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We consider the multidimensional Borg-Levinson theorem of determining both the magnetic field dA and the electric potential V , appearing in the Dirichlet realization of the magnetic Schrödinger operator

2, from partial knowledge of the boundary spectral data of H. The full boundary spectral data are given by the set {(λ k , ∂ν ϕ k |∂Ω ) : k 1}, where {λ k : k ∈ N * } is the non-decreasing sequence of eigenvalues of H, {ϕ k : k ∈ N * } an associated Hilbertian basis of eigenfunctions and ν is the unit outward normal vector to ∂Ω. We prove that some asymptotic knowledge of (λ k , ∂ν ϕ k |∂Ω ) with respect to k 1 determines uniquely the magnetic field dA and the electric potential V .

1. Introduction 1.1. Statement of the problem. We consider Ω ⊂ R n , n 2, a C 1,1 bounded and connected domain such that R n \ Ω is also connected. We set Γ = ∂Ω. Let A ∈ W 1,∞ (Ω, R n ), V ∈ L ∞ (Ω, R) and consider the magnetic Schrödinger operator H = (-i∇ + A) 2 + V acting on L 2 (Ω) with domain D(H) = {v ∈ H 1 0 (Ω) : (-i∇ + A) 2 v ∈ L 2 (Ω)}.

Let A j ∈ W 1,∞ (Ω, R n ), V j ∈ L ∞ (Ω, R), j = 1, 2, and consider the magnetic Schrödinger operators H j = H for A = A j and V = V j , j = 1, 2. We say that H 1 and H 2 are gauge equivalent if there exists p ∈ W 2,∞ (Ω, R) ∩ H 1 0 (Ω) such that H 2 = e -ip H 1 e ip . It is well known that H is a selfadjoint operator. By the compactness of the embedding H 1 0 (Ω) → L 2 (Ω), the spectrum of H is purely discrete. We note {λ k : k ∈ N * } the non-decreasing sequence of eigenvalues of H and {ϕ k : k ∈ N * } an associated Hilbertian basis of eigenfunctions. In the present paper we consider the Borg-Levinson inverse spectral problem of determining uniquely H, modulo gauge equivalence, from partial knowledge of the boundary spectral data {(λ k , ∂ ν ϕ k|Γ ) : k ∈ N * } with ν the outward unit normal vector to Γ. Namely, we prove that some asymptotic knowledge of (λ k , ∂ ν ϕ k|Γ ) with respect to k ∈ N * determines uniquely the operator H modulo gauge transformation.

1.2. Borg-Levinson inverse spectral problems. It is Ambartsumian who first investigated in 1929 the inverse spectral problem of determining the real potential V appearing in the Schrödinger operator H = -∆ + V , acting in L 2 (Ω), from partial spectral data of H. For Ω = (0, 1), he proved in [START_REF] Ambartsumian | Über eine Frage der Eigenwerttheorie[END_REF] that V = 0 if the spectrum of the Neumann realization of H equals {k 2 : k ∈ N}. For the same operator, but endowed with homogeneous Dirichlet boundary conditions, Borg [START_REF] Borg | Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe[END_REF] and Levinson [START_REF] Levinson | The inverse Strum-Liouville problem[END_REF] established that the Dirichlet spectrum {λ k : k ∈ N * } does not uniquely determine V . They showed that additional spectral data, namely { ϕ k L 2 (0,1) : k ∈ N * }, where {ϕ k : k ∈ N * } is an L 2 (0, 1)-orthogonal basis of eigenfunctions of H obeying the condition ϕ k (0) = 1, is needed. Gel'fand and Levitan proved in [START_REF] Gel | On the determination of a differential equation from its spectral function[END_REF] that uniqueness is still valid upon substituting the terminal velocity ϕ k [START_REF] Ambartsumian | Über eine Frage der Eigenwerttheorie[END_REF] for ϕ k L 2 (0,1) in the one-dimensional Borg and Levinson theorem.

In 1988, Nachman, Sylvester, Uhlmann [START_REF] Nachman | An n-dimensional Borg-Levinson theorem[END_REF] and Novikov [START_REF] Novikov | Multidimensional inverse spectral problems for the equation -∆ψ + (v(x) -Eu(x))ψ = 0[END_REF] proposed a multidimensional formulation of the result of Borg and Levinson. Namely, they proved that the boundary spectral data {(λ k , ∂ ν ϕ k|∂Ω ) : k ∈ N * }, where ν denotes the outward unit normal vector to ∂Ω and (λ k , ϕ k ) is the k th eigenpair of -∆ + V , determines uniquely the Dirichlet realization of the operator -∆ + V . The initial formulation of the multidimensional Borg-Levinson theorem by [START_REF] Nachman | An n-dimensional Borg-Levinson theorem[END_REF] and [START_REF] Novikov | Multidimensional inverse spectral problems for the equation -∆ψ + (v(x) -Eu(x))ψ = 0[END_REF] has been improved in several ways by various authors. Isozaki [START_REF] Isozaki | Some remarks on the multi-dimensional Borg-Levinson theorem[END_REF] (see also [START_REF] Choulli | Une introduction aux problèmes inverses elliptiques et paraboliques[END_REF]) extended the result of [START_REF] Nachman | An n-dimensional Borg-Levinson theorem[END_REF] when finitely many eigenpairs remain unknown, and, recently, Choulli and Stefanov [START_REF] Choulli | Stability for the multi-dimensional Borg-Levinson theorem with partial spectral data[END_REF] claimed uniqueness in the determination of V from the asymptotic behavior of (λ k , ∂ ν ϕ k|Γ ) with respect to k. Moreover, Canuto and Kavian [START_REF] Canuto | Determining Coefficients in a Class of Heat Equations via Boundary Measurements[END_REF][START_REF] Canuto | Determining Two Coefficients in Elliptic Operators via Boundary Spectral Data: a Uniqueness Result, Bolletino Unione Mat[END_REF] considered the determination of the conductivity c, the electric potential V and the weight ρ from the boundary spectral data of the operator ρ -1 (-div(c∇•)+V ) acting on the weighted space L 2 ρ (Ω) endowed with either Dirichlet or Neumann boundary conditions. Namely, [START_REF] Canuto | Determining Coefficients in a Class of Heat Equations via Boundary Measurements[END_REF][START_REF] Canuto | Determining Two Coefficients in Elliptic Operators via Boundary Spectral Data: a Uniqueness Result, Bolletino Unione Mat[END_REF] proved that the boundary spectral data of ρ -1 (-div(c∇•)+V ) determines uniquely two of the three coefficients c, V and ρ. The case of magnetic Schrödinger operator has been treated by [START_REF] Serov | Borg-Levinson theorem for magnetic Schrödinger operator[END_REF] who determined both the magnetic field dA and the electric potential V of the operator H = (-i∇ + A) 2 + V . Here the 2-form dA of a vector valued function A = (a 1 , . . . , a n ) is defined by

dA = i<j (∂ xj a i -∂ xi a j )dx j ∧ dx i .
All the above mentioned results were obtained with Ω bounded and operators of purely discrete spectral type. In some recent work [START_REF] Kavian | Uniqueness and stability results for an inverse spectral problem in a periodic waveguide[END_REF] examined a Borg-Levinson inverse problem stated in an infinite cylindrical waveguide for Schrödinger operators with purely absolutely continuous spectral type. More precisely, [START_REF] Kavian | Uniqueness and stability results for an inverse spectral problem in a periodic waveguide[END_REF] proved that a real potential V which is 2π-periodic along the axis of the waveguide is uniquely determined by some asymptotic knowledge of the boundary Floquet spectral data of the Schrödinger operator -∆ + V with Dirichlet boundary conditions.

Finally, let us mention for the sake of completeness that the stability issue in the context of Borg-Levinson inverse problems was examined in [START_REF] Bellassoued | Stability estimate for an inverse wave equation and a multidimensional Borg-Levinson theorem[END_REF][START_REF] Bellassoued | Stability estimates for the anisotropic wave equation from the Dirichletto-Neumann map[END_REF][START_REF] Choulli | Une introduction aux problèmes inverses elliptiques et paraboliques[END_REF][START_REF] Choulli | Stability for the multi-dimensional Borg-Levinson theorem with partial spectral data[END_REF][START_REF] Kavian | Uniqueness and stability results for an inverse spectral problem in a periodic waveguide[END_REF] and that [START_REF] Belishev | To the reconstruction of a Riemannian manifold via its spectral data (BC-method)[END_REF][START_REF] Bellassoued | Stability estimates for the anisotropic wave equation from the Dirichletto-Neumann map[END_REF][START_REF] Katchalov | Multidimensional inverse problem with incomplete boundary spectral data[END_REF] established related results on Riemannian manifolds. We also precise that [START_REF] Montalto | Stable determination of a simple metric, a co-vector field and a potential from the hyperbolic Dirichlet-to-Neumann map[END_REF][START_REF] Stefanov | Stability estimates for the hyperbolic Dirichlet to Neumann map in anisotropic media[END_REF][START_REF] Stefanov | Stable determination of the hyperbolic Dirichlet-to-Neumann map for generic simple metrics[END_REF] have proved stability estimates in the recovery of coefficients from the hyperbolic Dirichlet-to-Neumann map which is equivalent to the determination of general Schrödinger operators from boundary spectral data.

Main result. Let

A j ∈ W 1,∞ (Ω, R n ), V j ∈ L ∞ (Ω,
R) and consider the magnetic Schrödinger operators H j = H for A = A j and V = V j , j = 1, 2. Further we note (λ j,k , ϕ j,k ), k 1, the k th eigenpair of H j , for j = 1, 2. Our main result can be stated as follows.

Theorem 1.1. We fix

Ω 1 an arbitrary open neighborhood of Γ in Ω (Γ ⊂ Ω 1 and Ω 1 Ω). For j = 1, 2, let V j ∈ L ∞ (Ω, R) and let A j ∈ C 1 (Ω, R n ) fulfill A 1 (x) = A 2 (x), x ∈ Ω 1 . (1.1)
Assume that the conditions

lim k→+∞ |λ 1,k -λ 2,k | = 0, +∞ k=1 ∂ ν ϕ 1,k -∂ ν ϕ 2,k 2 
L 2 (Γ) < ∞ (1.2)
hold simultaneously. Then, we have

dA 1 = dA 2 and V 1 = V 2 .
Note that condition (1.1) corresponds to the knowledge of the magnetic potential on a neighborhood of the boundary.

