strategy in which K cops random-walk on
G. Then
VK >c¢(G): sup FE (T(K) (EEK),8R|G)> < 00.

spesSy)



Now consider the “m-truncated” ai-CR game which is played exactly as the “regular” ai-

CR but lasts at most m turns. Strategies sp € §RK and s¢ € §(CK) can be used in the m-
truncated game: C and R use them only until the m-th turn. Let R receive one payoff unit
for every turn in which the robber is not captured; denote the payoff of the m-truncated game
(when strategies s¢, sg are used) by T (sc, sgr|G). Clearly

Vm e N, sg € §§3K), S¢ € §g() T (50, 55|G) < TSH)l (sc,sr|G) < TH (s, sgr|G)

The expected payoff of the m-truncated game is F (T&K) (sc,sR|G)>. Because it is a finite,

two-person, zero-sum game, the m-truncated game has a value and optimal strategies. Namely,
the value is

o = sup inf  E(TY) (sc,sp|G)) = inf  sup E (T (s¢,sz|G))

(K a(K —
SRES( ) SCES ) SCeS(C' ) SRESSQK)

(Km)

and there exist optimal strategies s, " € SC , ; ™ e §§;¢K) such that

E (T (s, 516 ) = o) < oo, (10)

m

In [22] we use the truncated games to prove that the “regular” ai-CR game has a value, an
optimal C strategy and e-optimal R strategies. More precisely, we prove the following.

Theorem 3.11 Given any graph G and K > c¢(G), the ai-CR game played on G with K cops
has a value v which satisfies

lim o™ = ) = 7K — ()
m—00 -
Furthermore, there exists a strategy 3(0 € SC such that
sup E (T(K) <S(C ),SR)) = oK), (11)

S(K)

and for every € > 0 there exists an m. and a strategy sg(’s) such that

Vm>me.: o) —e< sup E <T(K) <sc,sRK5)> |G> < o, (12)
sc€ S<CK)

Having established the existence of v(®) we have the following.

Definition 3.12 The adversarial invisible capture time of G is

ct; (G)=v®) = sup inf E (T(K) (sc,sg|G)) = inf  sup E(T") (s, sgr|G))

q(K) <(K) —
speSyHY) sc€Se scE€So speshY

with K = ¢(G).

10



3.4 The Node di-CR Game

In this game Y; is unobservable and drunk; call this the “regular” di-CR game and also introduce
the m-truncated di-CR game. Both are one-player games or, equivalently, Y; is a partially
observable MDP (POMDP) [33]. The target function is

E(T™ (so|@)) <Zl (Y, & Xy) ) (13)

which is exactly the same as (9) but now Y; is unobservable. (13) can be approximated by
E (TH (sc|@)) <Z1 (Y; ¢ X,) ) (14)

The expected values in (13)-(14) are well defined for every s¢. C must select a strategy s¢ € §(CK)
which minimizes E (T(K) (sC\G)). This is a typical infinite horizon, undiscounted POMDP
problem [33] for which the following holds.

Theorem 3.13 Given any gmph G and K € N, for the di-CR game played on G with K cops

there exists a strateqy S(C € SC such that

E <T(K) <S(CK)|G>> = mf E (T™) (s¢|G)) .

SES

Hence we can introduce the following.
Definition 3.14 The drunk invisible capture time of G is

det; (G) = inf E(T") (sc|G)).
sceSE;K)

with K = ¢(G).

3.5 The Edge CR Games

As already mentioned, every edge CR variant can be reduced to the corresponding node variant
played on L (G), the line graph of G. Hence all the results and definitions of Sections 3.1 - 3.4
hold for the edge variants as well. In particular, we have an edge cop number ¢ (G) = ¢ (L (G))
and capture times

ct(G)=ct(L(G)), det(G)=dct(L(G)), cti(G)=ct;(L(G)), det;(G)=dct;(L(G)).

In general, all of these “edge CR parameters” will differ from the corresponding “node CR
parameters”.

11



4 The Cost of Visibility

4.1 Cost of Visibility in the Node CR Games

As already remarked, we expect that ai-CR is more difficult (from C’s point of view) than av-
CR (the same holds for the drunk counterparts of this game). We quantify this statement by
introducing the cost of visibility (COV).

