
HAL Id: hal-01143612
https://hal.science/hal-01143612

Submitted on 20 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Limitation on the Method of Strained Coordinates for
Vibrations with Weak Grazing Unilateral Contact

Stéphane Junca, Ly Tong

To cite this version:
Stéphane Junca, Ly Tong. Limitation on the Method of Strained Coordinates for Vibrations with
Weak Grazing Unilateral Contact. Nonlinear Dynamics, 2015, 80, pp.197-207. �10.1007/s11071-014-
1860-9�. �hal-01143612�

https://hal.science/hal-01143612
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Limitation on the Method of Strained Coordinates for
Vibrations with Weak Grazing Unilateral Contact
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Abstract The NNM (Nonlinear normal modes) have

recently been investigated with the method of strained

coordinates for spring mass models with some springs

with piecewise linear stiffness. The N d.o.f. case and

the mathematical validity of the method for large time

were rigorously proved. The time validity is related to

the nature of contact. For grazing contact, this method

and also the multiscale expansion lose nonlinear fea-

tures. For a small piecewise linear stiffness, we show

that this method is less precise for a weak unilateral

grazing contact. Thus, the validity of the asymptotic

expansion for large time can not be improved and the

method has to be modified.
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tact; perturbation; asymptotic analysis; Lindstedt-
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1 Introduction

The NNM (Nonlinear normal modes [1,2]) have been

investigated with the method of strained coordinates

by Vestroni, Luongo, Paolone in [3] for a two d.o.f.

spring mass models with some springs with piecewise

linear stiffness. Then the N d.o.f case has been stud-

ied in [4]. The method of strained coordinates, also
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named Lindstedt-Poincaré method, is usfeul to com-

pute periodic solution for weakly nonlinear problem [5,

6]. The mathematical validation for smooth forcing is

well knonwn, see for instance [7]. This method has been

used for less smooth forcing: piecewise linear force, by

Vestroni & al. in [3] and independently in [8]. Numerical

experiments have been investigated in [3] and also in [4].

The mathematical validity is obtained in [4]. But the

accuracy is less precise for the grazing contact case. It is

well known that the grazing contact yields to fractional

power expansions instead of integer power expansions,

for instance see [9] for bifurcations and [10] for contacts

(Signorini problem) and references therein. In this pa-

per, we also show on a simple example that this loss

of precision is due to the method of strained coordi-

nates in a presence of a grazing contact. The method

of strained coordinates is useful to look for Nonlinear

Normal Modes for systems with N d.o.f. (degree of free-

dom), N > 1. To explain the limitation of the method,

we focus on a one d.o.f. problem, typically:

ü+ u+ ε f(u) = 0, u(0) = u0, u̇(0) = 0, f ′ > 0. (1)

In this case, the solution is always periodic. The prob-

lem is to find a good approximation of the solution for

0 < ε� 1. A simple approximation by the linear prob-

lem ε = 0 is good enough to have an approximation of

order 0 of the solution and the period. But the non-

linear effect is missed. An expansion of the solution

uε = u0 + ε u1 + · · · is good enough for a finite time

but not enough for large time. It is well known that

the nonlinear effect appears for large time [5,6,7,11]. A

good idea is to expand the exact period T (ε)

T (ε) = T0 + ε T1 + ε2 T2 +O(ε3),

= Tε +O(ε3),



2 Stéphane JUNCA, Ly TONG

or, equivalently, the pulsation:

ω(ε) =
2π

T (ε)
,

= ω0 + ε ω1 + ε2 ω2 +O(ε3),

= ωε +O(ε3).

Notice the presence of the remainder in the equality:

ωε =
2π

Tε
+O(ε3).

The method is usually presented with the pulsation.

We choose to present the method with the period. In-

deed, we will compare the period given by the method

with an exact formula for a one d.o.f. model. For a

one d.o.f. model, it is well known that the period can

be computed by the mechanical energy. Thus we can

study the accuracy of the method by comparing the pe-

riod obtained by the Lindstedt-Poincaré method with

its exact value obtained by the energy.