Let us observe that, as mentioned by [START_REF] Choulli | Stability for the multi-dimensional Borg-Levinson theorem with partial spectral data[END_REF][START_REF] Kavian | Uniqueness and stability results for an inverse spectral problem in a periodic waveguide[END_REF], Theorem 1.1 can be considered as a uniqueness theorem under the assumption that the spectral data are asymptotically "very close". Conditions (1.2) are similar to the one considered by [START_REF] Kavian | Uniqueness and stability results for an inverse spectral problem in a periodic waveguide[END_REF] and they are weaker than the requirement that

|λ 1,k -λ 2,k | Ck -α , ∂ ν ϕ 1,k -∂ ν ϕ 2,k L 2 (Γ) Ck -β
for some α > 1 and β > 1 -1 2n , considered in [START_REF] Choulli | Stability for the multi-dimensional Borg-Levinson theorem with partial spectral data[END_REF]Theorem 2.1]. Note also that conditions (1.2) are weaker than the knowledge of the boundary spectral data with a finite number of data missing considered by [START_REF] Isozaki | Some remarks on the multi-dimensional Borg-Levinson theorem[END_REF].

Let us remark that there is an obstruction to uniqueness given by the gauge invariance of boundary spectral data for magnetic Shrödinger operators. More precisely, let p ∈ C ∞ 0 (Ω \ Ω 1 ) \ {0} and assume that

A 1 = ∇p + A 2 = A 2 , V 1 = V 2 .
Then, we have H 1 = e -ip H 2 e ip and one can check that we can choose the spectral data of H 1 and H 2 in such a way that the conditions

∂ ν ϕ 1,k |Γ = ∂ ν ϕ 2,k |Γ , λ 1,k = λ 2,k , k ∈ N *
are fulfilled. Therefore, conditions (1.1)-(1.2) are fulfilled but H 1 = H 2 . Nevertheless, assuming (1.1) fulfilled, the conditions dA 1 = dA 2 and V 1 = V 2 imply that H 1 and H 2 are gauge equivalent. Therefore, Theorem 1.1 is equivalent to the unique determination of magnetic Schrödinger operators modulo gauge transformation from the asymptotic knowledge of the boundary spectral data given by conditions (1.2).

We stress out that the problem under examination in this text is a Borg-Levinson inverse problem for the magnetic Schrödinger operator H = (-i∇ + A) 2 + V . To our best knowledge, there are only two multi-dimensional Borg-Levinson uniqueness result for magnetic Schrödinger operators available in the mathematical literature, [START_REF] Katchalov | Multidimensional inverse problem with incomplete boundary spectral data[END_REF]Theorem B] and [START_REF] Serov | Borg-Levinson theorem for magnetic Schrödinger operator[END_REF]Theorem 3.2] (we refer also to [START_REF] Nicoleau | A stationary approach to inverse scattering for Schrödinger operators with first order perturbation[END_REF] for related inverse scattering results). In [START_REF] Katchalov | Multidimensional inverse problem with incomplete boundary spectral data[END_REF], the authors considered general magnetic Schrödinger operators with smooth coefficients on a smooth connected Riemannian manifold and they proved unique determination of these operators modulo gauge invariance from the knowledge of the boundary spectral data with a missing finite number of data. In [START_REF] Serov | Borg-Levinson theorem for magnetic Schrödinger operator[END_REF], Serov treated this problem on a bounded domain of R n , and he proved that, for

A ∈ W 1,∞ (Ω, R n ) and V ∈ L ∞ (Ω, R), the full boundary spectral data {(λ k , ∂ ν ϕ k|Γ ) : k ∈ N * }
determines uniquely dA and V . In contrast to [START_REF] Katchalov | Multidimensional inverse problem with incomplete boundary spectral data[END_REF][START_REF] Serov | Borg-Levinson theorem for magnetic Schrödinger operator[END_REF], in the present paper we prove that the asymptotic knowledge of the boundary spectral data, given by the conditions (1.2), is sufficient for the unique determination of dA and V . To our best knowledge, conditions (1.2) are the weakest conditions on boundary spectral data that guaranty uniqueness of magnetic Schrödinger operators modulo gauge transformation. Moreover, our uniqueness result is stated with conditions similar to [START_REF] Kavian | Uniqueness and stability results for an inverse spectral problem in a periodic waveguide[END_REF]Theorem 1.4], which seems to be the most precise Borg-Levinson uniqueness result so far for Schrödinger operators without magnetic potential (A = 0).

An important ingredient in our analysis is a suitable representation that allows to express the magnetic potential A and the electric potential V in terms of Dirichlet-to-Neumann map associated to the equations (-i∇ + A) 2 u + V u -λu = 0 for some λ ∈ C. In [START_REF] Isozaki | Some remarks on the multi-dimensional Borg-Levinson theorem[END_REF] Isozaki applied a similar approach to the Schrödinger operator -∆ + V with Dirichlet boundary condition1 and [START_REF] Choulli | Stability for the multi-dimensional Borg-Levinson theorem with partial spectral data[END_REF][START_REF] Kavian | Uniqueness and stability results for an inverse spectral problem in a periodic waveguide[END_REF] applied the representation formulas of [START_REF] Isozaki | Some remarks on the multi-dimensional Borg-Levinson theorem[END_REF]. Inspired by the construction of complex geometric optics solutions of [START_REF] Bellassoued | Stability estimate for an inverse problem for the magnetic Schrödinger equation from the Dirichlet-to-Neumann map[END_REF][START_REF] Santos Ferreira | Determining a magnetic Schrödinger operator from partial Cauchy data[END_REF][START_REF] Krupchyk | Inverse problems with partial data for a magnetic Schrödinger operator in an infinite slab and on a bounded domain[END_REF][START_REF] Krupchyk | Uniqueness in an inverse boundary problem for a magnetic Schrodinger operator with a bounded magnetic potential[END_REF][START_REF] Nakamura | Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field[END_REF][START_REF] Salo | Inverse problems for nonsmooth first order perturbations of the Laplacian[END_REF][START_REF] Sun | An inverse boundary value problem for the Schrödinger operator with vector potentials[END_REF] we prove that the approach of [START_REF] Choulli | Stability for the multi-dimensional Borg-Levinson theorem with partial spectral data[END_REF][START_REF] Isozaki | Some remarks on the multi-dimensional Borg-Levinson theorem[END_REF][START_REF] Kavian | Uniqueness and stability results for an inverse spectral problem in a periodic waveguide[END_REF]] can be extended to magnetic Schrödinger operators. More precisely, we derive two representation formulas that allow to recover both the magnetic field and the electric potential of magnetic Schrödinger operators which means recovery of both coefficients of order one and zero in contrast to [START_REF] Choulli | Stability for the multi-dimensional Borg-Levinson theorem with partial spectral data[END_REF][START_REF] Isozaki | Some remarks on the multi-dimensional Borg-Levinson theorem[END_REF][START_REF] Kavian | Uniqueness and stability results for an inverse spectral problem in a periodic waveguide[END_REF] where only determination of coefficients of order zero is considered. This paper is the first where the extension of the approach developed by [START_REF] Isozaki | Some remarks on the multi-dimensional Borg-Levinson theorem[END_REF] to more general coefficients than coefficients of order zero is considered. Note also that our approach make it possible to prove this extension without imposing important assumptions of regularity of the admissible coefficients.

We believe that the approach developed in the present paper can be used for results of stability in the determination of the magnetic field dA and the electric potential V similar to [START_REF] Kavian | Uniqueness and stability results for an inverse spectral problem in a periodic waveguide[END_REF]Theorem 1.3]. Indeed, following the strategy set in this paper we expect a stability estimate associated to the the determination of the magnetic field dA. The main issue comes from the stability in the determination of the electric potential V . Nevertheless, we believe that this problem can be solved by adapting suitably the argument developed in [START_REF] Tzou | Stability Estimate for the coefficients of magnetic Schrödinger equation from full and partial boundary measurements[END_REF] related to the inversion of the d operator on differential forms restricted to the right subspaces.

1.4. Outline. This paper is organized as follows. In Section 2 we consider some useful preliminary results concerning solutions of equations of the form (-i∇ + A) 2 u + V u -λu = 0 for some λ ∈ C \ σ(H). In Section 3 we introduce two representation formulas making the connection between the Dirichlet-Neumann map associated with the previous equations and the couple (A, V ) of magnetic and electric potential. Finally, in section 4 we combine all these results and we prove Theorem 1.1.

Notations and preliminary results

In this section we introduce some notations and we give some properties of solution of the equation (-i∇ + A) 2 u + V u -λu = 0. We denote by f, ψ the duality between ψ ∈ H 1/2 (Γ) and f belonging to the dual H -1/2 (Γ) of H 1/2 (Γ). However, when in f, ψ both f and ψ belong to L 2 (Γ), to make things simpler

•, • can be interpreted as the scalar product of L 2 (Γ), namely

f, ψ = Γ f (x) ψ(x) dσ(x).
We introduce the operator H defined as

Hu := (-i∇ + A) 2 u + V u, u ∈ D(H) := ψ ∈ H 1 0 (Ω) ; (-i∇ + A) 2 ψ ∈ L 2 (Ω) . (2.3)
Recall that H is associated to the quadratic form b given by

b(u, v) = Ω (-i∇ + A)u(x) • (-i∇ + A)v(x) dx + Ω V (x) u(x)v(x) dx, u, v ∈ H 1 0 (Ω).
Moreover, the spectrum of H is discrete and composed of the non-decreasing sequence of eigenvalues denoted by σ(H) = {λ k ; k 1}. If we write V = V + -V -, with V ± := max(0, ±V ), we have that the spectrum From now on, we fix f ∈ H 1/2 (Γ) and λ ∈ C \ σ(H) and we consider the problem

σ(H) of H is contained into [-V - L ∞ (Ω) ,
(-i∇ + A) 2 u + V u -λu = 0, in Ω, u(x) = f (x), x ∈ Γ.
(

We start with two results related to the asymptotic behavior of solutions of (2.4) as λ → -∞.

