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QUANTUM AUTOMORPHISM GROUP OF THE LEXICOGRAPHIC

PRODUCT OF FINITE REGULAR GRAPHS

ARTHUR CHASSANIOL

Abstract. We study the quantum automorphism group of the lexicographic product of two
finite regular graphs, providing a quantum generalization of Sabidussi’s structure theorem on
the automorphism group of such a graph.

1. Introduction

A quantum permutation group on n points is a compact quantum group acting faithfully on
the classical space consisting of n points. The following facts were discovered by Wang [16].

(1) There exists a largest quantum permutation group on n points, now denoted S+
n , and

called the quantum permutation groups on n points.
(2) The quantum group S+

n is infinite-dimensional if n ≥ 4, and hence in particular an
infinite compact quantum group can act faithfully on a finite classical space.

Very soon after Wang’s paper [16], the representation theory of S+
n was described by Banica

[1]: it is similar to the one of SO(3) and can be described using tensor categories of non-crossing
partitions. This description, further axiomatized and generalized by Banica-Speicher [5], led
later to spectacular connections with free probability theory, see e.g. [9].

The next natural question was the following one: does S+
n have many non-classical quantum

subgroups, or is it isolated as an infinite quantum group acting faithfully on a finite classical
space?

In order to find quantum subgroups of S+
n , the quantum automorphism group of a finite

graph was defined in [6, 2]. This construction indeed produced many examples of non-classical
quantum permutation groups, answering positively to the above question. The known results
on the computation of quantum symmetry groups of graphs are summarized in [4], where the
description of the quantum symmetry group of vertex-transitive graphs of small order (up to
11) is given (with an exception for the Petersen graph, whose quantum automorphism group
remains mysterious).

The present paper is a contribution to the study of quantum automorphism groups of finite
graphs: we study the quantum automorphism group of a lexicographic product of finite regular
graphs, for which we generalize the results from [4]. The description of the quantum automor-
phism group of some lexicographic product of finite graphs was, amongst other ingredients, a
key step in [4] in the description of the quantum automorphism group of small graphs. Recall
that if X, Y are finite graphs, their lexicographic product is, roughly speaking, obtained by
putting a copy of X at each vertex of Y (see Section 3 for details). There is, in general, a group
embedding

Aut(X) ≀ Aut(Y ) ⊂ Aut(X ◦ Y ) (∗)

where the group on the left is the wreath product of Aut(X) by Aut(Y ). A quantum analogue
of the above embedding is given in [4], using the free wreath product from [7] and a sufficient
spectral condition was given to ensure that the quantum analogue of the embedding is an
isomorphism. However, there exist (vertex-transitive) graphs of order ≥ 12 that do not satisfy
the spectral assumption, and for which the embedding (∗) is an isomorphism (see Example
4.14), hence the results in [4] are not sufficient to fully understand quantum symmetry groups
of lexicographic products.
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A necessary and sufficient condition on the graphs X, Y in order that the embedding (∗)
be an isomorphism was given by Sabidussi in [14] (see Section 4). The conditions look slightly
technical at first sight, but are very easy to check in practice. In this paper we provide a
quantum generalization of Sabidussi’s result: we show that for a pair of regular graphs X, Y ,
the quantum analogue of the embedding (∗) is an isomorphism if and only if the graphs satisfy
Sabidussi’s conditions: see Theorem 3.5. Our result covers many graphs that do not satisfy the
spectral conditions from [4].

As a final comment, we wish to point out that our result, which expresses certain quantum
automorphism groups of finite graphs as free wreath products, will be useful to study the
representation theory and operator algebraic properties of these quantum groups, thanks to
general results on quantum groups obtained as free wreath product recently proved in [10, 11,
15].

The paper is organized as follows. Section 2 and 3 are preliminary sections: we recall some
basic facts about compact quantum groups, quantum permutation groups, free wreath products
and quantum automorphism groups of finite graphs. Section 4 is devoted to quantum automor-
phism groups of lexicographic product of finite graphs: we state our main result (Theorem 3.5)
and prove it taking for granted a technical result that we call the key lemma. We also examine
some examples. The final Section 5 is devoted to the proof of the key lemma.

2. Compact quantum groups and free wreath product

We first recall some basic facts concerning compact quantum groups. The books [8, 12] are
convenient references for this topic, and all the definitions we omit can be found there. All
algebras in this paper will be unital as well as all algebra morphisms, and ⊗ will denote the
minimal tensor product of C∗-algebras as well as the algebraic tensor product; this should cause
no confusion.

Definition 2.1. A Woronowicz algebra is a C∗-algebra A endowed with a ∗-morphism ∆ : A →
A⊗A satisfying the coassociativity condition and the cancellation law

∆(A)(A ⊗ 1) = A⊗A = ∆(A)(1 ⊗A)

The morphism ∆ is called the comultiplication of A.

The category of Woronowicz algebras is defined in the obvious way. A commutative Woronow-
icz algebra is isomorphic with C(G), the algebra of continuous functions on a compact group
G, unique up to isomorphism, and the category of compact quantum groups is defined to be
the category dual to the category of Woronowicz algebras. Hence to any Woronowicz algebra A
corresponds a unique compact quantum group G according to the heuristic notation A = C(G).

Woronowicz’s original definition for matrix compact quantum groups [17] is still the most
useful to produce concrete examples, and we have the following fundamental result [18].

Theorem 2.2. Let A be a C∗-algebra endowed with a ∗-morphism ∆ : A → A⊗A. Then A is
a Woronowicz algebra if and only if there exists a family of unitary matrices (uλ)λ∈Λ ∈ Mdλ(A)
satisfying the following three conditions:

(1) The ∗-subalgebra A0 generated by the entries uλij of the matrices (uλ)λ∈Λ is dense in A.

(2) For λ ∈ Λ and i, j ∈ {1, . . . , dλ}, one has ∆(uλij) =
∑dλ

k=1 u
λ
ik ⊗ uλkj.

(3) For λ ∈ Λ, the transpose matrix (uλ)t is invertible.