Definition 4.1 For every G, the adversarial cost of visibility is Ho(G) = %49 and the drunk

ct(G)
cost of visibility is Hy(G) = ‘f,cf;((g))'

Clearly, for every G we have H, (G) > 1 and Hy (G) > 1 (i.e., it is at least as hard to capture
an invisible robber than a visible one). The following theorem shows that in fact both H, (G)
and H, (G) can become arbitrarily large. In proving the corresponding theorems, we will need
the family of long star graphs Sy . For specific values of M and N, Sy consists of N paths
(we call these rays) each having M nodes, joined at a central node, as shown in Fig.1.

® ®

@
()

.
-,
-,
s
~

0 Qo
©

@
©
)

Figure 1: (a) The star graph Sy 1. (b) The long star graph Sy .

Theorem 4.2 For every N € N we have H, (Sn1) = N.

Proof. (i) Computing ct (Sy1). In av-CR, for every N € N we have ¢t (Sy1) = 1: the cop
starts at Xy = 0, the robber starts at some Yy = u # 0 and, at t = 1, he is captured by the
cop moving into u; i.e., ¢t (Sy1) < 1; on the other hand, since there are at least two vertices
(N >1), clearly ct (Sy1) > 1.

(ii) Computing ct; (Sy1). Let us now show that in ai-CR we have ct; (Sy1) = N. C places
the cop at Xy = 0 and R places the robber at some Yy = u # 0. We will obtain ct; (Sx,1) by
bounding it from above and below. For an upper bound, consider the following C strategy. Since
C does not know the robber’s location, he must check the leaf nodes one by one. So at every
odd ¢ he moves the cop into some u € {1,2,..., N} and at every even ¢ he returns to 0. Note
that R cannot change the robber’s original position; in order to do this, the robber must pass
through 0 but then he will be captured by the cop (who either is already in 0 or will be moved
into it just after the robber’s move). Hence C can choose the nodes he will check on odd turns

12



with uniform probability and without repetitions. Equivalently, we can assume that the order in
which nodes are chosen by C is selected uniformly at random from the set of all permutations;
further, we assume that R (who does not know this order) starts at some Yy =u € {1,..., N}.
Then we have

1 1 1
T, < —-14—"- .+ —-(2N —-1) = N.
Cz(SN,l)_N +N 3+ JFN ( )

For a lower bound, consider the following R strategy. The robber is initially placed at a random
leaf that is different than the one selected by C (if the cop did not start at the center). Knowing
this, the best C strategy is to check (in any order) all leaves without repetition. If the cop starts
at the center, we get exactly the same sum as for the upper bound. Otherwise, we have

cti (Sna1) > N1—1 -2+ﬁ-4+...+ﬁ-(2]\f—2) = N.
(iii) Computing H, (Sy1). Hence, for all N € N we have H, (Sy1) = c(:((;’:ll)) =N. =
Theorem 4.3 For every N € N — {1} we have
Hy(Snm) = (14 0(1)) N - DIV -1+1 > 2N — 3,

N

where the asymptotics is with respect to M; N is considered a fixed constant.

Proof. (i) Computing dct (Sy ). We will first show that, for any N € N, we have dct (Sy ) =
(14 0(1)) & (recall that the parameter N is a fixed constant whereas M — 00.) Suppose that
the cop starts on the i-th ray, at distance (1 + o(1))cM from the center (for some constant
¢ € [0,1]). The robber starts at a random vertex. It follows that for any j such that 1 < j < N,
the robber starts on the j-th ray with probability (1 4 o(1))/N. It is a straightforward appli-
cation of Chernoff bounds® to show that with probability 1 + o(1) the robber will not move by
more than o(M) in the next O(MN) = O(M) steps, which suffice to finish the game. Hence,

the expected capture time is easy to calculate.

e With probability (1 — ¢ + o(1))/N, the robber starts on the same ray as the cop but
farther away from the center. Conditioning on this event, the expected capture time is
M1 —c+o(1))/2.

e With probability (¢ + o(1))/N, the robber starts on the same ray as the cop but closer to
the center. Conditioning on this event, the expected capture time is M (¢ + o(1))/2.

e With probability (N — 1+ o(1))/N, the robber starts on different ray than the cop. Con-
ditioning on this event, the expected capture time is (¢ + o(1))M + M(1/2 + o(1)).

