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For stochastic systems driven by continuous semimartingales an explicit formula for the logarithm of the Itô flow map is given. A similar formula is also obtained for solutions of linear matrix-valued SDEs driven by arbitrary semimartingales. The computation relies on the lift to quasishuffle algebras of formulas involving products of Itô integrals of semimartingales. Whereas the Chen-Strichartz formula computing the logarithm of the Stratonovich flow map is classically expanded as a formal sum indexed by permutations, the analogous formula in Itô calculus is naturally indexed by surjections. This reflects the change of algebraic background involved in the transition between the two integration theories.

Introduction

The setting of our work is classical stochastic calculus, as exposed, e.g., in the classical textbooks [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF][START_REF] Protter | Stochastic Integration and Differential Equations[END_REF]. Its aim is to obtain an explicit formula for the logarithm of the Itô flow map associated to a stochastic differential system, generalizing the classical work of Ben Arous [START_REF] Ben | Flots et series de Taylor stochastiques[END_REF] on Stratonovich flows and stochastic Taylor series.

In this introduction, we briefly state the main result of this work. A description of the historical background and details on the underlying definitions and objects of study are postponed to the next section.

Let {X 1 , X 2 , . . . , X N } be scalar continuous semimartingales. We assume, without loss of generality, that X i 0 = 0 and that their quadratic covariation, or square bracket operation, is such that [X i , X j ] ≡ 0 for i = j. We consider the general stochastic differential system (in what follows the notation

t 0 • • • dX i s refers to Itô integrals) (1) Y t = Y 0 + N i=1 t 0 V i (Y s ) dX i s ,
where V i : R d → R d are smooth vector fields. In the following, we will identify V i with the partial differential operator V i ∂ y := d j=1 V j i ∂ yj . For i = N + 1, . . . , 2N , let X i denote the quadratic variation of X i-N , that is X i = [X i-N , X i-N ], and define the second order differential operator V i by [START_REF] Ben | Flots et series de Taylor stochastiques[END_REF] V i := 1 2 d j, k=1

V j i V k i ∂ yj y k .
By analogy to the Stratonovich stochastic system driven by Wiener processes in [START_REF] Baudoin | An Introduction To The Geometry Of Stochastic Flows[END_REF], we define the stochastic partial differential operator S as

S = 2N i=1 V i X i .
Since the differential operators V i are time-homogeneous, we also have dS t := 2N i=1 V i dX i t . For n ≥ 1, let S n denote the n-times repeated integral of S and set Date: April 17, 2015.

S 0 = Id, so that

S n = • • • dS t1 • • • dS tn = 2N j1,j2,...,jn=1 V j1 • • • • • V jn • • • dX j1 t1 . . .dX jn tn .
The Itô-Taylor series expansion for the flowmap ϕ t : Y 0 → Y t corresponding to the stochastic system is given by

ϕ t = n≥0 S n • Id.
We set S := n≥0 S n = Id + SdS, which describes the action of the flowmap on smooth functions. The central aim of this work is to calculate log S in the Itô framework.

The computation of the logarithm of this action may be considered as the stochastic analog of a well-known problem in the theory of classical differential equations (motivated, e.g., by numerical considerations, and referred often to as the continuous Baker-Campbell-Hausdorff problem). And it turns out that, provided one uses Stratonovich integrals, the solution for stochastic differential equations is essentially the same as in the classical case. We refer the reader to the next section for more details.

Displaying the first few terms of log S in the Itô framework may give an idea of the complexity of its expression. We adopt the notation 

I [i,j] = [X i , X j ],
V i I i + i,j V i V j 1 2 I ij - 1 2 I ji + I [i,j] + i,j,k V i V j V k 1 3 I ijk - 1 6 I jik + I kij + I [i,j]k + I j[i,k] - 1 6 I ikj + I jki + I i[j,k] + 1 3 I kji + I [j,k]i + I k[i,j] + • • • .
To write the general expression for this expansion, let us introduce some notation. For f a surjection from the set [n] := {1, . . . , n} to the set [k] (written f ∈ Sj n,k ), we set

d(f ) := |{i < n, f (i) ≥ f (i + 1)}|. The set of surjections f from [n] to [k] such that ∀i ≤ k, |f -1 {i}| ≤ 2 is written Sj (2) n,k For a sequence J = (j 1 , . . . , j n ) of elements of [2N ] and A = A 1 • • • A k = [n] an ordered partition of the set [n] into disjoint subsets, we write I J A for the iterated integral • • • dX A1 J • • • dX A k J , where, for A i = {a 1 , . . . , a l }, X Ai J stands for the iterated quadratic covariation [X ja 1 , . . . , X ja l ] := [X ja 1 , [X ja 2 , . . . , X ja l ]]. For f as above, we set A(f ) := f -1 (1) • • • f -1 (k) and S f := 2N i1,...,in=1 V i1 • • • V in I {i1,...,in} A(f ) .
Our main result reads Theorem 1.1. We have:

log(S) = n>0 n≥k≥1 f ∈Sj (2) n,k (-1) d(f ) n • n -1 d(f ) -1 S f .
This statement follows from Theorem 6.2. The restriction of the indexing set to Sj [START_REF] Ben | Flots et series de Taylor stochastiques[END_REF] n,k follows from the fact that, for continuous semimartingales, iterated brackets such as [[X i , X j ], X k ] vanish. When allowing semimartingales with jumps (the article will develop the combinatorial theory of iterated integrals of semimartingales in this more general setting), this restriction disappears.