For the method of strained coordinates, we have to

find the approximation of the solution in the rescaled

time:

s = ωε t,

vε(ωε t) = uε(t).

For large time: t ∈ [0, tmax], an expansion of vε is per-

formed in the new time s:

vε(s) = v0(s) + ε v1(s) +O(ε2).

For smooth nonlinearity: f ∈ C2(R,R), we have the

rigorous approximation proven in [5,6,7]:

uε(t) = v0(ωε t) + ε v1(ωε t) +O(ε2),

for t ∈ [0, tmax],

tmax ∼
constant

ε
.

Indeed, the Lindstedt-Poincaré method is a particular

case of the method of multiple scale expansions. Here,

it is a double scale expansion with two times (t, ε t).

Nevertheless, with the Lindstedt-Poincaré method to

look for periodic solutions, computations are simpler

and can be used for less smooth case [3,4]. Surprisingly

the precision for piecewise linear restoring function f

is the same as the C2 case, except for grazing contact.

Indeed, for N d.o.f. and for the grazing contact, it is

proven in [4] that this asymptotic expansion is valid at

least for

tmax ≤
constant√

ε
.

We will prove the optimality of this estimation on a sim-

ple one d.o.f. model. This is due for a lack of precision

of the period. Indeed, the right expansion of the pe-

riod for the grazing contact with piecewise linear force

f becomes:

T (ε) = T0 + ε2.5 T ∗2 +O(ε3.5) = T ∗ε +O(ε3.5).

As we will see, the classic method of strained coordi-

nates is not able to compute T ∗2 and then T ∗ε . Thus the

method only gives the less precise estimate:

T (ε) = T0 +O(ε2.5).

This is the reason why tmax looses a fractional power of

ε and the Lindsted-Poincaré method is reduced to the

crude approximation consisting to take ε = 0 in equa-

tion (1). The aim of the paper is to prove rigorously

this loss of precision in this case. Thus, the method of

strained coordinates has to be modified to study non-

linear effects of grazing contact with piecewise linear

forces.

The paper is organised as follows. In Section 2, the

mechanical model is shortly presented. Section 3 gives

the first mathematical results on the dimensionless

model: the energy and the exact period. All computa-

tions are performed on the dimensionless model for the

rest of the paper. In Section 4, the Lindstedt-Poincaré

method is used for a grazing contact case. Section 5 is

devoted to expand rigorously the period with respect

to ε for the grazing contact case. The new result is that

the power of ε involved in the period expansion are

not integers but fractional numbers. This expansion is

used to obtain the precision of the Lindstedt-Poincaré

method in Section 6. Some numerical experiments are

drawn in Section 7. Finally, we give some conclusions

and some possible improvements in Section 8.

2 The model

We consider a one degree of freedom spring-mass sys-

tem, Figure 1: one spring is linear and attached to the

mass and to a rigid wall, the second is still linear at-

tached to a rigid wall but has only a unilateral contact

with the mass only when U > a; this is to be considered

as a simplified model of a damaged spring. We assume

a > 0, i.e. at rest the ”damaged” spring is on the right

to the mass. To modeling this unilateral contact we use

the function:

U+ = max(0, U) =

{
U if U > 0

0 else
(2)

This is a Lipschitz function but non differentiable at

U = 0. Indeed, U 7→ U+ is a piecewise linear function.

The force acting on the mass is −(k1U + k2[U − a]+)

where U is the displacement of the mass m, k1 is the

rigidity of the undamaged spring and k2 is the rigidity
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of the ”damaged” unilateral spring. We consider the

equation:

mÜ + k1 U + k2 [U − a]+ = 0. (3)

We are interested by the grazing contact: U ' a. Thus

Fig. 1 One mass and two springs, on the right it has only a
weak unilateral contact.

we study ODE (3) with such typical initial data:

U(0) ' a, U̇(0) = 0. (4)

The linear pulsation is ω2
0 = k1/m. If U(0) ≤ a, then

the solution is simply the solution to the linear ODE:

U(t) = a cos(ω0 t). Thus, the nonlinear effect only ap-

pears when U(0) > a.