8If X has a binomial distribution Bin(n,p), then Pr(|X — np| > enp) < 2exp(—e2np/3) for any € < 3/2.
Suppose the robber starts at distance w(M?/3) from the center. During N = O(M) steps the robber makes in
expectation N/2 steps towards the center, and N/2 steps towards the end of the ray. The probability to make

—eM/3

during N steps more than N/2 + M 2/3 steps towards the center, say, is thus at most e , and the same

holds also by taking a union bound over all O(M) steps. Hence, with probability at least 1 — e~ * he will
throughout O(M) steps remain at distance O(M?/3) from his initial position.

13



It follows that the expected capture time is

l—c 1—=¢c ¢ ¢ N-1 2c+1
1+ o(1))M : c.¢ :
(1+0(1)) <N > TN 2N 2 >

which is maximized for ¢ = 0, giving dct (Sy,n) = (1 +0(1)) &

(ii) Computing dct; (Sy ). The initial placement for the robber is the same as in the visible
variant, that is, the uniform distribution is used. However, since the robber is now invisible,
C has to check all rays. As before, by Chernoff bounds, with probability at least 1 — e~ e
(for some constant ¢ > 0) during O(M) steps the robber is always within distance O(M?/3)

from its initial position. If the robber starts at distance w(M?/3) from the center, he will thus
—cM1/3

with probability at least 1 — e not change his ray during O(M) steps. Otherwise, he
might change from one ray to the other with bigger probability, but note that this happens only
with the probability of the robber starting at distance O(M?/?) from the center, and thus with
probability at most O(M~'/3). Keeping these remarks in mind, let us examine “reasonable” C
strategies. It turns out there exist three such.

(ii.1) Suppose C starts at the end of one ray (chosen arbitrarily), goes to the center, and then
successively checks the remaining rays without repetition, with probability at least 1—O(M~1/3),
the robber will be caught. If the robber does not switch rays (and is therefore caught), the
capture time is calculated as follows:

e With probability (1+0(1))/N, the robber starts on the same ray as the cop. Conditioning
on this event, the expected capture time is (1 + o(1))M /2.

e With probability (1 4+ o(1))/N, the robber starts on the j-th ray visited by the cop.
Conditioning on this event, the expected capture time is (14+o0(1))(M +2M (j —2)+ M /2).
(M steps are required to move from the end of the first ray to the center, 2M steps are
‘wasted’ to check j — 2 rays, and M/2 steps are needed to catch the robber on the j-th
ray, on expectation.)

Hence, conditioned under not switching rays, the expected capture time in this case is

(1+0(1)>% <%+<1+%)+<3+%)+...+(1+2(N—2)+%>)

:(1+o(1))% (%+(2-1—%>+<2-2—%)+...+(2(N_1>_%)>
:(1+0(1))% (%+ 2N2—1.(N_1))
:(1+0(1))%. eN-DHIN-1)+1

2 N

Otherwise, if the robber is not caught, C just randomly checks rays: starting from the center,
C chooses a random ray, goes until the end of the ray, returns to the center, and continues like
this, until the robber is caught. The expected capture time in this case is

5 (- 315 2l - 10+ 07| = 00N) = 0(an)

Jj=1
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Since this happens with probability O(M~1/3), the contribution of the case where the robber
switches rays is o(M), and therefore for this strategy of C, the expected capture time is
M (@2N-1)(N-1)+1

(1+0(1) 5 =

(ii.2) Now suppose C starts at the center of the ray, rather than the end, and checks all rays
from there. By the same arguments as before, the capture time is

o (34 (243) + (4+3) +ooot (242 -2+ 1))

which is worse than in the case when starting at the end of a ray.

(ii.3) Similarly, suppose the cop starts at distance ¢M from the center, for some ¢ € [0,1]. If
he first goes to the center of the ray, and then checks all rays (suppose the one he came from is
the last to be checked), then the capture time is

(1+0(1))% <§+(c+%)+(c+2+%>+...+
((0—1—2(]\7—2)—4—%)—4—(1—0) <2c+2(N—1)+1;C)>,

which is minimized for ¢ = 1. And if C goes first to the end of the ray, and then to the center,
the capture time is

o)y (U5

+c<2(1—c)+§>+(2(1—C)+c+%)+...+

<(2(1—c)+c+2(N—2)+%)>,

which for N > 2 is also minimized for ¢ = 1 (in fact, for N = 2 the numbers are equal).
In short, the smallest capture time is achieved when C starts at the end of some ray and
therefore

dCti(SN,M> _ (1 _'_0(1))% . (QN — 1)%\[ - 1) + 1'

(iii) Computing H,; (Sn ). It follows that for all N € N — {1} we have

dCti (SN,M)

N -DN -1 +1
dCt (SN,M)

N =

Hy (Swonr) = — (1+0(1)) ON -3,

completing the proof. m

4.2 Cost of Visibility in the Edge CR Games
The cost of visibility in the edge CR games is defined analogously to that of node games.

