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The Markov commutator associated to a finite Markov kernel P is the convex semigroup consisting of all Markov kernels commuting with P . Its interest comes from its relation with the hypergroup property and with the notion of Markovian duality by intertwining. In particular, it is shown that the discrete analogue of the Achour-Trimèche's theorem, asserting the preservation of non-negativity by the wave equations associated to certain Metropolis birth and death transition kernels, cannot be extended to all convex potentials. But it remains true for symmetric and monotone potentials which are sufficiently convex.

1 Introduction

Motivations

The investigation of hypergroups has a long history which developed in various directions, e.g. harmonic analysis, representation theory, orthogonal polynomials and Markov processes. For a general account of their theory, in particular for its probabilistic aspects, see the reference book of Bloom and Heyer [START_REF] Walter | Harmonic analysis of probability measures on hypergroups[END_REF]. As reflected by its name, a hypergroup V is an extension of the notion of group, where the product x ¨y of two elements of V is replaced by a probability distribution µ x,y pdzq over the elements of V . The family pµ x,y q x,yPV is assumed to satisfy some convolution axioms. Informally, when we are given a basis of some functional space over V , the hypergroup property amounts to the non-negativity of certain multi-products of the elements of the basis. The chosen basis often consists of orthogonal polynomials or other special functions. To check directly this non-negativity turns out to be a tremendous task in practice, see the fundamental papers of Gasper [START_REF] Gasper | Positivity and the convolution structure for Jacobi series[END_REF][START_REF] Gasper | Banach algebras for Jacobi series and positivity of a kernel[END_REF]. They lead to a consequent literature to better understand the underlying principles, see in particular the paper of Koornwinder [START_REF] Koornwinder | Jacobi polynomials. III. An analytic proof of the addition formula[END_REF]. Subsequently it became important in harmonic analysis to find bases satisfying the hypergroup property. As a very particular example, consider the eigenfunction basis in L 2 pexpp´U pxqqdxq associated to the Langevin operator B 2 ´U 1 B on r0, 1s with Neumann's condition at 0 and 1, where U : r0, 1s Ñ R is a convex function. Achour and Trimèche [START_REF] Achour | Opérateurs de translation généralisée associés à un opérateur différentiel singulier sur un intervalle borné[END_REF] showed that this basis satisfies the hypergroup property if U is monotone or if it is symmetric with respect to 1{2. Bakry conjectured that this property should remain true for any convex function U . In this paper we will show this is wrong for a discrete analogue of this example. Our approach relies on the commutator KpP q of a Markov kernel P or of a Markov semi-group pP t q tě0 : it is the set of all Markov kernels commuting with P or with all the elements of the semi-group. The study of KpP q is in fact the main purpose of this paper.

Let us further motivate the relevance of the commutator of a Markov kernel or a Markov semigroup by a potential application that appeared after this paper was written (and almost lost), in particular it will not be developed here. It concerns intertwining relations. Let P pP t q tě0 and r P p r P t q tě0 be two Markov semi-groups on respective state spaces V and r V . We say there is an intertwining relation from P to r P when there exists a Markov from V to r V such that @ t ě 0, P t Λ " Λ r P t

Depending on injectivity properties of Λ, some information can be transferred from P to r P . Assume furthermore that there is an intertwining relation from r P to P with a Markov kernel r Λ from r V to V (when P and r P are reversible with respect to probability measures, such a relation can be obtained by considering the adjoints in [START_REF] Achour | Opérateurs de translation généralisée associés à un opérateur différentiel singulier sur un intervalle borné[END_REF]). We get that @ t ě 0, r P t r ΛΛ " r ΛP t Λ " r ΛΛP t namely r ΛΛ belongs to the commutator of P . In a recent work [START_REF] Miclo | On completely monotone intertwining relations and Markov process convergence to equilibrium[END_REF], we have shown that if r ΛΛ can be written under the form r ΛΛ "

ż `8 0 r P s νpdsq ( 2 
)
where ν is a probability distribution on R `, then information about the speed of convergence of r P to its equilibrium can be deduced from the same information for P , up to a random warm-up time distributed according to ν. Thus it would be helpful to know when a representation such as (2) holds, see [START_REF] Miclo | On completely monotone intertwining relations and Markov process convergence to equilibrium[END_REF] for particular examples. In general, a better understanding of the Markov commutator of r P is needed.

Presentation of the results

As mentioned in the previous subsection, a motivation for this paper is to disprove, at least in a finite context, a conjecture due to Dominique Bakry, about an extension of Achour-Trimèche's theorem [START_REF] Achour | Opérateurs de translation généralisée associés à un opérateur différentiel singulier sur un intervalle borné[END_REF] (see also Bakry and Huet [3]). It also provides the opportunity to begin a systematic study of the commutator convex semi-group associated to a Markov kernel.

Here we will only be concerned with state spaces V which are finite and endowed with a Markov kernel P , namely a matrix pP px, yqq x,yPV whose entries are non-negative and whose row sums are equal to 1. Two classical assumptions on P are: Irreducibility: all the coefficients of ř nP |V | P n are positive (|V | is the cardinality of V and we denote for any k ď l P Z, k, l tk, k `1, ..., l ´1, lu, and k 1, k for k P N). Reversibility: there exists a probability measure µ positive on V , such that @ x, y P V, µpxqP px, yq " µpyqP py, xq

Under the reversibility assumption, there exist orthonormal bases of L 2 pµq consisting of eigenvectors ϕ 1 , ϕ 2 , ..., ϕ |V | of P , associated to the eigenvalues 1 " θ 1 ě θ 2 ě ¨¨¨ě θ |V | ě ´1. Without loss of generality, we will always choose ϕ 1 " 1. We say that P satisfies the hypergroup property with respect to a point x 0 P V , if the previous basis can be chosen such that ϕ k px 0 q ‰ 0 for all k P |V | , and @ x, y, z P V,

ÿ kP |V | ϕ k pxqϕ k pyqϕ k pzq ϕ k px 0 q ě 0 (4) 
These notions can be immediately extended to Markov generators L on V , namely matrices whose off-diagonal entries are non-negative and whose row sums vanish (for instance by considering the generated semi-group pP t q tě0 pexpptLqq tě0 and asking that the above conditions are satisfied by P t , for some t ą 0, it does not depend on the choice of t ą 0). Extensions to more general Markov processes are also possible, but they may require some care, in particular (4) has to be understood in a weak sense. E.g. in [START_REF] Bakry | The hypergroup property and representation of Markov kernels[END_REF], Bakry and Huet consider one-dimensional diffusion generators of the form L U B 2 ´U 1 B on r´1, 1s, with Neumann conditions on the boundary and where U : r´1, 1s Ñ R is a smooth potential. They prove Achour-Trimèche's theorem [START_REF] Achour | Opérateurs de translation généralisée associés à un opérateur différentiel singulier sur un intervalle borné[END_REF], asserting that if U is convex and either monotonous or symmetric with respect to 0, then L U satisfies the hypergroup property. In a personal communication, Dominique Bakry was wondering if this result would remain true if the assumption "monotonous or symmetric with respect to 0" was removed. Our main objective is to show that this is wrong, at least in the finite setting.

More precisely, let N P Nzt1u be given and denote by C the set of functions U : 0, N Ñ R which are convex (i.e. whose natural piecewise affine extension to r0, N s is convex). For U P C, let µ U be the probability on 0, N given by

@ x P 0, N , µ U pxq Z ´1 U expp´U pxqq (5) 
where Z U is the normalizing constant. For any U P C, assume we are given an irreducible birth and death Markov transition P U on 0, N whose invariant probability is µ U . Recall that a birth and death Markov transition P on 0, N is a Markov kernel such that @ x, y P 0, N , P px, yq ą 0 ñ |x ´y| ď 1

An invariant measure of such a kernel necessarily satisfies (3), so that an irreducible birth and death Markov matrix is reversible. Endowing C and the set of Markov kernels with the topology inherited respectively from R 0,N and R 0,N 2 , we say that the above mapping C Q U Þ Ñ P U is a (birth and death) generalized Metropolis procedure if it is continuous. A classical Metropolis procedure corresponds for instance to the Markov kernel M U defined by

@ x ‰ y P 0, N , M U px, yq M 0 px, yq Σ U exp ˆU pxq ´U pyq 2 ˙(6)
where the exploration Markov kernel M 0 is given by

@ x ‰ y P 0, N , M 0 px, yq " 1{2 , if |x ´y| " 1 0 , otherwise (7) 
and where

Σ U max xP 0,N ÿ yP 0,N ztxu M 0 px, yq exp ˆU pxq ´U pyq 2 ˙(8)
As usual, the diagonal entries of the matrices M U and M 0 are imposed by the condition that the row sums are equal to 1.

Our main result is:

Theorem 1 There does not exist a generalized Metropolis procedure C Q U Þ Ñ P U such that P U satisfies the hypergroup property for all U P C.

In [START_REF] Miclo | On the hypergroup property[END_REF], we checked numerically (by appropriate random choices of U in C) that a variant of the classical Metropolis procedure (described as

C Q U Þ Ñ Ň
M U with the notation introduced in (35) below) does not satisfy the hypergroup property.

The proof of Theorem 1 is based on properties of the commutator convex semi-group KpP q associated to a Markov kernel P on V : it is the set of Markov kernels K on V commuting with P : KP " P K. It is immediate to see that it is convex and that it is a semi-group: if K and K 1 belong to KpP q, the same is true for their product KK 1 . It was introduced in [START_REF] Miclo | On the hypergroup property[END_REF], because it gives a simple Markovian characterization of the hypergroup property for certain kernels. More precisely, let us introduce the following objects:

@ x P V, KpP, xq tKpx, ¨q : K P KpP qu Ă PpV q
where PpV q is the convex set of probability measures on V , and HpP q " tx P V : KpP, xq " PpV qu Furthermore, say that a Markov kernel is uniplicit if it is reversible and if all its eigenvalues are of multiplicity 1 (in particular the eigenvalue 1 is of multiplicity 1, so that uniplicity implies irreducibility). The interest of these notions is:

Lemma 2 An uniplicit Markov kernel P on V satisfies the hypergroup property with respect to x 0 P V if and only if x 0 P HpP q.