For example, with f the surjection from [START_REF] Cartier | On the structure of free Baxter algebras[END_REF] to [START_REF] Ben | Flots et series de Taylor stochastiques[END_REF], defined by

f (1) = 2, f (2) = 1, f (3) = 2,
we obtain d(f ) = 1, and

(-1) d(f ) n • n -1 d(f ) -1 = (-1) 3 • 2 1 -1 = - 1 6
and

S f = i,j,k V i V j V k I j[ik]
, as expected from the low order direct computation given previously.

The rest of the paper develops the formalism necessary to prove the above theorem. Several of the tools that enter our approach are of general interest, and allow to handle the algebraic structures of iterated Itô integrals. We also show how the same ideas can be applied to the study of linear stochastic matrix differential equations driven by arbitrary semimartingales (Theorem 7.3).
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The Strichartz formula

Let us recall first the historical as well as technical background of Theorem 1.1. Its knowledge will help to enlighten our forthcoming constructions, and make clear to what extend Itô calculus differs from the Riemann or Stratonovich calculus.

From the seminal 1957 work by K.T. Chen on the algebraic structures underlying products of iterated integrals [START_REF] Chen | Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula[END_REF] followed the existence of an exponential solution of the classical nonautonomous initial value problem

Ẏ (t) = F (t, Y (t)), Y (0) = Y 0 ,
where F (t) : R d → R d is a vector field depending continuously on time.

Over the decades following Chen's work, the explicit formula for this exponential solution was obtained independently by several authors. Mielnik and Plebanski [START_REF] Mielnik | Combinatorial approach to Baker-Campbell-Hausdorff exponents[END_REF] as well as Strichartz [START_REF] Strichartz | The Campbell-Baker-Hausdorff-Dynkin formula and solutions of differential equations[END_REF] calculated the function Ω(t) such that Y (t) = exp(Ω(t))Y 0 . Using the fact that Stratonovich integrals obey Chen's rules of calculus for iterated integrals, Ben Arous showed soon after the work of Strichartz, that the application domain of this formula extends to stochastic realm [START_REF] Ben | Flots et series de Taylor stochastiques[END_REF][START_REF] Baudoin | An Introduction To The Geometry Of Stochastic Flows[END_REF].

The explicit expression of the series Ω(t) is rather intricate. Its most classical formulation involves permutations and iterated integrals of iterated Lie brackets

Ω(t) = n>0 σ∈Sn (-1) d(σ) n 2 n-1 d(σ) ∆ n [0,t] [• • • [F (s σ(1) ), F (s σ(2) )], • • • ], F (s σ(n) )]ds 1 • • • ds n ,
where the bracket of vector fields follows from their interpretation as differential operators, and the integration domain is the n-dimensional simplex

∆ n [0,t] := {(s 1 , . . . , s n ), 0 ≤ s 1 ≤ • • • ≤ s n ≤ t}.
In the formula for Ω(t), S n denotes the set of permutations of the set [n] := {1, . . . , n}. The quantity d(σ) (already introduced in the more general case of surjections) is called the number of descents of the permutation σ ∈ S n , that is the number of positions in the permutation (σ(1), . . . , σ(n)), where σ(i) > σ(i + 1), for i = 1, . . . , n -1. The formula is known in the literature as Strichartz, Chen-Strichartz or continuous Baker-Campbell-Hausdorff formula.

It can also be stated by replacing iterated Lie brackets by standard operator products. The formula is then essentially the same except for the scalar coefficient, which becomes (-1)

d(σ) n -1 n-1 d(σ)
-1 -the same kind of scalar coefficient as those appearing in Theorem 1.1. We refer to [START_REF] Strichartz | The Campbell-Baker-Hausdorff-Dynkin formula and solutions of differential equations[END_REF] for details on the analytic background, and to [START_REF] Ch | Free Lie algebras[END_REF][START_REF] Gelfand | Noncommutative symmetric functions[END_REF] for the underlying combinatorics of free Lie algebras and Lie idempotents.