Definition 4.4 For every G, the edge adversarial cost of visibility is H,(G) = cg((g)) and the
edge drunk cost of visibility is defined as Hy(G) = %((;).
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Clearly, for every G we have H, (G) > 1 and H,(G) > 1. The following theorems show that
in fact both H, (G) and H,(G) can become arbitrarily large. To prove these theorems we will
use the previously introduced star graph Sy ; and its line graph which is the clique K. These
graphs are illustrated in Figure 2 for N = 6.

®

©,

Figure 2: The star graph Sg¢; and its line graph, the clique K.

Theorem 4.5 For every N € N — {1} we have H, (Sy1) = N — 1.

Proof. We have H,(Sxn,) = C:ii((g;v\”;)) = f;((féfv")) and, since N > 2, clearly ct(Ky) = 1. Let us

now compute ct;(Ky).

For an upper bound on ct;(Ky), C might just move to a random vertex. If the robber stays
still or if he moves to a vertex different from the one occupied by C, he will be caught in the
next step with probability 1/(N — 1), and thus an upper bound on the capture time is N — 1.

For a lower bound, suppose that the robber always moves to a randomly chosen vertex,
different from the one occupied by C, and including the one occupied by him now (that is, with
probability 1/(N —1) he stands still, and after his turn, he is with probability 1/(N —1) at each
vertex different from the vertex occupied by C. Hence C' is forced to move, and since he has
no idea where to go, the best strategy is also to move randomly, and the robber will be caught
with probability 1/(N — 1), yielding a lower bound on the capture time of N — 1. Therefore

Hence ~ (g "
— t; t;
(Syy) = v _ hilln) _ g
Ct(SNJ) Ct(KN)
[
- N(N—
Theorem 4.6 For every N € N— {1} we have H;(Sn1) = Q(N_31).
Proof. This is quite similar to the adversarial case. We have Hy(Sy ;) = %((sg ‘11)) = Z‘fg((gﬁ)).

Clearly we have dct(Ky) = 1 — 1/N (with probability 1/N the robber selects the same vertex
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to start with as the cop and is caught before the game actually starts; otherwise is caught in
the first round).

For det;(Ky), it is clear that the strategy of constantly moving is best for the cop, as in this
case there are two chances to catch the robber (either by moving towards him, or by afterwards
the robber moving onto the cop). It does not matter where he moves to as long as he keeps
moving, and we may thus assume that he starts at some vertex v and moves to some other vertex
w in the first round, then comes back to v and oscillates like that until the end of the game.
When the cop moves to another vertex, the probability that the robber is there is 1/(N —1). If
he is still not caught, the robber moves to a random place, thereby selecting the vertex occupied
by the cop with probability 1/(N —1). Hence, the probability to catch the robber in one step is

ﬁ +(1- Nl—l) Nl_l = (?V]\i ’13”2. Thus, this time the capture time is a geometric random variable
with probability of success equal to (?V]\i—’lz)sg We get det;(Ky) = % and so
AN T Get(Sy,)  det(Ky) (N —1)/N 2N —3

which can become arbitrarily large by appropriate choice of N. m

5 Algorithms for COV Computation

For graphs of relatively simple structure (e.g., paths, cycles, full trees, grids) capture times
and optimal strategies can be found by analytical arguments [22, 23]. For more complicated
graphs, an algorithmic solution becomes necessary. In this section we present algorithms for
the computation of capture time in the previously introduced node CR variants. The same
algorithms can be applied to the edge variants by replacing G with L (G).