Let us give succinctly some underlying arguments, since this is the only place in the paper where Definition (4) will play a role.

Proof

The reverse implication was observed in [START_REF] Miclo | On the hypergroup property[END_REF] and the direct implication is a consequence of the considerations of Bakry and Huet [START_REF] Bakry | The hypergroup property and representation of Markov kernels[END_REF], the uniplicit assumption is not even needed, as the following reminder show. Let P be a reversible Markov kernel P on V with an associated orthonormal basis of eigenvectors ϕ 1 , ϕ 2 , ..., ϕ |V | as above. Assume that P satisfies the hypergroup property with respect to x 0 P V . Let x P V be given and consider the kernel K x given by @ y, z P V, K x py, zq

ÿ kP |V | ϕ k pxqϕ k pyqϕ k pzq ϕ k px 0 q µpzq
By assumption it is non-negative and for any fixed y P V , we have by orthonormality,

ÿ zPV K x py, zq " ÿ zPV K x py, zqϕ 1 pzq " ÿ kP |V | ϕ k pxqϕ k pyq ϕ k px 0 q ÿ zPV ϕ k pzqϕ 1 pzq µpzq " ϕ 1 pxqϕ 1 pyq ϕ 1 px 0 q " 1
Thus K x is a Markov kernel. A similar computation shows that for any k P 2, |V | , ϕ k is also an eigenfunction of K x associated to the eigenvalue ϕ k pxq{ϕ k px 0 q. It follows that K x shares with P the same basis of eigenvectors, so that K x P KpP q. Furthermore, we have that for any l P |V | ,

K x rϕ l spx 0 q ÿ zPV K x px 0 , zqϕ l pzq " ÿ zPV ÿ kP |V | ϕ k pxqϕ k pzqϕ l pzq µpzq " ϕ l pxq
It implies that K x px 0 , ¨q " δ x . So for any x P V , δ x P KpP, x 0 q. Taking into account that KpP, x 0 q is always a convex set, we get that x 0 P HpP q.

Remark 3 (a) The uniplicity assumption cannot be removed for the reverse implication of Lemma 2. Consider P the transition kernel of the random walk on V Z{pnZq, with n P Nzt1, 2u. At the end of Section 2.5 from [START_REF] Bakry | The hypergroup property and representation of Markov kernels[END_REF], Bakry and Huet show that P does not satisfy the hypergroup property. Nevertheless, consider for v P Z{pnZq, the translation by v kernel K defined by @ x, y P Z{pnZq, Kpx, yq δ x`v pyq

Clearly K P KpP q and Kp0, ¨q " δ v , so that δ v P KpP, 0q for all v P Z{pnZq. It follows that 0 P HpP q. More precisely, we have HpP q " Z{pnZq. (b) The example in (a) satisfies the complex hypergroup property with respect to any point x 0 P Z{pnZq (see Proposition 2.10 of Bakry and Huet [START_REF] Bakry | The hypergroup property and representation of Markov kernels[END_REF]), in the sense that we can find an unitary basis pϕ 1 , ϕ 2 , ..., ϕ |V | q of L 2 pµ, Cq consisting of eigenvectors of P such that ϕ k px 0 q ‰ 0 for all k P |V | , and @ x, y, z P V,

ÿ kP |V | ϕ k pxqϕ k pyqϕ k pzq ϕ k px 0 q ě 0 (9) 
So maybe the condition

HpP q ‰ H (10) 
is related to the complex hypergroup property. But here we will not investigate this question. We will mainly be interested in [START_REF] Eagleson | A characterization theorem for positive definite sequences on the Krawtchouk polynomials[END_REF], seen as a generalization of the hypergroup property, because it could be considered for Markov kernels which are not reversible (or defined on abstract measurable spaces: [START_REF] Eagleson | A characterization theorem for positive definite sequences on the Krawtchouk polynomials[END_REF] enables to avoid the technical difficulties related to the summations appearing in (4) or [START_REF] Dynkin | Markov processes. Vols. I, II[END_REF] when the state space is not finite). An irreducible birth and death kernel is necessarily uniplicit, so in the context of Theorem 1, the hypergroup property for a Markov kernel P is equivalent to [START_REF] Eagleson | A characterization theorem for positive definite sequences on the Krawtchouk polynomials[END_REF]. We are thus lead to investigate the corresponding Markov commutator convex semi-group and will do it using general arguments. The two properties we will need are Proposition 4 Assume that P is an irreducible Markov kernel and let µ be its invariant probability. Then we have @ x P HpP q, µpxq " min

V µ
For the second property, we need to introduce the symmetry group S P associated to P : it is the set of bijective mappings g : V Ñ V such that @ x, y P V, P pgpxq, gpyqq " P px, yq

For instance, one recovers the permutation group S V of V if P is either the identity matrix I (no move is permitted) or the matrix whose all off-diagonal entries are equal to 1{p|V | ´1q (all "true" moves are equally permitted). Indeed S P " S V if and only if P is a convex combination of the two previous matrices, situations where all the elements of V are indistinguishable with respect to the evolution dictated by P .

Proposition 5 Assume that P is an uniplicit Markov kernel and let x 0 , x 1 P HpP q. Then there exists g P S P such that gpx 1 q " x 0 . Conversely, any g P S stabilizes HpP q, so that HpP q is the orbit of any of its element under S P .

Another natural question in the finite birth and death setting is the transposition of the Achour-Trimèche's theorem known in the continuous framework. We did not succeed in getting a really satisfactory answer in this direction. The next result is obtained by adapting the arguments of Bakry and Huet [START_REF] Bakry | The hypergroup property and representation of Markov kernels[END_REF]. Let r C be the subset of U P C such that U px `2q ´U px `1q ě U px `1q Ú pxq `2 lnp2q for all x P 0, N ´2 (equivalently, U is the restriction to 0, N of a C 2 function on r0, N s satisfying U 2 ě 2 lnp2q). Let r C m be the subset of r C consisting of monotonous mappings such that |U pN q ´U pN ´1q| ^|U p1q ´U p0q| ě 2 lnp2q. Consider also r C s the subset of r C consisting of mappings symmetric with respect to N {2. In the one-dimensional diffusive setting, the result corresponding to r C m is due to Chebli [START_REF] Chebli | Opérateurs de translation généralisée et semi-groupes de convolution[END_REF]. Note that from Propositions 4 and 5, we deduce that in the symmetric situation, HpM U q " t0, N u, and that in the monotonous case with U non-constant, HpM U q is the singleton consisting of the boundary element with the smallest weight with respect to the reversible measure µ U .

Remark 32 (d) gives another example of a generalized Metropolis procedure satisfying the hypergroup property for some convex potentials (more general than those considered in Proposition 6). It would be very interesting to find other closed subsets C 1 Ă C for which we can find a generalized Metropolis procedure C 1 Q U Þ Ñ P U satisfying the hypergroup property (or to describe C 1 tU P C : HpM U q ‰ Hu). Especially to try to deduce the analogous results in the continuous framework, in order to recover Gasper's example [START_REF] Gasper | Positivity and the convolution structure for Jacobi series[END_REF][START_REF] Gasper | Banach algebras for Jacobi series and positivity of a kernel[END_REF], see also Bakry and Huet [START_REF] Bakry | The hypergroup property and representation of Markov kernels[END_REF] and Carlen, Geronimo and Loss [START_REF] Carlen | On the Markov sequence problem for Jacobi polynomials[END_REF].

From general considerations related to the Markov commutator convex semi-groups, we will also deduce the following criterion. Let P be a Markov kernel on the finite set V , consider Ḡ a subgroup of S P and denote by " the equivalence relation it induces on V via @ x, ȳ P V ,

x " ȳ ô D g P Ḡ : gpxq " ȳ Denote by V the set of equivalence classes for " and by π : V Ñ V the associated projection mapping. It is immediate to check that a Markov kernel P is well-defined on V through the formula @ x, y P V, P px, yq P px, π ´1pyqq where x is any point of V such that πpxq " x. This construction corresponds to a reduction of the symmetries of P . The next result shows that some properties of P are preserved under this operation. It will be used to check the hypergroup property of M U for U P r C m , knowing it for U P r C s .

Proposition 7 Assume that P is uniplicit and satisfies Condition [START_REF] Eagleson | A characterization theorem for positive definite sequences on the Krawtchouk polynomials[END_REF]. Then the same remains true for P .

If the uniplicity of P could be removed from this statement and be replaced by the weaker uniplicity of P , Proposition 7 would provide an abstract rewriting in the finite context of the Carlen, Geronimo and Loss method [START_REF] Carlen | On the Markov sequence problem for Jacobi polynomials[END_REF]. This conjectured extension seems quite challenging, some assumptions could be required on the subgroup Ḡ. Maybe they do not appear here, because when P is uniplicit, S P is commutative, see Remark 20 (a) below.

In the next section we will study the Markov commutator convex semi-group in the general finite framework, obtaining in particular Propositions 4, 5 and 7. We will take advantage of the relations between the Markov commutator convex semi-group and the theory of Markov intertwining as it was developed by Diaconis and Fill [START_REF] Diaconis | Strong stationary times via a new form of duality[END_REF]. In the last section we consider more specifically the birth and death case and prove Theorem 1 and Proposition 6.

General properties

This is the beginning of a systematic investigation of the Markov commutator convex semigroup KpP q associated to a finite Markov kernel P .

