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Abstract

A two-parameter transfer function with an in�nite characteristic time is proposed for con-

ceptual rainfall-runo� models. The large time behaviour of the unit response is an inverse

power function of time. The in�nite characteristic time allows long term memory e�ects to be

accounted for. Such e�ects are observed in mountainous and karst catchments. The governing

equation of the model is a fractional di�erential equation in the limit of long times. Although

linear, the proposed transfer function yields discharge signals that can usually be obtained

only using non-linear models. The model is applied successfully to two catchments, the Dud

Koshi mountainous catchment in the Himalayas and the Durzon karst catchment in France. It

compares favourably to the linear, non-linear single reservoir models and to the GR4J model.

With a single reservoir and a single transfer function, the model is capable of reproducing

hysteretic behaviours identi�ed as typical of long term memory e�ects. Computational e�-

ciency is enhanced by approximating the in�nite characteristic time transfer function with a

sum of simpler, exponential transfer functions. This amounts to partitioning the reservoir into

several linear subreservoirs, the output discharges of which are easy to compute. An e�cient

partitioning strategy is presented to facilitate the practical implementation of the model.

1 Introduction

The hydrological response of a number of natural systems, such as karst and mountainous catch-
ments, is well-known to involve multiple time scales. Such catchments typically respond to the
precipitation signal in the form of very fast and sharp discharge peaks, followed with long and
slowly decreasing base discharge signals. Besides, the higher discharge peaks are not necessarily
triggered by the higher precipitation intensities (see e.g. Latron et al., 2008), which is a clear
indication of long-term memory e�ects. As far as karst catchments are concerned, such e�ects

are attributed to the dual role (storage and propagation) of the epikarst and conduits (Juki
′

c and

Deni
′

c-Juki
′

c , 2009). Catchments with steep slopes may exhibit a bimodal runo� response to rainfall
events, a feature that is attributed to parallel responses of surface and subsurface compartments
(Grae� et al., 2009). The consequence is a variable response time to the recharge signal (Delbart
et al., 2014). Accounting for multiple transfer time scales simultaneously thus appears as a highly
desirable feature for rainfall-runo� models (Terzić et al., 2012).

Three classical modelling approaches to reconstruct such behaviours are (i) increasing the num-
ber of reservoirs, (ii) introducing a degree of non-linearity in the response of the reservoir(s) in the
form of threshold/power discharge laws, hysteretic behaviours, etc., (iii) increasing the complexiity
of the transfer functions by introducing additional variables or time-dependent transfer functions,
in the form of unit hydrographs (Chow et al., 1988; Dooge, 1959; Jakeman et al., 1990; Nash, 1957;
Sherman, 1932) or model state-dependent functions . Most models available from the literature
combine several of these approaches (Birkel et al., 2010; Campbell and Sullivan, 2002; Chen and
Goldscheider, 2014; Edijatno et al., 1999; Fleury et al., 2007; Grae� et al., 2012; Hartmann et al,

2012, 2013a-b; Juki
′

c and Deni
′

c-Juki
′

c, 2009; Padilla and Pulido-Bosch, 2008; Perrin et al., 2003;
Tritz et al., 2011; Yue and Hashino, 2000). The price to pay is a substantial increase in the number
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of model parameters, which is well-known to improve model calibration but does not necessarily
help in increasing the predictive power of the model (Perrin et al., 2001).

All these approaches share the common property of yielding �nite characteristic times, thus
suggesting a limited potential for taking long-term memory e�ects into account.

This paper presents an alternative approach, whereby the unit response of the reservoir model
is an inverse power function of time. Experimental evidence for such behaviours is suggested by
Majone et al. (2004) for karst catchments. A salient feature of such a response is that it allows
for in�nite characteristic times. While inverse power responses may be obtained using non-linear
reservoir equations, the proposed model is linear. Its �exibility makes it applicable to a wide range
of situations.

The idea of modelling transfer processes with in�nite characteristic times or lengths is not new.
In�nite characteristic times are usually a signature for trapping phenomena in the transport/signal
transfert process (Metzler and Klafter, 2000). They are obtained under the assumption of heavy-
tailed Probability Density Functions (PDFs) for signal and/or matter transfer times and distances.
An important class of heavy-tailed PDF is the family of PDFs that become equivalent to inverse
power laws for large times. Random variables obeying such PDFs verify the generalized central
limit theorem. Analyzing such PDFs within the Continuous Time Random Walk (CTRW) formal-
ism (Klafter et al., 1987) leads to fractional di�erential governing equations. Transport processes
obeying such governing equations are termed �anomalous� as opposed to �normal�, �nite character-
istic time-based processes. Anomalous transport processes obeying such laws have been identi�ed
in turbulent �ows (Richardson, 1926), the migration of electric charges in amorphous solids (Scher
and Montroll, 1975; P�ster and Sher, 1977), biological transfer processes (Thurner et al., 2003),
epidemics dynamics (Da Silva et al., 2013), also see the review by Metzler and Klafter (2000).
As far as environmental processes are concerned, anomalous transport models have been used to
model the migration of contaminants in porous media (see e.g. Levy and Berkowitz, 2003; Gao et
al., 2009) and complex geological settings (Meerschraert et al., 1999; Sun et al., 2014). To our best
knowledge, the idea of incorporating heavy-tailed, inverse power law probability density functions
to model the propagation of a hydrological signal in a lumped conceptual model has not been
proposed before. The purpose of this paper is to examine how bene�cial such an approach can be
to catchment modelling.

In Section 2, the principle of a unit response that behaves as an inverse power of time for
asymptotically long times is introduced. The governing equation of the reservoir model is shown
to obey a fractional di�erential equation for asymptotically long time scales. Section 3 shows
how such a transfer function can be easily implemented in the structure of a classical reservoir
model. Section 4 illustrates the application of the proposed model to two di�erent catchments:
the Dud Koshi catchment (Himalayas mountain chain) and the Durzon karst catchment. In both
applications, the model outperforms classical linear and non-linear approaches based on a �nite
transfer time. Section 5 is devoted to conclusions.

2 Single reservoir model

2.1 Structure and general governing equations

Consider the single linear reservoir model with the following structure (Figure 1):

� a single input in the form of a prescribed in�ow rate r (t) as a function of time, independent
of the height (or speci�c volume) h stored in the model. In the �eld of surface catchment
modelling, the in�ow is the net rainfall. In the �eld of subsurface hydrological modelling, the
term recharge is more often used,

� a single output q (t), that is not necessarily a function of h, but depends on the transfer
time of the in�ow signal through the reservoir. A Dirac-shaped in�ow signal entering the
reservoir leaves the reservoir after a time (called waiting time or transfer time hereafter)
t. The Probability Density Function (PDF) of the transfer time, or unit response of the
reservoir, is denoted by w (t) hereafter, with the constraintˆ +∞

0

w (t) dt = 1 (1)

and the characteristic time is de�ned as

Tc =

´ +∞
0

tw (t) dt´ +∞
0

w (t) dt
=

ˆ +∞

0

tw (t) dt (2)

2



The out�owing discharge is related to the in�ow by the convolution (hence the term �convolution
kernel� for w (t))

q (t) = r ∗ w (t) =

ˆ t

0

r (t)w (t− τ) dτ (3)

and the speci�c volume h obeys the balance equation

dh

dt
= r − q (4)

Applying the Laplace transform to the above two equations yields

q̂ = r̂ŵ (5a)

ĥ =
1− ŵ
s

r̂ (5b)

where the •̂ operator denotes the Laplace transform and s is the Laplace variable. The consequences
of a �nite and in�nite characteristic time are examined in the next sections.