In fact, the ∗-algebra A0 in the theorem is canonically defined, and is what is now called a
compact Hopf algebra: a Hopf ∗-algebra having all its finite-dimensional comodules equivalent
to unitary ones (see [8, 12]). The counit and antipode of A0, denoted, respectively, ǫ and S,
are referred to as the counit and antipode of A. The Hopf ∗-algebra A0 is called the algebra of
representation functions on the compact quantum group G dual to A, with another heuristic
notation A0 = O(G).
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Conversely, starting from a compact Hopf algebra, the universal C∗-completion yields a
Woronowicz algebra in the above sense: see [8, 12]. In fact there are possibly several different
C∗-norms on A0, but we will not be concerned with this question.

As usual, a (compact) quantum subgroup H ⊂ G corresponds to a surjective Woronowicz
algebra morphism C(G) → C(H), or to a surjective Hopf ∗-algebra morphism O(G) → O(H).

We refer the reader to [8, 12] for large classes of examples, including q-deformations of classical
compact Lie groups. In the present paper, we will be interested in the following fundamental
example, due to Wang [16]. First we need some terminology. A matrix u ∈ Mn(A) is sais to be
orthogonal if u = ū and uut = In = utu. A matrix u is said to be magic unitary if all its entries
are projections, all distinct elements of a same row or same column are orthogonal, and sums
of rows and columns are equal to 1. A magic unitary matrix is orthogonal.

Definition 2.3. The C∗-algebra As(n) is defined to be the universal C∗-algebra generated by
variables (uij)1≤i,j≤n, with relations making u = (uij) a magic unitary matrix.

The C∗-algebra As(n) admits a Woronowicz algebra structure given by

∆(uij) =

n
∑

k=1

uik ⊗ ukj, ǫ(uij) = δij , S(uij) = uji

The associated compact quantum group is denoted by S+
n , i.e.

As(n) = C(S+
n )

Definition 2.4. A quantum permutation algebra is a Woronowicz algebra quotient of As(n)
for some n. Equivalently, it is a Woronowicz algebra generated by the coefficients of a magic
unitary matrix.

We now come to quantum group actions, studied e.g. in [13]. They correspond to Woronowicz
algebra coactions. Recall that if B is a C∗-algebra, a (right) coaction of Woronowicz algebra A
on B is a ∗-homomorphism α : B → B ⊗A satisfying the coassociativity condition and

α(B)(1 ⊗A) = B ⊗A

Wang has studied quantum groups actions on finite-dimensional C∗-algebras in [16], where
the following result is proved.

Theorem 2.5. The Woronowicz algebra As(n) is the universal Woronowicz algebra coacting
on C

n, and is infinite-dimensional if n ≥ 4.

The coaction is constructed in the following manner. Let e1, . . . , en be the canonical basis of
C
n. Then the coaction α : Cn → C

n ⊗As(n) is defined by the formula

α(ei) =

n
∑

j=1

ej ⊗ uji

We refer the reader to [16] for the precise meaning of universality in the theorem, but roughly
speaking this means that S+

n is the largest compact quantum group acting on n points, and
deserves to be called the quantum permutation group on n points.

Equivalently, Wang’s theorem states that any Woronowicz algebra coacting faithfully on C
n

is a quotient of the Woronowicz algebra As(n), and shows that quantum groups acting on n
points correspond to Woronowicz algebra quotient of As(n), and hence to quantum permutation
algebras. In particular, there is a surjective Woronowicz algebra morphism As(n) → C(Sn),
yielding a quantum group embedding Sn ⊂ S+

n . More directly, the existence of the surjective
morphism As(n) → C(Sn) follows from the fact that C(Sn) is the universal commutative C∗-
algebra generated by the entries of a magic unitary matrix. See [16] for details.

We now present the construction of the free wreath product by the quantum permutation
group, from [7]. First we recall the definition of the wreath product in the classical case.
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Definition 2.6. Let G and H be two finite groups and Ω a set with H acting on it. Let K be
the direct product

K :=
∏

ω∈Ω

Gω

of copies of Gω := G indexed by Ω. Then the action of H on Ω extends in a natural way to an
action of H on the group K by

h.(gω) = (gh−1.ω), for h ∈ H and (gω) ∈
∏

ω∈Ω

Gω

Then the wreath product of G by H, denoted by G ≀ω H, is the semidirect product of K by H.
The normal subgroup K of G ≀ω H is called the base of the wreath product.

Notation 2.7. If G is a finite group and H a subgroup of the permutation group Sn, then we
simply denote by G ≀H the wreath product G ≀ω H with ω = {1, . . . , n}.

Definition 2.8. Let n ∈ N
∗ and let A be a Woronowicz algebra. The free wreath product of

A by the quantum permutation algebra As(n) is the quotient of the C∗-algebra A∗n ∗As(n) by
the two-sided ideal generated by the elements

νk(a)uki − ukiνk(a), 1 ≤ i, k ≤ n, a ∈ A,

where νi : A → A∗n, 1 ≤ i ≤ n are the canonical ∗-homomorphisms.
The corresponding C∗-algebra is denoted by A ∗w As(n).

Theorem 2.9. The free wreath product A ∗w As(n) admits a Woronowicz algebra structure,
with for a ∈ A and let i, j ∈ {1, . . . , n},

∆(uij) =
n
∑

k=1

uik ⊗ ukj

∆(νi(a)) =
n
∑

k=1

(νi ⊗ νk)(∆A(a)).(uik ⊗ 1)

We can naturally extend this notion to the case A∗wH, when H is any quantum permutation
algebra. If A and B are quantum permutation algebras with respective generating magic unitary
matrices u and v of size p and n, then A ∗w B is also a quantum permutation algebra (quotient
of As(np)) with generating magic unitary matrix given by

w = (wia,jb) = (u
(a)
ij vab)

where u(a) = (u
(a)
ij ) are copies of u and by definition of the free wreath product we add the

commuting relations

u
(a)
ij vab = vabu

(a)
ij

Hence the Woronowicz algebra structure is given by

∆(u
(a)
ij ) =

∑

(s,k)∈[1,p]×[1,n]

u
(a)
is vak ⊗ u

(k)
sj , ǫ(u

(a)
ij ) = δij , S(u

(a)
ij ) =

n
∑

b=1

u
(b)
ji vba

∆(vab) =

n
∑

s=1

vas ⊗ vsb, ǫ(vab) = δab, S(vab) = vba

Using the properties of magic unitary matrices we obtain:

∆(wia,jb) =

n
∑

l=1

p
∑

k=1

wia,kl ⊗ wkl,jb, ǫ(wia,jb) = δijδab, S(wia,jb) = wjb,ia
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3. Quantum automorphism group of finite graphs

In this section we recall the definition of the quantum automorphism group of a finite graph
X using [2, 6]. We first introduce some notations.