Our study is a perturbation analysis, so we also as-

sume that the ”damaged” spring is weak compared to

the other spring:

k1 � k2. (5)

We fix the notations by considering the dimension-

less problem below.

3 The dimensionless model

Condition (5) is rewritten

0 < ε =
k2
k1
� 1. (6)

We rescale the displacement : U = a u and the time

with the new time ω0 t. Equation (3) becomes:

ü+ u+ ε[u− 1]+ = 0. (7)

We are interested by the following initial data:

u(0) = u0 = 1 + h0 > 1, u̇(0) = 0. (8)

3.1 The energy

The energy is the key tool to study ODE (7). We choose

the slightly modified energy:

E = E(u, u̇) = u̇2 + F (u) = u̇2 + u2 + ε([u− 1]+)2. (9)

Notice that the mechanical energy is usually E/2 and

the potential energy is F/2. We skip the constant 2

to simplify the notation. For any solution of (7) with

initial data (8), we have the conservation of the energy:

Ė = 0, i.e.

E(u(t), u̇(t)) = E(u0, 0) = E0 = F (u0) = u20 + ε h20.

Therefore, in the phase space (u, u̇), the level sets of

E(u, u̇) will be made of two pieces of ellipse symmetric

with respect to the horizontal u axis since E(u,−u̇) =

E(u, u̇). Indeed, for u < 1 the level set is a piece of a

circle centered at the origin, and for u > 1 is a piece

of an ellipse. In Figure 2, we show the circle and the

ellipse with the initial data u0 = 2.5 and ε = 1.5, in

such a way the tangency and the difference between

the two trajectories can be clearly appreciated (see also

for example Figure 2 of [3]).

More precisely, u− ≤ u(t) ≤ u0 for all t where u−
satisfies:

u− < 0 < u0 and F (u−) = F (u0). (10)

A simple computations yields −u− = u0 + ε h20/2 +

O(ε h30) for u0 ∼ 1 and u0 > 1, i.e. h0 ∼ 0 and h0 > 0.

Any solution u(t) is confined to a closed level curve

of E(u, u̇). There is no equilibrium on this curve since

E > 1 > 0, so the solution is necessarily a periodic

function of t.

Fig. 2 Phase space (u, u̇), energy level E(u, u̇) = E0, for u < 1
a piece of circle in blue, for u > 1 a little piece of an ellipse
in black dotted line.
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3.2 The exact period

The exact period is computed exactly.

T =

2π −2 arccos
(
|u−|−1

)
+ 2
√
η arccos

(
η

h0 + η

)
(11)

u− = −
√
E0, η =

1

1 + ε
. (12)

When ε = 0 and h0 = 0 we recover the period 2π of

the linear ODE. For a one dof problem the classical

but long computations using the energy is postponed

in Appendix 1.

4 The Lindstedt-Poincaré method

We introduce briefly the method of strained coordi-

nates, also named the Lindstedt-Poincaré method. When

we look for a periodic solution of (7), in general the pe-

riod is an unknown. We have already computed the ex-

act period T in (11) since this is only a one d.o.f. prob-

lem. For N d.o.f. problem the period is an unknown

and the Lindstedt-Poincaré method is an asymptotic

method to compute an approximation of the period [6,

7,11,3,4].

The basic idea is to change the time to seek a 1-

periodic solution. Let ω(ε) be the exact pulsation:

ω(ε) = 2π/T . Notice that for the linear problem:ε = 0,

we have simply ω(0) = 1. Let ωε be an approximation

of the exact angular frequency ω(ε) which is smooth

with respect to ε as we can see in formula (11).

ω(ε) = ωε + O(ε3).

Let us define the new time

s = ωε t, (13)

and rewrite equation (7) with vε(s) = uε(t):

vε(s) = vε(ωε t) = uε(t),

ω2
εv
′′
ε (s) + vε(s) + ε(vε(s)− 1)+ = 0. (14)

vε is subjected to the following initial conditions:

vε(0) = 1 + h0, v
′
ε(0) = 0.