We start by recalling some elements of the theory of Markov intertwining due to Diaconis and Fill [START_REF] Diaconis | Strong stationary times via a new form of duality[END_REF]. Let X pX n q nPZ `and X p Xn q nPZ `be two Markov chains, respectively on the finite state spaces V and V . The respective transition kernels are denoted P and P , and the initial distributions m 0 and m0 . We say that X is intertwined with X through the Markov link Λ (which is a Markov kernel from V to V , seen as a V ˆV matrix), if there is a coupling pX, Xq such that the two following conditions are met:

@ n P Z `, Lp X 0,n |Xq " Lp X 0,n |X 0,n q (12) 
where as usual this identity of conditional laws has to be understood a.s. with respect to the probability measure underlying the coupling. The trajectorial notation X 0,n pX p q pP 0,n was used.

@ n P Z `, LpX n | X 0,n q " Λp Xn , ¨q (13) 
When these assumptions are satisfied, we write X ă Λ X and X is also said to be a dual chain of X through Λ. The notation X ă X will notify there exists Λ such that X ă Λ X. We say that pm 0 , P q is intertwined with p m0 , P q through the Markov link Λ if m 0 " m0 Λ and P Λ " ΛP

We denote this relation by pm 0 , P q ă Λ p m0 , P q and as above, pm 0 , P q ă p m0 , P q means there exists a kernel Λ such that ( 14) is satisfied. Diaconis and Fill [START_REF] Diaconis | Strong stationary times via a new form of duality[END_REF] have shown that these notions of intertwining coincide, at least if X visits the whole state space V (in particular if P is irreducible):

Proposition 8 With the above notations, we have pm 0 , P q ă Λ p m0 , P q ñ X ă Λ X Furthermore if for any x P V , there exists n P Z `such that Pr Xn " xs ą 0, then X ă Λ X ñ pm 0 , P q ă Λ p m0 , P q

Proof: More specifically, the construction of the coupling of X and X satisfying the conditions ( 12) and ( 13) under the assumption pm 0 , P q ă Λ p m0 , P q is described in Theorem 2.17 of Diaconis and Fill [START_REF] Diaconis | Strong stationary times via a new form of duality[END_REF]. The other implication can also be deduced from their considerations. For the sake of completeness, here are some arguments, directly based on the hypotheses ( 12) and ( 13). From ( 13), we deduce that for all n P Z `, LpX n | Xn q " Λp Xn , ¨q so that by integration with respect to Xn , we get LpX n q " Lp Xn qΛ. In particular for n " 0, we obtain m 0 " m0 Λ. Let f and f two test functions defined respectively on V and V . For fixed n P Z `, we compute Er f p Xn qf pX n`1 qs in two ways. First, using [START_REF] Gasper | Banach algebras for Jacobi series and positivity of a kernel[END_REF] and the Markov property of X, Since this is true for any f , we deduce that a.s., pΛP qrf sp Xn q " p P Λqrf sp Xn q and due to the assumption on X, @ x P V , pΛP qrf spxq " p P Λqrf spxq Since it is true for all f , it follows that ΛP " P Λ.

Er f p Xn qf pX n`1 qs " Er f p Xn qErf pX n`1 q| X 0,
Remark 9 (a) The relation ă is clearly reflexive (through the identity link) and it can be easily checked to be transitive (for instance at the level of the Markov chains, if

X ă Λ X 1 and X 1 ă Λ 1 X 2 then X ă ΛΛ 1 X 2 ).
Thus ă is a pre-order, e.g. on the trajectorial laws of finite Markov chains (whose state space is a subset of N, to work on a defined set). It is then tempting to verify if it would not be an equivalence or an order relation. To see that ă is none, consider Y the trivial Markov chain on a singleton. For any finite Markov chain X, we have Y ă X, but X ă Y is equivalent to the stationarity of X (namely the initial distribution of X is invariant for its transition kernel). It follows that ă is neither symmetrical nor anti-symmetrical. Next, one can define an equivalence relation X " X 1 via X ă X 1 and X 1 ă X. On the corresponding equivalence classes, ă defines a partial order relation, in some sense it should compare the difficulty of reaching an equilibrium (see also Remark 11 below). The "stationarity" class of the trivial chain Y is minimal for this order. (b) Similar conditions are valid for the algebraic intertwining between couples consisting of a probability measure and a Markov kernel. If the finite state set V and the Markov kernel P are fixed, we induce a relation on PpV q via m 0 ă m0 if and only if pm 0 , P q ă p m0 , P q. It can be transformed into an order relation on PpV q{ " by introducing an equivalence relation " as above. It heuristically corresponds to the proximity to the set of invariant measures for P , which are the minimal elements. Note that the semigroup pP n q nPZ `is non-increasing with respect to ă, since we have pm 0 P, P q ă P pm 0 , P q.

The main interest of associating a dual chain X to a given Markov chain X is that it enables to construct strong times (see for instance Diaconis and Fill [START_REF] Diaconis | Strong stationary times via a new form of duality[END_REF], Fill [START_REF] Allen | The passage time distribution for a birth-and-death chain: strong stationary duality gives a first stochastic proof[END_REF], Diaconis and Miclo [START_REF] Diaconis | On times to quasi-stationarity for birth and death processes[END_REF] and [START_REF] Miclo | On absorption times and Dirichlet eigenvalues[END_REF]). A stopping time τ for X (with respect to a filtration containing the filtration generated by X) is a strong time if it is a.s. finite and if τ and X τ are independent. The basic principle of the construction is the following well-known result, whose proof is given for the sake of completeness.

Lemma 10 Let pX, Xq be a coupling satisfying [START_REF] Gasper | Banach algebras for Jacobi series and positivity of a kernel[END_REF], then this equality can be extended to any a.s. finite stopping time τ for X, namely LpX τ | X 0,τ q " Λp Xτ , ¨q

If in addition pX, Xq satisfies (12), then τ is a strong time if Λp Xτ , ¨q is independent from τ (for instance if Λp Xτ , ¨q "is not really depending on" Xτ , e.g. if Xτ is a.s. equal to a fixed point).

Proof

The first assertion is an outcome of the notion of a stopping time: Let f be a function defined on V and F a bounded functional measurable with respect to the stopped trajectory X 0,τ . We compute that

Erf pX τ q F s "

ÿ nPZ `Erf pX n q F 1 τ "n s " ÿ nPZ `ErErf pX n q| X 0,n s F 1 τ "n s " ÿ nPZ `ErΛrf sp Xn q F 1 τ "n s " ErΛrf sp Xτ q F s
where the second equality comes from the fact that F 1 τ "n is measurable with respect to X 0,n . The first wanted result follows, since this is true for all f and F as above.

For the second assertion, note that [START_REF] Gasper | Positivity and the convolution structure for Jacobi series[END_REF] implies that a stopping time for X is also a stopping time for X. Let f be a function defined on V and let g be a bounded measurable mapping on R `. Since τ is measurable with respect to X 0,τ , we have Erf pX τ qgpτ qs " ErErf pX τ q| X 0,τ sgpτ qs " ErΛrf sp Xτ qgpτ qs " ErΛrf sp Xτ qsErgpτ qs " Erf pX τ qsErgpτ qs where the third equality comes from the assumption made on Λp Xτ , ¨q. The independence of τ and X τ follows, since f and g were arbitrary.

For the purpose of proving Proposition 4, we will only use the first part of the above lemma, even if the stopping times we will consider are indeed strong times. Indeed, it is time to come back to the Markov commutator convex semigroup KpP q associated to an irreducible finite Markov kernel P . Denote X m 0 pX m 0 t q tě0 a Markov chain with P as transition kernel and m 0 P PpV q for initial law. From the definitions and Proposition 8, we have for any K P KpP q and any initial distribution m 0 , X m 0 K ă K X m 0 . Thus it appears that x 0 P HpP q if and only if for any m 0 P PpV q, there exists a Markov kernel K on V such that X m 0 ă K X x 0 (as customary, X x 0 is a shorthand for X δx 0 ). In particular, if P is uniplicit, then P satisfies the hypergroup property if and only there exists x 0 P V such that for any m 0 P PpV q, X m 0 ă X x 0 . More generally, we get the following interpretation:

@ x P V, KpP, xq " tm P PpV q : X m ă X x u
All preliminaries are now in place for the

Proof of Proposition 4

Consider x 0 P HpP q and let x 1 be any point of V . We want to show that µpx 0 q ď µpx 1 q. By definition of HpP q, there exists K P KpP q such that Kpx 0 , ¨q " δ x 1 , so that from Proposition 8, X x 1 ă K X x 0 , i.e. we can construct a coupling of X x 0 and X x 1 satisfying ( 12) and ( 13) with Λ K.

Let pτ n q nPZ `be the sequence of stopping times for X x 0 defined by iteration through τ 0 " 0 and

@ n P Z `, τ n`1 inftp ą τ n : X p " x 0 u
According to Lemma 10, for any n P Z `,

LpX x 1 τn |X x 0 0,τn q " δ x 1
It means that each time X x 0 is in x 0 , then X x 1 is in x 1 . It remains to apply the ergodic theorem to get

µpx 0 q " lim nÑ8 1 n `1 ÿ pP 0,n 1 x 0 pX x 0 q ď lim nÑ8 1 n `1 ÿ pP 0,n 1 x 1 pX x 1 q " µpx 1 q
where the (in)equalities are valid a.s.