For a finite graph X with n vertices, it is convenient to also call X the set of vertices of X.
The complement graph of X will be denoted by Xc. If i and j are two vertices of X we use the
notation i ∼X j when they are connected and i 6∼X j when they are not (or simply i ∼ j when
no confusion can arise).

If i is a vertex of X, we denote by VX(i) the set of neighbours of i in X and WX(i) :=
(VX(i) ∪ {i})c = VXc(i) (or V(i) and W(i)). We also use the following notations for the
cardinal: λ(i) = |V(i)|, α(i) = |W(i)|. We say that X is regular when λ(i) does not depend on
i ∈ X, in this case the notations λ(X) and α(X) make sense.

Definition 3.1. The adjacency matrix of X is the matrix dX = (dij)1≤i,j≤n ∈ Mn(0, 1) given
by dij = 1 if i, j are connected by an edge, and dij = 0 if not. The value of dij will also be
called the nature of the couple (i, j) in X.

The classical automorphism group of X will be denoted by Aut(X) (this is a subgroup of Sn)
and we have the following way to characterize its elements.

Proposition 3.2. Identifying σ ∈ Sn to the associated permutation matrix Pσ ∈ Mn({0, 1}),
we have:

σ ∈ Aut(X) ⇐⇒ dXPσ = PσdX

This characterization in the classical case leads to the following natural definition of the
quantum automorphism group of a finite graph, see [2].

Definition 3.3. Associated to a finite graph X is the quantum permutation algebra

A(X) = As(n)/〈dXu = udX〉

where n is the number of vertices of X.

The quantum automorphism group corresponding to A(X) is the quantum automorphism
group of X, denoted GX . In this way we have a commuting diagram of Woronowicz algebras:

As(n) = C(S+
n ) //

��

A(X) = C(GX)

��

C(Sn) // C(Aut(X))

with the kernel of the right arrow being the commutator ideal of A(X).

Example 3.4. For the graph with n vertices and no edges we have A(X) = As(n), so GX = S+
n .

Moreover we have A(Xc) = A(X), because udX = dXu and udXc = dXcu are equivalent when
u is magic unitary.

If X = Cn is the n-cycle graph one can show that for n 6= 4, A(Cn) is commutative, thus
A(Cn) = C(Aut(Cn)) and therefore Aut(Cn) = GCn = Dn, where Dn is the n-dihedral group.
For more examples see [4].

We are now interested in different ways to define A(X) with other sets of relations. The
following result is from [7], we include a proof for the sake of completeness.

Proposition 3.5. Le X be a graph with n vertices and u = (uij)1≤i,j≤n a magic unitary matrix.
The following sets of relations are equivalent:

(1) dXu = udX
5



(2) For all i, j ∈ [1, n],
∑

k∈WX(i)

ukj =
∑

k∈WX(j)

uik

(3) For all i, j, k, l ∈ [1, n],

(i ∼ j and k 6∼ l) =⇒ uikujl = 0 = ukiulj

Proof. (1) ⇔ (2): Using that dXu = udX is equivalent to dXcu = udXc , this is a direct transla-
tion.

(3) ⇒ (2): Let i, j ∈ [1, n],

∑

k∈WX(i)

ukj =
∑

k∈WX(i)

(

n
∑

s=1

uis

)

ukj =
∑

k∈WX(i)

∑

s∈WX(j)

uisukj

=
∑

s∈WX(j)

uis





∑

k∈WX(i)

ukj





=
∑

s∈WX(j)

uis

(

n
∑

k=1

ukj

)

=
∑

s∈WX(j)

uis

(2) ⇒ (3): Let i, j, k, l ∈ [1, n], such that i ∼ j and k 6∼ l. If k 6= l we have k ∈ WX(l) and

j /∈ WX(i) hence:

uikujl = uik





∑

s∈WX(l)

uis



ujl = uik





∑

s∈WX(i)

usl



ujl = 0

and ukiulj = uki





∑

s∈WX(l)

usi



ulj = uki





∑

s∈WX(i)

uls



ulj = 0

If k = l, the announced identity is obvious. �

4. Lexicographic product of graphs

We now want to study the quantum automorphism group of the lexicographic product of two
graphs by using those of these two graphs.

Let X and Y be two finite graphs. Their lexicographic product is obtained by putting a copy
of X at each vertex of Y .

Definition 4.1. The lexicographic product X ◦Y has vertex set X ×Y and edges are given by:

(i, α) ∼ (j, β) ⇔ (α = β and i ∼ j) or (α ∼ β)

The simplest example is X ◦Xn, where Xn is the graph having n vertices and no edges: it is
the graph consisting of n disjoint copies of X, also denoted by nX.

For the automorphism group of X ◦ Y , we always have an inclusion

Aut(X) ≀ Aut(Y ) →֒ Aut(X ◦ Y )

(σX
1 , σX

2 , . . . , σX
n , σY ) 7→ (i, j) 7→ (σX

j (i), σY (j))

where σX
k ∈ Aut(X) for all k and σY ∈ Aut(Y ).
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Sabidussi in [14] characterizes the case of equality in the following theorem. First we need
some notations. Following [14], we define this two subsets of X2:

SX := {(x0, x1) ∈ X2 | V(x0) = V(x1) and x0 6= x1}

TX := SXc = {(x0, x1) ∈ X2 | V(x0) ∪ {x0} = V(x1) ∪ {x1} and x0 6= x1}

Theorem 4.2. Let X, Y be two finite graphs:

Aut(X ◦ Y ) = Aut(X) ≀Aut(Y ) ⇔ ((SY 6= ∅ ⇒ X connected) and (TY 6= ∅ ⇒ Xc connected))

We would like to obtain an analogous result in the quantum case. Such a result will use the
free wreath product.