In the new time s, we use the following ansatz

ωε = 1 + εω1 + ε2ω2,

vε(s) = v0(s) + εv1(s) + ε2rε(s).
(15)

v0 represents the linear behavior and the other terms,

ω1, v1, ω2 and rε are related to the nonlinear behavior.

4.1 The grazing contact case:

At this stage we take a key assumption on the initial

data modeling the grazing contact. As said previously,

we want to observe a grazing contact. For u0 ≤ 1, the

solution is only vε(s) = u0 cos(s) and we miss the non-

linear behavior. Clearly u0 = 1 is the grazing contact

case, but it is to simple for this one d.o.f. example. For

a N d.o.f. system it is more complicate, see [4]. More

precisely, in the coordinates formed by the eigenvectors

of the linear equation, u = (u1, · · · , uN ) an the initial

data to find the NNM associated with the first linear

mode is

u1(0) = a0 + ε a1, u̇1(0) = 0,

uk(0) = 0 + ε ak, u̇k(0) = 0, k = 2, · · · , N,

where a0 is fixed and a1, a2, · · · , aN are unknown. Thus,

for N d.o.f., the right expansion for u1(0) is dependent

of ε:

u1(0) = a0 + ε a1.

Nevertheless, we want to take the advantage of the 1

d.o.f. example which has an exact formula for the period

and so for ω(ε). Thus, we have to take u0 = 1 +h0 > 1.

But, for ε << h0, the behavior is well approached by

the method of strained coordinates, see [3] for good nu-

merical approximations and see [4] for a mathematical

validation. The good compromise is to take h0 ∼ ε. At

the first order, the linear approximation grazes the con-

tact at u = 1 and there is a small nonlinear interaction

with the contact. Thus, we assume for all the sequel

h0 = ε and then:

u(0) = 1 + ε.

Now we can continue to use the Lindstedt-Poincaré

method. Notice that ω1 and ω2 are unknown. Since

ω2
ε = 1 + ε α1 + ε2 α2 +O(ε3),

α1 = 2ω1,

α2 = ω2
1 + 2ω2,

we have to find α1 and α2.

We will also use the following expansion,

(u+ εv)+ = u+ + εH(u)v + εχε(u, v), (16)

where H(.) is the Heaviside function:

H(u) =

{
1 if u > 0,

0 else.

Since H(.) is not differentiable at u = 0, the remainder

εχε(u, v) is not the classical Taylor’s remainder. This

lack of smoothness is a problem to validate mathemat-

ically the Lindstedt-Poincaré method. The remainder

term is mathematically rigorously justified in [4].
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Now, replacing ansatz (15) in (14) we obtain differential

equations and initial data for v0, v1, rε:

L(v0) = −(v′′ + v) = 0, (17)

v0(0) = 1, v′0(0) = 0,

L(v1) = (v0 − 1)+ + α1v
′′
0 , (18)

v1(0) = 1, v′1(0) = 0,

L(rε) = H(v0 − 1)v1 + α2v
′′
0 + α1v

′′
1 +Rε(s), (19)

rε(0) = 0, r′ε(0) = 0.

We have v0(s) = cos(s) so (v0−1)+ = 0 and H(v0−1) =

0, so previous equations are simplified:

L(v1) = α1 v
′′
0 , (20)

v1(0) = 1, v′1(0) = 0,

L(rε) = α2 v
′′
0 + α1 v

′′
1 +Rε(s), (21)

rε(0) = 0, r′ε(0) = 0.

A key point in the method of strained coordinates is

to look for a periodic solution, so to avoid resonance

with the right hand side. To keep bounded v1 and rε
for large time we chose carefully α1 for v1 and α2 for rε.

For this purpose, we avoid resonant or secular term in

the right-hand-side of Equation (20) only when α1 = 0.

Thus v1(s) = ε cos(s).