The derivation of the formula for Ω(t) relies on a precise understanding of the calculus of iterated integrals, which in turn is based on integration by parts. For two scalar valued indefinite integrals F (t) := t 0 f (s)ds and G(t) := t 0 g(s)ds, recall that

F (t) • G(t) = t 0 f (s)G(s)ds + t 0 F (s)g(s)ds.
For general iterated integrals

F n (t) := ∆ n [0,t] f 1 (s 1 )f 2 (s 2 ) • • • f n (s n )ds 1 • • • ds n ,
the above product generalizes to Chen's shuffle product formula

F n (t) • F m (t) = σ∈Shn,m ∆ n+m [0,t] f σ -1 (1) (s 1 ) • • • f σ -1 (n+m) (s n+m )ds 1 • • • ds n+m , (3) 
where Sh n,m is the set of (n, m)-shuffles, i.e., permutations σ on the set

[n + m], such that σ(1) < • • • < σ(n) and σ(n + 1) < • • • < σ(n + m).
The above product is conveniently abstracted into an algebraically defined shuffle product on words. Let Y := {y 1 , y 2 , . . .} be an alphabet, and Y * the corresponding free monoid of words ω = y i1 • • • y in . The vector space K Y , which is freely generated by Y * , is a commutative algebra for the shuffle product:

(4) v 1 • • • v p ∐ ∐ v p+1 • • • v p+q := σ∈Shp,q v σ -1 1 • • • v σ -1 p+q with v j ∈ Y , j ∈ {1, . . . , p + q}.
We define the empty word 1 as unit:

1 ∐ ∐ v = v ∐ ∐ 1 = v for v ∈ Y * .
This product is homogenous with respect to the length of words and can be defined recursively. Indeed, one can show that:

v 1 • • • v p ∐ ∐ v p+1 • • • v p+q =v 1 v 2 • • • v p ∐ ∐ v p+1 • • • v p+q (5) + v p+1 v 1 • • • v p ∐ ∐ v p+2 • • • v p+q .
The shuffle product was axiomatized in the 50's in the seminal works of Eilenberg-MacLane and Schützenberger [START_REF] Eilenberg | On the Groups H(π, n)[END_REF][START_REF] Schützenberger | Sur une propriété combinatoire des algèbres de Lie libres pouvant être utilisée dans un problème de mathématiques appliquées, Séminaire Dubreil-Jacotin Pisot (Algèbre et théorie des nombres)[END_REF], and has proven to be essential in many fields of pure and applied mathematics. In [START_REF] Chen | Algebras of iterated path integrals and fundamental groups[END_REF][START_REF] Chen | Iterated path integrals[END_REF] Chen studied fundamental groups and loop spaces. In control theory, Chen's abstract shuffle product plays a central role in Fliess' work [START_REF] Fliess | Fonctionnelles causales non linéaires et indéterminées non commutatives[END_REF], which combines iterated integrals and formal power series in noncommutative variables into an algebraic approach to nonlinear functional expansions. Reutenauer's monograph on free Lie algebras [START_REF] Ch | Free Lie algebras[END_REF] imbeds Chen's work into an abstract Hopf algebra theoretic setting. More recently, Chen's formalism came to prominence in Lyons' seminal theory of rough paths [START_REF] Lyons | Differential Equations Driven by Rough Paths, École d'été des probabilités de Saint-Flour[END_REF].

When dealing with iterated Itô integrals of semimartingales, this machinery of shuffle products does not apply any more. One has instead to use the quasi-shuffle product [START_REF] Curry | Lévy Processes and Quasi-Shuffle Algebras[END_REF]. Its definition will be recalled further below. We simply mention for the time being that, although it was discovered and investigated much more recently, it appears to be as important as the shuffle product, both from a theoretical as well as applied point of view. Indeed, it encodes the algebraic structure of discrete sums, as the shuffle product encodes the one of integration maps, and appears in various domains, e.g., multiple zeta values, Rota-Baxter algebras, and Ecalle's mould calculus. The latter is related to the computation of normal forms in the theory of dynamical systems. We refer to [START_REF] Ebrahimi-Fard | Quasi-shuffles, Mixable Shuffles, and Hopf Algebras[END_REF][START_REF] Ebrahimi-Fard | La structure combinatoire du calcul intégral[END_REF][START_REF] Foissy | Deformations of shuffles and quasi-shuffles[END_REF][START_REF] Hoffman | Quasi-shuffle products[END_REF] for further historical and technical details on quasi-shuffle algebras.

Semimartingales

Recall that a process X is a semimartingale, if X has a decomposition X t = X 0 + M t + A t for t ≥ 0, where M 0 = A 0 = 0, and where M is a local martingale and A is an adapted process that is right-continuous with left limits and has finite variation on each finite interval [0, t].

It is well-known that the space of semimartingales with multiplication forms an associative algebra. The quadratic covariation or square bracket process [X, Y ] between two semimartingales X and Y , is defined via their product as follows

X • Y = X 0 Y 0 + X -dY + Y -dX + [X, Y ]. (6)
The quadratic covariation of a process X with itself is known as its quadratic variation. Let X, Y and Z be semimartingales, the quadratic covariation satisfies:

(1) [X, 0] = 0;

(2) [X, Y ] = [Y, X]; (3) [X, [Y, Z]] = [[X, Y ], Z].
Hence, the square bracket process defines a commutative and associative product on the space of semimartingales. We refer to the monographs by Protter [START_REF] Protter | Stochastic Integration and Differential Equations[END_REF] and Jacod & Shiryaev [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF] for details.