Let X and Y be two finite graphs that have respectively p and n vertices. We denote by
u = (uij)1≤i,j≤p and v = (vab)1≤a,b≤n the respective generating magic unitary matrices of A(X)
and A(Y ). The graph X ◦ Y has np vertices labeled as follows:

(i, a), 1 ≤ i ≤ p, 1 ≤ a ≤ n

We order them in the following way:

(1, 1) < (2, 1) < ... < (p, 1) < (1, 2) < ... < (p, 2) < ... < (1, n) < ... < (p, n)

We denote by Z = (Zia,jb) 1≤i,j≤p
1≤a,b≤n

the generating magic unitary matrix of A(X ◦ Y ), which

satisfies

∆(Zia,jb) =
∑

1≤k≤p
1≤l≤n

Zia,kl ⊗ Zkl,jb, ǫ(Zia,jb) = δijδab, S(Zia,jb) = Zjb,ia

We have the following result from [4].

Proposition 4.3. We have a surjective morphism of Woronowicz algebras

A(X ◦ Y ) −→ A(X) ∗w A(Y )

given by Zia,jb 7→ u
(a)
ij vab.

When Y = Xn is the n vertices graph with no edges and X is a connected graph, we have
(see [3, 7])

A(X ◦Xn) = A(nX) ≃ A(X) ∗w As(n)

Moreover, the following result is shown in [4].

Theorem 4.4. Let X, Y be two finite regular graphs with X connected. If the spectra {λi} of
dX and {µj} of dY satisfy the condition

{λ1 − λi | i 6= 1} ∩ {−nµj} = ∅

where n and λ1 are the order and valence of X, then A(X ◦ Y ) ≃ A(X) ∗w A(Y ).

The main result of this paper is this following generalization of Sabidussi’s result.

Theorem 4.5. Let X and Y be two finite regular graphs.
If [(SY 6= ∅) ⇒ (X is connected ) and (TY 6= ∅) ⇒ (Xc is connected)], then we have

A(X ◦ Y ) ≃ A(X) ∗w A(Y )

Remark 4.6. The above result is in fact an equivalence: if A(X ◦Y ) ≃ A(X)∗wA(Y ) then this
isomorphism induces an isomorphism on the abelianisations of these algebras, so that Aut(X ◦
Y ) ≃ Aut(X) ≀Aut(Y ). Thus Sabidussi’s result yields that the above condition is satisfied.
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If A(X) = C(GX) and A(Y ) = C(GY ) we will denote by GX ≀∗ GY the quantum subgroup of
S+
np such that

A(X) ∗w A(Y ) = C(GX ≀∗ GY )

To prove this theorem we use similar ideas to those in the case Y = Xn and X connected in [7],

but the general structure is much more complicated.

If L, J ∈ [1, n] and k ∈ [1, p] we denote

P J
L (k) :=

p
∑

s=1

ZsL,kJ

Lemma 4.7 (Key lemma). Assume that X and Y satisfy the assumption of Theorem 4.5. Let
L, J ∈ [1, n], then for all k1, k2 ∈ [1, p] we have

P J
L (k1) = P J

L (k2)

Thus P J
L (k) does not depend on k and we denote P J

L := P J
L (k), for any k.

The proof of this lemma will be the purpose of the next section. We now prove Theorem 4.5
by admitting this key lemma.

Lemma 4.8. For L,L′, J ∈ [1, n] we have this following relations:

P J
LP

J
L′ = δL,L′P J

L , PL
J P

L′

J = δL,L′PL
J ,

n
∑

L=1

P J
L = 1,

n
∑

L=1

PL
J = 1

∆(P J
L ) =

n
∑

S=1

PS
L ⊗ P J

S , ǫ(P J
L ) = δL,J , S(P J

L ) = PL
J

Proof. Let L,L′, J ∈ [1, n] with L 6= L′ and k ∈ [1, p]. We have:

P J
LP

J
L =

p
∑

s1=1

p
∑

s2=1

Zs1L,kJZs2L,kJ =

p
∑

s=1

ZsL,kJ = P J
L

P J
LP

J
L′ =

p
∑

s1=1

p
∑

s2=1

Zs1L,kJZs2L′,kJ = 0, since L 6= L′

n
∑

L=1

P J
L =

n
∑

L=1

p
∑

s=1

ZsL,kJ = 1

n
∑

L=1

PL
J =

1

p

n
∑

L=1

p
∑

k=1

PL
J (k) =

1

p

n
∑

L=1

p
∑

k=1

p
∑

s=1

ZsJ,kL =
1

p

p
∑

s=1

(

n
∑

L=1

p
∑

k=1

ZsJ,kL

)

=
1

p

p
∑

s=1

1 = 1

∆(P J
L ) =

p
∑

s=1

∆(ZsL,kJ) =

p
∑

s=1

n
∑

T=1

p
∑

t=1

ZsL,tT ⊗ ZtT,kJ

=

n
∑

T=1

p
∑

t=1

P T
L ⊗ ZtT,kJ

=
n
∑

T=1

P T
L ⊗ P J

T
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ǫ(P J
L ) =

p
∑

s=1

ǫ(ZsL,kJ) =

{

1 if L = J
0 otherwise

S(P J
L ) = S

(

1

p

p
∑

k=1

P J
L (k)

)

= S

(

1

p

p
∑

k=1

p
∑

s=1

ZsL,kJ

)

=
1

p

p
∑

s=1

p
∑

k=1

S(ZsL,kJ)

=
1

p

p
∑

s=1

p
∑

k=1

ZkJ,sL

=
1

p

p
∑

s=1

PL
J (s) = PL

J

Finally, we have PL
J P

L′

J = S(P J
L′P J

L ) = δL,L′S(P J
L ) = δL,L′PL

J , and this finishes the proof. �

Proposition 4.9. The matrix P = (P J
L )1≤L,J≤n is magic unitary and commutes with dY .