2.2 Finite characteristic time transfer function

Characteristic time scales for the unit response w (t) are typical of Markovian processes, whereby
the behaviour of the system at a given time is independent of its behaviour at previous times.
Markovian processes yield exponential-like behaviours for w (t) (Klafter et al., 1987). The simplest
possible example of a Markovian system with a linear response is the linear reservoir model (Maillet,
1906). The unit response w (t) and characteristic time Tc of the linear reservoir model are

w (t) = k exp (−kt) (6a)

Tc =
1

k
(6b)

where k is the discharge constant of the reservoir. Placing linear reservoirs in series or in parallel
may modify the unit response of the system, but in any case the characteristic time is �nite.
Applying the Laplace transform to (6a) gives

ŵ =
k

k + s
(7)

and (5b) becomes

(k + s) ĥ = r̂ (8)

Reverting from the Laplace variable to the classical time variable yields the well-known linear
reservoir equation:

dh

dt
= r − kh (9)

2.3 In�nite characteristic time transfer function

Assume now that the unit response w obeys the following asymptotic power law:

w (t) ∼
t→+∞

A

t1+α
, 0 < α < 1 (10)

where the exact value of the constant A does not need to be known at this stage. The constraint
(1) imposes that A depends not only on α but also on the behaviour of w at small times. The
coe�cient α cannot be negative, otherwise the integral in (1) does not converge. It cannot be
larger than unity because α ≥ 1 yields a �nite characteristic time scale. The assumption 0 < α < 1
is thus retained in what follows. Asymptotic behaviours in the form (10) are customary in the
�eld of fractional dynamics and anomalous transport (Klafter et al., 1987; Metzler and klafter,
2000) and have been observed in a variety of natural processes. They usually express the in�uence
of trapping phenomena inducing asymptotically long transfer times. They are characteristic of
non-Markovian processes, with long-term memory e�ects that makes the behaviour of a system
dependent of all its past states. The asymptotic behaviour (10) is supported by time series analyses
on karst catchments (Majone et al., 2004).

The following formula is proposed for w in the present application:
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w (t) =
ατα0

(τ0 + t)
1+α , 0 < α < 1 (11)

Although many other functions would be acceptable, equation (11) is interesting because it ful�ls
the two necessary conditions (1, 10), while remaining fairly simple. It involves only two parameters,
the time scale τ0 and the exponent α. Figure 2 shows the typical behaviour of the convolution kernel
(11) compared to that of the linear reservoir (6a). The long term memory e�ect of the kernel (11)
is clearly visible, with w (t) decreasing much slower than the exponential response (6a).

Asymptotic governing equation for large times. The governing equations are written for
a time scale such that the asymptotic behaviour (10) is valid. In this case, one has (see Appendix
A for a proof)

ŵ ∼
s→0

1− βsα, β =
A

α
Γ (1− α) (12)

where the Gamma function is the extension of the factorial to real numbers. In the limit of small
s, Equation (5b) becomes

ĥ = βsα−1r̂ (13)

Applying the inverse Laplace transform to the above equation gives the following fractional di�er-
ential equation for large times

d1−αh

dt1−α
= βr, t→ +∞ (14)

where d1−α

dt1−α is the non-integer fractional derivative (to be distinguished from the fractal derivative)
de�ned in Appendix B, with lower integration bound a = 0. An alternative formulation is

dh

dt
= r − q, q = r − β dαr

dtα
, t→ +∞ (15)

It should be kept in mind that the formulations (14, 15) are only asymptotic versions of the
balance equations for asymptotically large times. These equations are not to be used as governing
equations for small time scales, where the approximation (10) does not hold.

3 Practical implementation

3.1 Implementation using local operators

3.1.1 General

The purpose is to �nd a computationally e�cient way to implement the governing equation (4).
Substituting equation (11) into (3) yields

q (t) = ατα0

ˆ t

0

r (t− τ)

(τ0 + τ)
1+α dτ (16)

The computation of the integral (16) is CPU-intensive because the number of required arithmetic
operations is proportional to the simulated time. The consequence is that simulating N time
steps requires a number of operations proportional to N2. To give but an example, multiplying
the simulated period by 10 yields a CPU time multiplied by 100. Using such a model over long
time series would quickly become impracticable. This issue stems directly from the non-local
character of the convolution (16), a property that shared with the fractional derivatives appearing
the governing equation (14) in the limit of in�nite times (see also Appendix B for the non-local
character of the fractional derivative).

This computational burden can be eliminated by replacing the convolution (16) with a set of
local operations, that is, operations involving only the current state of the system and not all its
past states. Bearing this in mind, an alternative approach is proposed. It is based on the following
remark: the convolution (16) does not need to be computed exactly for all times. In practice, the
simulation time will never exceed an upper limit T . Therefore, the convolution (16) needs to be
computed accurately only up to t = T . For this reason, it is proposed that the convolution kernel
(11) be approximated with a set of functions that characterize a local behaviour. The simplest
possible function is that of the linear reservoir (6a). The following approximation is proposed:
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w (t) ≈
R∑
i=1

Wi (t) , Wi (t) =
θi
ki

exp (−kit) (17)

where the θi are constant coe�cients, the determination of which is explained hereafter. The
out�ow discharge is obtained as

q (t) ≈
R∑
i=1

θiqi (t) , qi (t) =

ˆ t

0

r (t− τ)
1

ki
exp (−kiτ) dτ (18)

This amounts to partitioning the reservoir into R linear sub-reservoirs placed in parallel (Fig-
ure 3). Note that this idea is not new. A similar approach is used in (Jakeman et al., 1990) for
the representation of the unit hydrograph. The out�owing discharge q in (16) is the sum of the R
discharges qi (i = 1, . . . , R) �owing out of the linear sub-reservoirs weighted by θi. Each of these
linear sub-reservoirs has a �nite characteristic time Tc,i = 1

ki
(see equation (6b)). The behaviour of

this system is local in that each discharge qi is a function of the current state of the sub-reservoir
i alone and does not involve its past states. The governing equations for the model then become

h (t) =

R∑
i=1

θihi (t) , q (t) =

R∑
i=1

θiqi (t) (19a)

qi = kihi (19b)

dhi
dt

= r (t)− kihi (19c)

R∑
i=1

θi = 1 (19d)

where ki and hi are respectively the discharge constant and the speci�c volume for the ith sub-
reservoir, while h is the speci�c volume for the entire catchment model.

Mass conservation stemming from equations (19c-19d), the only requirement on the model (19c)
is that the discharge constants ki allow for a su�ciently accurate approximation of the convolution
kernel w (t) between t = 0 and t = T . How the partition should be carried out is explained in the
next subsection.

3.1.2 Partitioning strategy

The accuracy of the approximation (17) is strongly conditioned by (i) the number R of linear sub-
reservoirs, (ii) the choice of the discharge coe�cients ki, i = 1, . . . , R. The partitioning method is
based on the following considerations.

1. Assuming that the discharge constants ki, i = 1, . . . , R are prede�ned, the only unknowns in
the approximation (17) are the fractions θi, i = 1, . . . , R. The θi can be determined uniquely
by enforcing the approximation (17) for a set of R prede�ned times tj , j = 1, . . . , R:

R∑
i=1

θi
ki

exp (−kitj) =
ατα0

(τ0 + tj)
1+α ∀tj , j = 1, . . . , R (20)

and solving the system (20) for the θi, i = 1, . . . , R.

2. A desirable behaviour is that the approximation (17) yield positive discharges qi (t) for all
times. For this, the coe�cients θi must all be positive, thus yielding a positive, monotonically
decreasing approximation (17).

3. Condition 2 can be easily satis�ed provided that the coe�cients ki are su�ciently di�erent
from each other, so that the system (20) is correctly conditioned. An easy way of enforcing
this is that the prede�ned times tj stemming from Consideration 1 are su�ciently di�erent
from each other and that the coe�cients ki are related to these prede�ned times. The
following option has proved successful for a wide range of α:

w (tj) =

(
R− j + 1

R

)a
w (0) =⇒ tj =

[(
R

R− j + 1

) a
1+α

− 1

]
τ0 (21a)

ki =
b

τ0 + ti
(21b)

5



Numerical experiments indicate that R ∈ [10, 20], a ∈ [5, 10] and b ∈ [2, 3] yield accurate results.
Three approximation examples of the law (11) with (17) are shown and commented in AppendixC.