Lemma 2.1. For any f ∈ H 1/2 (Γ) and λ ∈ C \ σ(H), there exists a unique solution u ∈ H 1 (Ω) to (2.4) which can be written as

u λ := u = k 1 α k λ -λ k ϕ k , (2.5)
where for convenience we set

h k := ∂ ν ϕ k|Γ , and α k := f, h k . (2.6)
Moreover, we have

u λ 2 L 2 (Ω) = k 1 |α k | 2 |λ -λ k | 2 → 0 as λ → -∞.
Proof. Since λ / ∈ σ(H), one can easily check that (2.4) admits a unique solution u λ ∈ H 1 (Ω). Moreover, u λ can be written in terms of the eigenvalues and eigenfunctions λ k , ϕ k . Indeed, u λ ∈ L 2 (Ω) can be expressed in the Hilbert basis (ϕ k ) k 1 as

u λ = k 1 (u λ |ϕ k ) ϕ k with (•, •) the scalar product with respect to L 2 (Ω). Since u λ ∈ H 1 (Ω) and ∆u λ = -2iA • ∇u λ + (-i div(A) + |A| 2 + V )u λ ∈ L 2 (Ω), we have ∇u λ ∈ H div (Ω) = {v ∈ L 2 (Ω; C n ) : div(v) ∈ L 2 (Ω)}.
Thus, taking the scalar product of the first equation in (2.4) with ϕ k and applying the Green formula we obtain

f, h k = (λ -λ k ) (u|ϕ k ),
which yields the expression given by (2.5). The fact that u λ → 0 as λ → -∞ is a consequence of the fact that we may fix c 0 > V L ∞ (Ω) large enough so that if λ is real and such that λ -c 0 , we have |λ -λ k | 2 |c 0 -λ k | 2 for all k 1, and thus

|α k | 2 |λ -λ k | 2 |α k | 2 |c 0 -λ k | 2
, so that we may apply Lebesgue's dominated convergence as λ → -∞.

Lemma 2.2. For all

λ < -V L ∞ (Ω) -6 A 2 L ∞ (Ω,R n ) , the solution u λ of (2.4) satisfies ∇u λ L 2 (Ω\Ω1) C u λ L 2 (Ω1) (2.7)
with C depending only on Ω and Ω 1 .

Proof. Let us denote by χ ∈ C ∞ 0 (Ω, R) a function satisfying χ = 1 on Ω \ Ω 1 . Then, since ∇u λ ∈ H div (Ω), multiplying (2.4) by χ 2 u λ and applying the Green formula we obtain

0 = Ω (-i∇ + A) 2 u λ χ 2 u λ dx + Ω (V -λ)χ 2 |u λ | 2 dx = Ω |χ∇u λ | 2 dx + 2 Ω (χ∇u λ ) • ∇χu λ dx + Ω [2i(u λ χ)A • u λ ∇χ + iχu λ A • χ∇u λ + χ∇u λ • iAχu λ ]dx + Ω (|A| 2 + V -λ)χ 2 |u λ | 2 dx.
(2.8)

Applying the Cauchy-Schwarz inequality we find

χ∇u λ 2 L 2 (Ω) + (-A 2 L ∞ (Ω,R n ) -V L ∞ (Ω) -λ) χu λ 2 L 2 (Ω) 2 u λ ∇χ L 2 (Ω) χ∇u λ L 2 (Ω) + 2 A L ∞ (Ω) χu λ L 2 (Ω) u λ ∇χ L 2 (Ω) + 2 A L ∞ (Ω) χu λ L 2 (Ω) χ∇u λ L 2 (Ω) 4 u λ ∇χ 2 L 2 (Ω) + χ∇u λ 2 L 2 (Ω) 4 + A 2 L ∞ (Ω,R n ) χu λ 2 L 2 (Ω) + u λ ∇χ 2 L 2 (Ω) + 4 A 2 L ∞ (Ω,R n ) χu λ 2 L 2 (Ω) + χ∇u λ 2 L 2 (Ω)
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.

From this estimate, we deduce

χ∇u λ 2 L 2 (Ω) 2 + (-V L ∞ (Ω) -6 A 2 L ∞ (Ω,R n ) -λ) χu λ 2 L 2 (Ω) 5 u λ ∇χ 2 L 2 (Ω) . Using the fact that λ < -V L ∞ (Ω) -6 A 2 L ∞ (Ω,R n ) , we obtain ∇u λ 2 L 2 (Ω\Ω1) χ∇u λ 2 L 2 (Ω) 10 u λ ∇χ 2 L 2 (Ω) 10 ∇χ 2 L ∞ (Ω) u λ 2 L 2 (Ω1) C u λ 2 L 2 (Ω1) .
From this estimate we deduce (2.7).

It is clear that the series (2.5) giving u λ in terms of α k , λ k and ϕ k , converges only in L 2 (Ω) and thus we cannot deduce an expression of the normal derivative ∂ ν u λ in terms of α k , λ k and h k . To avoid this difficulty, in a similar way to [START_REF] Kavian | Uniqueness and stability results for an inverse spectral problem in a periodic waveguide[END_REF], we have the following lemma:

Lemma 2.3. Let f ∈ H 1/2 (Γ) be fixed and for λ, µ ∈ C \ σ(H) let u λ and u µ be the solutions given by Lemma 2.1. If we set v := v λ,µ := u λ -u µ , then ∂ ν v = k 1 (µ -λ)α k (λ -λ k )(µ -λ k ) h k , (2.9)
the convergence taking place in H 1/2 (Γ).

Proof. Let v λ,µ := u λ -u µ ; One verifies that v λ,µ solves (-i∇ + A) 2 v λ,µ + V v λ,µ -λv λ,µ = (λ -µ)u µ , in Ω, v λ,µ (x) = 0, x ∈ Γ. (2.10) Since (u µ |ϕ k ) = α k /(µ -λ k ), it follows that v λ,µ = k 1 (λ -µ)α k (λ k -λ)(µ -λ k ) ϕ k , the convergence taking place in D(H). Since the operator v → ∂ ν v is continuous from D(H) into H 1/2 (Γ),
the result of the lemma follows.

The next lemma states essentially that if for j = 1 or j = 2 we have two magnetic potentials A j , two electric potentials V j and u j := u j,µ solutions of

(-i∇ + A j ) 2 u j + V j u j -µu j = 0, in Ω, u j (x) = f (x), x ∈ Γ, (2.11) 
then u 1,µ and u 2,µ are close as µ → -∞: in some sense the influence of the potentials A j and V j are dimmed when µ → -∞. More precisely we have:

Lemma 2.4. Let V j ∈ L ∞ (Ω, R) and A j ∈ W 1,∞ (Ω, R n ) be given for j = 1 or j = 2
, and denote by H j the corresponding operator defined by (2.3). We assume that condition

(1.1) is fulfilled. For f ∈ H 1/2 (Γ) and µ ∈ (-∞, µ * ) ⊂ C \ σ(H), let u j,µ := u j be the solution of (2.11). Then z µ := u 1,µ -u 2,µ ∈ H 2 (Ω) converge to 0 in H 2 (Ω) as µ → -∞. In particular ∂ ν z µ → 0 in L 2 (Γ) as µ → -∞. Proof. Since the trace map v → ∂ ν v is continuous from H 2 (Ω) to L 2 (Γ), it is enough to show that z µ ∈ H 2 (Ω) and z µ H 2 (Ω) → 0 when µ → -∞. We fix µ < µ * with µ * < -V L ∞ (Ω) -6 A 2 L ∞ (Ω,R n )
less than the constants given by Lemma 2.1 for A = A j , V = V j , j = 1, 2. Without lost of generality we assume that H j -µ * is positive, j = 1, 2. One verifies that z µ solves the equation

(-i∇ + A 1 ) 2 z µ + V 1 z µ -µz µ = -2i(A 2 -A 1 ) • ∇u 2,µ + (p 2 -p 1 )u 2,µ , in Ω, z µ (x) = 0, x ∈ Γ (2.12) with p j = -idiv(A j ) + |A j | 2 + V j , j = 1, 2. That is, denoting by R 1,µ = (H 1 -µI) -1 the resolvent of the operator H 1 := (-i∇ + A 1 ) 2 + V 1 , we have z µ = R 1,µ (-2i(A 2 -A 1 ) • ∇u 2,µ + (p 2 -p 1 )u 2,µ ) = +∞ k=1 (w µ , ϕ 1,k ) (λ 1,k -µ) ϕ 1,k with w µ = -2i(A 2 -A 1 ) • ∇u 2,µ + (p 2 -p 1 )u 2,µ and (λ 1,k ) k 1 , (ϕ 1,k ) k 1 respectively the eigenvalues of H 1
and an Hilbertian basis of eigenfunctions associated to these eigenvalues. Since

w µ ∈ L 2 (Ω), z µ is lying in D(H 1 )
and by the same way in

H 2 (Ω). It remains to show that z µ H 2 (Ω) → 0 when µ → -∞. Since D(H 1 ) embedded continuously into H 2 (Ω) there exists a generic constant C depending on A 1 , V 1 and Ω such that z µ 2 H 2 (Ω) C ∞ k=1 |λ 1,k -µ * | 2 |(z µ , ϕ 1,k )| 2 C w µ L 2 (Ω) .
On the other hand, condition (1.1) implies

w µ L 2 (Ω) C( ∇u 2,µ L 2 (Ω\Ω1) + u 2,µ L 2 (Ω) )
with C independent of µ. Then, according to Lemma 2.1 and (2.7), we obtain lim sup

µ→-∞ w µ L 2 (Ω) C lim sup µ→-∞ u 2,µ L 2 (Ω) = 0.
Thus, we have lim sup

µ→-∞ z µ L 2 (Γ) C lim sup µ→-∞ z µ H 2 (Ω) C lim sup µ→-∞ w µ L 2 (Ω) = 0.
This completes the proof.

Armed with these results, we will prove Theorem 1.1 by using some asymptotic properties of solutions of (2.4) with respect to λ. For this purpose, like in [START_REF] Choulli | Stability for the multi-dimensional Borg-Levinson theorem with partial spectral data[END_REF][START_REF] Isozaki | Some remarks on the multi-dimensional Borg-Levinson theorem[END_REF][START_REF] Kavian | Uniqueness and stability results for an inverse spectral problem in a periodic waveguide[END_REF] we use representation formulas that will allow us to make a connection between the boundary spectral data and the potentials A and V .