In the same way, we have to take α2 = 0. The ap-

proximations is then:

ωε = 1,

v0(s) + ε v1(s) = (1 + ε) cos(s).
(22)

4.1.1 What is the accuracy of this approximation?

Assumptions (15) suggest the following precision:

ω(ε) = 1 +O(ε3),

T (ε) = 1 +O(ε3),

uε(t) = (1 + ε) cos(t) +O(ε2),

for t ≤ constant
ε .

(23)

But it is not the right precision as we will see below.

Before the rigorous proof in following sections we give

some hints to correct the error terms O(ε3) and the

time validity t ≤ constant

ε
in (23). The right precision

is found in (24) and more precised in next sections.

4.1.2 Heuristic argument on the precision

The Lindstedt-Poincaré method miss the nonlinear be-

havior of the solution of the nonlinear ODE (7) since

the method gives only the solution of the linearized part

of the ODE, namely v(t) = (1 + ε) cos(t) which is the

solution of

v̈ + v = 0, v(0) = u(0) = (1 + ε), v̇(0) = u̇(0) = 0.

The nonlinear term ε[v− 1]+ is missing in the previous

ODE.

Indeed, the lack of precision is explicitely given by

the expansion of the exact period. The period founded

by the Lindstedt-Poincaré method is Tε = 2π since

ωε = 1. There is no dependence with respect to ε. Be-

fore, making more precise computations, we give a hint

of the error size. Notice that the contact occurs at the

maximum of vε, when 1 < vε. We expect that the max-

imum of vε is of order 1+ε so the nonlinear effect is not

taken account when vε(s) stays approximatively in the

interval ]1, 1 + ε[ which size ' ε. At the maximum, vε
behaves like a parabola, so the time s are in an interval

with a length of order
√
ε, see Figure 2. Thus we expect

to have an error on T (ε) of order:
√
ε× ε (vε − 1)+ ' ε2.5

which is bigger than the usual O(ε3) for the method.

We show below that the period is not so well computed.

The error is exactly ' ε2.5. This error on the period of

order
√
ε spoils the validity of asymptotic expansions

for too much large time. Indeed, we have to correct

(23) by:

ω(ε) = 1 +O(ε2.5),

T (ε) = 1 +O(ε2.5),

uε(t) = (1 + ε) cos(t) +O(ε2),

for t ≤ constant√
ε

.

(24)

5 The period for the grazing contact

In this section we obtain (26): the asymptotic expansion

of the period T (ε). That is to say the period for the

solution of ODE (7) with initial data

u(0) = 1 + ε, u̇(0) = 0. (25)

The Lindstedt-Poincaré method is well known to obtain

an approximate period Tε with a precision of order 3

for smooth forcing: T (ε) = Tε +O(ε3). In the piecewise

linear case with a grazing contact we loose a precision

of order
√
ε. Indeed, we show in Appendix 2 below that

the exact period admits the following expansion.

T (ε) = 2π − 7

6

√
2 ε2.5 +O(ε3.5). (26)

Since the Lindstedt-Poincaré method only gives Tε =

2π we have proved that:

T (ε) = Tε +O(ε2.5).

Notice that the remainder is not smaller than O(ε2.5)

since from (26) we have:

T (ε)− Tε ∼ −
7

6

√
2 ε2.5.
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6 Precision of the Lindstedt-Poincaré method

The usual expected precision for the method of strained

coordinates is given in (23) . But we have rigorously

shown in a previous section that the period is only ap-

proximated by the linear period with a bigger remain-

der: T (ε) = 2π +O(ε2.5) and then

ω(ε) = 1 +O(ε2.5). (27)

We now explain the consequence of this loss of preci-

sion on the periodic solution and we justify the right

expansion (24). First, for the exact solution uε(t) of

(7), vε(s) of (14) and the exact pulsation ω(ε) we have

the equaltiy without anny remainder:

uε(t) = vε(ω(ε) t).