3.2 Practical aspects

3.2.1 Need for an upper volume threshold

The partitioning method (17, 21a, 21b) implies that some of the kj will be extremely small.

For instance, for (R, a, b) = (15, 7.5, 2.5), one will have t15 = 7.6 × 105τ0 and k15 = 3.3×10−6

τ0
.

Considering that τ0 is often of the order of a few days, this makes t15 range from 103 to 104 years.
This is far beyond the length of any realistic reservoir simulation, thus providing a very convincing
justi�cation for the approximation (17).

This, however, raises an issue. Considering an average in�ow r, the average height stored in
the sub-reservoir i is

hi =
r

ki
(22)

For the above set of parameters, r = 1m/yr yields h15 = 830 m for τ0 = 1 day and h15 = 2500 m
for τ0 = 3 days. Clearly, such storage heights are unrealistic. It is thus necessary to bound the
permissible speci�c volumes hi of the sub-reservoirs with an upper threshold hmax that prevent
an unrealistic storage volume in the slower linear sub-reservoirs. If the speci�c volume hi is larger
than hmax, the in�ow r to the sub-reservoir i is set to zero and the in�ow is routed directly to the
outlet, see Section 4.1 for the practical implementation of the in�ow model.

This mechanism may bear several physical interpretations depending on the type of catchment
under consideration. The instantaneous transfer of excess water to the outlet of the catchment
may be seen as a model for Dunne-type runo�, a runo� generated after long and moderate rainfall
events that lead to the progressive saturation of soils and the further impossibility for water to
in�ltrate. In the �eld of karst catchment modelling, it may be seen as the piston �ow resulting
from almost instantaneous pressure transfer when the conduit network comes to saturation. This
mechanism is implemented in models such as the GR4J model (Perrin et al., 2003) and the Vensim
model (Fleury et al., 2007) for karst catchment modelling.

3.2.2 Incorporating non-linearity: a straightforward approach

In classical reservoir models, two widespread approaches to non-linearity are threshold functions
and power discharge laws. They may be viewed as modi�cations of the linear reservoir law. For
instance, a power discharge law can be rewritten as

q (h) = k

(
h

hmax

)B−1

h (23)

where B is a positive power (usually larger than unity) and hmax is used for scaling purposes. This
non-linearity may be viewed as the result of a volume-dependent characteristic time

TC (h) =
1

k

(
hmax

h

)B−1

(24)

Tc being a decreasing function of the volume stored in the reservoir. This is in agreement with the
assumption that the density of connected �ow paths increases with the degree of saturation of the
reservoir. This formula is easily generalized to the proposed transfer functions (19b) by setting

qi (h) = ki

(
h

hmax

)B−1

hi (25)

For B = 1, the classical linear behaviour is recovered, while non-linearity is achieved for B 6= 1.
Using the average speci�c volume h as de�ned in (19a) applies the same time scaling to all the
discharge constants of all the sub-reservoirs.

Note that the non-linear formula (23) yields output signals q (t) in the form of inverse power
functions of time, as does equation (11). However, there are two fundamental di�erences between
the laws (11) and (23). Firstly, the non-linear nature of (23) makes the interpretation of the
behaviour of the system in terms of unit response impossible. Secondly, (24) always yields �nite
characteristic times (with the only exception of an empty reservoir: B > 1, h = 0), while (11)
always yields in�nite characteristic times, even in the linear case.
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3.2.3 Model initialization

A transfer function with an in�nite characteristic time also raises the issue of model initializa-
tion. Formal and empirical sensitivity analyses of the response of reservoir models (Mazzilli et al.,
2012) indicate that the initialization bias may exert a signi�cant in�uence on the calibration and
validation of conceptual models. The decay time of the initialization bias is proportional to the
characteristic time Tc of the transfer function. The warm-up period of the model (that is, the time
needed to achieve a set of internal variables that are independent from the initial condition) is
typically a few times Tc. In the case of an in�nite characteristic time, it is theoretically impossible
to eliminate completely the initialization bias because the length of the warm-up period is in�nite.

A simple way to avoid using a long warm-up period consists in assuming that the long term
e�ects of the in�ow are strongly smoothed out over time and that the in�ow may be replaced with
its time average. A realistic approximation of the initial speci�c volume in the sub-reservoir i is
therefore given by the steady state solution

hi (t = 0) = min

(
hmax,

r

ki

)
(26)

4 Application examples

4.1 In�ow model

In the application examples the model is also compared to the linear and non-linear reservoir with
governing equation (23). The structure of the model is shown in Figure 4. Although Figure 4 is
drawn for a subreservoir, the structure and functioning is exactly the same for the single linear
and non-linear reservoir models.

The in�ow model used in the application examples is very simple, especially in the way evapo-
transpiration is considered. It is acknowledged that much more sophisticated models have been

proposed in the literature (Fazal et al., 2005; Hartmann et al., 2013a; Juki
′

c and Deni
′

c-Juki
′

c, 2009).
However, comparative studies have shown that very simple evapotranspiration models may give as
satisfactory results as complex ones in the �eld of rainfall-runo� modelling (Oudin et al., 2005).
It is stressed that the purpose of the present study is not to provide the best possible hydrological
model but to illustrate the possibilities o�ered by the proposed convolution kernel (11).

The in�ow model functions as follows.

� Each subreservoir receives the same net in�ow rate r (t). The net in�ow r (t) is computed as
the di�erence between the precipitation rate P multiplied by an in�ltration coe�cient Cinf

and the potential evapotranspiration rate PET.

� In the case of the Dud Koshi catchment presented in Section 4.2, snow and ice melt �uxesMs

and Mi are involved. They are added to the in�ow without multiplication by the in�ltration
coe�cient.

� The rate PET is subtracted from the reservoir only if the average depth h =
∑R
i=1 hi is above

a minimum threshold hmin. For h < hmin, the water is assumed to be stored too deep in the
system (lower part of the unsaturated zone and/or in the saturated zone) for plant uptake
and/or evaporation.

� If the depth hi exceeds hmax during the computational time step ∆t, the subreservoir is not
allowed to take up any more water. The net in�ow is routed directly to the outlet of the
subreservoir in the form of a spilling discharge si. As explained in Section 3.2, this direct
routing may be seen as a model for Dunne-type runo� or pressure transfer-induced piston
�ow in karst aquifers.

ri =

 CinfP +Mi +Ms if hi < hmin

CinfP +Mi +Ms − PET if hmin ≤ hi < hmax + (CinfP +Mi +Ms − PET) ∆t
0 if hi > hmax + (CinfP +Mi +Ms − PET) ∆t

(27a)

si =

{
0 if hi < hmax + (CinfP +Mi +Ms − PET) ∆t

CinfP +Mi +Ms − PET if hi = hmax + (CinfP +Mi +Ms − PET) ∆t
(27b)
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4.2 The Dud Koshi Himalayan catchment

4.2.1 Catchment description

The Dud Koshi catchment (3720 km²) is located in the central part of Himalayas in Nepal (Fig-
ure 5). It �ows into the Koshi River, a tributary of the Ganges. The elevations rank from 700m
at Rabuwabazar in the south to the Mount Everest in the north. The relief is characterized by
steep slopes and high orographic gradient. Three processes explain the Dud Koshi discharge: pre-
cipitation direct runo�, snow melt and ice melt, with glacier covering about 14% of the catchment
area. The �rst one prevails during the monsoon season from June to September, the monsoon
precipitations represent about 80% of the annual precipitation. The snow melt and the glacier
melt lead to the inter season discharges from March to May and October to November. 20% of
the annual precipitations come from the westerlies �uxes during the winter season. Atmospheric
forcings are characterized by a strong spatial variability. The boundary of the snow cover area
varies from 2000m in winter to 4000m during the monsoon. The maximum annual precipitation
rate is observed at the elevation z = 2000 m with a maximum of about 2500mm/year.