Representation formulas

From now on, for all x = (x 1 , . . . , x n ) ∈ C n and y = (y 1 , . . . , y n ) ∈ C n , we denote by x • y the quantity

x • y = n k=1
x k y k and for all x ∈ R n we denote by x ⊥ the subspace of R n defined by {y ∈ R n : y • x = 0}. Moreover, we set

A j ∈ C 1 (Ω, R n ), V j ∈ L ∞ (Ω, R), j = 1, 2,
and we assume that condition (1.1) is fulfilled. For j = 1, 2 and λ ∈ C \ R, we associate to the problem

(-i∇ + A j ) 2 u j + V j u j -λu j = 0, in Ω, u j (x) = f (x), x ∈ Γ (3.13) the Dirichlet-to-Neumann map Λ j,λ : H 1 2 (∂Ω) f → (∂ ν + iA j • ν)u j,λ |Γ ,
where u j,λ solves (3.13). The goal of this section is to apply the Dirichlet-to-Neumann maps Λ j,λ to some suitable ansatzs associated with (3.13) in order to get two representation formulas involving the magnetic potentials A j and the electric potentials V j , j = 1, 2. A similar approach was developed by [START_REF] Isozaki | Some remarks on the multi-dimensional Borg-Levinson theorem[END_REF] and [START_REF] Choulli | Stability for the multi-dimensional Borg-Levinson theorem with partial spectral data[END_REF][START_REF] Kavian | Uniqueness and stability results for an inverse spectral problem in a periodic waveguide[END_REF] used the representation of [START_REF] Isozaki | Some remarks on the multi-dimensional Borg-Levinson theorem[END_REF]. The idea is to establish the link between the electric and magnetic potentials and the boundary spectral data by mean of an expression involving the Dirichlet-to-Neumann maps Λ 1,λ , Λ 2,λ . We start with two general representation formulas, stated in the next subsection, where some properties of the ansatzs will not be completely specified. This will allow us to clarify the main goal of these formulas. Then, in Subsection 3.2 we will introduce the remaining properties of our ansatzs and establish some asymptotic properties from our representations which will be one of the main points of our analysis.

General representation formulas.

In this subsection we introduce the first formulation of two representation formulas involving respectively the Dirichlet-to-Neumann maps Λ 1,λ , Λ 2,λ and some ansatzs associated with problem (3.13). In [START_REF] Isozaki | Some remarks on the multi-dimensional Borg-Levinson theorem[END_REF], Isozaki considered such formulas for Schrödinger operators -∆ + V with an electric potential V , in other words for Schrödinger operators with a variable coefficient of order zero. In our case we need to extend this strategy to Schrödinger operators with both magnetic and electric potentials, which means an extension to Schrödinger operators with variable coefficients of order zero and one. In addition, we need to consider ansatzs that allow to recover both the magnetic field and the electric potential. Therefore, we consider some ansatzs, associated with (3.13), of the form

Φ j,λ (x) = e ζj •x g j (x), ζ j ∈ C n , x ∈ Ω, j = 1, 2 (3.14) 
with ζ j satisfying ζ j • ζ j = -λ and with g 1 and g 2 respectively a solution of

ζ 1 • ∇g 1 + (iζ 1 • A 1, )g 1 = 0, ζ 2 • ∇g 2 -(iζ 2 • A 2, )g 2 = 0 (3.15)
with A j, some smooth function close to the magnetic potential A j , j = 1, 2. More precisely, we fix

η 1 , η 2 ∈ S n-1 = {y ∈ R n , |y| = 1} and we define A j, ∈ C ∞ 0 (R n , R n ), j = 1, 2, some smooth approximations on Ω of A j . Then, we set ζ 1 = i √ λη 1 , ζ 2 = -i √ λη 2
and we consider solutions of the transport equations (3.15) given by

g 1 (x) := e iψ1(x) , g 2 (x) := b 2 (x)e -iψ2(x) , ψ j (x) := - 0 -∞ η j • A j, (x + sη j )ds, η 2 • ∇b 2 (x) = 0, x ∈ R n .
Therefore, we consider ansatzs associated with (3.13) taking the form

Φ 1,λ (x) := e i √ λη1•x e iψ1(x) , Φ 2,λ (x) := e -i √ λη2•x b 2 (x)e -iψ2(x) , x ∈ Ω. (3.16)
We assume in addition that b 2 ∈ W 2,∞ (R n ) and we recall that ψ j solves the equation

η j • ∇ψ j (x) = -η j • A j, , j = 1, 2, x ∈ R n .
For the time being, we consider general ansatzs of the form (3.16) with the properties describe above. Additional information about the parameter λ, the function A j, , the vector η j , j = 1, 2, and the function b 2 will be given in Subsection 3.2. In a similar way to [START_REF] Santos Ferreira | Determining a magnetic Schrödinger operator from partial Cauchy data[END_REF][START_REF] Krupchyk | Inverse problems with partial data for a magnetic Schrödinger operator in an infinite slab and on a bounded domain[END_REF][START_REF] Krupchyk | Uniqueness in an inverse boundary problem for a magnetic Schrodinger operator with a bounded magnetic potential[END_REF][START_REF] Nakamura | Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field[END_REF][START_REF] Salo | Inverse problems for nonsmooth first order perturbations of the Laplacian[END_REF][START_REF] Sun | An inverse boundary value problem for the Schrödinger operator with vector potentials[END_REF], in the construction of our ansatzs we consider some smooth approximations of the magnetic potentials instead of the magnetic potentials to obtain sufficiently smooth functions Φ j,λ , j = 1, 2. Using this approach, we can weaken the regularity assumption imposed on admissible magnetic potential from W 3,∞ (Ω) to C 1 (Ω). Further, for j = 1, 2, we put

S j (λ, η 1 , η 2 ) = Λ j,λ Φ 1,λ , Φ 2,λ = Γ (Λ j,λ Φ 1,λ )Φ 2,λ (x)dσ(x). (3.17)
In other words, we apply Λ j,λ , j = 1, 2, to ansatzs of the form (3.14) with

ζ 1 = i √ λη 1 , ζ 2 = -i √ λη 2 , g 1 = e iψ1 and g 2 = b 2 e -iψ2
. We recall that quantities similar to S 1 and S 2 have also been used by [START_REF] Santos Ferreira | Determining a magnetic Schrödinger operator from partial Cauchy data[END_REF][START_REF] Isozaki | Some remarks on the multi-dimensional Borg-Levinson theorem[END_REF][START_REF] Kavian | Uniqueness and stability results for an inverse spectral problem in a periodic waveguide[END_REF][START_REF] Krupchyk | Inverse problems with partial data for a magnetic Schrödinger operator in an infinite slab and on a bounded domain[END_REF][START_REF] Krupchyk | Uniqueness in an inverse boundary problem for a magnetic Schrodinger operator with a bounded magnetic potential[END_REF][START_REF] Nakamura | Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field[END_REF][START_REF] Salo | Inverse problems for nonsmooth first order perturbations of the Laplacian[END_REF][START_REF] Sun | An inverse boundary value problem for the Schrödinger operator with vector potentials[END_REF]. Let us also mention that, like in [START_REF] Isozaki | Some remarks on the multi-dimensional Borg-Levinson theorem[END_REF][START_REF] Kavian | Uniqueness and stability results for an inverse spectral problem in a periodic waveguide[END_REF], the ansatzs (3.16) do not depend on the potential V 1 and V 2 which are coefficients of order zero of the equation (3.13). On the other hand, the ansatzs (3.16) depend on the magnetic potentials A 1 and A 2 which are coefficients of order one of the equation (3.13). By modifying the construction of [START_REF] Isozaki | Some remarks on the multi-dimensional Borg-Levinson theorem[END_REF][START_REF] Kavian | Uniqueness and stability results for an inverse spectral problem in a periodic waveguide[END_REF] with the new expression g j , j = 1, 2, we will extend the approach of [START_REF] Isozaki | Some remarks on the multi-dimensional Borg-Levinson theorem[END_REF][START_REF] Kavian | Uniqueness and stability results for an inverse spectral problem in a periodic waveguide[END_REF] to Shrödinger operators with magnetic potentials. From now on, for the sake of simplicity we will systematically omit the subscripts λ in Φ j,λ , j = 1, 2, in the remaining of this text. In view of determining the behavior of S 1 -S 2 , as Iλ → +∞, we introduce the following representations associated with S 1 and S 2 . Proposition 3.1. For all λ ∈ C \ R and η j ∈ S n-1 , j = 1, 2, the scalar products S j (λ, η 1 , η 2 ) have the following expression

S 1 (λ, η 1 , η 2 ) = 2 √ λ Ω η 2 • (A 1 -A 2, )e i √ λ(η1-η2)•x b 2 e i(ψ1(x)-ψ2(x)) dx + Ω (V 1 -q 12 )e i √ λ(η1-η2)•x b 2 e i(ψ1(x)-ψ2(x)) dx -i Γ e i √ λ(η1-η2)•x e i(ψ1(x)-ψ2(x)) (b 2 √ λη 2 + b 2 ∇ψ 2 + i∇b 2 + b 2 A 1 ) • νdσ(x) - Ω (H 1 -λ) -1 2 √ λη 1 • (A 1 -A 1, ) + q 11 Φ 1 2 √ λη 2 • (A 1 -A 2, )b 2 + V 1 b 2 -q 12 e -i √ λη2•x e -iψ2 dx, (3.18) S 2 (λ, η 1 , η 2 ) = Ω 2 √ λη 2 • (A 2 -A 2, ) + V 2 -q 22 e i √ λ(η1-η2)•x b 2 e i(ψ1(x)-ψ2(x)) dx -i ∂Ω e i √ λ(η1-η2)•x e i(ψ1(x)-ψ2(x)) (b 2 √ λη 2 + b 2 ∇ψ 2 + i∇b 2 + b 2 A 2 ) • νdσ(x) - Ω (H 2 -λ) -1 2 √ λη 1 • (A 2 -A 1, ) + q 21 Φ 1 (2 √ λη 2 • (A 2 -A 2, )b 2 + V 2 b 2 -q 22 )e -i √ λη2•x e -iψ2 dx. (3.19)
Here we denote by q 11 , q 12 , q 21 , q 22 the expressions

q 11 = -idiv(A 1 ) + |A 1 | 2 + V 1 (x) + 2A 1 • ∇ψ 1 -i∆ψ 1 + |∇ψ 1 | 2 , q 12 = ∆b 2 -2i∇ψ 2 • ∇b 2 -2i∇b 2 • A 1 + -i∆ψ 2 -|∇ψ 2 | 2 -2∇ψ 2 • A 1 -idiv(A 1 ) -|A 1 | 2 b 2 , q 21 = -idiv(A 2 ) + |A 2 | 2 + V 2 (x) + 2A 2 • ∇ψ 1 -i∆ψ 1 + |∇ψ 1 | 2 , q 22 = ∆b 2 -2i∇ψ 2 • ∇b 2 -2i∇b 2 • A 2 + -i∆ψ 2 -|∇ψ 2 | 2 -2∇ψ 2 • A 2 -idiv(A 2 ) -|A 2 | 2 b 2 .
Moreover, H j , j = 1, 2, denotes the selfadjoint operator (-i∇ + A j ) + V j acting on L 2 (Ω) with domain [START_REF] Levinson | The inverse Strum-Liouville problem[END_REF]) contain expressions involving the magnetic potentials A 1 , A 2 and the electric potentials V 1 , V 2 , expressions on the boundary ∂Ω and expressions described by the resolvent (H jλ) -1 , j = 1, 2. Using condition (1.1) one can check that the expressions on ∂Ω of S 1 and S 2 coincide and applying the decay of the resolvent (H j -λ) -1 , j = 1, 2, as Iλ → +∞ we will show in the next subsection that, for some suitable choice of our ansatzs, the expressions