The elements of HpP q satisfies other optimization properties, they are for instance points from which it is the most difficult to reach equilibrium in the separation discrepancy sense:

Remark 11 Recall that the separation discrepancy spm, µq between two probability measures on V is defined by spm, µq sup xPV 1 ´mpxq µpxq (with the usual convention: r{0 " `8 for any r ą 0, but 0{0 " 0). A stationary time τ for an irreducible Markov chain X m 0 pX m 0 n q nPZ `(m 0 still stands for the initial distribution) is a strong time such that X m 0 τ is distributed according to the associated invariant measure µ. Aldous and Diaconis [START_REF] Aldous | Strong uniform times and finite random walks[END_REF] have shown that if the transition kernel is aperiodic and irreducible, then for any initial distribution m 0 , there exists a stationary time τ m 0 associated to X m 0 satisfying @ n P Z `, Prτ m 0 ą ns " spm 0 P n , µq Furthermore τ m 0 is stochastically smaller than any stationary time associated to X m 0 . The proof of Proposition 4 can be slightly modified to show that if x 0 P HpP q, then τ x 0 is stochastically larger than τ m 0 for any initial distribution m 0 . Indeed, if K P KpP q is such that Kpx 0 , ¨q " m 0 , then considering a coupling of X x 0 and X m 0 realizing the relation X m 0 ă K X x 0 , it appears that τ x 0 is a stationary time for X m 0 . It is a consequence of the fact that all the elements of KpP q admit µ for invariant measure, as it was seen in [START_REF] Miclo | On the hypergroup property[END_REF] (only the irreducibility of P is needed for this property). The stochastic domination of τ m 0 by τ x 0 ensures that for any initial distribution m 0 (or equivalently for any Dirac mass m 0 " δ x 1 , with x 1 in the state space V ), @ n P Z `, spm 0 P n , µq ď spP n px 0 , ¨q, µq To go in the direction of Proposition 5, we begin by a simple technical result:

Lemma 12 Let K and K 1 be two Markov kernels on V such that K 1 K " I, the identity kernel.

Then there exist g P S V such that @ x, y P V, " Kpx, yq " δ gpxq pyq K 1 px, yq " δ g ´1pxq pyq

Proof

By contradiction, assume there exists x P V such that Kpx, ¨q is not a Dirac mass. Then for any y P V , if K 1 py, xq ą 0 then K 1 Kpy, ¨q cannot be a Dirac mass. This is not compatible with K 1 K " I, so we must have K 1 py, xq " 0 for all y P V . It implies that K 1 is not invertible, in contradiction again with our assumption. So for any x P V , Kpx, ¨q is a Dirac mass δ gpxq for some gpxq P V . Since K is invertible, necessarily the mapping g is also invertible. The announced result follows at once.

In addition, we will need the following consequence of the uniplicit assumption.

Lemma 13 Assume that P is uniplicit, then for any fixed x 0 P HpP q, the affine mapping

KpP q Q K Þ Ñ Kpx 0 , ¨q P KpP, x 0 q
is one-to-one.

Proof

Fix x 0 P HpP q and m 0 P PpV q, it is sufficient to see there is exactly one matrix K solution to the equations Kpx 0 , ¨q " m 0 KP " P K Indeed, consider µ the reversible probability for P and let ϕ 1 , ϕ 2 , ..., ϕ |V | be an orthonormal (in L2pµq) basis of eigenvectors associated to P as in the introduction. By the commutation of K with P , this is also a basis of eigenvectors for K. Thus we can find numbers a 1 , a 2 , ..., a |V | such that @ x, y P V, Kpx, yq "

ÿ lP 1,|V | a l ϕ l pxqϕ l pyqµpyq
The first condition then reads

@ y P V, m 0 µ pyq " ÿ lP 1,|V | a l ϕ l px 0 qϕ l pyq
namely pa l ϕ l px 0 qq lP 1,|V | are the coefficients of m 0 {µ in the basis pϕ 1 , ϕ 2 , ..., ϕ |V | q. Since ϕ l px 0 q ‰ 0 for all l P 1, |V | , according to Lemma 2, we get that the a 1 , a 2 , ..., a |V | are uniquely determined.

In particular if P is an uniplicit kernel satisfying the hypergroup property, then KpP q is a simplex. It is sometimes possible to go further:

Remark 14 In fact the above proof shows that if x 0 P V is any point such that ϕ l px 0 q ‰ 0 for all l P 1, |V | , then the conclusion of Lemma 13 still holds if P is uniplicit. If furthermore (10) holds, then KpP q is a simplex as well as each of the KpP, xq, for x P V . Let R be the set of Markov kernels which are irreducible and reversible. It can be easily seen that the subset of elements of R which are uniplicit and whose eigenvectors never vanish is a dense open subset of R. But since H, the subset of R consisting of kernels satisfying the hypergroup property, is very slim in R, it is no longer clear whether or not the subset of elements of H which are uniplicit and whose eigenvectors never vanish is a dense open subset of H. If it was true, it could be concluded that "generically", KpP, xq is a simplex for P P H and x P V .

We have all the ingredients for the

Proof of Proposition 5

Let be given x 0 , x 1 P HpP q. Then there exist K 1 , K P KpP q such that

K 1 px 0 , ¨q " δ x 1 Kpx 1 , ¨q " δ x 0 (15) 
Thus we get that K 1 Kpx 0 , ¨q " δ x 0 . Since P is assumed to be uniplicit, we get from Lemma 13 that K 1 K P KpP q is uniquely determined by this relation. It appears there is no alternative: K 1 K " I. Lemma 12 enables to find a permutation g P S V such K is the Markov kernel induced by g. Note that (15) translates into gpx 1 q " x 0 . The commutation of K and P then implies that @ x, y P V, P pgpxq, yq " P px, g ´1pyqq which can be rewritten under the form (11) namely g P S P . The remaining assertions of Proposition 5 are straightforward.

We are now going in the direction of Proposition 7 through a sequence of general arguments, in the hope they present in a clear way the problems one will encounter in trying to generalize it. We start by recalling some considerations from [START_REF] Miclo | On the hypergroup property[END_REF]. A Markov kernel Λ from V to V can be interpreted as an operator sending any function f defined on V to the mapping Λrf s defined on V by

@ x P V , Λrf spxq ÿ xPV Λpx, xqf pxq
Let μ be a probability measure given on V and consider µ μΛ its image by Λ. Then Λ can be seen as an operator from L 2 pµq to L 2 pμq (because Λrf s is μ-negligible if f is µ-negligible). It enables to define Λ ˚its dual operator from L 2 pμq to L 2 pµq, which is Markovian in the sense that

Λ ˚r1 V s " 1 V @ f P L 2 pμq, f ě 0 ñ Λ ˚rf s ě 0
where the relations have to be understood μ-or µ-a.s.

If μ and µ give positive weights to all points of V and V respectively, then Λ ˚can be seen as a Markov kernel from V to V .

Remark 15

In the intertwining framework, similar considerations are valid for P and P , in order to define P ˚and P ˚, seen as Markov operators on L 2 pμq and L 2 pµq, when μ and µ are invariant probability measures, respectively for P and P , i.e. μ P " μ and µP " µ. Thus to be able to consider P ˚and P ˚as Markov matrices, it is convenient to make the following assumption: we say that the couple p P , Λq is positive, if P admits a positive invariant measure μ and if µ μΛ is also positive. Up to reducing V and V respectively to the support of μ and µ, it is always possible to come back to this case. Note that the commutation relation P Λ " ΛP [START_REF] Miclo | On the hypergroup property[END_REF] implies that µ is an invariant probability for P . Under the hypotheses that p P , Λq is positive and that ( 16) is satisfied, we get a dual commutation relation:

P ˚Λ˚" Λ ˚P If
furthermore we assume that pm 0 , P q ă Λ p m0 , P q and that m0 ΛΛ ˚" m0 [START_REF] Miclo | On completely monotone intertwining relations and Markov process convergence to equilibrium[END_REF] then we get the intertwining relation pm 0 , P ˚q ă Λ ˚p m0 , P ˚q

The reversibility assumption for P with respect to μ amounts to P ˚" P and similarly for P . These considerations lead to a restricted symmetry property for the relation ă: pm 0 , P q ă Λ p m0 , P q implies p m0 , P q ă Λ ˚pm 0 , P q under the assumptions that p P , Λq is positive, that P and P are reversible and that ( 17) is satisfied. This is an instance of the equivalence relation " introduced in Remark 9. We give below in Remark 22 (b) a natural condition under which ( 17) is true. Beyond reversibility or uniplicity, an important assumption will be ΛΛ ˚P Λ " P Λ (18) (this condition for the Markov kernel P is an analogue of (17) for the probability measure m0 ). Define

P Λ ˚P Λ (19)
From ( 18), it appears that P and P are intertwined through Λ, namely ( 16) is satisfied. We can go further in the exploration of KpP q with the help of Kp P q: the next result is a slight modification of Proposition 3 of [START_REF] Miclo | On the hypergroup property[END_REF], where Kp P q was replaced by the smaller set Kp P , Λq tK P Kp P q : ΛΛ ˚KΛ " KΛu namely the set of elements from Kp P q satisfying the condition (18). It is also a convex semigroup and in Lemma 19 some conditions will be given so that Kp P , Λq " Kp P q.

Lemma 16 Assume that P is reversible with respect to μ and that (18) holds, then we have

Λ ˚Kp P qΛ Ă KpP q
Proof For any K P Kp P q, we compute that

Λ ˚KΛP " Λ ˚K P Λ " Λ ˚P KΛ " Λ ˚P ΛΛ ˚KΛ " P Λ ˚KΛ (20) 
where for the third equality, we have used the dual relation of (18) asserting that Λ ˚P ˚ΛΛ ˚"

Λ ˚P ˚, namely Λ ˚P ΛΛ ˚" Λ ˚P , since P " P ˚. Relation (20) shows that Λ ˚KΛ belongs to KpP q.

Condition (18) seems quite strange at first view and we would have liked to only work with [START_REF] Miclo | On the hypergroup property[END_REF]. Lemma 21 below will show this is possible when Λ is deterministic.