Notice that for 0 ≤ ε ≤ 1, uε is uniformly bounded in

C1 thanks to the energy (9). Then vε is also uniformly

bounded in C1. Now, replacing the exact pulsation ω(ε)

with equality (27) we have:

uε(t) = vε([ωε +O(ε2.5)] t),

= vε(ωε t)) +O(ε2.5) t.

Thus, to keep a remainder of order 2 we have to take

t ≤ tmax =
constant√

ε
.

Furthermore, we do not know the exact solution vε(s) =

v0(s) + ε v1(s) + ε2rε(s). Fortunately, the remainder

rε(s) is bounded in [4] for t ≤ tmax. Then uε(t) =

v0(ωε t))+ε v1(ωε t))+O(ε2.5) for t ≤ tmax which proves

(24).

7 Numerical experiments

In this section we compare the exact solution computed

in Appendix 3, the strained coordinates approximation

which is here the linear approximation (1 + ε) cos(t)

and the improved approximation using the asymptotic

expansion of the period (1 + ε) cos(ω∗ε t) and the lin-

ear approximation. From the expansion of T (ε) we take

ω∗ε = 1 +
7

6
√

2π
ε2.5.

The exact solution is given by the black line. The

strained coordinates approximation is represented by

red crosses. The improved solution is represented by

blue circles.

For the time validity
1√
ε

justified in [4] we have on

the time interval

[
1√
ε
,

1√
ε

+ T (ε)

]
the following results

in Figures 3,4,5.

Fig. 3 ε = 0.6, time interval
[
ε−1/2, ε−1/2 + T (ε)

]
.

Fig. 4 ε = 0.5, time interval
[
ε−1/2, ε−1/2 + T (ε)

]
.

Fig. 5 ε = 0.4, time interval
[
ε−1/2, ε−1/2 + T (ε)

]
.

The improved solution is better than the strained

coordinates approximation.

We now turn to the usual time
1

ε
for the method

of strained coordinates in Figures 6,7,8. The strained

coordinates method is far to reach the precision ε2 in

these cases.

8 Conclusion and prospects

To understand the accuracy of the Lindstedt-Poincaré

method to compute nonlinear normal modes for a N
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Fig. 6 ε = 0.6, time interval [ε−1, ε−1 + T (ε)].

Fig. 7 ε = 0.5, time interval [ε−1, ε−1 + T (ε)].

Fig. 8 ε = 0.4, time interval [ε−1, ε−1 + T (ε)].

d.o.f. piecewise linear problem, we have sharply stud-

ied the method of strained coordinates on a one d.o.f.

problem with small grazing contact. This method is still

working but there are some drawbacks compared to a

smooth contact.

– The expansion is only the crude expansion of the

linear problem. Nonlinear phenomenons are missed.

– The accuracy of the period is spoiled.

– The expansion of the period is wrong at the third

order.T (ε)

– The time validity of the expansion is smaller.

Naturally, the grazing contact is a very weak contact,

so the method has to be more precise to catch nonlinear

phenomenons. These drawbacks suggest some improve-

ments.

8.1 Improvements and open problem for grazing

nonlinear modes

The usual method of strained coordinates has to be

modified to compute nonlinear grazing modes for piecewise-

linear systems. Our study proves rigorously that the

right ansatz for the period and the pulsation with one

d.o.f. is:

T (ε) = T0 + ε2.5 T ∗2.5 +O(ε3.5),

ω(ε) = ω0 + ε2.5 ω∗2.5 +O(ε3.5).

Using the more precise pulsation ω∗ε = ω0 + ω∗2.5 ε
2.5

combined with the linear approximation vε(t) we have

already a better approximation of the exact solution

uε(t) with

vε(ω
∗
ε t)

than the strained coordinates approximation. How to

compute ω∗2.5 in general? It is not clear with the gen-

eralized Taylor expansion (16) used in [4] because the

fractional powers do not appear explicitly. Could we

improve the profile vε? It is less clear as Theorem (4.2)

in [4].

In conclusion the limitation of the method of strained

coordinates is proved precisely but the improvment of

this method has to be discovered.