5.1 Algorithms for Visible Robbers
5.1.1 Algorithm for Adversarial Robber

The av-CR capture time ct(G) can be computed in polynomial time. In fact, stronger results
have been presented by Hahn and MacGillivray; in [14] they present an algorithm which, given
K, computes for every (z,y) € V? the following:

1. C(z,y), the optimal game duration when the cop/robber configuration is (x,y) and it is
C’s turn to play;

2. R(z,y), the optimal game duration when the cop/robber configuration is (z,y) and it is
R’s turn to play.’

The av-CR capture time can be computed by ct(G) = min,ey max ey C (z,y); the optimal
search strategies o, 0 can also be easily obtained from the optimality equations, as will be seen
a little later. We have presented in [23] an implementation of Hahn and MacGillivray’s algorithm,
which we call CAAR (Cops Against Adversarial Robber). Below we present the algorithm for
the case of a single cop (the generalization for more than one cop is straightforward).

YWhen K < ¢(G), there exist (x,%) such that C (z,y) = R(x,y) = oo; Hahn and MacGillivray’s algorithm
computes this correctly, as well.
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The Cops Against Adversarial Robber (CAAR) Algorithm

Input: G = (V, E)
01  For All (z,y) € V3

02 CO(z,y)=0

03 RO (z,9) =0

04 EndFor

05  For All (z,y) € V2-V}3

06 CO (z,y) = 0

07 RO (z,y) = 0

08 EndFor

09 =1

10 While 1 >0

11 For All (z,y) e VZ—-V}3

12 C9 (z,y) = 14 mingengy ROV (2, y)
13 RY (z,y) = 1+ maxyengy C9 (z,y)
14 EndFor

15 1f €W =C0"Y And R® = RO

16 Break

17 EndIf

18 1 i+1

19 EndWhile

20 C=CU

21 R=R0

Output: C, R

The algorithm operates as follows. In lines 01-08 C'® (z,y) and R (z,y) are initialized
to oo, except for “diagonal” positions (z,y) € V3 (i.e., positions with x = y) for which we
obviously have C (z,z) = R (z,x) = 0. Then a loop is entered (lines 10-19) in which C® (z,y)
is computed (line 12) by letting the cop move to the position which achieves the smallest capture
time (according to the currently available estimate RO~ (z,y)); R® (z,y) is computed similarly
in line 13, looking for the largest capture time. This process is repeated until no further changes
take place, at which point the algorithm exits the loop and terminates'?. It has been proved in
[14] that, for any graph G and any K € N, CAAR always terminates and the finally obtained
(C, R) pair satisfies the optimality equations

V(z,y) €V :C(z,y)=0; V(z,y) eV?=Vj:C(z,y)=1+ m}vr[l}R(rc’,y), (15)
x’EN|[zx

V(z,y) €Vh:R(x,y)=0; V(x,y)eV?=Vi:R(z,y) =1+ max C(2,9). (16)
y' €Ny

10This algorithm is a game theoretic version of value iteration [33], which we see again in Section 5.2.
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The optimal memoryless strategies ag{) (z,y), ag{) (z,y) can be computed for every position

(z,y) by letting O'(CK) (z,y) (resp. ag{) (x,y) ) be a node &' € N [z] (resp. ¥’ € N [y]) which
achieves the minimum in (15) (resp. maximum in (16)). The capture time ct(G) is computed
from

ct(G) = min Iynea{;cC (z,y) .

5.1.2 Algorithm for Drunk Robber

For any given K, walue iteration can be used to determine both dct (G, K) and the optimal
strategy O'(CK) (z,y); one implementation is our CADR (Cops Against Drunk Robber) algorithm
[23] which is a typical value-iteration [33] MDP algorithm; alternatively, CADR can be seen as
an extension of the CAAR idea to the dv-CR. Below we present the algorithm for the case of a

single cop (the generalization for more than one cops is straightforward).