The motivation for Proposition 3 of [START_REF] Miclo | On the hypergroup property[END_REF] was to give an abstract version in the finite context of a method of Carlen, Geronimo and Loss [START_REF] Carlen | On the Markov sequence problem for Jacobi polynomials[END_REF] to recover the hypergroup property in the context of Jacobi polynomials, result initially due to Gasper [START_REF] Gasper | Positivity and the convolution structure for Jacobi series[END_REF][START_REF] Gasper | Banach algebras for Jacobi series and positivity of a kernel[END_REF]. The underlying idea is equally conveyed by Lemma 16: to prove [START_REF] Eagleson | A characterization theorem for positive definite sequences on the Krawtchouk polynomials[END_REF], one tries to find a Markov model (or several ones) P , above P in the sense of intertwining (namely according to the order relation induced by ă as in Remark 9), such that Kp P q is relatively easy to apprehend. If it appears that Kp P q is quite big, then the inclusion of Lemma 16 gives an opportunity to show that KpP q is also big, leading us toward [START_REF] Eagleson | A characterization theorem for positive definite sequences on the Krawtchouk polynomials[END_REF]. But to guess such a nice Markov kernel P from P may not be an easy task! That is why we now go in the reverse direction, starting with P . In particular it is natural to wonder when does

Hp P q ‰ H (21) 
imply [START_REF] Eagleson | A characterization theorem for positive definite sequences on the Krawtchouk polynomials[END_REF]. Before partially answering this question, let us mention a construction of Markov kernels satisfying (21).

Remark 17 (a) Any irreducible Markov kernel P on t0, 1u satisfies [START_REF] Eagleson | A characterization theorem for positive definite sequences on the Krawtchouk polynomials[END_REF]. Indeed, let µ be the associated invariant measure and by symmetry, assume that µp0q ď µp1q. Then there exists a P r´µp0q{µp1q, 1s such that P " aI `p1 ´aqµ, where µ is seen as the Markov kernel whose two rows are equal to µ. Any Markov kernel K bI `p1 ´bqµ, with b P r´µp0q{µp1q, 1s, belongs to KpP q. Taking b " ´µp0q{µp1q (respectively b " 1), the first row of K is p0, 1q (resp. p1, 0q). This shows that 0 P HpP q.

(b) If P 1 and P 2 are two Markov kernels on V 1 and V 2 , then P 1 b P 2 is a Markov kernel on V 1 ˆV2 . It appears that KpP 1 qbKpP 2 q Ă KpP 1 bP 2 q and in particular HpP 1 qˆHpP 2 q Ă HpP 1 bP 2 q.

(c) From the two points above, it follows that if P is an irreducible Markov kernel on t0, 1u, then for any N P N, P P bN satisfies (21). Such Markov kernels were used in [START_REF] Miclo | On the hypergroup property[END_REF] to recover the hypergroup property of the biased Ehrenfest model (initially due to Eagleson [START_REF] Eagleson | A characterization theorem for positive definite sequences on the Krawtchouk polynomials[END_REF]).

We introduce now three assumptions which are helpful in the direction of deducing (10) from (21). First, the surjectivity of Λ as an operator on Pp V q:

Pp V qΛ " PpV q (22)
Second, the determinism of Λ on Hp P q: @ x0 P Hp P q, Λpx 0 , ¨q " δ πpx 0 q (23)

where πpx 0 q is an element of V . Denote πpHp P qq the image by π of Hp P q. The last hypothesis is an extension of (18) to the identity kernel:

ΛΛ ˚Λ " Λ (24) 
Note that by multiplication on the left or on the right by Λ ˚, this implies that ΛΛ ˚and Λ ˚Λ are projection operators in their respective spaces L 2 pμq and L 2 pµq.

Before proving this statement, let us give another important consequence of uniplicity. If P is a Markov kernel on V , let ApP q be the algebra generated by P , namely the set of finite combinations of the form a 0 I `a1 P `a2 P 2 `¨¨¨`a n P n , where n P Z `and a 0 , a 1 , a 2 , ..., a n P R. Denote also by KpV q the convex set of Markov kernels on V .

Lemma 19 Assume that P is uniplicit. Then we have KpP q " ApP q X KpV q

In particular if (24) holds and P is uniplicit and satisfies (18), then the latter property can be extended to Kp P q: @ K P Kp P q, ΛΛ ˚KΛ " KΛ (25)

Proof

Let pϕ 1 , ϕ 2 , ..., ϕ |V | q be an orthonormal basis of eigenvectors of P and let λ 1 , λ 2 , ..., λ |V | be the corresponding eigenvalues. Consider K P KpP q, by commutativity, pϕ 1 , ϕ 2 , ..., ϕ |V | q is also a basis of eigenvectors of K, denote by θ 1 , θ 2 , ..., θ |V | the associated eigenvalues. Since the λ 1 , λ 2 , ..., λ |V | are all distinct, we can find a polynomial R of degree at most |V | such that @ l P |V | , Rpλ l q " θ l It follows that K " RpP q, showing that KpP q Ă ApP q X KpV q. The reverse inclusion is obviously always true.

The second assertion of the lemma comes from the fact that (18) implies that

@ n P N, ΛΛ ˚P n Λ " P n Λ
Indeed, this is shown by iteration on n P N:

ΛΛ ˚P n`1 Λ " ΛΛ ˚P n p P Λq " ΛΛ ˚P n pΛΛ ˚P Λq " pΛΛ ˚P n ΛqΛ ˚P Λ " p P n ΛqΛ ˚P Λ " P n pΛΛ ˚P Λq " P n`1 Λ
The case n " 0 corresponds to assumption (24). So we get that for any Ā P Ap P q, ΛΛ ˚ĀΛ " ĀΛ from which we deduce (25) if P is uniplicit.

Remark 20 (a) The inclusion ApP q X KpV q Ă KpP q is always true, but it is not necessarily an equality. Indeed, if KpP q " ApP q X KpV q, then the elements of KpP q commute. But S P is naturally included into KpP q via the representation S P Q g Þ Ñ T g P KpV q where T g is the deterministic Markov kernel given by @ x P V, T g px, ¨q " δ gpxq If the elements of KpP q commute, then S P is itself commutative. This is not always true, one can e.g. consider the transition kernel of the random walk generated by the transpositions on the permutation group S N , with N ě 3.

(b) The example of Remark 17 is equally such that S P is not commutative for N ě 3. Indeed, consider for σ P S N the mapping g on t0, 1u N obtained by shuffling the coordinates according to σ. Then T g , defined as above, belongs to S P . It follows that S P contains S N as a subgroup and thus cannot be commutative. Despite the fact that P is not uniplicit, it was proven in [START_REF] Miclo | On the hypergroup property[END_REF] that the conclusion of Proposition 7 is true, where G S N . In this case P is a birth and death chain and is thus uniplicit.

(c) Even if it outside the finite framework, the example of the Laplacian L on the sphere S N Ă R N `1, with N ě 1, is also such that KpLq (rigorously, one should define it with respect to the associated heat kernel at a positive time) is not commutative, because S L contains all the isometric transformations of S N , namely the orthogonal group O(N `1). Note nevertheless that since KpLq is big, the same is true for HpLq: it is the whole sphere! We mention this case, because it plays an important role in Carlen, Geronimo and Loss [START_REF] Carlen | On the Markov sequence problem for Jacobi polynomials[END_REF]. At first view, it has some similarities with the situation of (b) above: L is not uniplicit but formally the conclusion of Proposition 7 is true when G is the subset of O(N `1) conserving the norm of the n first coordinates of R N , with n P N ´1 .

(d) Despite what we just said, it seems there is an important difference between the cases (b) and (c) above. In the latter it can be checked that KpL, Λq ‰ KpLq, while in the former we think that Kp P , Λq " Kp P q. That is why Proposition 18 could be applied to such P without the assumption of uniplicity, thus explaining the validity of Proposition 7 for this example. In [START_REF] Miclo | On the hypergroup property[END_REF], it was rather used that Hp P , Λq ‰ H, where Hp P , Λq tx P t0, 1u N : δ x Kp P , Λq " Ppt0, 1u N qu.

With these observations, we can come to the

Proof of Proposition 18

Consider x 0 P Hp P q. Taking into account (25), we have

δ x 0 ΛΛ ˚Kp P qΛ " δ x 0 Kp P qΛ " Pp V qΛ " PpV q
where we used (22). Assumption (23) ensures that δ x 0 Λ " δ πpx 0 q , so we get δ πpx 0 q Λ ˚Kp P qΛ " PpV q

Finally we use Lemma 16 to see that

PpV q Ă δ πpx 0 q KpP q which is the wanted result.

It is time now to consider the purely determinist case for Λ, which simplifies most of the previous hypotheses. More precisely, assume that there exists a surjective mapping π from V to V such that Λ is given by

@ x P V , Λpx, ¨q δ πpxq p¨q (26)
Lemma 21 Under (26), if P is a Markov kernel on V such that p P , Λq is positive and if P is a Markov kernel on V satisfying the intertwining relation (16) (called Dynkin's condition in this situation, see [START_REF] Dynkin | Markov processes. Vols. I, II[END_REF]), then (18), ( 22), ( 23) and (24) are true. Furthermore, Λ ˚Λ " I and P is given by (19).

Proof

Under Assumption (26), it was seen in Lemma 5 of [START_REF] Miclo | On the hypergroup property[END_REF] that ΛΛ ˚is the conditional expectation with respect to the sigma-algebra T generated by π. Consider (18), which amounts to @ f P L 2 pµq, ΛΛ ˚P Λrf s " P Λrf s

Note that the relation P Λrf s " ΛP rf s " P rf s ˝π implies that P Λrf s is T -measurable for any f P L 2 pµq, so the above equality holds. Similarly, using that Λrf s is T -measurable for any f P L 2 pµq, we get (24). It follows that Λ ˚Λ is a projection in L 2 pµq and to see that Λ ˚Λ " I, it is sufficient to check that Λ ˚Λ is injective. So let f P L 2 pµq be such that Λ ˚Λrf s " 0, we get that f ˝π " Λrf s " ΛΛ ˚Λrf s " 0 Since π is surjective, it appears that f " 0. It follows that P is given by ( 19):

P " Λ ˚ΛP " Λ ˚P Λ
Condition (26) implies obviously and ( 22) due to the surjectivity of π.