Proof. Lemma 4.8 says that P is magic unitary. Let L,L′, J, J ′ ∈ [1, n] such that L ∼Y L′ and
J 6∼Y J ′ then

P J
LP

J ′

L′ =

p
∑

s=1

p
∑

s′=1

ZsL,1JZs′L′,1J ′ = 0

and PL
J P

L′

J ′ = S(P J ′

L′ P J
L ) = 0, so by Proposition 3.5 we get PdY = dY P . �

We consider now the matrix x(a) = (x
(a)
ij )1≤i,j≤p with

x
(a)
ij =

n
∑

L=1

Zia,jL

We need the following lemma to prove some properties of x(a).

Lemma 4.10. Let L,L′, J ∈ [1, n], i, i′, j, j′ ∈ [1, p], such that L 6= L′, then

ZiL,jJZi′L′,j′J = 0 = ZjJ,iLZj′J,i′L′

Proof. With the assumption we get

ZiL,jJP
J
L = ZiL,jJP

J
L (j) =

p
∑

s=1

ZiL,jJZsL,jJ = ZiL,jJ = P J
LZiL,jJ

and

Zi′L′,j′JP
J
L = Zi′L′,j′JP

J
L (j

′) =

p
∑

s=1

Zi′L′,j′JZsL,j′J = 0 = P J
LZi′L′,j′J

Hence
ZiL,jJZi′L′,j′J = ZiL,jJP

J
LZi′L′,j′J = 0

Finally we obtain the second equality, by applying the antipode S to the first one, since
S(ZiL,jJ) = ZjJ,iL. �

Lemma 4.11. Let a, b ∈ [1, n], for i, i′, j ∈ [1, p], we have this following relations:

x
(a)
ij x

(a)
ij′ = δj,j′x

(a)
ij , x

(a)
ji x

(a)
j′i = δj,j′x

(a)
ji ,

n
∑

k=1

x
(a)
ik = 1,

n
∑

k=1

x
(a)
kj = 1

∆(x
(a)
ij ) =

∑

(s,k)∈[1,p]×[1,n]

x
(a)
is P k

a ⊗ x
(k)
sj , ǫ(x

(a)
ij ) = δij , S(x

(a)
ij ) =

n
∑

L=1

x
(L)
ji P a

L

and
x
(a)
ij P b

a = P b
ax

(a)
ij

9



Proof. Using that Z is magic unitary and Lemma 4.10 we have:

x
(a)
ij x

(a)
ij′ =

n
∑

L=1

n
∑

L′=1

Zia,jLZia,j′L′ = δj,j′
n
∑

L=1

Zia,jL = δj,j′x
(a)
ij

x
(a)
ji x

(a)
j′i =

n
∑

L=1

n
∑

L′=1

Zja,iLZj′a,iL′ =
n
∑

L=1

Zja,iLZj′a,iL = δj,j′x
(a)
ji

p
∑

k=1

x
(a)
ik =

p
∑

k=1

n
∑

L=1

Zia,kL = 1

and with Lemma 4.8, we obtain
p
∑

k=1

x
(a)
kj =

p
∑

k=1

n
∑

L=1

Zka,jL =
n
∑

L=1

PL
a (j) =

n
∑

L=1

PL
a = 1

We also have, using Lemma 4.10,

x
(a)
ij P b

a =

n
∑

L=1

p
∑

s=1

Zia,jLZsa,jb =

p
∑

s=1

Zia,jbZsa,jb = Zia,jb

P b
ax

(a)
ij =

n
∑

L=1

p
∑

s=1

Zsa,jbZia,jL =

p
∑

s=1

Zsa,jbZia,jb = Zia,jb

Then we get

∆(x
(a)
ij ) =

n
∑

L=1

∆(Zia,jL) =

n
∑

L=1

∑

(s,k)∈[1,p]×[1,n]

Zia,sk ⊗ Zsk,jL

=
∑

(s,k)∈[1,p]×[1,n]

Zia,sk ⊗
n
∑

L=1

Zsk,jL

=
∑

(s,k)∈[1,p]×[1,n]

x
(a)
is P k

a ⊗ x
(k)
sj

ǫ(x
(a)
ij ) =

n
∑

L=1

ǫ(Zia,jL) = δij

S(x
(a)
ij ) =

n
∑

L=1

S(Zia,jL) =
n
∑

L=1

ZjL,ia =
n
∑

L=1

x
(L)
ji P a

L

This finishes the proof. �

Proposition 4.12. For all a ∈ [1, n] the matrix x(a) is magic unitary and commutes with dX .

Proof. Lemma 4.11 says that x(a) is magic unitary. Let i, i′, j, j′ ∈ [1, p] such that i ∼X i′ and
j 6∼X j′, using

(i, L) ∼X◦Y (i′, L) ⇔ i ∼X i′, for all L ∈ [1, n]

and from Lemma 4.10, we obtain

x
(a)
ij x

(a)
i′j′ =

n
∑

L=1

n
∑

L′=1

Zia,jLZi′a,j′L′ =

n
∑

L=1

Zia,jLZi′a,j′L = 0

x
(a)
ji x

(a)
j′i′ =

n
∑

L=1

n
∑

L′=1

Zja,iLZj′a,i′L′ =
n
∑

L=1

Zja,iLZj′a,i′L = 0

so by Proposition 3.5 we get x(a)dX = dXx(a). �
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We are now ready to prove Theorem 4.5 by showing that the surjective morphism of Woronow-
icz algebras

Φ : A(X ◦ Y ) → A(X) ∗w A(Y )

Zia,jb 7→ wia,jb = u
(a)
ij vab

is an isomorphism.