D(H j ) = {v ∈ H 1 0 (Ω) : (-i∇ + A j )v ∈ L 2 (Ω)}. Note that formulas (3.18)-(3.
- Ω (H 1 -λ) -1 2 √ λη 1 • (A 1 -A 1, ) + q 11 Φ 1 2 √ λη 2 • (A 1 -A 2, )b 2 + V 1 b 2 -q 12 e -i √ λη2•x e -iψ2 dx, - Ω (H 2 -λ) -1 2 √ λη 1 • (A 2 -A 1, ) + q 21 Φ 1 (2 √ λη 2 • (A 2 -A 2, )b 2 + V 2 b 2 -q 22 )e -i √ λη2•x e -iψ2 dx,
vanish as Iλ → +∞. Thus, what will remain in the asymptotic expansion of S 1 -S 2 , as Iλ → +∞, will be two expressions involving A 1 -A 2 and V 1 -V 2 . These two expressions, that will be given in the next subsection, are one of the main ingredients in our proof. The remaining of this subsection will be devoted to the proof of Proposition 3. ) correspond to some asymptotic expansion of the expression S j , j = 1, 2, with respect to √ λ 2 . We will prove (3.18)-(3.19) by combining properties of the ansatzs (3.14), with properties of solutions of (3.13) when f = Φ 1 . This proof will be divided into two steps, first for S 1 then for S 2 . We start by showing that for j = 1, 2 and f = Φ 1 problem (3.13) admits a unique solution u j ∈ H 2 (Ω) taking the form

u 1 = Φ 1 -(H 1 -λ) -1 2 √ λη 1 • (A 1 -A 1, ) + q 11 Φ 1 , (3.20 
)

u 2 = Φ 1 -(H 2 -λ) -1 2 √ λη 1 • (A 2 -A 1, ) + q 21 Φ 1 . (3.21)
Then, combining these formulas with the properties of the ansatzs (3.14) and applying the Green formula, we derive (3.18)-(3.19). We start with the expression of S 1 (λ, η 1 , η 2 ). Let us first prove (3.20). Recall that

(-i∇ + A 1 ) 2 u + V 1 u -λu = -∆u -2iA 1 • ∇u + qu -λu with q(x) = -idiv(A 1 )(x) + |A 1 (x)| 2 + V 1 (x).
Therefore, in light of (3.16) we have

(-i∇ + A 1 ) 2 Φ 1 + V 1 Φ 1 -λΦ 1 = (λ + 2 √ λη 1 • ∇ψ 1 -i∆ψ 1 + |∇ψ 1 | 2 )Φ 1 + (2 √ λη 1 • A 1 + 2A 1 • ∇ψ 1 )Φ 1 + qΦ 1 -λΦ 1 = 2 √ λ(η 1 • ∇ψ 1 + η 1 • A 1 )Φ 1 + q 11 Φ 1 with q 11 = q + 2A 1 • ∇ψ 1 -i∆ψ 1 + |∇ψ 1 | 2 .
On the other hand, since

ψ 1 satisfies η 1 • ∇ψ 1 + η 1 • A 1, = 0, we deduce that (-i∇ + A 1 ) 2 Φ 1 + V 1 Φ 1 -λΦ 1 = 2 √ λη 1 • (A 1 -A 1, ) + q 11 Φ 1 . (3.22)
2 This statement will be clarified in the next subsection where we will give additional information about the parameter λ and the vectors η 1 , η 2 .

Now consider u 1 the solution of

(-i∇ + A 1 ) 2 u 1 + V 1 u 1 -λu 1 = 0, in Ω, u 1 (x) = Φ 1 (x), x ∈ ∂Ω.
Note that, with our assumptions one can check that D(H 1 ) = H 1 0 (Ω) ∩ H 2 (Ω). In view of (3.22), we can split u 1 into two terms

u 1 = Φ 1 + v 1 with v 1 the solution of (-i∇ + A 1 ) 2 v 1 + V 1 v 1 -λv 1 = -2 √ λη 1 • (A 1 -A 1, ) + q 11 Φ 1 , in Ω, v 1 (x) = 0, x ∈ ∂Ω.
Then, u 1 ∈ H 2 (Ω) take the form (3.20). Using this formula we will complete the proof of (3.18). Since

S 1 = ∂Ω (∂ ν + iA 1 • ν)u 1 (x)e -i √ λη2•x b 2 e -iψ2(x) dσ(x), (3.23) 
from (3.17), applying Green formula, we get

S 1 = Ω div (∇ + iA 1 (x))u 1 (x)e -i √ λη2•x b 2 e -iψ2(x) dx = Ω (∇ + iA 1 ) 2 u 1 e -i √ λη2•x b 2 e -iψ2 dx + Ω (∇ + iA 1 )u 1 • (∇ -iA 1 )e -i √ λη2•x b 2 e -iψ2 dx. (3.24)
Doing the same with the second term on the right hand side of this formula, we find out that

Ω (∇ + iA 1 )u 1 • (∇ -iA 1 )e -i √ λη2•x b 2 e -iψ2 dx = -i Γ u 1 (x)e -i √ λη2•x e -iψ2 ( √ λb 2 η 2 + b 2 ∇ψ 2 + i∇b 2 + b 2 A 1 ) • νdσ(x) - Ω u 1 (x)(∇ -iA 1 ) 2 e -i √ λη2•x b 2 e -iψ2 dx.
In light of (3.16) and the identity u 1|Γ = Φ 1 , this entails

Ω (∇ + iA 1 )u 1 • (∇ -iA 1 )e -i √ λη2•x b 2 e -iψ2 dx = -i Γ e i √ λ(η1-η2)•x e i(ψ1(x)-ψ2(x)) ( √ λb 2 η 2 + b 2 ∇ψ 2 + i∇b 2 + b 2 A 1 ) • νdσ(x) -Ω u 1 (x)(∇ -iA 1 ) 2 e -i √ λη2•x b 2 e -iψ2 dx. Moreover, one can check that (∇ -iA 1 ) 2 e -i √ λη2•x b 2 e -iψ2 = -λb 2 -2 √ λ(η 2 • ∇ψ 2 + A 1 • η 2 )b 2 -2i √ λη 2 • ∇b 2 + q 12 e -i √ λη2•x e -iψ2
with

q 12 = ∆b 2 -2i∇ψ 2 •∇b 2 -2i∇b 2 •A 1 + -i∆ψ 2 -|∇ψ 2 | 2 -2∇ψ 2 • A 1 -idiv(A 1 ) -|A 1 | 2 b 2 . Combining this with the fact that ψ 2 satisfies η 2 • ∇ψ 2 + η 2 • A 2, = 0 and b 2 solves η 2 • ∇b 2 = 0, we deduce that (∇ -iA 1 ) 2 e -i √ λη2•x b 2 e -iψ2 = [-λ -2 √ λη 2 • (A 1 -A 2, )]b 2 + q 12 e -i √ λη2•x e -iψ2 .
Therefore, we find

Ω (∇ + iA 1 )u 1 • (∇ -iA 1 )e -i √ λη2•x b 2 e -iψ2 dx = -i Γ e i √ λ(η1-η2)•x e i(ψ1(x)-ψ2(x)) ( √ λb 2 η 2 + b 2 ∇ψ 2 + i∇b 2 + b 2 A 1 ) • νdσ(x) -Ω u 1 (x) -λb 2 -2 √ λη 2 • (A 1 -A 2, )b 2 + q 12 e -i √ λη2•x e -iψ2 dx.
Then, from (3.20) we get

Ω (∇ + iA 1 )u 1 • (∇ -iA 1 )e -i √ λη2•x b 2 e -iψ2 dx = -i Γ e i √ λ(η1-η2)•x e i(ψ1(x)-ψ2(x)) ( √ λb 2 η 2 + b 2 ∇ψ 2 + i∇b 2 + b 2 A 1 ) • νdσ(x) +λ Ω u 1 e -i √ λη2•x b 2 e -iψ2 dx + 2 √ λ Ω η 2 • (A 1 -A 2, )e i √ λ(η1-η2)•x b 2 e i(ψ1(x)-ψ2(x)) dx - Ω q 12 e i √ λ(η1-η2)•x b 2 e i(ψ1(x)-ψ2(x)) dx - Ω [(H 1 -λ) -1 2 √ λη 1 • (A 1 -A 1, ) + q 11 Φ 1 ] 2 √ λη 2 • (A 1 -A 2, )b 2 -q 12 e -i √ λη2
•x e -iψ2 dx.

(3.25)

Next, taking into account the fact that (∇ + iA 1 )

2 u 1 = (V 1 -λ)u 1 in Ω, we obtain Ω (∇ + iA 1 ) 2 u 1 e -i √ λη2•x b 2 e -iψ2 dx = Ω (V 1 -λ)u 1 e -i √ λη2•x b 2 e -iψ2 dx = -λ Ω u 1 e -i √ λη2•x b 2 e -iψ2 dx + Ω V 1 e i √ λ(η1-η2)•x b 2 e i(ψ1(x)-ψ2(x)) dx -Ω V 1 (H 1 -λ) -1 2 √ λη 1 • (A 1 -A 1, ) + q 11 Φ 1 e -i √ λη2•x b 2 e -iψ2 dx.
Finally, we deduce (3.18) from (3.24)- (3.25). Now let us consider (3.19). For this purpose, we start by proving formula (3.21). In a similar way to (3.20), we have

(-i∇ + A 2 ) 2 Φ 1 + V 2 Φ 1 -λΦ 1 = 2 √ λ(η 1 • ∇ψ 1 + A 2 • η 1 )Φ 1 + q 21 Φ 1 with q 21 = -idiv(A 2 ) + |A 2 | 2 + V 2 (x) + 2A 2 • ∇ψ 1 -i∆ψ 1 + |∇ψ 1 | 2 . Then, since ψ 1 is a solution of η 1 • ∇ψ 1 + η 1 • A 1, = 0, we deduce that (-i∇ + A 2 ) 2 Φ 1 + V 2 Φ 1 -λΦ 1 = 2 √ λη 1 • (A 2 -A 1, ) + q 21 Φ 1 .
Moreover, one can check that the solution u 2 of