Remark 22 (a) The deterministic case (26) is not the only one where (18) is satisfied. Indeed, assume that π is surjective but not injective in (18). Let P be a Markov kernel on V such that p P , Λq is positive. From Lemme 21, it appears that ΛΛ ˚" I, so we get ΛΛ ˚P ˚Λ˚" P ˚Λn amely (18) for P ˚and Λ ˚. But since π is not injective, the conditional expectation Λ ˚Λ is not the identity, thus Λ ˚does not satisfy (26).

(b) Under Assumption (26), Condition ( 17) is also simple to understand: it asks that the conditional expectations with respect to T (the sigma-algebra generated by π) with respect to μ and m0 coincide. Namely, if pA 1 , ..., A l q is the partition of V generating T (corresponding to the equivalence relation between x, y P V given by πpxq " πpyq), then m0 satisfies [START_REF] Miclo | On completely monotone intertwining relations and Markov process convergence to equilibrium[END_REF] if and only if it is of the form

@ x P V , m 0 pxq " ÿ kP l a k μpA k q 1 A k pxqμpxq
where pa 1 , ..., a l q is a probability measure on l . From Proposition 18 and Lemma 21, we deduce:

Corollary 23 Assume that the Markov kernel P is uniplicit and that Hp P q ‰ H. Let P be a Markov kernel satisfying Relation [START_REF] Miclo | On the hypergroup property[END_REF] with a link Λ given by (26) with π surjective. Then P is uniplicit and satisfies [START_REF] Eagleson | A characterization theorem for positive definite sequences on the Krawtchouk polynomials[END_REF] as well as the hypergroup property.

Proof

The above results show that HpP q ‰ H. According to Lemma 2, it is then sufficient to check that P is uniplicit. By duality, we have P ˚Λ˚" Λ ˚P ˚" Λ ˚P , it implies, via the equality Λ ˚Λ " I of Lemma 21,

P ˚" P ˚Λ˚Λ " Λ ˚P Λ " P
where we used (18), which is true due to Lemma 21 again. This shows that P is reversible. Consider θ an eigenvector of P and ϕ, r ϕ two associated eigenvectors. From the intertwining relation ( 16) we get θΛrϕs " P rΛrϕss and similarly for r ϕ. By uniplicity of P , Λrϕs and Λr r ϕs are then co-linear. Remembering that Λ is injective by surjectivity of π, we get that ϕ and r ϕ are co-linear as wanted.

Proposition 7 is itself a consequence of the previous corollary. Indeed, it is immediate to check that P , P and π given before Proposition 7 satisfy the intertwining relation [START_REF] Miclo | On the hypergroup property[END_REF] where Λ is defined by (26).

To end this section, we mention some (upper) semi-continuity properties associated to the Markov commutator convex semi-groups, suggesting the easy handling of this notion. Note that for any Markov kernel P on the finite set V and x P V , the sets KpP q and KpP, xq are compact subsets, respectively of the set of Markov kernels and of probability measures on V (endowed with the topologies inherited from those of R V 2 and R V ), themselves being compact. As usual, consider the Hausdorff topology on the compact subsets of a compact set, it turns it into a compact set itself. The following properties are elementary and their proofs are left to the reader.

Lemma 24 Let pP n q nPN be a sequence of Markov kernels on V converging to P . We have for any

x P V , lim sup nÑ8 KpP n q Ă KpP q lim sup nÑ8 KpP n , xq Ă KpP, xq lim sup nÑ8
HpP n q Ă HpP q As a consequence, the set of Markov kernels P on V satisfying the generalized hypergroup property (10) is closed.

Let us remark that the above last inclusion can be strict. Anticipating a little on the next section, consider V t0, 1u and let pU n q nPN be a sequence of functions on V satisfying U n p0q ą U n p1q for all n P N and lim nÑ8 U n " 0. With the notation of (6), we have

@ n P N, HpM Un q " t0u lim nÑ8 M Un " M 0 HpM 0 q " t0, 1u
3 On the discrete Achour-Trimèche's theorem

Here the specific birth and death situation is considered in a more detailed way. The diffusive Achour-Trimèche's theorem will be partially translated into the discrete case, but first we show it cannot be extended to all convex potentials. It corresponds respectively to the proofs of Proposition 6 and Theorem 1.

The previous section provided all the ingredients necessary to the

Proof of Theorem 1

Recall the setting described in the introduction. Theorem 1 is proven by a contradictory argument: assume there exists a generalized Metropolis procedure C Q U Þ Ñ P U such that P U satisfies the hypergroup property for all U P C.

Since N ě 2, there exists U P C such that U p0q " U p1q and which is not symmetric with respect to the mapping 0, N Q x Þ Ñ N ´x. For ą 0, consider the function U defined on 0, N by

@ x P 0, N , U pxq " U p0q ` , if x " 0 U pxq , otherwise
It is clear that U P C. Furthermore, due to the convexity of U and the assumption U p0q " U pN q, it appears that U p0q ą U pxq for all x P N . By Definition (5), the minimum of µ U is only attained at 0. Taking into account Proposition 4, it follows that HpP U q " t0u. By letting ą 0 go to zero, Lemma 24 implies that 0 P HpP U q. The same reasoning, where the value of U pN q is a little increased, equally enables to conclude that N P HpP U q. So we get that t0, N u Ă HpP U q.

Since P U is a birth and death, it is uniplicit, and according to Proposition 5, we can find g P S P U with gp0q " N . Note that under the action of any element of the symmetry group S P , the graph of the transitions permitted by P is preserved (not taking into account the self-loops). For birth and death transitions on 0, N , this graph is the usual linear graph structure of 0, N . There are only two graph morphisms preserving this structure, the identity and the mapping 0,

N Q x Þ Ñ N ´x.
So we end up with a contradiction, because g can be neither of them.

We now come to the proof of Proposition 6. We begin by reducing the problem to symmetric potentials. Recall that the classical Metropolis procedure C Q U Þ Ñ M U is defined by [START_REF] Chebli | Opérateurs de translation généralisée et semi-groupes de convolution[END_REF].

Lemma 25 If for all N P Nzt1u, the Metropolis kernel M U satisfies the hypergroup property for U P r C s , then it is also true for

U P r C m .
Proof This is a consequence of Proposition 7. Indeed, let U P r C m , up to reversing the discrete segment 0, N , assume that U is non-increasing. Consider V 0, 2N `1 , on which we construct the potential Ū by symmetrization of U with respect to N `1{2. Note that Ū is convex and more precisely that Ū P r C m , due to the assumption U pN ´1q ´U pN q ě 2 lnp2q, which implies Ū pN `2q ´Ū pN `1q ě 2 lnp2q

" Ū pN `1q ´Ū pN q `2 lnp2q ě Ū pN q ´Ū pN ´1q `4 lnp2q

Associate to Ū the classical Metropolis kernel M Ū on V . Let Ḡ " S M Ū be the group consisting of the identity and of the involution 0, 2N `1 Q x Þ Ñ 2N `1 ´x. The reduction presented before Proposition 7 transforms M Ū into M U (up to a modification of the constant Σ U given in [START_REF] Diaconis | On times to quasi-stationarity for birth and death processes[END_REF], which has no impact on the hypergroup property, since it amounts to change M U into a convex combination of M U and I). Again, since M Ū is a birth and death chain, it is uniplicit. Thus Proposition 7 enables to see that M U satisfies Condition [START_REF] Eagleson | A characterization theorem for positive definite sequences on the Krawtchouk polynomials[END_REF], because by assumption this is true for M Ū . Applying once more Lemma 2 shows that M U satisfies the hypergroup property.

Remark 26 In the above proof, another symmetrization could have been considered: let V 0, 2N and Ū be obtained from U by symmetry with respect to N (U being non-increasing).

Applying the same arguments under the relaxed assumption U pN ´1q ´U pN q ě lnp2q (implying Ū pN `1q´Ū pN q ě Ū pN q´Ū pN ´1q`2 lnp2q) , we get in the end that Ă M U satisfies the hypergroup property, where Ă M U is defined as M U in ( 6), but with M 0 replaced by the exploration kernel Ă M 0 given by

@ x ‰ y P 0, N , Ă M 0 px, yq $ & % 1{2 , if |x ´y| " 1 and x ‰ N 1 , if x " N and y " N ´1 0 , otherwise
It remains to prove that for U P r C s , M U satisfies the hypergroup property. We did not find general arguments to obtain this result. Instead, we will adapt to the discrete case the proof presented by Bakry and Huet [START_REF] Bakry | The hypergroup property and representation of Markov kernels[END_REF] in the context of symmetric one-dimensional diffusions.

Proposition 27 For any U P r C s , the Metropolis kernel M U satisfies the hypergroup property, with respect to the points 0 and N .

By uniplicity of M U and its symmetry with respect to the mapping

s : 0, N Q x Þ Ñ N ´x (27) 
it is sufficient to check that 0 P HpM U q for given U P r C s . Let us consider more generally the problem of showing that 0 P HpP q, when P is an irreducible birth and death Markov transition on 0, N , left invariant by the symmetry s. By definition, it amounts to show that for any given probability m 0 P Pp 0, N q, there is a Markov kernel K commutating with P and such that Kp0, ¨q " m 0 . This question is equivalent to the fact that a wave equation starting from a non-negative condition remains non-negative, as it was shown by Bakry and Huet [START_REF] Bakry | The hypergroup property and representation of Markov kernels[END_REF] in the diffusive situation and in Remark 6 of [START_REF] Miclo | On the hypergroup property[END_REF] for the discrete case. More precisely, there is a unique matrix K commuting with P such that Kp0, ¨q " m 0 (due to the uniplicity of M U , see the proof of Lemma 13 or Lemma 10 of [START_REF] Miclo | On the hypergroup property[END_REF]), our problem is to check that its entries are non-negative. Denote L " P ´I, the Markovian generator matrix associated to P and @ x, y P 0, N , kpx, yq Kpx, yq µpyq

The commutation of K with P can be rewritten as the wave equation @ x, y P 0, N , L p1q rkspx, yq " L p2q rkspx, yq

where for i P t1, 2u, L piq stands for the generator acting on the i-th variable as L.