Proof of Theorem 4.5. By Propositions 4.9 and 4.12, the matrices P and x(a) are magic unitary
and commute respectively with dY and dX . By Lemma 4.11 we know that for all i, j ∈ [1, p],

a, b ∈ [1, n], x
(a)
ij and P b

a commute. This gives us a Woronowicz algebra morphism

π : A(X) ∗w A(Y ) → A(X ◦ Y )

u
(a)
ij 7→ x

(a)
ij

vab 7→ P b
a

which is inverse to Φ since

x
(a)
ij P b

a = Zia,jb,
n
∑

b=1

u
(a)
ij vab = u

(a)
ij and

p
∑

s=1

u
(a)
s1 vab = vab

This concludes the proof. �

Example 4.13. Since for n ≥ 5 the graphs Cn and Cc
n are connected, for all regular graphs Y

we have
A(Cn ◦ Y ) ≃ C(Dn) ∗w A(Y ) := C(Dn ≀∗ GY )

Example 4.14. Consider the graphs {Kn ◦ C3k | n ≥ 2, k ≥ 2}, where Kn is the complete
graph with n vertices. Their spectra are as follows:

Sp(Kn) = {−1, n − 1}, Sp(C3k) =

{

2 cos

(

2sπ

3k

)

| s = 1, . . . , 3k

}

⊃ {−1}

Hence the graph Kn ◦ C3k does not satisfy the assumption of Theorem 4.4, but satisfy those of
Theorem 4.5 since Kn is connected and TCn = ∅ when n ≥ 4. We obtain

A(Kn ◦ C3k) ≃ A(Kn) ∗w A(C3k) = As(n) ∗w C(D3k) := C(S+
n ≀∗ D3k)

5. Proof of the key lemma

First we recall the statement of the key lemma.

Lemma 5.1. Let X and Y be two regular graphs such that:

(SY 6= ∅ ⇒ X is connected ) and (TY 6= ∅ ⇒ Xc is connected)

Then for all L, J ∈ [1, n], we have:

∀k1, k2 ∈ [1, p], P J
L (k1) = P J

L (k2)

where P J
L (k) =

∑p
s=1 ZsL,kJ . Hence P J

L (k) does not depend on k.

Remark 5.2. In the case Y = Xn and X connected in [7], the proof is much quicker and in [4]
with spectral assumptions on X and Y , the keypoint is the property that the eigenspaces of dX
are preserved by the natural coaction of A(X).
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Considering the switch of vertices of Y we just need to prove the case J = 1. Then we
denote P 1

L(k) := PL(k). We begin with four lemmas to understand the product PL(k1)PJ(k2)
for different values of L, J, k1 and k2.

Lemma 5.3. Let L, J ∈ [1, n], L 6= J and k1, k2 ∈ [1, p], k1 6= k2 such that (L, J)Y and (k1, k2)X
do not have the same nature. Then we have

PL(k1)PJ (k2) = 0

Proof. (L, J)Y and (k1, k2)X do not have the same nature, so by definition of X ◦ Y , for all
u, t ∈ [1, p], (tL, uJ) and (k11, k21) do not have the same nature as well. Using this and
Proposition 3.5, we get

PL(k1)PJ (k2) =

p
∑

t=1

p
∑

u=1

ZtL,k11ZuJ,k21 = 0

and this ends the proof. �

Lemma 5.4. Let L, J ∈ [1, n], L 6= J and k1, k2 ∈ [1, p], k1 6= k2 such that (L, J)Y and (k1, k2)X
have the same nature.

i. For all Q ∈ WY (L) ∩ VY (J), we have:

∑

s∈WX(k1)∩VX(k2)

PL(k1)PQ(s)PJ (k2) = pPL(k1)PJ (k2)

ii. If Q ∈ {L, J} we have:

∑

s∈WX(k1)∩VX(k2)

PL(k1)PQ(s)PJ (k2) =

{

δQ,Lα(X)PL(k1)PJ (k2) if J ∈ VY (L)
δQ,Jλ(X)PL(k1)PJ(k2) if J ∈ WY (L)

Proof. By Proposition 3.5, for all i, j ∈ [1, p] and I, J ∈ [1, n] we have

∑

(s,S)∈WX◦Y (i,I)

ZsS,jJ =
∑

(s,S)∈WX◦Y (j,J)

ZiI,sS

Then for all (i,Q) ∈ [1, p]× [1, n] we have

∑

(s,S)∈WX◦Y (i,Q)

ZsS,k21 =
∑

(s,1)∈WX◦Y (k2,1)

ZiQ,s1 +
∑

(s,S)∈WX◦Y (k2,1)
S 6=1

ZiQ,sS

and
∑

(s,S)∈WX◦Y (i,Q)

ZsS,k11 =
∑

(s,1)∈WX◦Y (k1,1)

ZiQ,s1 +
∑

(s,S)∈WX◦Y (k1,1)
S 6=1

ZiQ,sS

We have, by definition of X ◦ Y ,

{(s, S) ∈ WX◦Y (k2, 1), S 6= 1} = {(s, S) ∈ WX◦Y (k1, 1), S 6= 1}

so we get
∑

(s,S)∈WX◦Y (i,Q)

(ZsS,k21 − ZsS,k11) =
∑

(s,1)∈WX◦Y (k2,1)

ZiQ,s1 −
∑

(s,1)∈WX◦Y (k1,1)

ZiQ,s1 (∗)

Summing over i ∈ [1, p] we obtain

p
∑

i=1







∑

(s,1)∈WX◦Y (k2,1)

ZiQ,s1 −
∑

(s,1)∈WX◦Y (k1,1)

ZiQ,s1






=

∑

s∈WX(k2)

PQ(s)−
∑

s∈WX(k1)

PQ(s)

12



p
∑

i=1





∑

(s,S)∈WX◦Y (i,Q)

ZsS,k21



 =

p
∑

i=1





∑

s∈WX(i)

ZsQ,k21



+

p
∑

i=1





∑

S∈WY (Q)

p
∑

s=1

ZsS,k21





=

p
∑

s=1





∑

i∈WX(s)

ZsQ,k21



+

p
∑

i=1





∑

S∈WY (Q)

PS(k2)





=

p
∑

s=1

α(X)ZsQ,k21 + p





∑

S∈WY (Q)

PS(k2)





= α(X)PQ(k2) + p





∑

S∈WY (Q)