For notational convenience, we will write from now on iterated integrals of semimartingales as follows:

XY := X -dY, and X 1 • • • X n := ( X 1 • • • X n-1 ) -dX n .
Iterated brackets are denoted by:

(7) X ⋆ Y := [X, Y ],
and

X 1 ⋆ • • • ⋆ X n := [• • • [X 1 , X 2 ], • • • , X n ].
From now on we will assume that all processes are normalized so that X 0 = 0. Terms such as X 0 Y 0 , can therefore be ignored in products of stochastic integrals, e.g., as in equation [START_REF] Chen | Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula[END_REF].

Let us briefly illustrate the combinatorial nature of iterated Itô integrals, before turning to the general, and more abstract picture. Recall first that, for arbitrary semimartingales A, B, C, D and X := A -dB, Y := C -dD, we have 

B • Y = (CB) -dD + Y -dB + C -d[B, D] = CDB + ( C -dB + B -dC + [B, C]) -dD + C -d[B, D] = BCD + CBD + CDB + [B, C]D + C[B, D].
Whereas the first three terms of the expansion, i.e., BCD + CBD + CDB, are those that would also appear in the shuffle product expansion, the last two terms arise from the bracket operation. These extra terms are typical outcomes of what distinguishes quasi-shuffle and shuffle computations. The algebra underlying the quasi-shuffle calculus has been explored in [START_REF] Foissy | Deformations of shuffles and quasi-shuffles[END_REF][START_REF] Novelli | Natural endomorphisms of quasi-shuffle Hopf algebras 2011[END_REF]. In a nutshell, the bracket terms that appear in the above product require the replacement of permutations in the calculation of the Chen-Strichartz formula by the larger class of surjections.

Quasi-shuffle algebra

We recall now the definition and basic properties of quasi-shuffle algebras. In spite of the fact that such algebras encode naturally Itô integral calculus, they appeared only in a few papers in the context of stochastic integration, see e.g. the works by Gaines, and Liu and Li [START_REF] Gaines | The algebra of iterated stochastic integrals[END_REF][START_REF] Li | Algebraic structure of multiple stochastic integrals with respect to Brownian motions and Poisson processes[END_REF] and [START_REF] Curry | Lévy Processes and Quasi-Shuffle Algebras[END_REF]. As the name indicates, quasishuffle algebras are obtained as a deformation of classical shuffle algebras. It is generally agreed that the idea can be traced back to the work of P. Cartier on free commutative Rota-Baxter algebras [START_REF] Cartier | On the structure of free Baxter algebras[END_REF]. However, it was formalized only recently by M. Hoffman [START_REF] Hoffman | Quasi-shuffle products[END_REF]. The link between Hoffman's ideas and commutative Rota-Baxter algebras was explored in [START_REF] Ebrahimi-Fard | Quasi-shuffles, Mixable Shuffles, and Hopf Algebras[END_REF].

Abstractly, a quasi-shuffle algebra is defined as a commutative algebra B with product •, which is equipped with two extra bilinear products denoted ↑ and ↓ (known as "half-shuffles"), such that for x, y, z ∈ B one has

x ↑ y = y ↓ x, (9) (x • y) ↑ z = x • (y ↑ z) (10) (x ↑ y) ↑ z = x ↑ (y ↑ z + y ↓ z + y • z). ( 11 
)
One writes usually

x y := x ↑ y + x ↓ y + x • y, and calls the quasi-shuffle product. In particular the last axiom then reads (x ↑ y) ↑ z = x ↑ (y z). Note that when the product • on B is the null product, then one recovers the usual axioms for shuffle algebras [START_REF] Eilenberg | On the Groups H(π, n)[END_REF][START_REF] Schützenberger | Sur une propriété combinatoire des algèbres de Lie libres pouvant être utilisée dans un problème de mathématiques appliquées, Séminaire Dubreil-Jacotin Pisot (Algèbre et théorie des nombres)[END_REF].

Let us mention that the "deformation" induced by the • product can be understood in terms of -weight-one -commutative Rota-Baxter algebras. The term y ↑ z + y ↓ z + y • z can then be interpreted as the so-called double Rota-Baxter product. We refrain however from developing these ideas here, since they are only indirectly relevant to our present purposes. The interested reader is referred to the survey paper [START_REF] Ebrahimi-Fard | La structure combinatoire du calcul intégral[END_REF] for an overview of the links between the theories of Rota-Baxter algebras, integral calculus and (quasi-)shuffle algebras.