Consider the discrete triangle tpx, yq P 0, N 2 : y ď x ď N ´yu For z 0 px 0 , y 0 q P , let p ź0 pp ź0 pnqq nP 0,2y 0 be the path defined by iteration through p ź0 p0q z 0 @ n P 0, 2y 0 ´1 , p ź0 pn `1q " p ź0 pnq ´p0, 1q , if n is even p ź0 pnq ´p1, 0q , if n is odd Note that the path p ź0 stays in and that p ź0 p2y 0 q belongs to the segment 0, N ˆt0u. Similarly, for z 0 P , we define the path p z0 pp z0 pnqq nP 0,2y 0 , which is symmetric to p ź0 with respect to the axe x " x 0 . The interest of these paths is:

Lemma 28 Assume that the mapping k : 0, N 2 Ñ R satisfies the wave equation (28). Then for any z 0 px 0 , y 0 q P , we have, if y 0 ě 1, ωpz 0 , p ź0 p1qqkpz 0 q " rωpz 0 , p ź0 p1qq ´ωpp ź0 p1q, p ź0 p2qq ´ωpp z0 p1q, p z0 p2qqskpp ź0 p1qq `ωpp ź0 p2y 0 ´1q, p ź0 p2y 0 qqkpp ź0 p2y 0 qq `ωpp z0 p2y 0 ´1q, p z0 p2y 0 qqkpp z0 p2y 0 qq `ÿ nP 2,2y 0 ´1 rωpp ź0 pn ´1q, p ź0 pnqq ´ωpp ź0 pnq, p ź0 pn `1qqskpp ź0 pnqq `ÿ nP 2,2y 0 ´1 rωpp z0 pn ´1q, p z0 pnqq ´ωpp z0 pnq, p z0 pn `1qqskpp z0 pnqq where for any pz, z 1 q ppx, yq, px 1 , y 1 qq P 0, N 4 , we take ωpz, z 1 q " µpxqµpyqLpx, x 1 q , if z 1 ´z P tp1, 0q, p´1, 0qu µpxqµpyqLpy, y 1 q , if z 1 ´z P tp0, 1q, p0, ´1qu

Proof

From the reversibility of L with respect to µ, we deduce the discrete integration by part formula: for any functions f, g on 0, N , we have µrf Lrgss " ´ÿ 0ďxăyďN µpxqLpx, yqrf pyq ´f pxqsrgpyq ´gpxqs

In particular, if f is the indicator function of a segment q, r Ă 0, N , we get µr1 q,r Lrgss " rgpr `1q ´gprqsµprqLpr, r `1q `rgpq ´1q ´gpqqsµprqLpq, q ´1q (29)

with the convention (Neumann boundary) that gp´1q " gp0q and gpN `1q " gpN q.

For z 0 P , define the discrete triangle pz 0 q tpx, yq P 0, N 2 : y ´y0 `x0 ´1 ď x ď ´y `y0 `x0 ´1u

Applying (29) horizontally and vertically, we get, for k satisfying the wave equation (28), 0 " µ b2 r1 pz 0 q pL p1q ´Lp2q qrkss "

ÿ ePB pz 0 q dkpeqχpeqωpeq ( 31 
)
where the boundary B pz 0 q of pz 0 q is defined by B pz 0 q tpz, z 1 q P pz 0 q ˆp 0, N 2 z pz 0 qq : z 1 ´z P tp1, 0q, p´1, 0q, p0, 1q, p0, ´1quu

and where for any e pz, z 1 q P B pz 0 q, ωpeq was defined in the statement of the lemma and dkpeq kpz 1 q ´kpzq χpz, z 1 q " 1 , if z 1 ´z P tp1, 0q, p´1, 0qu ´1 , if z 1 ´z P tp0, 1q, p0, ´1qu

It is easy (but a picture can help) that (31) can written under the form 0 " ÿ nP 0,2y 0 ´1 rkpp ź0 pn `1qq ´kpp ź0 pnqqsωpp ź0 pnq, p ź0 pn `1qq `ÿ nP 1,2y 0 ´1 rkpp z0 pn `1qq ´kpp z0 pnqqsωpp z0 pnq, p z0 pn `1qq

Observe that the first sum can be transformed (via discrete integration by parts, also known as Abel's trick) into ÿ nP 0,2y 0 ´1 rkpp ź0 pn `1qq ´kpp ź0 pnqqsωpp ź0 pnq, p ź0 pn `1qq

" kpp ź0 p2y 0 qqωpp ź0 p2y 0 ´1q, p ź0 p2y 0 qq ´kpz 0 qωpz 0 , p ź0 p1qq ´ÿ nP 1,2y 0 ´1 kpp ź0 pnqqrωpp ź0 pnq, p ź0 pn `1qq ´ωpp ź0 pn ´1q, p ź0 pnqqs A similar manipulation is possible for the second sum (32) and we end up with the result announced in the lemma.

As a consequence, we get

Proposition 29 Assume that P is a birth and death transition kernel on 0, N such that @ z px, yq P , P py ´1, yq ě P px, x ´1q `P px, x `1q @ z px, yq P r , P py, y ´1q ď P px ´1, xq ^P px `1, xq where r is the "interior" of : r tpx, yq P 0, N 2 : y `1 ď x ď N ´y ´1u

Let k be a solution of (28) such that kp¨, 0q is non-negative. Then k remains non-negative on .

Proof

We begin by showing that the condition of the proposition (which can be written identically in terms of L), implies that for any z 0 px 0 , y 0 q P and n P 2, 2y where we used the reversibility of µ with respect to L. By the first assumed inequality, we have in particular P py ´1, yq ě P px, x ´1q _ P px, x `1q, so that the last r.h.s. is non negative, as wanted. The treatment of (34) is similar, taking into account the second assumed inequality: ωppx, yq, px `ε, yqq ´ωppx `ε, yq, px `ε, y ´1qq " µpxqµpyqLpx, x `εq ´µpx `εqµpyqLpy, y ´1q " µpx `εqµpyqrLpx `ε, xq ´Lpy, y ´1qs ě 0

Next we want to show that ωpz 0 , p ź0 p1qq ´ωpp ź0 p1q, p ź0 p2qq ´ωpp z0 p1q, p z0 p2qq ě 0 Writing px, yq p ź0 p1q, it means that ωppx, y `1q, px, yqq ´ωppx, yq, px ´1, yqq ´ωppx, yq, px `1, yqq ě 0 namely µpxqµpyqrLpy, y `1q ´Lpx, x `1q ´Lpx, x ´1qs ě 0 condition which is satisfied by the first assumed inequality of the lemma (since z 0 " px, y `1q). Thus all the coefficients in front of values of k in the equality of Lemma 28 are non-negative. Assume that k does not remain non-negative on . We can then consider y 0 the minimal value of y P 0, N such that there exists y ď x ď N ´y such that kpx, yq ă 0. Next, let x 0 the minimal value of x P y, N ´y such that kpx, y 0 q ă 0. In particular, z 0 px 0 , y 0 q P and kpz 0 q ă 0, fact which is in contradiction with the equality of Lemma 28, whose r.h.s. is non-negative.

Assume now that P is furthermore left invariant by the symmetry s defined in (27). One important consequence is that the conclusion of Proposition 29 is valid on the whole discrete square 0, N 2 : Proposition 30 Assume that the birth and death transition P on 0, N is invariant by s. Let k be a solution of (28). Then k is left invariant by the following symmetries of the discrete square:

0, N 2 Q px, yq Þ Ñ py, xq 0, N 2 Q px, yq Þ Ñ pN ´x, N ´yq 0, N 2 Q px, yq Þ Ñ pN ´y, N ´xq
As a consequence, if k is non-negative on , then it is non-negative on 0, N 2 .

Proof

Consider r k :

Ñ R satisfying the wave equation (28) on r . Extend r k to the discrete triangle 2 tpx, yq P 0, N 2 : y ď N ´xu by symmetry with respect to the line y " x. Let us check that r k satisfies (28) on r 2 tpx, yq P 0, N 2 : y ď N ´x ´1u. By symmetry of P , it is obvious on the image of r by the mapping px, yq Þ Ñ py, xq. Thus it is sufficient to show that (28) is also valid on the points px, xq P r 2 . Indeed, we compute that L p1q r r kspx, xq ´Lp2q r r kspx, xq " Lpx, x `1qp r kpx `1, xq ´r kpx, xqq `Lpx, x ´1qp r kpx ´1, xq ´r kpx, xqq ´Lpx, x `1qp r kpx, x `1q ´r kpx, xqq ´Lpx, x ´1qp r kpx, xq ´r kpx, x ´1qq " 0 due to the construction by symmetrization. Next we can extend r k to 0, N 2 by symmetrization with respect to the line y " N ´x. The same arguments as above show that this extension satisfies (28) on 0, N 2 . Observe that the mapping r k constructed in this way is left invariant by the symmetries presented in the lemma. Now consider k : 0, N 2 Ñ R a solution of (28). Let r k be its restriction to . By the above construction, we extend r k to 0, N 2 into a function also satisfying (28). Note that kp¨, 0q " r kp¨, 0q, so by uniqueness of the solution of (28) given its value on the discrete segment t0u ˆ 0, N , we get k " r k.

Consider the following assumption called (H): the mappings 0, tN {2u Q x Þ Ñ 2 x P px, x `1q and 0, tN {2u Q x Þ Ñ P px `1, xq are respectively non-increasing and non-decreasing.

Our main result about a partial extension of Achour-Trimèche's theorem to the discrete setting can be stated as Theorem 31 Assume that the birth and death transition P on 0, N is invariant by s and that (H) is fulfilled. Then P satisfies the hypergoup property with respect to 0 and N .