4.2.2 Data

A detailed description of the data can be found in (Savean et al., submitted), only an outline is
given here. Forcings and discharges data at Rabuwabazar from 2001 to 2006 are used in this study,
at a daily time step. The discharge time series are provided by the Department of Hydrology
and Meteorology (DHM) of Nepal. The daily precipitation time series are computed from rain
gauges measurement provided by DHM and EV-K2 CNR network, using a cokriging interpolation
method. They are corrected by a piecewise constant multiplication factor that is adjusted for each
hydrological year so as to preserve the annual hydrological balance. The underlying assumption of
this correction is that the annual storage variations over the catchment are negligible compared to
the integral of the �uxes.

The daily spatial air temperature, the net radiation, the relative humidity and the wind velo-
city time series are computed from NCEP/NCAR reanalysis data using a disaggregation procedure
based on elevation. The Penman-Monteith method is used to estimate the potential evapotran-
spiration. The snow melt and ice melt �uxes have been estimated with the classical empirical
degree-day model (Hock, 2003; Pokhrel et al., 2014).

4.2.3 Simulation results

The proposed model is compared to the linear and non-linear models, as well as to the GR4J
model (Perrin, 2002; Perrin et al., 2003), a parsimonious rainfall-runo� model that functions at
a daily time step. The GR4J model is considered standard in the �eld of catchment hydrology.
It has two reservoirs and four parameters. The detailed description of the model structure and
functioning, given in Perrin (2002) and Perrin et al. (2003), will not be recalled here for the sake
of conciseness. It is important to stress, however, that the model has two reservoirs with di�erent
sizes X1 and X3, each of which obeys a non-linear discharge law in the form (23), and two unit
hydrograph-based routing functions, with �nite supports X4 and 2X4. The parameter X2 allows
for mass balance corrections via exchanges through the catchment boundaries. It may thus be
considered that the model incorporates four di�erent time scales, two of which are �xed via X1

and two of which are variable according to the considerations in Section 3.2.2. The GR4J model
thus appears as a �exible tool to simulate the behaviour of catchments with complex structures.

The same calibration/validation methodology is used for the four models. Years 1 and 2 are
used for model warm-up. Years 3 and 4 are used for calibration. Year 5 is used for validation.
Calibration is carried out by a systematic exploration of the model parameter space and successive
re�nements around the global optimum. The objective function is the Nash-Sutcli�e E�ciency
(NSE) (Nash and Sutcli�e, 1970). The authors are aware of the limitations associated with the
NSE indicator (see e.g. Criss and Winston, 2008) and that many other objective functions could
be used (Criss and Winston, 2008; Hogue et al., 2000; Krause et al., 2005; Legates and McCabe,
1999; Schae�i and Gupta, 2007) for proposing themselves various generalized forms of objective
functions (Guinot et al., 2011). The purpose here being to illustrate the �exibility of the model,
the NSE is used only as a model benchmarking indicator. For each model, two di�erent calibration
options are used: calibration with an emphasis on peak �ows, with the NSE computed using the
discharges, and calibration with an emphasis on low �ows, with the NSE computed using the
transformed discharges q1/4. There again, many other options could be used for low-�ow model
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�tting, but the NSE of the transformed �ow variable has bee used by a majority of authors (see
the review by Pushpalatha et al. (2012)).

Table 1 shows the optimal calibration parameter sets obtained for the four models. The simu-
lated discharges are shown in Figures 6 to 9. The origin of time t = 0 is taken at the beginning of
the calibration period.

Figure 6 shows the simulation results for the linear model (6a). Calibrating for low �ows
gives more weight to the dry periods, with a large characteristic time (TC = 25 days) that allows
the slowly rising base discharge to be better reconstructed in the beginning of the wet seasons
(Figure 6a). This, however, is achieved at the expense of the reconstruction of the peak �ows, that
are considerably smoothed out by the model (Figure 6a). Calibrating for the peak �ows yields
a smaller value for the characteristic time (TC = 1/k = 4 days). The discharge peaks are much
better reproduced (Figure 6b) than in Figure 6a, but reducing the characteristic time implies a fast
decreasing discharge and an almost complete dryout of the model during the low �ow periods. This
is clearly the indication that a model with a single characteristic time cannot account satisfactorily
for the behaviour of the catchment.

Figure 7 shows the simulation results for the non-linear model (23). Making the characteristic
time volume-dependent allow the simulation results to be improved dramatically, both for low �ow
(Figure 7a) and peak �ow calibration (Figure 7b). In particular, the low �ow calibration yields a
much better representation of the receding part of the hydrographs during the dry seasons.

Figure 8 shows the simulation results for the GR4J model. The model also succeeds in re-
producing the succession of �ow peaks and base �ows. A better �t is obtained when the model
s calibrated against low �ows. Compared to the peak �ow calibration, the low �ow calibration
expectedly draws the simulated hydrograph closer to the observed one during the dry season. How-
ever, the model remains satisfactorily capable of simulating the fast peaks observed during the wet
season. Strikingly enough, the optimal parameter set (see Table 1) is obtained for X1 = 0 mm,
while the optimal values for X3 = 475 mm lies far outside the [200 mm− 300 mm] 80% con�dence
interval reported in Perrin et al. (2003). In other words, optimal model behaviour is obtained for
an instantaneous percolation process. This may be considered as the sign that the vadoze zone
plays a negligible role in catchment behaviour. The peak �ow-calibrated X2 = −10.4mm also lies
beyond the range of usual values. Only this unusually high value allows the model to restore a
correct water balance.

Figure 9 shows the simulation results obtained with the proposed model (11). The better NSE
is obtained for the low �ow calibration, a good compromise being achieved in terms of hydrograph
reconstruction between the wet and dry periods. The peak �ow calibration consistently underes-
timates the base discharge during the dry seasons. The NSE is systematically better than that
of the non-linear reservoir models for both the calibration and validation period, regardless of the
calibration option used. Its performance is very similar to that of the GR4J model, both in the
calibration and validation phases.

Figure 10 shows scatter plots of the simulated speci�c discharges versus speci�c volumes in the
three models. The linear and non-linear models expectedly exhibit one-to-one (h, q) relationships
(Figures 10a, b). The GR4J model exhibits a bit more dispersion, especially when calibrated against
peak �ows (red dots in Figure 10c). Quite strikingly, the respective positions of the (h, q) sets are
opposite to those of the single reservoir models. The low �ow-calibrated GR4J model achieves
smaller discharges for a given volume that the peak �ow-calibrated model. This is related to the
values for X2, that is larger in the low �ow-calibrated model than in the peak �ow-calibrated one.
The proposed model (Figure 10d) spans a much wider range of internal states than the other three.
The resulting hysteretic behaviour directly stems from the long term memory e�ects embedded in
equation (16).

4.3 The Durzon karst catchment

4.3.1 Catchment description

The Durzon karst catchment is located in the Southern Massif Central (France), as shown in Fig-
ure 11. The average ground elevation is 750m ASL. The unsaturated and saturated zone are located
in a 400m thick aquifer made of Jurassic limestones and dolomites. The bottom, Southern and
North-Eastern boundaries of the catchment are made of a 200m thick marl layer (Bruxelles, 2001)
that acts as a zero-�ux boundary. The other parts of the catchment boundary are inferred from the
topography. The average discharge at the main catchment outlet, the Durzon spring (533mASL)
over the 2002-2007 period is 1.4m3s−1, with peak discharge of about 18 m3s−1 (Bruxelles, 2001).
The recharge area has been estimated between 100 km2 and 120 km2 (Bruxelles, 2001; Jacob et al.,
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2008; Ricard and Bakalowicz, 1996). In the present study, a value of 116.8 km2 is used as in (Tritz
et al., 2011).