(-i∇ + A 2 ) 2 u 2 + V 2 u 2 -λu 2 = 0, in Ω, u 2 (x) = Φ 1 (x), x ∈ ∂Ω
is given by (3.21). Repeating our previous arguments, we deduce

S 2 = Ω (∇ + iA 2 ) 2 u 2 e -i √ λη2•x b 2 e -iψ2 dx + Ω (∇ + iA 2 )u 2 • (∇ -iA 2 )e -i √ λη2•x b 2 e -iψ2 dx. (3.26)
On the other hand, using the fact that ψ 2 is a solution of the equation

η 2 • ∇ψ 2 + η 2 • A 2, = 0, we get Ω (∇ + iA 2 )u 2 • (∇ -iA 2 )e -i √ λη2•x b 2 e -iψ2 dx = -i Γ e i √ λ(η1-η2)•x e i(ψ1(x)-ψ2(x)) ( √ λb 2 η 2 + b 2 ∇ψ 2 + i∇b 2 + b 2 A 2 ) • νdσ(x) - Ω u 2 (x) -λb 2 -2 √ λη 2 • (A 2 -A 2, )b 2 + q 22 e -i √ λη2•x e -iψ2 dx (3.27) with q 22 = ∆b 2 -2i∇ψ 2 •∇b 2 -2i∇b 2 •A 2 + -i∆ψ 2 -|∇ψ 2 | 2 -2∇ψ 2 • A 2 -idiv(A 2 ) -|A 2 | 2 b 2 .
Combining this with (3.21)-(3.26) and repeating our previous arguments we obtain (3.19).

Asymptotic properties of S 1 -S 2 and representation formulas for

A 1 -A 2 and V 1 -V 2 .
In this subsection we will apply formulas (3.18)- (3.19) in order to derive two expressions involving A 1 -A 2 and V 1 -V 2 from the asymptotic expansion of S 1 -S 2 , as Iλ → +∞. For this purpose, we start by specifying our choice for the parameter λ, the function A j, , the vector η j , j = 1, 2, and the function b 2 appearing in (3.14). Let us first define the parameter λ and the vectors η 1 , η 2 . We consider an arbitrary ξ ∈ R n \ {0} and pick η ∈ S n-1 such that η • ξ = 0. Then, for τ > |ξ| we put

B τ = 1 - |ξ| 2 4τ 2 , η 1 (τ ) = B τ η - ξ 2τ , η 2 (τ ) = B τ η + ξ 2τ and λ(τ ) = (τ + i) 2 , (3.28)
in such a way that

           η 1 , η 2 ∈ S n-1 , √ λ(η 1 -η 2 ) → -ξ, as τ → +∞, Iλ → +∞, as τ → +∞, I √ λη 1 , I
√ λη 2 are bounded with respect to τ > |ξ| .

(3.29)

In order to get a suitable expression of the functions A j, , we first need to extend identically the magnetic potentials A j , j = 1, 2. For this purpose we set Ω an arbitrary open bounded set of R n such that Ω ⊂ Ω and we define Ã1 ∈ C 1 0 ( Ω, R n ) such that Ã1|Ω = A 1 . Then, we define Ã2 by

Ã2 (x) = A 2 (x), for x ∈ Ω, Ã1 (x), for x ∈ Ω \ Ω.
In view of (1.1), it is clear that Ã2 ∈ C 1 0 ( Ω, R n ). We define the functions

A j, ∈ C ∞ 0 (R n ; R n ), j = 1, 2, by A j, (x) χ δ * Ãj (x) = R n χ δ (x -y) Ãj (y)dy,
where

χ δ (x) = δ -n χ(δ -1 x), with δ > 0, is the usual mollifer with χ ∈ C ∞ 0 (R n ), supp(χ) ⊂ {x ∈ R n : |x| 1}, χ 0 and R n χdx = 1.
From now on we set δ = τ -1 3 and we recall that

ψ j (x) = - 0 -∞ η j • A j, (x + sη j )ds.
We set also

b 2 (x) = e iω•x y • ∇ exp -i R η 2 • A (x + sη 2 )ds e -iω•x , ( 3 

.30)

where

A = A 2, -A 1, , ω = B τ ξ -|ξ| 2 η 2τ ∈ η ⊥ 2 , B τ = 1 -|ξ| 2 4τ 2 , and b(x) = e ix•ξ y • ∇ exp -i R η • A(x + sη)ds e -ix•ξ , ψ(x) = 0 -∞ η • A(x + sη)ds.
Here y ∈ S n-1 ∩ η ⊥ , y • ∇ denotes the derivative in the y = (y 1 , . . . , y n ) direction given by

y • ∇ = n j=1 y j ∂ xj
and A is the function defined by A 2 -A 1 on Ω extended by 0 outside of Ω. Note that, in view of condition (1.1) we have

A ∈ C 1 0 (Ω). Since Ãj ∈ C 1 0 (R n , R n ), we find A j, -A j L ∞ (Ω) A j, -Ãj L ∞ (R n ) Cδ = Cτ -1 3 (3.31)
with C depending on Ω and any M max

j=1,2 Ãj W 1,∞ (R n ) .
On the other hand, one can check that

∂ α x A j, L ∞ (R m ) Cδ |α|-1 = Cτ |α|-1 3 , α ∈ N n \ {0}, (3.32) 
where C depends on Ω and any M max

j=1,2 Ãj W 1,∞ (R n ) .
Remark 3.2. Let us observe that, our anstazs are related to the principal part of the complex geometric optics solutions of [START_REF] Sylvester | A global uniqueness theorem for an inverse boundary value problem[END_REF] and the extension of this construction to magnetic Schrödinger operators by [START_REF] Santos Ferreira | Determining a magnetic Schrödinger operator from partial Cauchy data[END_REF][START_REF] Krupchyk | Inverse problems with partial data for a magnetic Schrödinger operator in an infinite slab and on a bounded domain[END_REF][START_REF] Krupchyk | Uniqueness in an inverse boundary problem for a magnetic Schrodinger operator with a bounded magnetic potential[END_REF][START_REF] Nakamura | Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field[END_REF][START_REF] Salo | Inverse problems for nonsmooth first order perturbations of the Laplacian[END_REF][START_REF] Sun | An inverse boundary value problem for the Schrödinger operator with vector potentials[END_REF]. Nevertheless, in contrast to the complex geometric optics solutions of [START_REF] Sylvester | A global uniqueness theorem for an inverse boundary value problem[END_REF], the large parameter of the ansatzs (3.14), that will be send to +∞ for the uniqueness result, is given by Iλ where the parameter λ appears explicitly in (3.13). This makes it possible to construct ansatzs bounded with respect to the large parameter and to use the resolvent (H j -λ) -1 , j = 1, 2, for the construction of a remainder term that admits a decay with respect to the large parameter Iλ. Moreover, in contrast to the geometric optics solutions of [START_REF] Sylvester | A global uniqueness theorem for an inverse boundary value problem[END_REF], whose principal parts take the form (3.14) when ζ j • ζ j = 0, our construction is not restricted to dimension n 3. Indeed, the vector ζ j , j = 1, 2, that we consider in the present paper are subjected only to the condition (3.29), already considered by [START_REF] Isozaki | Some remarks on the multi-dimensional Borg-Levinson theorem[END_REF], which requires only the two orthogonal vectors η and ξ appearing in (3.28). For this reason, in contrast to the construction of [START_REF] Sylvester | A global uniqueness theorem for an inverse boundary value problem[END_REF], that requires three orthogonal vectors, our construction works also for n = 2.

From now on, our goal is to derive from (3.18)-(3.19) two formulas from some asymptotic properties of S 1 -S 2 as τ → +∞. For this purpose we need the following intermediate result which follows from (3.31) and (3.32). Lemma 3.3. Let the condition introduced above be fulfilled. Then, we have

sup τ >|ξ|+1 b 2 L ∞ (R n ) < ∞ (3.33) and lim τ →+∞ b 2 (x) = b(x), lim τ →+∞ ψ 1 (x) -ψ 2 (x) = ψ(x), x ∈ R n . (3.34) Proof. Note first that b 2 (x) = -iω • y -i R η 2 • y • ∇A (x + sη 2 )ds exp -i R η 2 • A (x + sη 2 )ds . ( 3.35) 
On the other hand, we have |ω| 1+|ξ| and, since Ã2 -Ã1 is compactly supported and Ã2

-Ã1 ∈ C 1 0 (R n , R n ), we find y • ∇A = χ δ * y • ∇( Ã2 -Ã1 ) . Therefore, we obtain b 2 L ∞ (R n ) 1 + |ξ| + C χ δ L 1 (R n ) y • ∇( Ã2 -Ã1 ) L ∞ (R n ,R n ) 1 + |ξ| + CM with C a generic constant depending only on Ω and M max j=1,2 Ãj W 1,∞ (R n ) .
From this last estimate we deduce (3.33). Now let us prove (3.34). Since Ã1 and Ã2 coincide outside of Ω, we have Ã2 -Ã1 = A. Therefore, we deduce that A = χ δ * A and

|y • ∇A (x + sη 2 ) -y • ∇A(x + sη)| |y • ∇A (x + sη 2 ) -y • ∇A (x + sη)|+|y • ∇A (x + sη) -y • ∇A(x + sη)| . (3.
36) The second term on the right hand side of this estimate can be rewritten as

y • ∇A (x + sη) -y • ∇A(x + sη) = χ δ * [y • ∇A](x + sη) -y • ∇A(x + sη) and since A ∈ C 1 0 (R n ), we get lim τ →+∞ y • ∇A (x + sη) -y • ∇A(x + sη) = 0, x ∈ R n , s ∈ R. (3.37) 
For the first term on the right hand side of (3.36), using the fact that for τ sufficiently large we have

η 2 = η + ξ 2τ + o τ →+∞ 1 τ
and applying (3.32), we get

|y • ∇A (x + sη 2 ) -y • ∇A (x + sη)| A W 2,∞ (R n ) |s(η -η 1 )| C |s| τ -2
with C depending on ξ, Ω, Ã1 and Ã2 . In view of this estimate we have lim

τ →+∞ y • ∇A (x + sη 2 ) -y • ∇A (x + sη) = 0, x ∈ R n , s ∈ R.
Combining this last result with (3.36)-(3.37), we get

lim τ →+∞ y • ∇A (x + sη) = y • ∇A(x + sη), x ∈ R n , s ∈ R.
Then, using the fact that supp(A ) ⊂ Ω + {x ∈ R n : |x| δ} and (3.32), by the dominate convergence theorem we get that lim

τ →+∞ R y • ∇A (x + sη 2 )ds = R y • ∇A(x + sη)ds, x ∈ R n .
Putting this together with (3.35) and the fact that ω → ξ, η 2 → η as τ → +∞, we obtain

lim τ →+∞ b 2 (x) = -iξ • y + -i R η • y • ∇A(x + sη)ds exp -i R η • A(x + sη)ds = b(x), x ∈ R n .
Using similar arguments we deduce that

lim τ →+∞ ψ 1 (x) -ψ 2 (x) = ψ(x) = 0 -∞ η • A(x + sη)ds, x ∈ R n .
This completes the proof of the lemma. 