The standard example of a quasi-shuffle algebra, studied in detail in [START_REF] Hoffman | Quasi-shuffle products[END_REF], is provided by the tensor algebra T (A) := n∈N A ⊗n over a commutative algebra (A, * ). The three products ↑, ↓, • are defined inductively by: a • b := a * b, a ↑ b := ba, a ↓ b := ab, and

a 1 • • • a n ↑ b 1 • • • b m := (a 1 • • • a n-1 b 1 • • • b m )a n , a 1 • • • a n ↓ b 1 • • • b m := (a 1 • • • a n b 1 • • • b m-1 )b m , a 1 • • • a n • b 1 • • • b m := (a 1 • • • a n-1 b 1 • • • b m-1 )(a n * b m ),
where we used the common word notation

a 1 • • • a n for a 1 ⊗ • • • ⊗ a n ∈ A ⊗n .
For example, the product of two words of length two gives explicitly

a 1 a 2 b 1 b 2 = (a 1 b 1 b 2 )a 2 + (a 1 a 2 b 1 )b 2 + (a 1 b 1 )(a 2 * b 2 ) = b 1 b 2 a 1 a 2 + a 1 b 1 b 2 a 2 + b 1 a 1 b 2 a 2 + a 1 a 2 b 1 b 2 + b 1 a 1 a 2 b 2 + a 1 b 1 a 2 b 2 + b 1 (a 1 * b 2 )a 2 + (a 1 * b 1 )b 2 a 2 + a 1 (a 2 * b 1 )b 2 + (a 1 * b 1 )a 2 b 2 + a 1 b 1 (a 2 * b 2 ) + b 1 a 1 (a 2 * b 2 ) + (a 1 * b 1 )(a 2 * b 2 ).
Recall from Section 2 that the recursive description of shuffle product is complemented by its definition in terms of permutations. Similarly, the above recursive definition of the quasi-shuffle product has an explicit presentation in terms of surjections. Concretely, let f be a surjective map from [n] = {1, . . . , n} to [p]. We set:

f (a 1 • • • a n ) := ( j∈f -1 (1) * a j ) ⊗ • • • ⊗ ( j∈f -1 (p) * a j ) ∈ A ⊗p ,
so that for f from, say, [START_REF] Chapoton | Algèbres de Hopf des permutahèdres, associahèdres et hypercubes[END_REF] to [START_REF] Ben | Flots et series de Taylor stochastiques[END_REF] given by f

(1) = 1, f (2) = 2, f (3) = 1, f (4) = 2, we find f (a 1 • • • a 4 ) = (a 1 * a 3 ) ⊗ (a 2 * a 4 ).
Then, we obtain:

(12) a 1 • • • a n b 1 • • • b m := f f (a 1 • • • a n b 1 • • • b m ),
where f runs over all surjections from the set [n+ m] to the set [k], for max(n, m) ≤ k ≤ m + n, and such that f (1)

< • • • < f (n), f (n + 1) < • • • < f (n + m).
Let us write now T for the tensor algebra over the algebra S of semimartingales, equipped with the ⋆ product defined in [START_REF] Chen | Algebras of iterated path integrals and fundamental groups[END_REF], so that from now on X 1 • • • X n denotes a tensor product of semimartingales in S ⊗n ⊂ T , and X 1 • • • X n the corresponding iterated stochastic integral. We finally obtain the analog for iterated integrals of semimartingales of the usual Chen formulas of iterated integrals. Recall that the latter hold for either Stratonovich or indefinite Riemann integrals.

Proposition 4.1. The product of two iterated stochastic integrals is given by:

X 1 • • • X n • Y 1 • • • Y m = (X 1 • • • X n Y 1 • • • Y m ) = f f (X 1 • • • X n Y 1 • • • Y m ),
where, as above, f runs over all surjections from the set [n + m] to the set [k], for max(n, m) ≤ k ≤ m+n, and such that f (1)

< • • • < f (n), f (n+1) < • • • < f (n+m).
For example, the product of two iterated stochastic integrals gives

X 1 X 2 • X 3 = X 1 X 2 X 3 +X 1 X 3 X 2 +X 3 X 1 X 2 +(X 1 ⋆X 3 )X 2 +X 1 (X 2 ⋆X 3 ) .
The proposition follows from the observation that the inductive rules for the quasi-shuffle product in the tensor algebra give the pattern obeyed by products of iterated integrals of semimartingales. Namely, setting for X := A -dB and Y := C -dD, we have

X ↑ Y := A( C -dD) -dB, X ↓ Y := ( A -dB)C -dD, X • Y := (AC) -d[B, D].

Surjections

This section presents a concise and mostly self-contained account on the modern algebraic theory of surjections, originating independently from F. Hivert's Ph.D.thesis [START_REF] Hivert | Combinatoire des fonctions quasi-symétriques[END_REF] and from the work by Chapoton on the permutohedron [START_REF] Chapoton | Algèbres de Hopf des permutahèdres, associahèdres et hypercubes[END_REF]. We refer to the works [START_REF] Foissy | Deformations of shuffles and quasi-shuffles[END_REF][START_REF] Novelli | Natural endomorphisms of quasi-shuffle Hopf algebras 2011[END_REF] for more details on the subject.