4.3.2 Data

The data used for the daily time step simulations is described in detail in (Tritz et al., 2011). Only
its main features are recalled hereafter.

The precipitation history at �La Blaquèrerie� is not used for the present study because it
is too short, the station being set up only recently. The precipitation record is taken from a
meteorological station located at �Le Caylar� (SE corner of the map in Figure 11). Although
outside the catchment, the daily time step precipitation records at Le Caylar were found to exhibit
a satisfactory correlation with those measured at �La Blaquererie� and were used successfully in a
previous study (Tritz et al., 2011).

The Potential Evapotranspiration is interpolated using a one year period harmonic function
from monthly average values computed using Thornthwaite's model. The sinusoidal interpolation
was shown to predict more realistic evapotranspiration values than the monthly averages (Tritz et
al., 2011).

The daily outlet discharge is known indirectly from stage measurements at the Durzon spring.
The stage-discharge relationship was shown in (Tritz et al., 2011) to exhibit an uncertainty of at
least ±3% in the predicted discharge.

4.3.3 Simulation results

As in the previous application, Years 1-2 in the time series are used for model warm-up, Years 3-4
serve calibration purposes and Year 5 is used for model validation. Table 2 gives an overview of the
calibration and validation results for the four models. Figures 12 to 15 show the simulated time
series.

It should be stressed that calibrating and validating a model against the Durzon data set is an
extremely challenging task. The calibration period (0 ≤ t ≤ 730) includes 4 moderately increasing
discharge peaks triggered by moderate rainfall events, followed by a steadily decreasing discharge
over a long period (almost 18 months), despite rather regularly spaced rainfall inputs. In contrast,
the validation period (t > 730) includes an unusually high �ow peak triggered by a very mild
rainfall episode. This alone suggests a strong in�uence of past events and internal state in the
response of the catchment, with storage presumably playing an essential role.

Figure 12 shows the results obtained with the linear reservoir model. Calibrating for low �ows
(Figure 12a) and peak �ows (Figure 12b) yields very similar responses. Both calibration options
yield dramatically underestimated peak discharges. This is not surprising in that the calibration
period includes very few discharge peaks. The 18 months long dry spell contributes to bias the
calibration process in favour of low �ows and slow discharge release.

Figure 13 shows the simulation results for the non-linear model. The low �ow calibration gives
the linear model as the optimum (B = 1), see Figure 13a. The peak �ow calibration yields a slightly
improved representation of the receding part of the �ow peaks compared to the linear model, but
during the calibration period only.

Figure 14 shows the discharges simulated by the GR4J model. As for the Dud Koshi catchment,
the model shows a good ability to reproduce the various time scales involved in catchment beha-
viour. It brings a tremendous improvement over the linear and non-linear models. The combination
of the fast routing, unit hydrograph-based tranfer functions (with X1=0.5 day) and the non-linear
behaviour of the lower reservoir is obviously responsible for this. Indeed, the non-linear transfer
function alone does not allow the behaviour of the catchment to be reproduced (compare Figures 13
and 14). This may be seen as a con�rmation that multiple time scales operating simultaneously
lead to a more �exible model than a single time scale, even variable. It is visible in Table 2 that
the optimal values of the parameters X1 to X3 are very di�erent from the classically admitted
orders of magnitude. The 80% con�dence intervals are reported to be X1 ∈ [100mm, 1200mm],
X2 ∈ [−5mm,+3mm] and X3 ∈ [20mm, 300mm] (Perrin et al., 2003).

Figure 15 shows the discharges simulated using the proposed long term memory model. The
model gives very similar results when calibrated against low �ows and peak �ows. The consistency
between the two parameter sets in Table 2 is remarkable. Among the four models, the proposed
long term memory model is the one with the better NSE values during the calibration period. It
does not perform as well as the GR4J model in the validation period. The main reason for this
is that the GR4J model is more successful in reproducing the peak �ows around t = 770 d and
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t ≈ 1000 d. In contrast, the proposed model is better in reproducing the base �ow during the dry
periods.

Figure 16 shows the scatter plots for the simulated (h, q) variables in the four models. As in
the Dud Koshi application, the �rst two models exhibit one-to-one (h, q) relationships (Figure 14a,
b). In contrast, both the GR4J model and the proposed model exhibit hysteretic behaviours
(Figure 14c, d). The ability of the GR4J model to span a wider range of internal states than the
linear and non-linear models is obvious. This also the case with the proposed model, that embeds
many di�erent time scales operating simultaneously. The satisfactory performance of the proposed
model can again be explained by its ability to span a wider range of internal state con�gurations
than the other two single reservoir models.

5 Discussion

The application examples in Section 4 tend to indicate that the proposed model can be helpful
in the �eld of catchment modelling. However, one may be entitled to questioning the physical
relevance of a hydrological model with an in�nite characteristic time. Indeed, the concept of
an in�nite memory leads to wonder (i) whether an in�nite characteristic time will not lead to a
strong initialization bias, making the model worthless in practice and (ii) how realistic an in�nite
characteristic time transfer function is when all hydrosystems have been existing and will exist
only for a �nite time. Moreover, one may ask (iii) whether using the asymptotic version of the
governing equations (14, 15) may be appropriate, as is classically done in fractional dynamics.
These questions are addressed in separate subsections hereafter.

5.1 Sensitivity to initial conditions

For a linear model, the sensitivity of the out�owing discharge to the initial condition is by de�nition
the PDF w (t). For the linear model, the sensitivity decreases exponentially with time, following
equation (6a). For the proposed model, the sensitivity to the initial condition obeys equation (11),
with the asymptotic behaviour (10). For the non-linear model (23), the sensitivity of the output
discharge to the initial conditions is examined as follows. The governing equation for this model
is:

dh

dt
= −khB , h (t = 0) = h0, B > 1 (28)

with analytical solution

h (t) =
1[

h1−B
0 + (B − 1) kt

] 1
B−1

(29a)

q (t) =
k[

h1−B
0 + (B − 1) kt

] B
B−1

(29b)

The sensitivity of q to the initial condition h0 is given by

∂q

∂h0
=

kB[
h1−B

0 + (B − 1) kt
] 2B−1
B−1

h−B0 ∼
t→∞

kB

[(B − 1) kt]
2B−1
B−1 hB0

(30)

Note that, this model being non-linear, the sensitivity of q to the initial condition is dependent on
the history of the in�ows r (τ) , 0 ≤ τ ≤ t. Comparing the sensitivity of a non-linear model to that
of linear ones is thus a biased exercise.

For all models, the decay of the sensitivity of q to h0 with time is assessed using the dimensionless
sensitivity factor:

As (t) =

∂q
∂h0

(t)
∂q
∂h0

(0)
(31)

Table 3 gives the formulae for As for the linear, non-linear and proposed models. The numerical
values obtained at the end of the model warm-up period are also provided for the Dud Koshi and
Durzon catchments, for both the low �ow and peak �ow calibration parameter sets. As shown by
the table, the bias introduced by the initial condition for the proposed model decreases to less than
0.25% of its initial value after 2 years of warm-up.
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5.2 Physical relevance of an in�nite memory transfer function

Applying models with in�nite memory to hydrosystems that have existed and are bound to exist
for a �nite time may also appear questionable, if not nonsense. Several answers may be given to
such an objection.