Appendix 1

In this Appendix we compute the following exact ex-

pression for the period with the energy.

T =

2π −2 arccos
(
|u−|−1

)
+ 2
√
η arccos

(
η

h0 + η

)
u− = −

√
E0, η =

1

1 + ε
.

T (ε) To obtain this period formula, i.e. Formula (11)

before, we use the well known relation between the en-

ergy and the period [7]. Using the symmetry with re-

spect to the horizontal axis in the phase space, we com-

pute the half period:

T

2
=

∫ u0

u−

du√
E0 − F (u)

. (28)

Formula (28) comes from the relation u̇ = ±
√
E − F (u).

For the half superior part: u̇ > 0 and since E = E0, the
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relation becomes: du
dt =

√
E0 − F (u), so dt = du√

E0−F (u)

which yields relation (28).

Since F (u) has different expression for u < 1 or

u > 1 we decompose the integral in (28) in two parts..

The computation is explicit with the function arcsin

and the following relations for A > 0:

arcsin(y) =

∫ y

0

du√
1− u2

, (29)

arcsin

(
y + b√
A+ b2

)
=

∫ y du√
A− (u2 + 2b u)

. (30)

Equality (30) means the left hand side is an antideriva-

tive of the right hand side. We also recall the arccos

function for y ∈ [0, 1]:

arccos(y) =
π

2
− arcsin(y) =

∫ 1

y

du√
1− u2

. (31)

Now we can compute T/2:

T

2
= T− + T0 =

∫ 1

u−

du√
E0 − F (u)

+

∫ u0

1

du√
E0 − F (u)

.

Notice that u− = −
√
E0 so:

T− =

∫ 1

u−

du√
E0 − u2

= arcsin(1/
√
E0)− arcsin(u−/

√
E0),

= − arcsin(1/u−)− arcsin(−1) =
π

2
+ arcsin(1/|u−|),

= π − arccos(1/|u−|).
We now turn to T0 with the notation u = 1 + v and

η = 1/(1 + ε):

T0 =

∫ u0

1

du√
E0 − (u2 + ε v2)

,

=

∫ h0

0

dv√
(1 + h0)2 + ε h20 − ((1 + v)2 + ε v2)

,

=

∫ h0

0

dv√
(1 + ε)(h20 − v2) + 2(h0 − v)

,

=
√
η

∫ h0

0

dv√
(h20 − v2) + 2 η(h0 − v)

,

=
√
η

∫ h0

0

dv√
(h20 + 2ηh0)− (v2 + 2η v)

,

=
√
η

(
arcsin

(
h0 + η

h0 + η

)
− arcsin

(
η

h0 + η

))
,

from (30)

and A+ b2 = h20 + 2ηh0 + η2 = (h0 + η)2,

=
√
η

(
π

2
− arcsin

(
η

h0 + η

))
,

=
√
η arccos

(
η

h0 + η

)
.

Adding T− and T0 we obtain T/2 and then (11).

Appendix 2

We compute (26): the asymptotic expansion of the pe-

riod T (ε) from the exact expression of the period (11).

T (ε) = 2π − 7

6

√
2 ε2.5 +O(ε3.5).

The details of the computations first use an expansion

of the function arccos(y) near y = 1.

arccos(1− h) =


√

2h+

√
2

12
h1.5 +

3
√

2

80
h2.5

+O(h3.5).
(32)

We now prove this formula. First, by (31) we have:

arccos(1− h) =

∫ 1

1−h

du√
1− u2

,

=

∫ 1

1−h

du√
(1− u)(1 + u)

,

with u = 1− t h we have:

=

∫ 1

0

h dt√
t h (2− t h)

,

=
√
h

∫ 1

0

dt√
t(2− t h)

,

=
√
h g(h).

We now have an integral with the parameter h which is

not singular. Thus g is a smooth function and we have

the following expansion with fractional powers of h:

arccos(1− h)

=
√
h

[
g(0) + g′(0)h+

g′′(0)

2
h2 +O(h3)

]
,

= g(0)
√
h+ g′(0)h1.5 +

g′′(0)

2
h2.5 +O(h3.5).