Let us write Sj n,p for the set of surjective maps from the set [n] := {1, . . . , n} to the set [p], Sj n,p for its linear span, Sj n for the union of the Sj n,p , p ≤ n, and

Sj n := 1≤p≤n Sj n,p .

The linear span of all surjections is denoted

Sj := n,p Sj n,p ,
and will be called from now on the set of surjective functions.

Let us mention for completeness sake that surjective functions in this sense are often referred to as word quasisymmetric functions in the literature on algebraic combinatoric. This is because they can be encoded by formal sums of words over an ordered alphabet. The set Sj is then written WQSym (this is the notation used in the articles we quoted for further details on the underying theory). This interpretation, which we will not use in this work, permits to deduce automatically certain properties for Sj from general properties of words. See the references [START_REF] Novelli | Natural endomorphisms of quasi-shuffle Hopf algebras 2011[END_REF][START_REF] Foissy | Deformations of shuffles and quasi-shuffles[END_REF] for more details.

The vector space Sj is naturally equipped with a Hopf algebra structure, through its action on quasi-shuffle algebras [START_REF] Novelli | Natural endomorphisms of quasi-shuffle Hopf algebras 2011[END_REF]. However, we will make use here only of the algebra structure. As we just saw, quasi-shuffle algebras are closely related to stochastic integration, and this is the reason why Sj will prove to provide an appropriate algebraic framework for what is going to be presented in the next sections.

Let us consider a word w over the integers (a sequence of integers) whose set of letters is I = {i 1 , . . . , i n } (e.g. w = 35731, I = {1, 3, 5, 7}). Let us write f for the unique increasing bijection that sends I = {i 1 , . . . , i n } to {1, . . . , n} (e.g.

f (1) = 1, f (3) = 2, f (5) = 3, f (7) = 4
). The packing map pack is the induced map on words (for example pack(35731) := f (3)f ( 5)f ( 7)f (3)f (1) = 23421).

Definition 5.1. The product in Sj of f ∈ Sj n,k with g ∈ Sj m,l is defined by f ⋄ g := h h, where h runs over the elements in Sj n+m,i+j , max(l, k)

≤ i + j ≤ l + k such that pack(h(1) • • • h(n)) = f (1) • • • f (n), pack(h(n + 1) • • • h(n + m)) = g(1) • • • g(m).
This product is associative and unital (the unit can be understood as the unique surjection from the emptyset ∅ =: [0] to itself), but it is not commutative.

Proposition 5.2. The linear span of all surjection, Sj, equipped with the ⋄ product, is an associative, unital, non-commutative algebra.

Associativity follows by noticing that the product f ⋄ g ⋄ j of three surjections, where j ∈ Sj p,q is obtained as the sum of all surjections h with pack(h(1)

• • • h(n)) = f (1) • • • f (n), pack(h(n+1) • • • h(n+m)) = g(1) • • • g(m), pack(h(n+m+1) • • • h(n+ m + p)) = j(1) • • • j(p).

Descents and a Itô-type BCH formula

It turns out that, similar to the classical theory of iterated integrals, the most interesting computations that will take place later in this article on iterated stochastic integrals do not involve the full algebra Sj, but only a small subalgebra, known as the descent algebra or algebra of noncommutative symmetric functions Sym. For more details the reader is refereed to the standard references [START_REF] Gelfand | Noncommutative symmetric functions[END_REF][START_REF] Ch | Free Lie algebras[END_REF].

As an algebra, Sym is the free graded associative unital algebra over generators 1 n , indexed by non-negative integers. We denote the product * and set 1 n,m := 1 n * 1 m . In general, for a sequence n := n 1 , . . . , n k of integers, we write 1 n := 1 n1 * • • • * 1 n k . As a vector space, Sym is simply the linear span of the 1 n .

A surjection f in Sj n is said to have a descent in position i < n if and only if f (i) ≥ f (i + 1). The set of all descents of f is written Desc(f ) and

Desc(f ) := {i < n, f (i) ≥ f (i + 1)}.
The number d(f ) that appears in Theorem 1.1 is the number of descents of f . We also set, for

I ⊂ [n -1], Desc n I := {f ∈ Sj n , Desc(f ) = I}, D n I := f ∈DescI f ∈ Sj,
and

Desc n ⊆I := {f ∈ Sj n , Desc(f ) ⊆ I}, D n ⊆I := f ∈Desc ⊆I f ∈ Sj.
When the value of n is obvious from the context, we will abbreviate D n I by D I , and similarly for other symbols. Notice that Desc ⊆I = J⊆I Desc J , so that, by Möbius inversion in the poset of subsets of the set [n -1], [START_REF] Ebrahimi-Fard | The pre-Lie structure of the time-ordered exponential[END_REF] Desc

I = J⊆I (-1) |I|-|J| Desc ⊆I .
The subsets Desc I form a decomposition of Sj n into a family of disjoint subsets, from which it follows that D I and (by a triangularity argument) D ⊆I form two linearly independent families in Sj n .