The Cops Against Drunk Robber (CADR) Algorithm

Input: G = (V,E), ¢

01 For All (z,y) € V3

02 OO (z,9)=0

03 EndFor

04 For All (z,y) €V — V3

05 OO (z,9) =0

06 EndFor

07 1 =1

08 While 1 >0

09 For All (z,y) eV — V3

N

10 CW (2,y) = 1+ mingeng) Xy P (', y) = (2/,y) CU (2 y/)
11 EndFor

12 If maxgyev: |CO (z,y) — OO (2,y)] < &

13 Break

14  EndIf

15 1 1+1
16 EndWhile
17 C =00
Output: C

The algorithm operates as follows (again we use C' (z,y) to denote the optimal expected
game duration when the game position is (z,y)). In lines 01-06 C¥ (z,y) is initialized to oo,
except for “diagonal”positions (z,y) € V2. In the main loop (lines 08-16) CV (x, ) is computed
(line 10) by letting the cop move to the position which achieves the smallest expected capture
time (P ((2/,y) — (2/,4)) in line 10 indicates the transition probability from(z’,y) to (2/,y')).
This process is repeated until the maximum change |C® (z,y) — C" (z,y)| is smaller than
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the termination criterion e, at which point the algorithm exits the loop and terminates. This
is a typical value iteration MDP algorithm [33]; the convergence of such algorithms has been
studied by several authors, in various degrees of generality [8, 11, 18]. A simple yet strong result,
derived in [11], uses the concept of proper strategy: a strategy is called proper if it yields finite
expected capture time. It is proved in [11] that, if a proper strategy exists for graph G, then
CADR-like algorithms converge. In the case of dv-CR we know that C has a proper strategy: it
is the random walking strategy E(CK) mentioned in Theorem 3.10. Hence CADR converges and
in the limit, C' = lim;_,o, C satisfies the optimality equations

V(x,y) €VE:C(z,y) =0; V(x,y) € V*-V3:C(z,y) =1+ min P((«',y) = (2, y)C (2, ).

x' €N [z]
(17)
The optimal memoryless strategy O'(CK) (x,y) can be computed for every position (z,y) by letting
O'(CK) (z,y) be a node 2’ € N [z] (resp. ¥ € N [y]) which achieves the minimum in (15) (resp.
maximum in (16)). The capture time dct(G) is computed from

dct (G) =minC (z,y).

zeV

5.2 Algorithms for Invisible Robbers
5.2.1 Algorithms for Adversarial Robber

We have not been able to find an efficient algorithm for solving the ai-CR game. Several
algorithms for imperfect information stochastic games could be used to this end but we have
found that they are practical only for very small graphs.

5.2.2 Algorithm for Drunk Robber

In the case of the drunk invisible robber we are also using a game tree search algorithm with
pruning, for which some analytical justification can be provided. We call this the Pruned Cop
Search (PCS) algorithm. Before presenting the algorithm we will introduce some notation and
then prove a simple fact about expected capture time. We limit ourselves to the single cop case,
since the extension to more cops is straightforward.

We let x = xgz125 ... be an infinite history of cop moves. Letting ¢ being the current time
step, the probability vector p (¢) contains the probabilities of the robber being in node v € V
or in the capture state n + 1; more specifically: p(t) = [p1 (t),...,po (t), -+, Pn (), Dns1 (t)]
and p, (t) = Pr(y; = v|zoz; ... 2,). Hence p (t) depends (as expected) on the finite cop history
zozy ...x:. The expected capture time is denoted by C' (x) = E(T|x); the conditioning is on
the infinite cop history. The PCS algorithm works because F (T'|x) can be approximated from
a finite part of x, as explained below. We have

C(x)=E(Tx)=> t-Pr(T=tx)=>Y Pr(T>tx). (18)
t=0 t=0
X in the conditioning is the infinite history x = xox122 ... . However, for every t we have

Pr(T>tx)=1—-Pr(T <t|x)=1—Pr (T < tlroxy...z:).
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Let us define

~+
~+

c® (xox1...74) = [1—Pr(T < 7lrozy.. .z )] = [1 = pnt1 (7)),

7=0 =0

where p,1 (7) is the probability that the robber is in the capture state n + 1 at time 7 (the
dependence on xgx ...z, is suppressed, for simplicity of notation). Then for all ¢ we have

OO (zoxy ... 2) = C Y (momy ... ayq) + (1 — oo (1) . (19)

Update (19) can be computed using only the previous cost C*~Y (g2, ...2,_;) and the (previ-
ously computed) probability vector p (t). While C® (zg...z,;) < C (x), we hope that (at least
for the “good” histories) we have

tlim CW (xg...20) = C(x). (20)
—00
This actually works well in practice.

The PCS algorithm is given below in pseudocode. We have introduced a structure S with
fields S.x, S.p, S.C' = C (S.x). Also we denote concatenation by the | symbol, i.e., zox; ... x4|v =
oy ... T¢0.