Firstly, widely accepted non-linear models yield reponses with in�nite characteristic times under
certain conditions, without triggering any special reluctance within the hydrologic community.
Although the concept of a characteristic time for a non-linear process is questionable, it is stressed
that the analytical solution (29b) for the non-linear model (28) also has an in�nite characteristic
time for B > 1.

Secondly, bearing in mind that the model is to be operated over a �nite time interval, the unit
response of the model does not strictly need to have an in�nite characteristic time. The important
point is that it behave over the simulation time interval as if its characteristic time were in�nite.
This remark is illustrated by the following PDF

W (t) =


ατα0 (τ0 + t)

−1−α
if t ≤ T

ατα0 (τ0 + T )
−1−α

if T < t ≤ T + τ0+T
α

0 if t > T + τ0+T
α

, 0 < α < 1 (32)

Over the time interval [0, T ], the PDFW (t) is exactly equal to the transfer function w (t) proposed
in equation (11): It takes the value w (T ) over

[
T, T + τ0+T

α

]
and is zero beyond this time so as

to achieve a unit integral. A model using W instead of w will produce exactly the same results
over the time frame [0, T ], although W and w have respectively �nite and in�nite characteristic
times. In other words, only using a model over an in�nite simulation period would allow the
in�nite memory concept to be validated or invalidated. The �nite character of any simulation
period makes this issue irrelevant.

Thirdly, the practical implementation of the proposed model is based on a weighted sum of
exponentials, see Appendix C.It follows that the approximate PDF (17) has a �nite characteristic
time Tc =

∑
i θi/ki.

5.3 Relevance of a fractional di�erential governing equation

The third issue tackled in this discussion is whether using the asymptotic version (14) may turn
out more pro�table and convenient than computing the convolution (16), even approximately. Two
arguments militate in favour of a negative answer.

Firstly, the fractional di�erential equation (14) and its equivalent (15) are asymptotic versions
of the exact geoverning system (4, 16). They are valid only for very large times and should not be
used at time scales for which the approximation (10) does not hold.

Secondly, the unit response of a system governed bu equation (15) is physically inacceptable.
Consider a unit, instantaneous recharge in the form of a Dirac pulse, r (t) = δ (t). The resulting
unit reponse q (t) is obtained from equation (15):

q (t) = r − β dαr
dtα

= δ (t)− β dαδ
dtα

= δ (t)− β
Γ(−α)

´ t
0

δ(τ)

(t−τ)1+α
dτ

= δ (t)− β
Γ(−α)

1
t1+α

(33)

where the extension (41) of Cauchy's formula to non-integers has be used. The unit response
is made of two components: an instantaneous transfer of the input Dirac to the outlet of the
catchment, followed by a negative, inverse power law function of time. In other words, after the
input as been transferred instantaneously to the outlet, water is being taken back into the model
throught the outlet at a rate that is initially in�nite. Besides, the integral of q (t) does not converge
at 0 for 0 < α < 1, which means that mass conservation cannot be guaranteed.

6 Conclusions

In this paper, a transfer function with an in�nite characteristic time has been proposed for concep-
tual rainfall-runo� modelling. With only two parameters, the function (11) proves very �exible.
The asymptotic behaviour of the unit response function of the model is an inverse power of time.
Such a response can usually be obtained only by making the discharge law of the model non-linear.
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The present model, however, is linear. A model with a single reservoir is able to reproduce cor-
rectly the measured discharge signals of two very di�erent catchments: the Dud Koshi catchment
in Nepal and the Durzon karst catchment in France. In the long time limit, the model obeys a
fractional di�erential equation.

The proposed model has �ve parameters: the in�ltration coe�cient C, the maximum reservoir
size hmax, the evapotranspiration depth threshold hmin and the two parameters (α, τ0) in the
transfer function (11). Leaving the model structure unchanged, replacing the function (11) with
more classical linear (6a) or non-linear (23) transfer functions is seen to yield signi�cantly poorer
model performance. This indicates that the proposed transfer function plays a key role in model
performance and that the good quality of the results cannot be attributed to the in�ow model
alone. The proposed model exhibits similar performance to that of the four-parameter GR4J
model, a classical lumped conceptual model with two reservoirs and two unit hydrograph-based
routing functions. It is stressed that the GR4J model and the proposed one have very di�erent
structures. Moreover, the production functions of the two models are not comparable because
evapotranspiration, that represents a substantial fraction of the mass balance, is not modelled in
the same way.

The approximation of the convolution (16) with a set of local-in-time, �rst-order di�erential
equations (19c) proves decisive in terms of computational e�ciency. Had this approximation not
been implemented, the CPU costs would have been proportional to the square of the simulation
time, which would have made the model impractical from an operational point of view.

The long term memory induced by the convolution kernel (11) is best illustrated by Figures 10
and 16. The linear and non-linear reservoir models expectedly show a one-to-one correspondence
between the speci�c volume and the out�owing discharge, while the proposed model exhibits a
hysteretic behaviour. In other words, the output discharge for the proposed model does not
obey an equation of state, while classical models do. This is a clear indication that the model
incorporates long term memory e�ects. The shape of the hysteresis paths in the (h, q) space are
radically di�erent in the Dud Koshi and the Durzon models, a further illustration of the �exibility
of the proposed transfer function with only two parameters. This is to be compared with the
four-parameter hysteretic transfer function proposed in (Tritz et al., 2011), where the shape of the
hysteretic cycle is speci�ed explicitly and does not incorporate as much �exibility as the present
transfer function.

The proposed transfer function appears very promising in terms of response versatility. Many
reasons can be given for this.

� The memory e�ects induced by the in�nite characteristic time imply that the model response
does not obey an equation of state (it is not only a function of the internal state variables),
thus allowing complex processes such as �owpath connecticivity/recharge area variations to
be better represented.

� The practical implementation in the form of parallel sub-reservoirs clearly illustrates the
multiple time scale basis of this model, a feature that has been identi�ed as highly desirable
in both karst and mountainous catchment modelling (Grae� et al., 2009; Terzić et al., 2012).

� The subreservoir upper volume threshold should not be considered only as a numerical arte-
fact and may bear a physical meaning. This threshold, combined with the small discharge
constant of the slower sub-reservoirs, may also be useful in modelling the occasional activation
of high-altitude springs in mountainous/karst catchments (Petrella et al., 2009).

Research perspectives include

� studying the e�ect of replacing hysteretic discharge laws such as that proposed in (Tritz et
al., 2011) and unit hydrograph models such as that of GR4J with the proposed model, with
a subsequent reduction in the number of parameters,

� exploring the possibility to propose other formulae than (11) with the same asymptotic long
time behaviour (10), but with a di�erent short-term behaviour,

� studying theoretically and experimentally the e�ect of placing the proposed transfer function
in cascade with �nite or other in�nite characteristic time transfer functions,

� investigating whether incorporating a non-linear behaviour as suggested in Section 3.2.2 can
lead to a further improvement in model performance,
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� benchmarking systematically the proposed model against a variety of conceptual hydrological
models over a variety of catchments in order to better assess the usefulness and limitations
of the proposed approach.
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Appendix A. Proof for the fractional di�erential equations

Proving equations (14, 15) stems from the equivalence (12) under the assumption

w (t) ∼
t→+∞

A

t1+α
, 0 < α < 1 (34)

Deriving equation (12) from the above equivalence is not straightforward because the Laplace

transform of t−1−α does not exist for 0 < α < 1 . This is because the integral
´ b
a
t−1−αdt diverges

as a tends to zero. An approximate expression is thus sought in the form of a power series expansion
around s = 0. The constraint (1) yields the following condition

ŵ (s = 0) =

ˆ +∞

0

w (t) e−0tdt =

ˆ +∞

0

w (t) dt = 1 (35)

Moreover, the derivative with respect to the Laplace variable obeys the following rule:

dŵ

ds
= −t̂w (36)

The Laplace transform of the function tw exists because α < 1, thus yielding a de�nite integral as
the lower bound tends to zero:

t̂w ∼
s→0

AΓ (1− α) sα−1 (37)

therefore
dŵ

ds
∼
s→0
−AΓ (1− α) sα−1 (38)

Integrating the above equation with respect to time with the initial condition (35) leads to equation
(12). The alternative formulation (15) is obtained by substituting the asymptotic equivalence (12)
into equation (5a) and returning from the Laplace to the time variable.