We compute g(0), g′(0) and g′′(0) to get formula (32).

g(h) =

∫ 1

0

dt√
t(2− t h)

,

g(0) =

∫ 1

0

dt√
2 t

=
√

2,

g′(h) =
1

2

∫ 1

0

√
t dt

(2− t h)3/2
,

g′(0) =
1

25/2

∫ 1

0

√
t dt =

1

6
√

2
=

√
2

12
,

g′′(h) =
3

4

∫ 1

0

t
√
t dt

(2− t h)5/2
,

g′′(0) =
3

29/2

∫ 1

0

t3/2 dt =
3
√

2

80
.

We now turn to asymptotic expansion of the exact

period T (ε). For this purpose, we compute the expan-

sions of the two last terms defining the exact period
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T (ε) = 2π + T2 + T3 defined by (11):

T2 = −2 arccos(|u−|−1),

T3 = 2
√
η arccos

(
η

ε+ η

)
To expand T2 with respect to ε, we notice that from

(28), (25):

|u−| =
√

(1 + ε)2 + ε3,

= (1 + ε)

√
1 +

ε3

(1 + ε)2
,

= (1 + ε)

(
1 +

ε3

2
+O(ε4)

)
,

= 1 + ε+
ε3

2
+O(ε4),

1

|u−|
= 1− ε+ ε2 − ε3

2
+O(ε4).

Let h be defined as:

h = 1− |u−|−1 = ε− ε2 +
ε3

2
+O(ε4),

√
h =
√
ε

√
1− ε+

ε2

2
+O(ε3),

=
√
ε

(
1− ε

2
+
ε2

4
+

3

8
ε2 +O(ε3)

)
,

=
√
ε− ε1.5

2
+

5

8
ε2.5 +O(ε3.5),

h1.5 = ε1.5 − 3

2
ε2.5 +O(ε3.5),

h2.5 = ε2.5 +O(ε3.5).

We now can compute T2:

−T2 = 2 arccos(1− h),

= 2
√

2h+

√
2

6
h1.5 +

3
√

2

80
h2.5 +O(h3.5)),

= 2
√

2
√
ε− 5

√
2

6
ε1.5 +

83
√

2

80
ε2.5 +O(ε3.5)).

For the third term, we have

η

ε+ η
= (1 + ε+ ε2)−1

= 1− ε+ ε3 +O(ε4) = 1− h.

Now we expand h, h1.5 and h2.5:

h = ε− ε3 +O(ε4) = ε
(
1− ε2 +O(ε3)

)
,

√
h =
√
ε− ε2.5

2
+O(ε3.5),

h1.5 = ε1.5 +O(ε3.5),

h2.5 = ε2.5 +O(ε3.5),

These yields to the expansion of T3:

2 arccos

(
η

ε+ η

)
= 2
√

2
√
ε+

√
2

6
ε1.5

−191
√

2

240
ε2.5 +O(ε3.5)),

√
η = (1 + ε)−1/2 = 1− ε

2
+

3

8
ε2 +O(ε3),

T3 = 2
√

2
√
ε− 5

√
2

6
ε1.5 − 31

√
2

240
ε2.5 +O(ε3.5)).

Finally, adding the expansions for T2 and T3 we obtain

T − 2π = −280
√

2

240
ε2.5 +O(ε3.5)),

and then (26).

Appendix 3

We compute the exact solution to compare it numeri-

cally with some asymptotic expansions. Since the ODE

(7) is piecewise linear, we have after some computa-

tions:

uε(t) = ηε+ (1 + ηε2) cos(
√

1 + ε t), 0 < t < τ,

uε(t) = u− cos

(
t− T

2

)
, τ < t < T − τ,

uε(t) = uε(T − t), T − τ < t < T,

where u− and η are defined in section 3, T = T (ε) and

τ = τ(ε) =

arccos

(
1− ηε
1 + ηε2

)
√

1 + ε
.
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