The Pruned Cop Search (PCS) Algorithm

Input: G = (V,E>, 2o, Jmaz, €

01 t=0
02 S.x =z, S.p=Pr(y|zy), S.C =0
03 S={5}

04 leégt =0
05 While l> 0

06 S=10

07 For A1l S€S

08 x=9x, p=Sp, ¢C=5C
09 For All v € N [z

10 x' = x|v

11 p'=p- P

12 C" = Cost(x',p’, C)

13 Sx=x', Sp=p, 5C=C
14 S=Su{s}

15 EndFor

16 EndFor _

17 S = Prune(S, J,42)

18 [Xbesta Cbest] = Best(S)

19 If |Chest — CPl] < €

20 Break

21 Else

21



22 C[?égt = Cbest

23 t+—t+1

24 EndIf

25 EndWhile

OutPUt P Xbpest s C(best =C (Xbest) .

The PCS algorithm operates as follows. At initialization (lines 01-04), we create a single
S structure (with S.x being the initial cop position, S.p the initial, uniform robber probability
and S.C' = 0) which we store in the set S. Then we enter the main loop (lines 05-25) where
we pick each available cop sequence x of length ¢ (line 08). Then, in lines 09-15 we compute,
for all legal extensions X' = x|v (where v € N [x]) of length ¢ + 1 (line 10), the corresponding
p’ (line 11) and C” (by the subroutine Cost at line 12). We store these quantities in S" which
is placed in the temporary storage set S (lines 13-14). After exhausting all possible extensions
of length ¢t + 1, we prune the temporary set §, retaining only the Jy., best cop sequences (this
is done in line 17 by the subroutine Prune which computes “best” in terms of smallest C' (x)).
Finally, the subroutine Best in line 18 computes the overall smallest expected capture time
Chest = C (Xpest). The procedure is repeated until the termination criterion |Ches — CPY4,| < € is
satisfied. As explained above, the criterion is expected to be always eventually satisfied because

of (20).

6 Experimental Estimation of The Cost of Visibility

We now present numerical computations of the drunk cost of visibility for graphs which are not
amenable to analytical computation!'!. In Section 6.1 we deal with node games and in Section
6.2 with edge games.

6.1 Experiments with Node Games

Since Hy (G) = C;‘f;((g), we use the CADR algorithm to compute dct (G) and the PCS algorithm
to compute dct; (G). We use graphs G obtained from indoor environments, which we represent
by their floorplans. In Fig. 3 we present a floorplan and its graph representation. The graph
is obtained by decomposing the floorplan into convex cells, assigning each cell to a node and
connecting nodes by edges whenever the corresponding cells are connected by an open space.
We have written a script which, given some parameters, generates random floorplans and
their graphs. Every floorplan consists of a rectangle divided into orthogonal “rooms”. If each
internal room were connected to its four nearest neighbors we would get an M x N grid G'.

However, we randomly generate a spanning tree G of G’ and initially introduce doors only

1We do not deal with the adversarial cost of visibility because, while we can compute ct (G) with the CAAR

algorithm, we do not have an efficient algorithm to compute ct; (G); hence we cannot perform experiments on
H, (G) = "jti((g)). The difficulty with ct; (G) is that ai-CR is a stochastic game of imperfect information; even for
very small graphs, one cop and one robber, ai-CR involves a state space with size far beyond the capabilities of

currently available stochastic games algorithms (see [34]).
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between rooms which are connected in Gr. Our final graph G is obtained from Gr by iterating
over all missing edges and adding each one with probability py € [0, 1]. Hence each floorplan is
characterized by three parameters: M, N and py.

Figure 3: A floorplan and the corresponding graph.

We use the following pairs of (M, N) values: (1,30), (2,15), (3,10), (4,7), (5,6). Four of these
pairs give a total of 30 nodes and the pair (M = 4, N = 7) gives n = 28 nodes; as M/N
increases, we progress from a path to a nearly square grid. For each (M, N) pair we use five pg
values: 0.00, 0.25, 0.50, 0.75, 1.00; note the progression from a tree (po = 0.00) to a full grid
(po = 1.00). For each triple (M, N, py) we generate 50 floorplans, obtain their graphs and for
cach graph G we compute dct(G) using CADR, dct; (G) using PCS and Hy (G) = ‘ZC;Z((GG)); finally
we average H, (G) over the 100 graphs. In Fig. 4 we plot dct(G) as a function of the probability
Po; each plotted curve corresponds to an (M, N) pair. Similarly, in Fig. 5 we plot det;(G) and