PS(k2)





and in the same way:

p
∑

i=1





∑

(s,S)∈WX◦Y (i,Q)

ZsS,k11



 = α(X)PQ(k1) + p





∑

S∈WY (Q)

PS(k1)





Using (∗), we obtain

p





∑

S∈WY (Q)

(PS(k2)− PS(k1))



+ α(X)(PQ(k2)− PQ(k1)) =
∑

s∈WX(k2)

PQ(s)−
∑

s∈WX(k1)

PQ(s)

Since for all S, S′, k, PS(k)PS′(k) = δS,S′PS(k), by multiplying by PL(k1) on the left and by
PJ(k2) on the right the above equality, we have

aL,J(Q)PL(k1)PJ(k2)+
∑

s∈WX(k1)

PL(k1)PQ(s)PJ (k2) =
∑

s∈WX(k2)

PL(k1)PQ(s)PJ(k2) (∗∗)

where aL,J(Q) = (δJ∈WY (Q) − δL∈WY (Q))p+ (δQ,J − δQ,L)α(X).

We now deal separately with the cases Q ∈ WY (L) ∩ VY (J) and Q ∈ {L, J}.

If Q ∈ WY (L) ∩ VY (J), then aL,J(Q) = −p and (∗∗) gives

pPL(k1)PJ (k2) =
∑

s∈WX(k1)

PL(k1)PQ(s)PJ (k2)−
∑

s∈WX(k2)

PL(k1)PQ(s)PJ (k2)

=
∑

s∈WX (k1)

s∈VX (k2)

PL(k1)PQ(s)PJ (k2)−
∑

s∈WX (k2)

s∈VX (k2)

PL(k1)PQ(s)PJ (k2) (by Lemma 5.3)

=
∑

s∈WX (k1)

s∈VX (k2)

PL(k1)PQ(s)PJ (k2)

which gives (i).
Now assume that Q ∈ {L, J}.

• If Q = L and J ∈ VY (L) then aL,J(Q) = aL,J(L) = −α(X) so from (∗∗) we get
13



α(X)PL(k1)PJ (k2) =
∑

s∈WX(k1)

PL(k1)PL(s)PJ (k2)−
∑

s∈WX(k2)

PL(k1)PL(s)PJ (k2)

=
∑

s∈WX(k1)∩VX(k2)

PL(k1)PL(s)PJ (k2) (by Lemma 5.3)

• If Q = L and J ∈ WY (L) then for all s ∈ VX(k2), PQ(s)PJ(k2) = 0 by Lemma 5.3.
Therefore we obtain

∑

s∈WX(k1)∩VX(k2)

PL(k1)PL(s)PJ (k2) = 0

• If Q = J and J ∈ WY (L), then aL,J(Q) = aL,J(J) = α(X) − p = −λ(X) − 1 and with
(∗∗) we obtain

(λ(X) + 1)PL(k1)PJ (k2) =
∑

s∈WX(k1)

PL(k1)PJ (s)PJ (k2)−
∑

s∈WX(k2)

PL(k1)PJ (s)PJ(k2)

=
∑

s∈WX(k1)

PL(k1)PJ (s)PJ (k2)−
∑

s∈WX (k2)

s∈WX (k1)

PL(k1)PJ (s)PJ(k2)

=
∑

s∈WX(k1)∩(VX (k2)∪{k2})

PL(k1)PJ (s)PJ(k2)

= PL(k1)PJ(k2) +
∑

s∈WX(k1)∩VX(k2)

PL(k1)PJ (s)PJ(k2)

which gives
∑

s∈WX(k1)∩VX(k2)

PL(k1)PJ (s)PJ(k2) = λ(X)PL(k1)PJ(k2)

• Finally if Q = J and J ∈ VY (L) then for all s ∈ WX(k1), PL(k1)PJ(s) = 0 by Lemma
5.3. Therefore we obtain

∑

s∈WX(k1)∩VX(k2)

PL(k1)PJ(s)PJ (k2) = 0

These four equalities prove (ii) and end the proof. �

Lemma 5.5. Let L, J ∈ [1, n], L 6= J and k1, k2 ∈ [1, p], k1 6= k2 and put A = WX(k1)∩VX(k2).
Assume that WY (L) ∩ VY (J) 6= ∅.

If J ∈ VY (L), we have
(

|A| − α(X) − p|WY (L) ∩ VY (J)|
)

PL(k1)PJ(k2) = 0

If J ∈ WY (L), we have
(

|A| − λ(X)− p|WY (L) ∩ VY (J)|
)

PL(k1)PJ(k2) = 0

Proof. If (L, J)Y and (k1, k2)X do not have the same nature then by Lemma 5.3 we get
PL(k1)PJ(k2) = 0. We now assume that they have the same nature. Since WY (L)∩VY (J) 6= ∅,
if A = ∅, by (i) of Lemma 5.4, we obtain again PL(k1)PJ(k2) = 0. Now assume that A 6= ∅.
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For all s ∈ A, we have

PL(k1)PJ (k2) = PL(k1)





n
∑

Q=1

PQ(s)



PJ (k2)

= PL(k1)





∑

Q∈WY (L)∩VY (J)∪{L}∪{J}

PQ(s)



PJ(k2) (by Lemma 5.3)

and by summing over s ∈ A we have

|A|PL(k1)PJ(k2) =
∑

Q∈WY (L)∩VY (J)∪{L}∪{J}

(

∑

s∈A

PL(k1)PQ(s)PJ (k2)

)

Finaly using Lemma 5.4 we get

|A|PL(k1)PJ (k2) =

{

α(X)PL(k1)PJ (k2) + p|WY (L) ∩ VY (J)|PL(k1)PJ (k2) if J ∈ VY (L)
λ(X)PL(k1)PJ (k2) + p|WY (L) ∩ VY (J)|PL(k1)PJ (k2) if J ∈ WY (L)

which gives the result. �

Lemma 5.6. Let L, J ∈ [1, n], L 6= J and k1, k2 ∈ [1, p], k1 6= k2. Then

|WY (L) ∩ VY (J)| 6= 0 =⇒ PL(k1)PJ(k2) = 0

In particular,
((

k2 ∈ VX(k1) and TY = ∅
)

or
(

k2 ∈ WX(k1) and SY = ∅
))

