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A MULTIDIMENSIONAL BORG-LEVINSON THEOREM FOR MAGNETIC
SCHRÖDINGER OPERATORS WITH PARTIAL SPECTRAL DATA

YAVAR KIAN

Abstract. We consider the multidimensional Borg-Levinson theorem of determining both the magnetic
field dA and the electric potential V , appearing in the Dirichlet realization of the magnetic Schrödinger
operator H = (−i∇ + A)2 + V on a bounded domain Ω ⊂ Rn, n > 2, from partial knowledge of the
boundary spectral data of H. The full boundary spectral data are given by the set {(λk, ∂νϕk|∂Ω) : k > 1},
where {λk : k ∈ N∗} is the non-decreasing sequence of eigenvalues of H, {ϕk : k ∈ N∗} an associated
Hilbertian basis of eigenfunctions and ν is the unit outward normal vector to ∂Ω. We prove that some
asymptotic knowledge of (λk, ∂νϕk|∂Ω) with respect to k > 1 determines uniquely the magnetic field dA

and the electric potential V .

Keywords: Inverse spectral problem, Borg-Levinson theorem, magnetic Schrödinger operators.
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1. Introduction

1.1. Statement of the problem. We consider Ω ⊂ Rn, n > 2, a C1,1 bounded and connected domain such
that Rn \ Ω is also connected. We set Γ = ∂Ω. Let A ∈ W 1,∞(Ω,Rn), V ∈ L∞(Ω,R) and consider the
magnetic Schrödinger operator H = (−i∇ + A)2 + V acting on L2(Ω) with domain D(H) = {v ∈ H1

0 (Ω) :
(−i∇+A)2v ∈ L2(Ω)}.

Let Aj ∈ W 1,∞(Ω,Rn), Vj ∈ L∞(Ω,R), j = 1, 2, and consider the magnetic Schrödinger operators
Hj = H for A = Aj and V = Vj , j = 1, 2. We say that H1 and H2 are gauge equivalent if there exists
p ∈W 2,∞(Ω,R) ∩H1

0 (Ω) such that H2 = e−ipH1e
ip.

It is well known that H is a selfadjoint operator. By the compactness of the embedding H1
0 (Ω) ↪→ L2(Ω),

the spectrum of H is purely discrete. We note {λk : k ∈ N∗} the non-decreasing sequence of eigenvalues of
H and {ϕk : k ∈ N∗} an associated Hilbertian basis of eigenfunctions. In the present paper we consider the
Borg-Levinson inverse spectral problem of determining uniquely H, modulo gauge equivalence, from partial
knowledge of the boundary spectral data {(λk, ∂νϕk|Γ) : k ∈ N∗} with ν the outward unit normal vector
to Γ. Namely, we prove that some asymptotic knowledge of (λk, ∂νϕk|Γ) with respect to k ∈ N∗ determines
uniquely the operator H modulo gauge transformation.

1.2. Borg-Levinson inverse spectral problems. It is Ambartsumian who first investigated in 1929 the
inverse spectral problem of determining the real potential V appearing in the Schrödinger operator H =
−∆ + V , acting in L2(Ω), from partial spectral data of H. For Ω = (0, 1), he proved in [1] that V = 0 if
the spectrum of the Neumann realization of H equals {k2 : k ∈ N}. For the same operator, but endowed
with homogeneous Dirichlet boundary conditions, Borg [6] and Levinson [19] established that the Dirichlet
spectrum {λk : k ∈ N∗} does not uniquely determine V . They showed that additional spectral data, namely
{‖ϕk‖L2(0,1) : k ∈ N∗}, where {ϕk : k ∈ N∗} is an L2(0, 1)-orthogonal basis of eigenfunctions of H obeying
the condition ϕ′k(0) = 1, is needed. Gel’fand and Levitan proved in [12] that uniqueness is still valid upon
substituting the terminal velocity ϕ′k(1) for ‖ϕk‖L2(0,1) in the one-dimensional Borg and Levinson theorem.
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In 1988, Nachman, Sylvester, Uhlmann [22] and Novikov [25] proposed a multidimensional formulation
of the result of Borg and Levinson. Namely, they proved that the boundary spectral data {(λk, ∂νϕk|∂Ω) :
k ∈ N∗}, where ν denotes the outward unit normal vector to ∂Ω and (λk, ϕk) is the kth eigenpair of
−∆ + V , determines uniquely the Dirichlet realization of the operator −∆ + V . The initial formulation
of the multidimensional Borg-Levinson theorem by [22] and [25] has been improved in several ways by
various authors. Isozaki [14] (see also [9]) extended the result of [22] when finitely many eigenpairs remain
unknown, and, recently, Choulli and Stefanov [10] claimed uniqueness in the determination of V from the
asymptotic behavior of (λk, ∂νϕk|Γ) with respect to k. Moreover, Canuto and Kavian [7, 8] considered the
determination of the conductivity c, the electric potential V and the weight ρ from the boundary spectral
data of the operator ρ−1(−div(c∇·)+V ) acting on the weighted space L2