in Fig. 6 we plot Hy(G).
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Figure 4: dct(G) curves for floorplans with n=30 or n=28 cells. Each curve corresponds to a
fixed (M, N) pair. The horizontal axis corresponds to the edge insertion probability py.
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Figure 5: dct;(G) curves for floorplans with n=30 or n=28 cells. Each curve corresponds to a
fixed (M, N) pair. The horizontal axis corresponds to the edge insertion probability py.
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Figure 6: Hy(G) curves for floorplans with n=30 or n=28 cells. Each curve corresponds to a
fixed (M, N) pair. The horizontal axis corresponds to the edge insertion probability py.
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We can see in Fig. 4-5 that both dct (G) and dct; (G) are usually decreasing functions of the
M/N ratio. However the cost of visibility H,; (G) increases with M/N. This is due to the fact
that, when the M /N ratio is low, GG is closer to a path and there is less difference in the search
schedules and capture times between dv-CR and di-CR. On the other hand, for high M /N ratio,
G is closer to a grid, with a significantly increased ratio of edges to nodes (as compared to the
low M /N, path-like instances). This, combined with the loss of information (visibility), results
in Hy4(G) being an increasing function of M/N. The increase of Hy (G) with py can be explained
in the same way, since increasing pp implies more edges and this makes the cops’ task harder.

6.2 Experiments with Edge Games

Next we deal with H,(G) = C%"—((GG)). We use graphs G obtained from mazes such as the one
illustrated in Fig. 7. Every corridor of the maze corresponds to an edge; corridor intersections
correspond to nodes. The resulting graph G is also depicted in Fig.7. From G we obtain the line
graph L(G), to which we apply CADR to compute dct (L(G)) = dct (G) and PCS to compute

det; (L(G)) = det; (Q).

g P g 8

= 24

e 16

I I LOI

[ I_I L‘D EDD |

3

Figure 7: A maze and the corresponding graph.

We use graphs of the same type as the ones of Section 6.1 but we now focus on the edge-
to-edge movements of cops and robber. Hence from every G (obtained by a specific (M, N, po)
triple) we produce the line graph L(G), for which we compute Hy(L(G)) using the CADR and
PCS algorithms. Once again we generate 50 graphs and present average dct(G), dct; (G) and
H, (G) results in Figures 8-10. These figures are rather similar to Figures 4-6, except that the
increase of Hy (G) as a function of M/N is greater than that of Hy (G). This is due to the fact
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that L(G) has more nodes and edges than G, hence the loss of visibility makes the edge game
significantly harder than the node game. There is one exception to the above remarks, namely
the case (M, N) = (1,30); in this case both G and L(G) are paths and H, (G) is essentially

equal to H4 (G) (as can be seen by comparing Figures 6 and 10).
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Figure 8: dct(G) curves for floorplans with n=30 or n=28 cells. Each curve corresponds to a
fixed (M, N) pair. The horizontal axis corresponds to the edge insertion probability py.
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Figure 9: dct;(G) curves for floorplans with n=30 or n=28 cells. Each curve corresponds to a
fixed (M, N) pair. The horizontal axis corresponds to the edge insertion probability py.
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Figure 10: H,(G) curves for floorplans with n=30 or n=28 cells. Each curve corresponds to a
fixed (M, N) pair. The horizontal axis corresponds to the edge insertion probability py.
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7 Conclusion

In this paper we have studied two versions of the cops and robber game: the one is played
on the nodes of a graph and the other played on the edges. For each version, we studied
four variants, obtained by changing the visibility and adversariality assumptions regarding the
robber; hence we have a total of eight CR games. For each of these we have defined rigorously
the corresponding optimal capture time, using game theoretic and probabilistic tools.

Then, for the node games we have introduced the adversarial cost of visibility H (G) = cti()

t(G)
and the drunk cost of visibility Hy (G) = Cgfz(((%) . These ratios quantify the increase in difficulty
of the CR game when the cop is no longer aware of the robber’s position (this situation occurs
often in mobile robotics).

We have defined analogous quantities (H (G) = %9 T, (G) = ‘fjcct;((g))) for the edge CR
games.

We have studied analytically H (G) and H,;(G) and have established that both can get
arbitrarily large. We have established similar results for H (G) and Hy (G). In addition, we have
studied Hy (G) and Hy(G) by numerical experiments which support both the game theoretic
results of the current paper and the analytical computations of capture times presented in
23, 22].
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