Appendix B. Fractional derivatives

There are many di�erent ways of de�ning fractional derivatives (Oldham and Spanier, 1974; Pod-
lubny, 1999). Only a summary is presented hereafter.

A �rst approach consists in extending Cauchy's formula for the nth-order integral of a function
f cancelling at a

aI
n
f (t) =

1

(n− 1)!

ˆ t

a

(t− τ)
n−1

f (τ) dτ (39)

to non-integer integration orders as

aI
α
f (t) =

1

Γ (α)

ˆ t

a

(t− τ)
α−1

f (τ) dτ (40)

and considering the αth-order derivative as the (−α)th-order integral:

aD
α
f (t) =a I

−α
f (t) =

1

Γ (−α)

ˆ t

a

f (τ)

(t− τ)
1+α dτ (41)
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The Riemann-Liouville approach (Liouville, 1832; Riemann, 1953) considers the αth-order
derivative as the nth-order derivative of the (n− α)th-order integral:

aD
α
f (t) =

dn

dtn
aI
n−α
f (t) =

1

Γ (n− α)

dn

dtn

ˆ t

a

(t− τ)
n−α

f (τ) dτ (42)

while the Caputo derivative (Caputo, 1967, 1969) considers the αth-order derivative as the (n− α)th-
order integral of the nth-order derivative:

aD
α
f (t) =

1

Γ (n− α)

ˆ t

a

1

(t− τ)
α+1−n

dnf

dτn
dτ (43)

(the lower integration bound a is set to zero in this paper). The particular case n = 1 yields

aD
α
f (t) =

1

Γ (1− α)

ˆ t

a

1

(t− τ)
α

df

dτ
dτ (44)

with the advantage that this integral converges for α < 1 provided that f is di�erentiable over the
integration interval.

The Grünwald-Letnikov de�nition is (Grünwald, 1867)

aD
α
f (t) =

dαf

d (t− a)
α = lim

N→0

(
N

t− a

)α
1

Γ (−α)

N−1∑
i=0

Γ (i− α)

Γ (i+ 1)
f

(
t− i

n
(t− a)

)
(45)

A last possibility is to de�ne the derivative from the Laplace transform:

Dα
f = s̃αf̂ (46)

where •̂ and •̃ denote respectively the Laplace and inverse Laplace transforms of a function.
Fractional derivatives di�er from integer-order derivatives by a number of important features:

� the fractional derivative is a non-local operator. The derivative aD
α
f (t) depends on the

behaviour of f over the entire interval [a, t], in contrast with the classical derivative, that
involves only the behaviour of f at t,

� di�erent de�nitions may yield di�erent results. As an example, the Grunwald-Letnikov frac-
tional derivative of a constant function yields a power function (Oldham and Spanier, 1974;
Podlubny, 1999), while the Caputo fractional derivative of a constant function is zero. Be-
sides, the value of the derivative depends on the lower integration bound a,

� in contrast with integer-order derivatives, fractional-order derivatives commute under very
speci�c conditions. The requirements for commutation are not the same for the Riemann-
Liouville and the Caputo de�nition (see e.g. Podlubny (1999), Section 2.4). Besides, dif-
ferentiating successively a function to orders α and γ does not yield the (α+ γ)th-order
derivative.

Appendix C. Approximation of the convolution kernel (11)
with exponentials

The approximation of the proposed convolution kernel (11) with a set of decreasing exponential
functions (17) is illustrated with three di�erent values of the exponent α shown in Table 4. The
Table also gives the values of a, b and R used in equations (21a, 21b). The results are shown in
Figure 17. The top graphs illustrate the behaviour of the interpolated functions for early times 0 ≤
t ≤ 10τ0, while the bottom graphs illustrate the long-term behaviour over 6 orders of magnitude, for
τ0 ≤ t ≤ 106τ0. The dots represent the exact kernel (11), the solid lines represent the approximation
(17). As shown in the Figure, the approximation is extremely satisfactory for all three values of
α up to t = 105τ0. Beyond this range, oscillations appear in the interpolated pro�les (see bottom
graphs with logarithmic coordinates). The amplitude of these oscillations, however, is extremely
small (less than 10−7w (0)). Besides, for the two catchments presented in Section 4, the typical
value found for τ0 after calibration is larger than 4 days, which gives 105τ0 > 103 years. This is far
longer than any realistic rainfall-runo� simulation. It can be concluded that the approximation
(17) of the kernel (11) is extremely satisfactory for rainfall-runo� modelling purposes. The number
of functions needed (hence the number of sub-reservoirs in the model), R = 15, makes the CPU
e�ort moderate.
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Terzić J, Stroj A, Frangen T. 2012. Hydrogeological investigation of karst system properties by
common use of diverse methods: a case study of Li£ka Jesenica springs in Dinaric karst of
Croatia. Hydrological Processes 26: 3302-3311.

Thurner S, Wick N, Hanel R, Sedivy R, Huber L. 2003. Anomalous di�usion on dynamical net-
works: a model for interacting epithelial cell migration. Physica A 320: 475-484.

Tritz S, Guinot V, Jourde H. 2011. Modelling the behaviour of a karst system catchment using
non-linear hysteretic conceptual model. Journal of Hydrology, 397: 250�262.

Yue S, Hashino M. 2000. Unit hydrographs to model quick and slow runo� components of stream-
�ow. Journal of Hydrology 227: 195-206.

19



Tables

Model Linear Non-linear GR4J Proposed model
Calibration
criterion

Low �ows
Peak
�ows

Low �ows Peak
�ows

Low �ows Peak
�ows

Low �ows
Peak
�ows

Figure 6a, 9a 6b, 9a 7a, 9b 7b, 9b 8a, 9b 8b, 9c 9a, 10b 9b, 10c
B (-) eq. (23) 1 1 5.0 6. N.A. N.A. N.A. N.A.

Cinf (-) eqs. (27a,
27b)

0.6 0.7 0.75 0.72 N.A. N.A. 0.65 0.75

hmax (m) eqs. (26,
24, 27a, 27b)

10. 0.12 1.0 0.50 N.A. N.A. 0.65 0.30

hmin (m) eqs. (27a,
27b)

1.0
1.9×
10−2 0.50 0.30 N.A. N.A. 0.39

9×
10−2

1/k (d) eq. (6a) 25.0 4.0 6.0 3.5 N.A. N.A. N.A. N.A.
α (-) eq. (11) N.A. N.A. N.A. N.A. N.A. N.A. 0.5 0.8
τ0 (d) eq. (11) N.A. N.A. N.A. N.A. N.A. N.A. 9.0 4.0
GR4J: X1 (mm) N.A. N.A. N.A. N.A. 0.00 0.00 N.A. N.A.
GR4J: X2 (mm) N.A. N.A. N.A. N.A. -2.91 -10.4 N.A. N.A.
GR4J: X3 (mm) N.A. N.A. N.A. N.A. 1270 475 N.A. N.A.
GR4J: X4 (d) N.A. N.A. N.A. N.A. 0.94 1.05 N.A. N.A.
NSE calibration 0.81 0.83 0.91 0.84 0.88 0.87 0.92 0.86
NSE validation 0.58 0.76 0.83 0.78 0.81 0.86 0.86 0.81

Table 1: Dud Koshi catchment. Simulation results for the single reservoir model. N.A.: Not
Applicable.