Lemma 6.1. The map ι from Sym to Sj defined by:

ι(1 n ) := D ⊆{n1,n1+n2,...,n1+•••+n k-1 }
is an injective algebra map from Sym into Sj.

Proof. Injectivity follows immediately from the linear independency of the D ⊆I . Let us show that ι is an algebra map. For arbitrary n = n 1 , . . . , n k , m = m 1 , . . . , m l , we have

ι(1 n * 1 m ) = D ⊆{n1,n1+n2,...,n1+•••+n k ,n1+•••+n k +m1,...,n1+•••+n k +m1+•••+m l-1 } .
On the other hand, ι(1 n ) ⋄ ι(1 m ) is, by definition of the ⋄ product in Sj, the sum of all surjections

f ∈ Sj n1+•••+n k +m1+•••+m l such that pack(f (1) • • • f (n 1 + • • • + n k )) lies in Desc ⊆{n1,n1+n2,...,n1+•••+n k-1 } and pack(f (n 1 + • • • + n k + 1) • • • f (n 1 + • • • + n k + m 1 + • • • + m l )) lies in Desc ⊆{m1,m1+m2,...,m1+•••+m l-1 } .
Since there is no constraint on the relative values of f (n

1 + • • • + n k ) and f (n 1 + • • • + n k + 1
), the statement of the lemma follows.

The following theorem is the equivalent, in the quasi-shuffle framework, of the classical continuous Baker-Campbell-Hausdorff theorem, which computes, among others, the logarithm of the solution of a -matrix-valued -linear differential equation. Theorem 6.2 will appear to play the same role for matrix stochastic linear differential equations. It was first stated in [START_REF] Novelli | Natural endomorphisms of quasi-shuffle Hopf algebras 2011[END_REF], but the proof given in that article is indirect and relies on structure arguments from the theory of noncommutative symmetric functions. Stating those results, which are scattered in the literature on algebraic combinatorics, would go beyond the scope of this work. We propose therefore a simple and self-contained proof, which is reminiscent of the solution to the classical Baker-Campbell-Hausdorff problem stated in [START_REF] Ch | Free Lie algebras[END_REF].

Let us set I :=

∞ n=0 ι(1 n ) =:
∞ n=0 p n , where we write p n for the identity map of the set [n] viewed as an element of Sj n . Theorem 6.2. We have, in Sj,

log(I) = ∞ n=1 I⊆[n-1] (-1) |I| |I| + 1 • D n ⊆I = ∞ n=1 I⊆[n-1] (-1) |I| n • n -1 |I| -1 D n I .
Proof. The first part of the statement follows from the computation of the logarithm of ∞ n=0 1 n in Sym, and from the previous Lemma. Indeed log

∞ n=0 1 n = ∞ i=1 (-1) n-1 n ∞ i=1 1 i n = n=i1,...,i k (-1) k-1 k • 1 n .
Let us now expand the second term of the identity in the theorem in terms of the D n I . This yields the coefficient of D n I , I = {i 1 , . . . , i k } given by:

I⊆J⊂[n-1] (-1) |J| |J| + 1 = n-k-1 j=0 (-1) j+k j + k + 1 n -k -1 j = (-1) k n-k-1 j=0 1 0 (-1) j n -k -1 j x k+j dx = (-1) k 1 0 (1 -x) n-k-1 x k dx = (-1) k 1 n n -1 k -1
, from which the theorem follows.

In view of Proposition 4.1, Theorem 1.1 also follows.

The elements I⊆[n-1]

(-1) |I| n

• n-1 |S| -1 D n I are analogs in Sj of the celebrated Solomon idempotents, see [START_REF] Novelli | Natural endomorphisms of quasi-shuffle Hopf algebras 2011[END_REF] for further details.

Noncommutative stochastic calculus

In the previous sections of the article, we investigated quasi-shuffle-type properties of iterated integrals of semimartingales. We also showed the strong relationship between them and properties of surjections. Now Proposition 4.1 is restated and generalized:

Proposition 7.1. The product of k iterated stochastic integrals of semimartingales is given by:

X 1 1 • • • X 1 n1 • • • • • X k 1 • • • X k n k = f ∈Desc ⊆{n 1 ,...,n 1 +•••+n k-1 } f X 1 1 • • • X 1 n1 • • • X k 1 • • • X k n k . More generally, for f 1 ∈ Sj n1 , . . . , f k ∈ Sj n k : f 1 X 1 1 • • • X 1 n1 • . . . • f k X k 1 • • • X k n k = (f 1 ⋄ • • • ⋄ f k ) X 1 1 • • • X 1 n1 • • • X k 1 • • • X k n k .
In the last formula, from which the first follows, it is implicitly assumed that the action of Sj k on X 1 • • • X k is extended linearly to the linear span of Sj k , that is, the action of a linear combination of surjections f i is the linear combination of the actions of the f i .