Proof

According to Proposition 30, it is enough to check that (H) implies the assumption of Proposition 29. Note that in the case where N is odd, by symmetry of P through s, we have P ppN 1q{2, pN `1q{2q " P ppN `1q{2, pN ´1q{2q. When N is even, we rather get P pN {2, N {2 `1q " P pN {2, N {2 ´1q and P pN {2 ´1, N {2q " P pN {2 `1, N {2q. In both situations, it appears that (H) leads to @ y P 0, tN {2u ´1 , @ x P y `1, tN {2u ,

"

2P px `1, xq ď 2P px, x `1q ď P py, y `1q P py `1, yq ď P px `1, xq ď P px, x `1q

By symmetry of P through s, it follows that @ y P 0, tN {2u ´1 , @ x P y `1, N ´y ´1 , " P px `1, xq `P px, x `1q ď P py, y `1q P py `1, yq ď P px `1, xq ^P px, x `1q which is the assumption of Proposition 29.

As a simple corollary we obtain Proposition 27, because P U satisfies (H) if U P r C s . Indeed, this condition asks for the mappings 0, tN {2u Q x Þ Ñ U pxq ´U px `1q `2 lnp2qx and 0, tN {2u Q x Þ Ñ U px `1q ´U pxq to be respectively non-increasing and non-decreasing. This is valid, by the definition of r C given before Proposition 6.

Remarks 32

(a) One can replace the exploration kernel M 0 given in ( 7) by x M 0 defined via @ x ‰ y P 0, N , x M 0 px, yq $ & % 1{2 , if |x ´y| " 1, x ‰ 0 and x ‰ N 1 , if px, yq " p0, 1q or px, yq " pN, N ´1q 0 , otherwise

The corresponding Metropolis procedure r C s Q U Þ Ñ x M U (where x M U is defined as in ( 6), with M 0 replaced by x M 0 ) also satisfies the hypergroup property, because (H) is equally true for these birth and death Markovian transitions. Taking into account Remark 26, this result can be extended to the Metropolis procedure r

C m Y r C s Q U Þ Ñ x M U .
Nevertheless, due to the fact that 0 R r C, we are not able to recover that x M 0 satisfies the hypergroup property, as it was shown in Example 7 of [START_REF] Miclo | On the hypergroup property[END_REF].

(b) For U P C, consider the variant classical Metropolis procedure Ň M U given by @ x ‰ y P 0, N , Ň M U px, yq x M 0 px, yq expp´pU pyq ´U pxqq `q (35)

Simulations suggest that Ň M U satisfies the hypergroup property if the convex function U is either monotonous or symmetric with respect to the middle point of the discrete segment 0, N . It would be a nice discrete extension of the Achour-Trimèche's theorem, but we have not been able to prove this conjecture.

(c) The previous conjecture is not true if in (35), x M 0 is replaced by M 0 (given by ( 7)). Indeed, consider the case N " 2 and U " 0. Let k be the solution of the corresponding wave equation (28) starting from kp¨, 0q p0, 1, 0q. Equation (28) at point p1, 1q writes: 1 2 pkp0, 0q ´kp1, 0qq `1 2 pkp2, 0q ´kp1, 0qq " 1 2 pkp1, 1q ´kp1, 0qq namely kp1, 1q " ´kp1, 0q " ´1. So non-negativity is not preserved by (28) and by consequence M 0 does not satisfy the hypergroup property.

In particular the assumption U P r C is not merely technical in Proposition 6. Note this observation is not in contradiction with the conjecture given in (b). For U P q C s , | M U satisfies (H) and admits µ U , the Gibbs measure defined in [START_REF] Carlen | On the Markov sequence problem for Jacobi polynomials[END_REF], as reversible measure. Thus

C s Q U Þ Ñ |
M U is a generalized birth and death Metropolis procedure satisfying the hypergroup property. The proof of Lemma 25 enables to deduce a similar construction for monotonous potentials (for instance for convex potentials U such that 0, N Q x Þ Ñ U pxq `lnp2qx is non-increasing). Note that the potentials from q C s are more general than those from p C s , since the former ones can grow linearly (away from the middle point of the state space), while the latter ones must grow quadratically. The drawback is that | M U is further away from the continuous model B 2 ´U 1 B than M U defined in [START_REF] Chebli | Opérateurs de translation généralisée et semi-groupes de convolution[END_REF].

To finish, let us mention a non-negativity preservation on edges rather than on vertices under a natural relaxation of the assumption of Proposition 29:

Proposition 33 Assume that P is a birth and death transition kernel on 0, N such that @ z px, yq P , P py ´1, yq ě P px, x ´1q _ P px, x `1q @ z px, yq P r , P py, y ´1q ď P px ´1, xq ^P px `1, xq

Let k be a solution of (28) such that kp¨, 0q is non-negative. Then for any px, yq P , we have px, y `1q P ñ kpx, yq `kpx, y `1q ě 0 px `1, yq P ñ µpxqkpx, yq `µpx `1qkpx `1, yq ě 0

Proof

Note that the equality of Lemma 28 can be rewritten under the form: ωpz 0 , p ź0 p1qqrkpz 0 q `kpp ź0 p1qqs " ωpp ź0 p2y 0 ´1q, p ź0 p2y 0 qqkpp ź0 p2y 0 qq `ωpp z0 p2y 0 ´1q, p z0 p2y 0 qqkpp z0 p2y 0 qq `ÿ nP 1,2y 0 ´1 rωpp ź0 pn ´1q, p ź0 pnqq ´ωpp ź0 pnq, p ź0 pn `1qqskpp ź0 pnqq `ÿ nP 1,2y 0 ´1 rωpp z0 pn ´1q, p z0 pnqq ´ωpp z0 pnq, p z0 pn `1qqskpp z0 pnqq So the first implication of the above proposition can be shown as in the proof of Proposition 29, which enables to see that kpz 0 q `kpp ź0 p1qq ě 0, if y 0 ě 1.

For the second implication, rather consider for z 0 P such that z 0 `p1, 0q P , the path p z0 pp z0 pnqq nP 0,2y 0 `1 defined by iteration through p z0 p0q z 0 @ n P 0, 2y 0 , p z0 pn `1q " p z0 pnq `p1, 0q , if n is even p z0 pnq ´p0, 1q , if n is odd

The set pz 0 q defined in (30) must be modified into the "almost triangle" pz 0 q tpx, yq P 0, N 2 : x ď y ´y0 `x0 ´1 and x ď ´y `y0 `x0 u

The proof of Lemma 28 then leads to ωpz 0 , p ź0 p1qqkpz 0 q `ωpp z0 p1q, p z0 p2qqkpp z0 p1qq

" ωpp ź0 p2y 0 ´1q, p ź0 p2y 0 qqkpp ź0 p2y 0 qq `ωpp z0 p2y 0 q, p z0 p2y 0 `1qqkpp z0 p2y 0 `1qq `ÿ nP 1,2y 0 ´1 rωpp ź0 pn ´1q, p ź0 pnqq ´ωpp ź0 pnq, p ź0 pn `1qqskpp ź0 pnqq `ÿ nP 2,2y 0 rωpp z0 pn ´1q, p z0 pnqq ´ωpp z0 pnq, p z0 pn `1qqskpp z0 pnqq

The proof of Proposition 29 now implies that ωpz 0 , p ź0 p1qqkpz 0 q `ωpp z0 p1q, p z0 p2qqkpp z0 p1qq ě 0, namely µpx 0 qkpz 0 q `µpx 0 `1qkpx 0 `1, y 0 q ě 0.

The advantage of Proposition 33 over Proposition 29 is that it enables to recover by approximation (with N going to infinity) the result of Bakry and Huet [START_REF] Bakry | The hypergroup property and representation of Markov kernels[END_REF] concerning the preservation of non-negativity by the wave equation in the context of the diffusive Achour-Trimèche theorem.

Proposition 6

 6 For any U P r C m Y r C s , the Metropolis kernel M U defined in (6) satisfies the hypergroup property. Thus the mapping r C m Y r C s Q U Þ Ñ M U is a birth and death Metropolis procedure satisfying the hypergroup property.

  (d) Theorem 31 enables to construct other examples of birth and death Metropolis procedures satisfying the hypergroup property. E.g. consider the exploration kernel | M 0 given by@ x ‰ y P 0, N , | M 0 px, yq " 1{2 x^pN ´xq , if |x ´y| " 1 0 , otherwiseLet q C s be the set of potentials U symmetric with respect to N {2 and such that q U P C, where@ x P 0, N , q U pxq U pxq `lnp2qpx ^pN ´xqq Define the Markov kernel | M U via @ x ‰ y P 0, N , | M U px, yq | M 0 px, yq expp´p q U pyq ´q U pxqq `q

  0 ´1 , we have ωpp ź0 pn ´1q, p ź0 pnqq ´ωpp ź0 pnq, p ź0 pn `1qq ě 0 ωpp z0 pn ´1q, p z0 pnqq ´ωpp z0 pnq, p z0 pn `1qq ě 0 It amounts to see that for any px, yq P ,

	"	ωppx, yq, px, y ´1qq ´ωppx, y ´1q, px ´1, y ´1qq ě 0 ωppx, yq, px, y ´1qq ´ωppx, y ´1q, px `1, y ´1qq ě 0	(33)

and that for any px, yq P r ,

"

ωppx, yq, px ´1, yqq ´ωppx ´1, yq, px ´1, y ´1qq ě 0 ωppx, yq, px `1, yqq ´ωppx `1, yq, px `1, y ´1qq ě 0 (34) Concerning (33), let ε P t´1, `1u, we have ωppx, yq, px, y ´1qq ´ωppx, y ´1q, px `ε, y ´1qq " µpxqµpyqLpy, y ´1q ´µpxqµpy ´1qLpx, x `εq " µpxqµpy ´1qrLpy ´1, yq ´Lpx, x `εqs

Proposition 18 Assume P is uniplicit and (18), (21), (22), (23) and (24) hold. Then (10) is satisfied with P given by (19) and more precisely πpHp P qq Ă HpP q.
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