Model Linear Non-linear GR4J Proposed model
Calibration
criterion

Low �ows Peak
�ows

Low �ows Peak
�ows

Low �ows Peak
�ows

Low �ows Peak
�ows

Figure 11a, 14a 11b,
14a

12a, 14b 12b,
14b

13a, 14c 13b,
14c

B (-) eq. (23) 1 1 1.0 5.0 N.A. N.A. N.A. N.A.
Cinf (-) eqs. (27a,

27b)
0.3 0.8 0.3 0.8 N.A. N.A. 0.65 0.67

hmax (m) eqs. (26,
24, 27a, 27b)

70 1.0 50 2.0 N.A. N.A. 15. 15.0

hmin (m) eqs. (27a,
27b)

35 0.1 3.0 1.0 N.A. N.A. 1.58 1.2

1/k (d) eq. (6a) 100 200 125 110 N.A. N.A. N.A. N.A.
α (-) eq. (11) N.A. N.A. N.A. N.A. N.A. N.A. 0.45 0.55
τ0 (d) eq. (11) N.A. N.A. N.A. N.A. N.A. N.A. 9.5 14.5
GR4J: X1 (mm) N.A. N.A. N.A. N.A. 0.00 0.00 N.A. N.A.
GR4J: X2 (mm) N.A. N.A. N.A. N.A. -165 -124 N.A. N.A.
GR4J: X3 (mm) N.A. N.A. N.A. N.A. 4500 3296 N.A. N.A.
GR4J: X4 (d) N.A. N.A. N.A. N.A. 2.13 2.10 N.A. N.A.
NSE calibration 0.76 0.73 0.79 0.78 0.87 0.82 0.92 0.91
NSE validation 0.43 0.21 0.42 0.29 0.68 0.70 0.54 0.65

Table 2: Durzon catchment. Simulation results. N.A.: Not Applicable.
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Model Formula Dud
Koshi low
�ows

Dud
Koshi
Peak
�ows

Durzon
low �ows

Durzon
peak
�ows

Linear As = exp (−kt) 2× 10−13 5× 10−80 6.7×10−4 2.6×10−2

Non-linear As =
(

h−1−B
0

h1−B
0 +(B−1)kt

) 2B−1
B−1

4.3×10−4 4× 10−4 6.7×10−4 0.11

Proposed
model

As =
(

τ0
τ0+t

)1+α

1.3×10−3 8.4×10−5 1.8×10−3 2.2×10−3

Table 3: Dimensionless sensitivity factor at the end of the warm-up period for the linear, non-linear
and proposed ini�nite characteristic time models.

Set name α a b R
Set 1 0.1 10 2.5 15
Set 2 0.5 10 2.5 15
Set 3 0.9 10 2.5 15

Table 4: Approximation of the convolution kernel with a set of exponential functions. Sample
parameter sets.
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Figure captions

� Figure 1. Single reservoir, single output model.

� Figure 2. Proposed convolution kernel (11). Comparison with the exponential unit response
(6a) used in the linear reservoir equation. The grey-shaded area indicates the range of
possible values for α. For the sake of comparison between the various curves, the axes are
dimensionless. t∗ is the dimensionless time, t∗ = kt for the linear model (6a), t∗ = t/τ0 for
the proposed convolution (11). w∗ = w (t) /w (0) is the convolution kernel normalized by its
value at t = 0.

� Figure 3. Partitioning an in�nite characteristic time reservoir into a set of linear sub-reservoirs
with �nite characteristic times.

� Figure 4. Model structure. De�nition sketch for a subreservoir.

� Figure 5. Dud Koshi catchment. Location map.

� Figure 6. Dud Koshi catchment. Simulation results for the linear reservoir model. (a)
Calibration against low �ows, (b) calibration against peaks, (c) forcings.

� Figure 7. Dud Koshi catchment. Simulation results for the non-linear reservoir model. (a)
Calibration against low �ows, (b) calibration against peaks, (c) forcings.

� Figure 8. Dud Koshi catchment. Simulation results for the proposed model. (a) Calibration
against low �ows, (b) calibration against peaks, (c) forcings.

� Figure 9. Dud Koshi catchment. (h, q) scatter plots for the simulation period. (a) linear
model, (b) non-linear model, (c) proposed model.

� Figure 10. Durzon karst catchment. Hydrogeological map. From Tritz et al. (2011).

� Figure 11. Durzon catchment. Simulation results for the linear reservoir model. (a) Calib-
ration against low �ows, (b) calibration against peaks, (c) forcings.

� Figure 12. Durzon catchment. simulation results for the non-linear reservoir model. (a)
Calibration against low �ows, (b) calibration against peaks, (c) forcings.

� Figure 13. Durzon catchment. Simulation results for the proposed model. (a) Calibration
against low �ows, (b) calibration against peaks, (c) forcings.

� Figure 14. Durzon catchment. (h, q) scatter plots for the simulation period. (a) linear model,
(b) non-linear model, (c) proposed model.

� Figure 15. Approximation of the convolution kernel with a set of exponential functions for
the parameter sets in Table 3. The dimensionless plot coordinates are de�ned as t∗ = t/τ0
and w∗ = w (t) /w (0).
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Figures

Figure 1: Single reservoir, single output model.

Figure 2: Proposed convolution kernel (11). Comparison with the exponential unit response (6a)
used in the linear reservoir equation. The grey-shaded area indicates the range of possible values
for α. For the sake of comparison between the various curves, the axes are dimensionless. t∗ is the
dimensionless time, t∗ = kt for the linear model (6a), t∗ = t/τ0 for the proposed convolution (11).
w∗ = w (t) /w (0) is the convolution kernel normalized by its value at t = 0.

Figure 3: Partitioning an in�nite characteristic time reservoir into a set of linear sub-reservoirs
with �nite characteristic times.

Figure 4: Model structure. De�nition sketch for a subreservoir.
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Figure 5: Dud Koshi catchment. Location map.
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Figure 6: Dud Koshi catchment. Simulation results for the linear reservoir model. (a) Calibration
against low �ows, (b) calibration against peaks, (c) forcings.
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Figure 7: Dud Koshi catchment. Simulation results for the non-linear reservoir model. (a) Calib-
ration against low �ows, (b) calibration against peaks, (c) forcings.
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Figure 8: Dud Koshi catchment. Simulation results for the GR4J model. (a) Calibration against
low �ows, (b) calibration against peaks, (c) forcings.
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Figure 9: Dud Koshi catchment. Simulation results for the proposed model. (a) Calibration against
low �ows, (b) calibration against peaks, (c) forcings.

Figure 10: Dud Koshi catchment. (h, q) scatter plots for the simulation period. (a) linear model,
(b) non-linear model, (c) GR4J model, (d) proposed model. R and S are respectively the speci�c
volumes stored in the upper and lower compartments of the GR4J model.
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Figure 11: Durzon karst catchment. Hydrogeological map. From Tritz et al. (2011).

Figure 12: Durzon catchment. Simulation results for the linear reservoir model. (a) Calibration
against low �ows, (b) calibration against peaks, (c) forcings.
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Figure 13: Durzon catchment. simulation results for the non-linear reservoir model. (a) Calibration
against low �ows, (b) calibration against peaks, (c) forcings.
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Figure 14: Durzon catchment. simulation results for the GR4J model. (a) Calibration against low
�ows, (b) calibration against peaks, (c) forcings.
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Figure 15: Durzon catchment. Simulation results for the proposed model. (a) Calibration against
low �ows, (b) calibration against peaks, (c) forcings.

Figure 16: Durzon catchment. (h, q) scatter plots for the simulation period. (a) linear model, (b)
non-linear model, (c) proposed model.
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Figure 17: Approximation of the convolution kernel with a set of exponential functions for the
parameter sets in Table 3. The dimensionless plot coordinates are de�ned as t∗ = t/τ0 and w∗ =
w (t) /w (0).
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