⇒ PL(k1)PJ (k2) = 0

Proof. If (L, J)Y and (k1, k2)X do not have the same nature, this follows from Lemma 5.3.
We now assume that they have the same nature and begin with the case k2 ∈ VX(k1) (and
J ∈ VY (L)). By assumption |WY (L)∩VY (J)| ≥ 1 so we get α(X)+p|WY (L)∩VY (J)| ≥ p+α(X)
and by definition |WX(k1) ∩ VX(k2)| ≤ p so we obtain

α(X) + p|WY (L) ∩ VY (J)| − |WX(k1) ∩ VX(k2)| ≥ α(X)

If α(X) > 0, Lemma 5.5 gives the result, otherwise α(X) = 0 (which means X = Kp) then
WX(k1) = ∅ and using (i) of Lemma 5.4, we can conclude since WY (L) ∩ VY (J) 6= ∅.

Now we deal with the case k2 ∈ WX(k1) (and J ∈ WY (L)). In the same way as before, we
prove that

λ(X) + p|WY (L) ∩ VY (J)| − |WX(k1) ∩ VX(k2)| ≥ λ(X)

If λ(X) > 0 we conclude by Lemma 5.5, otherwise we have X = Xp and VX(k2) = ∅, so (i)
of Lemma 5.4 gives us the result.

For the last result we just need to prove that when (L, J)Y and (k1, k2)X have the same
nature we have

((

k2 ∈ VX(k1) and TY = ∅
)

or
(

k2 ∈ WX(k1) and SY = ∅
))

=⇒ |WY (L) ∩ VY (J)| 6= 0

Assume that |WY (L) ∩ VY (J)| = 0 then VY (J) ⊂ (WY (L))
c = VY (L) ∪ {L}. If TY = ∅ and

k2 ∈ VX(k1) then J ∈ VY (L) and we get VY (J) ∪ {J} = VY (L) ∪ {L} by inclusion and equality
of the cardinals, contradiction. In the same way if SY = ∅ and k2 ∈ WX(k1), then L /∈ VY (J)
and therefore VY (J) = VY (L), contradiction. �

We are now ready to prove Lemma 5.1.
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Proof. The assumptions on X and Y can be divided into 4 cases:

• (1) X is connected and TY = ∅.
• (2) Xc is connected and SY = ∅.
• (3) TY = ∅ and SY = ∅.
• (4) X and Xc are connected with SY 6= ∅ and TY 6= ∅.

Case (1): Let k2 ∈ VX(k1), using Lemma 5.6 we have

PL(k1) = PL(k1)

(

n
∑

J=1

PJ(k2)

)

= PL(k1)PL(k2)

and

PL(k2) =

(

n
∑

J=1

PJ(k1)

)

PL(k2) = PL(k1)PL(k2),

therefore PL(k1) = PL(k2) when k2 and k1 are connected in X. Since X is connected, it follows
that PL(k1) = PL(k2) for all k1, k2 ∈ [1, p].

Case (2): We check that (X ◦ Y )c = Xc ◦ Y c and TY = SY c . Then, by using case (1), we get

the result since A(Xc) = A(X).

Case (3): Let k1, k2 ∈ [1, p] with k1 6= k2. Using Lemma 5.6 for all L, J ∈ [1, n] with L 6= J ,

we have PL(k1)PJ (k2) = 0. So similarly to case (1), we obtain PL(k1) = PL(k2).

Case 4: First we assume k2 ∈ VX(k1). If J ∈ WY (L), then by Lemma 5.3, we have
PL(k1)PJ(k2) = 0. If J ∈ VY (L), by Lemma 5.5, we get

(

|WX(k1) ∩ VX(k2)| − α(X) − p|WY (L) ∩ VY (J)|
)

PL(k1)PJ(k2) = 0

Then using Lemma 5.6 we have PL(k1)PJ (k2) = 0 or

|WX(k1) ∩ VX(k2)| = α(X) (= |WX(k1)|)

This last equality implies that WX(k1) ⊂ VX(k2). If for all J 6= L we have PL(k1)PJ(k2) = 0,
using the same computation as in case (1) leads to PL(k1) = PL(k2). Finally we have

(∗) k2 ∈ VX(k1) =⇒
((

PL(k1) = PL(k2)
)

or
(

PL(k1) 6= PL(k2) and WX(k1) ⊂ VX(k2)
))

By taking the complement graph we also obtain

(∗∗) k2 ∈ WX(k1) =⇒
((

PL(k1) = PL(k2)
)

or
(

PL(k1) 6= PL(k2) and VX(k1) ⊂ WX(k2)
))

We put:

S1 = {k2 ∈ VX(k1) | PL(k1) = PL(k2)}

S2 = {k2 ∈ VX(k1) | PL(k1) 6= PL(k2) and WX(k1) ⊂ VX(k2)}

We have VX(k1) = S1 ∪ S2 6= ∅ with disjoint union, by (∗).

Assume that S2 6= ∅. If all the elements in S2 are connected with all the elements in S1,
then S2 (6= X since k1 /∈ S2) is an isolated graph in Xc, a contradiction since Xc is connected.
Otherwise there exists s1 ∈ S1 and s2 ∈ S2 such that (s1, s2) is not an edge in X, which means
that s2 ∈ WX(s1). By (∗∗) we obtain two cases:
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• PL(s2) = PL(s1) = PL(k1), which is impossible since s2 ∈ S2

• VX(s2) ⊂ WX(s1), which is impossible since k1 ∈ VX(s2) and k1 /∈ WX(s1)

We conclude that S2 = ∅. Denoting

S′
1 = {k2 ∈ WX(k1) | PL(k1) = PL(k2)}

S′
2 = {k2 ∈ WX(k1) | PL(k1) 6= PL(k2) and VX(k2) ⊂ WX(k1)}

we prove as above (using that X is connected) that S′
2 = ∅ and we get

∀k1, k2 ∈ [1, p], PL(k1) = PL(k2)

as required. �
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