(H j -λ) -1 B(L 2 (Ω)) = 1 dist(λ, σ(H j )) 1 |Iλ| = 1 2τ , j = 1, 2.
In addition, in light of (3.32), we get

ψ j W 2,∞ (Ω) Cδ = Cτ 1 3 , b j W 2,∞ (Ω) Cδ 2 = Cτ 2 3
with C a generic constant depending on ξ, Ω and Ãj , j = 1, 2. Putting these estimates together with (1.1), (3.18)-(3.19) and (3.31) , we deduce that

S 1 -S 2 √ λ = 2 Ω η 2 • (A 1 -A 2 )e i √ λ(η1-η2)•x b 2 e i(ψ1(x)-ψ2(x)) dx + O τ →+∞ τ -1 3 .
Combining this with (3.29), (3.33)-(3.34) and applying the dominate convergence theorem we deduce (3.38).

Using similar arguments and assuming that the magnetic potentials are known (A 1 = A 2 ), we obtain our second formula involving the electric potentials V 1 , V 2 . Proposition 3.5. Assume that A 1 = A 2 . Fix ξ ∈ R n \ {0} and η ∈ S n-1 such that η • ξ = 0. Let λ, η 1 and η 2 be defined by (3.28) and b 2 = 1. Then, we have

lim τ →+∞ S 1 -S 2 = Ω (V 1 -V 2 )e -iξ•x dx.
(3.39)

Proof. Note that for A 1 = A 2 we have q 11 -V 1 = q 21 -V 2 , q 12 = q 22 , A 1, = A 2, . Therefore, we deduce that (3.18)- (3.19) imply

S 1 -S 2 = Ω (V 1 -V 2 )e i √ λ(η1-η2)•x e i(ψ1(x)-ψ2(x)) dx - Ω λ (H 1 -λ) -1 -(H 2 -λ) -1 Q 1 Q 2 dx - Ω √ λ(H 1 -λ) -1 Q 1 V 1 e -i √ λη2•x e -iψ2 dx - Ω √ λ(H 1 -λ) -1 V 1 Φ 1 Q 2 dx - Ω (H 1 -λ) -1 V 1 Φ 1 V 1 e -i √ λη2•x e -iψ2 dx + Ω √ λ(H 2 -λ) -1 Q 1 V 2 e -i √ λη2•x e -iψ2 dx + Ω √ λ(H 2 -λ) -1 V 2 Φ 1 Q 2 dx + Ω (H 2 -λ) -1 V 2 Φ 1 V 2 e -i √ λη2•x e -iψ2 dx, (3.40) 
where

Q 1 = 2η 1 • (A 1 -A 1, )Φ 1 + (q 11 -V 1 )Φ 1 √ λ , Q 2 = 2η 2 • (A 1 -A 1, ) - q 12 √ λ e -i √ λη2•x e -iψ2 .
On the other hand, since

H 2 -λ = H 1 -λ -(V 1 -V 2 )
, for τ sufficiently large we have

(H 1 -λ) -1 -(H 2 -λ) -1 = (H 1 -λ) -1 Id -Id -(V 1 -V 2 )(H 1 -λ) -1 -1 = -(H 1 -λ) -1 ∞ k=1 (V 1 -V 2 )(H 1 -λ) -1 k .
Combining this with the fact that Iλ = 2τ , |λ| |τ 2 -1| + 2τ , and the fact that

(H 1 -λ) -1 B(L 2 (Ω)) + (V 1 -V 2 )(H 1 -λ) -1 B(L 2 (Ω)) C |Iλ| = C 2τ
with C depending only on V 1 , V 2 and Ω, we deduce that sup 

τ >|ξ|+1 λ (H 1 -λ) -1 -(H 2 -λ) -1 B(L 2 (Ω)) < ∞. ( 3 
τ →+∞ Q 1 L ∞ (Ω) = lim τ →+∞ Q 2 L ∞ (Ω) = 0.
Putting this result together with (3.29), (3.40)-(3.41), we obtain lim sup

τ →+∞ (S 1 -S 2 ) - Ω (V 1 -V 2 )e i √ λ(η1-η2)•x e i(ψ1(x)-ψ2(x)) dx = 0.
On the other hand, repeating the arguments of Lemma 3.3, we find

lim τ →+∞ ψ 1 (x) -ψ 2 (x) = ψ(x) = 0 -∞ η • A(x + sη)ds = 0 since A 1 = A 2 .
Thus, applying the dominate convergence theorem we obtain lim

τ →+∞ Ω (V 1 -V 2 )e i √ λ(η1-η2)•x e i(ψ1(x)-ψ2(x)) dx = Ω (V 1 -V 2 )e -ix•ξ dx
and we deduce (3.39).

Armed with formulas (3.38)-(3.39), in the next section we will complete the proof of Theorem 1.1.

Proof of the main result

This section is devoted to the proof of our main result. In all this section, for j = 1 and j = 2, we consider two magnetic potentials A j and electric potentials V j satisfying the assumptions of Theorem 1.1 and we denote by H j the associated operators defined by (2.3) for A = A j and V = V j . Let (λ j,k , ϕ j,k ) k 1 be a sequence of eigenvalues and eigenfunctions of H j . In order to prove Theorem 1.1, in light of (3.38)-(3.39), we prove first that the condition

lim τ →+∞ S 1 (λ(τ ), η 1 (τ ), η 2 (τ )) -S 2 (λ(τ ), η 1 (τ ), η 2 (τ )) λ(τ ) = 0 (4.42)
implies dA 1 = dA 2 . Then, we show that for 

A 1 = A 2 the condition lim τ →+∞ S 1 (λ(τ ), η 1 (τ ), η 2 (τ )) -S 2 (λ(τ ), η 1 (τ ), η 2 (τ )) = 0 (4.43) implies V 1 = V 2 .
∈ R n \ {0}, η ∈ S n-1 , satisfying η • ξ = 0, we get Ω η • (A 2 -A 1 )e -iξ•x b(x)e iψ(x) dx = 0.
Here b takes the form

b(x) = e ix•ξ y • ∇ exp -i R η • A(x + sη)ds e -ix•ξ
with y ∈ S n-1 ∩ η ⊥ . Then, applying Fubini's theorem, we obtain

0 = R n η • A(x)e -iξ•x b(x)e iψ(x) dx = η ⊥ R η • A(x + tη)e iψ(x +tη) b(x )e -iξ•x dtdx .
Here we use the fact that b(x) = b(x -(x • η)η) and ξ • η = 0. On the other hand, for all x ∈ η ⊥ and t ∈ R, we have

η • A(x + tη)e iψ(x +tη) = η • A(x + tη) exp i t -∞ η • A(x + sη)ds = -i∂ t exp i t -∞ η • A(x + sη)ds .
Therefore, we find

R n η • A(x)e -iξ•x b(x)e iψ(x) dx = -i η ⊥ R ∂ t exp i t -∞ η • A(x + sη)ds dt b(x )e -iξ•x dx = -i η ⊥ exp i R η • A(x + sη)ds -1 b(x )e -iξ•x dx . It follows η ⊥ exp i R η • A(x + sη)ds -1 b(x )e -iξ•x dx = 0. ( 4 

.44)

We fix i, j ∈ {1, . . . , n} such that i < j and we assume that ξ ∈ {ξ = (ξ 1 , . . . , ξ n ) :

ξ i = 0}. We can choose η = ξj ei-ξiej √ ξ 2 i +ξ 2 j and y = ξiei+ξj ej √ ξ 2 i +ξ 2 j ∈ η ⊥ .
Here (e 1 , . . . , e n ) is the canonical basis of R n defined by e 1 = (1, 0, . . . , 0), . . . , e n = (0, . . . , 0, 1). Then, (4.44) implies

η ⊥ exp i R η • A(x + sη)ds -1 y • ∇ exp -i R η • A(x + sη)ds e -ix •ξ dx = 0.
Integrating by parts we get -i

ξ 2 i + ξ 2 j • R n (ξ j y • ∇a i (x) -ξ i y • ∇a j (x))e -ix•ξ dx = -i η ⊥ R η • y • ∇A(x + sη)ds e -ix •ξ dx = 0
with A = (a 1 , . . . , a n ). Integrating again by parts, we find

R n (ξ j a i -ξ i a j )e -ix•ξ dx = y • ξ ξ 2 i + ξ 2 j R n (ξ j a i -ξ i a j )e -ix•ξ dx = -i ξ 2 i + ξ 2 j • R n (ξ j y • ∇a i (x) -ξ i y • ∇a j (x))e -ix•ξ dx = 0
and it follows that for all ξ ∈ {ξ = (ξ 1 , . . . , ξ n ) : 

ξ i = 0} we have F[∂ xj a i -∂ xi a j ](ξ) = 0. On the other hand, since ∂ xj a i -∂ xi a j is compactly supported, F(∂ xj a i -∂ xi a j )(ξ) is continuous in ξ ∈ R n and it follows F(∂ xj a i -∂ xi a j ) = 0 on R n .
V 1 = V 2 .
Proof. Fix ξ ∈ R n \ {0} and choose η ∈ S n-1 ∩ ξ ⊥ . Fix also b = 1. Thus, combining (3.39) and (4.43), we find

R n V (x)e -ix•ξ dx = 0 with V = V 1 -V 2 extended by 0 outside of Ω. It follows that V 1 = V 2 .
According to Lemma 4.1, 4.2, the proof of Theorem 1.1 will be completed if we show that conditions (1.2) imply conditions (4.42), (4.43). For this purpose, we adapt the approach of [START_REF] Kavian | Uniqueness and stability results for an inverse spectral problem in a periodic waveguide[END_REF] to magnetic Schrödinger operators. Let f ∈ H 1 2 (Γ) being fixed, with the notations of Lemmas 2.1 and 2.3, we denote by v j,λ,µ := u j,λ -u j,µ the solution of (2.10) where V is replaced by V j and A by A j . We fix also h j,k := ∂ ν ϕ j,k |Γ α j,k := f, h j,k . Recalling that in Lemma 2.4 we have set z µ = u 1,µ -u 2,µ , in a similar way to [START_REF] Kavian | Uniqueness and stability results for an inverse spectral problem in a periodic waveguide[END_REF], writing the above identity for j = 1 and j = 2, applying (1.1) and then subtracting the resulting equations, we end up with a new relation, namely