We let the reader check that the k = 2 case of the last formula follows from the definition of the f X 1 1 • • • X 1 n and from Proposition 4.1. The general case follows by induction.

For example, the expansion of the triple product ( X)

• ( Y 1 Y 2 ) • ( Z 1 Z 2 ) includes terms such as: XY 1 (Y 2 ⋆ Z 1 )Z 2 , (X ⋆ Y 1 )(Y 2 ⋆ Z 1 )Z 2 and Z 1 (X ⋆ Y 1 ⋆ Z 2 )Y 2 .
The purpose of the present section is to extend this picture to the operator setting, that is, to iterated stochastic integrals of, say, n × n square matrices M = M (X i,j ) 1≤i,j≤n whose entries M i,j = X i,j are semimartingales. Note that we write the indices of the entries as exponents for notational convenience in forthcoming computations. The set of such matrices is denoted M.

For matrices M 1 , . . . , M k ∈ M, we set:

M 1 • • • M k := i1,...,i k M i,i1 1 M i1,i2 2 • • • M i k ,j k i,j 1≤i,j≤n , 
and for f ∈ Sj k,l , f M 1 • • • M k := i1,...,i k f M i,i1 1 M i1,i2 2 • • • M i k ,j k i,j 1≤i,j≤n . 
Last, if F = i λ i f i is a linear combination of surjections in Sj k , then we set:

F M 1 • • • M k := i λ i f i M 1 • • • M k .
The product rule of Proposition 7.1 applies (entry-wise), and we obtain, for M 1 , . . . , M k , N 1 , . . . , N m ∈ M:

M 1 • • • M k • N 1 • • • N m = f ∈Desc ⊆{k} i1,...,i k+m f M i,i1 1 • • • M i k ,i k+1 k N i k+1 ,i k+2 1 • • • N i k+m ,ij m i,j 1≤i,j≤n = f ∈Desc ⊆{k} f M 1 • • • M k N 1 • • • N m .
For example, let k = 2, m = 1, and consider 2 × 2 matrices, this gives for the first entry of the product:

M 1 M 2 • N 1 1,1 = i,j≤2
M 1,i 1 M i,j 2 N j,1 1 + M 1,i 1 N j,1 1 M i,j 2 + N j,1 1 M 1,i 1 M i,j 2 + M 1,i 1 (M i,j 2 ⋆ N j,1 1 ) + (M 1,i 1 ⋆ N j,1 1 )M i,j

2

.

For higher products we obtain similarly:

Proposition 7.2. For M 1 1 , . . . , M 1 n1 , M k 1 , . . . , M k n k ∈ M, we have:

M 1 1 • • • M 1 n1 • • • • • M k 1 • • • M k n k = f ∈Desc ⊆{n 1 ,...,n 1 +•••+n k-1 } f M 1 1 • • • M 1 n1 • • • M k 1 • • • M k n k
and more generally, for f 1 ∈ Sj n1 , . . . , f k ∈ Sj n k we obtain:

f 1 M 1 1 • • • M 1 n1 • . . . • f k M k 1 • • • M k n k = (f 1 ⋄ • • • ⋄ f k ) M 1 1 • • • M 1 n1 • • • M k 1 • • • M k n k .
The proposition follows from the linear case (Proposition 7.1) by expanding entry-wise the products of matrices.

We are now in the position to calculate the logarithm of the Itô-Taylor series.

Theorem 7.3. For an arbitrary matrix M ∈ M and X = ∞ n=0 M n the (formal) solution of the stochastic differential equation dX = X -dM , X 0 := Id, we have:

log(X) = ∞ n=1 I⊆[n-1] (-1) |I| n • n -1 |I| -1 D n I M n .
This formula may provide the basis for interesting numerical properties. For instance, truncating the expansion of log(X) at order k, that is, looking at

k n=1 I⊆[n-1] (-1) |I| n • n -1 |S| -1 D n I M n ,
and applying the exponential map, can be expected (in view of similar phenomena in the deterministic case) to provide a better approximation to X, than the truncation of the original expansion k i=0

M n . The first few terms of the expansion of log(X) read: We remind the reader that we represent a surjection f ∈ Sj k by the sequence of its values (f (1)

• • • f (k)).
For example, for 2 × 2 matrices, the (1, 2)-entry of the term (11) M 2 is given by i≤2 M 1,i ⋆ M i,2 ; the one of (231) M 3 reads i,j≤2 M j,2 M 1,i M i,j ; the one of (221) M 3 reads i,j≤2 M j,2 (M 1,i ⋆ M i,j ).

  and for a repeated Itô integral I j1,..., jn := ••• dX j1 • • • dX jn . Then the first three terms are as follows log S = i

( 8 )

 8 X • Y = (XC) -dD + (AY ) -dB + (AC) -d[B, D], so that, for example, for B := dB, Y := C -dD

  ) + (211) + (111) + (221) M 3 + • • • .