(∂ ν + iA 1 • ν)u 1,λ |Γ -(∂ ν + iA 2 • ν)u 2,λ |Γ = i(A 1 -A 2 ) • νf + ∂ ν u 1,λ -∂ ν u 2,λ = ∂ ν z µ + ∂ ν v 1,λ,µ -∂ ν v 2,λ,µ . (4.45) Now let us set F j (λ, µ, f ) := ∂ ν v j,λ,µ |Γ , j = 1, 2.
According to (2.9), we have

F (λ, µ, f ) := F 1 (λ, µ, f ) -F 2 (λ, µ, f ) = +∞ k=1 (µ -λ)α 1,k (λ -λ 1,k )(µ -λ 1,k ) h 1,k - (µ -λ)α 2,k (λ -λ 2,k )(µ -λ 2,k ) h 2,k . (4.46)
Consider the following intermediate results. Proof. We start with the first estimate of (4.47) for j = 1. According to Lemma 2.1 the solution u 1,λ of (2.4) for f = Φ 1 , A = A 1 and V = V 1 , is given by

u 1,λ = ∞ k=1 Φ 1 , h 1,k λ -λ 1,k ϕ 1,k .
Therefore, we have

u 1,λ 2 L 2 (Ω) = ∞ k=1 Φ 1 , h 1,k λ 1,k -λ 2 .
(4.48)

On the other hand, in view of (3.20), we have

u 1,λ L 2 (Ω) Φ 1 L 2 (Ω) + √ λ(H 1 -λ) -1 2η 1 • (A 1 -A 1, ) + q 11 √ λ L 2 (Ω) .
Here q 11 is the expression introduced in Lemma 3. 

η 1 • (A 1 -A 1, ) L ∞ (Ω) = lim τ →+∞ q 11 √ λ L ∞ (Ω) = 0
we deduce the first estimate of (4.47) for j = 1. In a same way, for j = 2 using the fact that according to (3.32) we have

(-i∇ + A 2 ) 2 Φ 1 + V 2 Φ 1 -λΦ 1 = O τ →+∞ (τ ) 
and repeating our previous arguments we deduce the first estimate (4.47) for j = 2. For the second estimate of (4.47), repeating the previous arguments we find

(-i∇ + A 2 ) 2 Φ 2 + V 2 Φ 2 -λ Φ 2 = (i∇ + A 2 ) 2 Φ 2 + V 2 Φ 2 -λΦ 2 = O τ →+∞ (τ ).
Combining this estimate with the fact that Φ 2 , h 2,k λ 2,k -λ = Φ 2 , h 2,k λ 2,k -λ since λ 2,k ∈ R, we deduce the second estimate of (4.47) by repeating the above arguments.

From now on we set G(λ, µ, Φ 1 , Φ 2 ) := F (λ, µ, Φ 1 ), Φ 2

= +∞ k=1 (µ -λ) Φ 1 , h 1,k h 1,k , Φ 2 (λ -λ 1,k )(µ -λ 1,k ) - Φ 1 , h 2,k h 2,k , Φ 2 (λ -λ 2,k )(µ -λ 2,k ) .
Combining estimates (4.47) with Lemma 4.3, 4.4, 4.5 of [START_REF] Kavian | Uniqueness and stability results for an inverse spectral problem in a periodic waveguide[END_REF], we obtain the following. 
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Applying ( 3 .Proposition 3 . 4 .= 2 Ωη • (A 1 - 1 2L 2 √ λη2•x 2 L 2

 334211222 [START_REF] Krupchyk | Uniqueness in an inverse boundary problem for a magnetic Schrodinger operator with a bounded magnetic potential[END_REF])-(3.19),(3.31)-(3.34) and sending τ → +∞, we obtain our first formula involving the magnetic potentials A 1 , A 2 . Fix ξ ∈ R n \ {0} and η ∈ S n-1 such that η • ξ = 0. Let λ, η 1 and η 2 be defined by (3.28) and let b 2 be defined by(3.30). Then, we havelim τ →+∞ S 1 -S 2 √ λ A 2 )e -iξ•x be iψ(x) dx. (3.38) Proof. With reference to (3.16) and (3.28) we have |Φ 1 (x)| = e -η1•x and e -i √ λη2•x = e η2•x for all x ∈ Ω, hence Φ (Ω) = Ω e -2η1•x dx |Ω|e 2|Ω| and e -i (Ω) |Ω|e 2|Ω| since |η 1 | = |η 2 | = 1. Moreover, in view of (3.28), we have the estimate

  .41) In addition, (3.31)-(3.32) imply lim

Lemma 4 . 3 . 2 < ∞, sup τ >1 ∞ k=1 Φ 2 2 <

 432k=122 Let η 1 , η 2 , λ be given by(3.28). Consider Φ j , j = 1, 2, with Φ 1 introduced in the previous section andΦ 2 = e -i √ λη2•x b 2 e -iψ2, where b 2 is defined by(3.30) or b 2 = 1. Then, we have sup τ >1 ∞ k=1 Φ 1 , h j,k λ j,k -λ , h 2,k λ 2,k -λ ∞, j = 1, 2.(4.47)
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 441111222 Let the conditions of Theorem 1.1 be fulfilled and let η 1 , η 2 , λ be given by(3.28). Then, G(λ, µ, Φ 1 , Φ 2 ) converge to G * (λ, Φ 1 , Φ 2 ) as µ → -∞ and G * (λ, Φ 1 , Φ 2 ) converge to 0 as τ → +∞. Here we consider both the case b 2 given by (3.30) and the case b 2 = 1.Armed with Lemma 4.4, we are now in position to complete the proof of Theorem 1.Proof Note first that according (4.45), forM = V 1 L ∞ (Ω) + V 2 L ∞ (Ω) , we have S 1 (λ, η 1 , η 2 ) -S 2 (λ, η 1 , η 2 ) = ∂ ν z µ , e i √ λη2•x b 2 e iψ2 + G(λ, µ, Φ 1 , Φ 2 ), µ ∈ (-∞, -M ),where λ, η 1 , η 2 are fixed by(3.28), b 2 is given by (3.30) or b 2 = 1 and z µ = u 1,µ -u 2,µ with u j,µ , j = 1, 2, the solution of (2.10) where λ is replaced by µ, V by V j , A by A j and f by Φ 1 . In view of Lemma 2.4 and Lemma 4.4, sending µ → -∞ we getS 1 (λ, η 1 , η 2 ) -S 2 (λ, η 1 , η 2 ) = G * (λ, Φ 1 , Φ 2 ).Then, in view of Lemma 4.4, conditions (4.42) and (4.43) are fulfilled and according to Lemma 4.1 we have dA 1 = dA 2 . Therefore, condition (1.1) implies that for A = A 2 -A 1 extended by 0 outside of Ω we have dA = 0 on R n . Thus, there exists p ∈ W 2,∞ (R n ) given byp(x) = • A(tx)dt such that A = ∇p on R n . Since R n \ Ωis connected, applying the fact that A = 0 on R n \ Ω, upon eventually subtracting a constant we may assume that p |R n \Ω = 0 which implies that p |Γ = 0. Now let us consider the operator H 3 = (-i∇ + A 1 ) + V 2 acting on L 2 (Ω) with Dirichlet boundary condition and let (λ 3,k , ϕ 3,k ) k 1 be a sequence of eigenvalues and eigenfunctions ofH 3 . Since A 1 = A 2 -∇p one can check that H 3 = e ip H 2 e -ip .From this identity we deduce that λ 3,k = λ 2,k , k 1. Moreover, for all k 1 we can choose ϕ 3,k = e ip ϕ 2,k and deduce that the condition∂ ν ϕ 3,k = ∂ ν ϕ 2,k , k 1 is also fulfilled. Thus, conditions (1.2) imply that lim k→+∞ |λ 1,k -λ 3,k | = 0 and +∞ k=1 ∂ ν ϕ 1,k -∂ ν ϕ 3,k (Γ) < ∞.Then, repeating the arguments of Lemma 4.4 we obtainlim τ →+∞ S1 (λ(τ ), η 1 (τ ), η 2 (τ )) -S3 (λ(τ ), η 1 (τ ), η 2 (τ )) = 0, where Sj (λ, η 1 , η 2 ) = Λ j,λ Φ 1 , e i √ λη2•x e i ψ2 , j = 1A 1, (x + (s -x • η 2 )η 2 )ds, b 2 = 1 and Λ 3,λ the Dirichlet-to-Neumann map associated to problem (2.4) for A = A 1 and V = V 2 . Then, in view of Lemma 4.2 we have V 1 = V 2 . This completes the proof of Theorem 1.1.

  +∞). According to [13, Theorem 2.2.2.3], we can show that D(H) embedded continuously into H 2 (Ω). Therefore the eigenfunctions (ϕ k ) k 1 of H, that form an Hilbertian basis, are lying in H 2 (Ω) and we have ∂ ν ϕ k|Γ ∈ H 1/2 (Γ).

  Finally, we complete the proof by proving that condition (1.1)-(1.2) imply (4.42)-(4.43). We start by proving that (4.42) implies dA 1 = dA 2 .

Lemma 4.1. Let η 1 (τ ), η 2 (τ ) and λ(τ ) be fixed by (3.28) and b 2 be defined by (3.30). Assume that (4.42) is fulfilled. Then, we have dA 1 = dA 2 . Proof. Combining (4.42) with (3.38) we deduce that for all ξ

  From this last result, we deduce that∂ xj i -∂ xi a j = 0 which implies that dA 1 = dA 2 . Now assuming that A 1 = A 2 , we show in the next lemma that (4.43) implies V 1 = V 2 .

Lemma 4.2. Let η 1 (τ ), η 2 (τ ) and λ(τ ) be fixed by (3.28) and b 2 = 1. Assume that A 1 = A 2 and (4.43) is fulfilled. Then, we have

  1. Combining this with the fact that√ λ(H 1 -λ) -1 B(L 2 (Ω))

	|τ + i| |Iλ|	=	|τ + i| 2τ	1
	and the fact that, according to (3.31)-(3.32), we have			
	lim τ →+∞			

This argument was inspired by the Born approximation method of the scattering theory.
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