ρ(Ω) endowed with either Dirichlet or
Neumann boundary conditions. Namely, [7, 8] proved that the boundary spectral data of ρ−1(−div(c∇·)+V )
determines uniquely two of the three coefficients c, V and ρ. The case of magnetic Schrödinger operator has
been treated by [27] who determined both the magnetic field dA and the electric potential V of the operator
H = (−i∇+A)2 + V . Here the 2-form dA of a vector valued function A = (a1, . . . , an) is defined by

dA =
∑
i<j

(∂xjai − ∂xiaj)dxj ∧ dxi.

All the above mentioned results were obtained with Ω bounded and operators of purely discrete spectral
type. In some recent work [16] examined a Borg-Levinson inverse problem stated in an infinite cylindrical
waveguide for Schrödinger operators with purely absolutely continuous spectral type. More precisely, [16]
proved that a real potential V which is 2π-periodic along the axis of the waveguide is uniquely determined
by some asymptotic knowledge of the boundary Floquet spectral data of the Schrödinger operator −∆ + V
with Dirichlet boundary conditions.

Finally, let us mention for the sake of completeness that the stability issue in the context of Borg-
Levinson inverse problems was examined in [4, 5, 9, 10, 16] and that [2, 5, 15] established related results
on Riemannian manifolds. We also precise that [21, 28, 29] have proved stability estimates in the recovery
of coefficients from the hyperbolic Dirichlet-to-Neumann map which is equivalent to the determination of
general Schrödinger operators from boundary spectral data.

1.3. Main result. Let Aj ∈W 1,∞(Ω,Rn), Vj ∈ L∞(Ω,R) and consider the magnetic Schrödinger operators
Hj = H for A = Aj and V = Vj , j = 1, 2. Further we note (λj,k, ϕj,k), k > 1, the kth eigenpair of Hj , for
j = 1, 2. Our main result can be stated as follows.
Theorem 1.1. We fix Ω1 an arbitrary open neighborhood of Γ in Ω (Γ ⊂ Ω1 and Ω1 ( Ω). For j = 1, 2, let
Vj ∈ L∞(Ω,R) and let Aj ∈ C1(Ω,Rn) fulfill

A1(x) = A2(x), x ∈ Ω1. (1.1)
Assume that the conditions

lim
k→+∞

|λ1,k − λ2,k| = 0,
+∞∑
k=1
‖∂νϕ1,k − ∂νϕ2,k‖2L2(Γ) <∞ (1.2)

hold simultaneously. Then, we have dA1 = dA2 and V1 = V2.
Note that condition (1.1) corresponds to the knowledge of the magnetic potential on a neighborhood of

the boundary.
Let us observe that, as mentioned by [10, 16], Theorem 1.1 can be considered as a uniqueness theorem

under the assumption that the spectral data are asymptotically "very close". Conditions (1.2) are similar to
the one considered by [16] and they are weaker than the requirement that

|λ1,k − λ2,k| 6 Ck−α, ‖∂νϕ1,k − ∂νϕ2,k‖L2(Γ) 6 Ck
−β

for some α > 1 and β > 1− 1
2n , considered in [10, Theorem 2.1]. Note also that conditions (1.2) are weaker

than the knowledge of the boundary spectral data with a finite number of data missing considered by [14].
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Let us remark that there is an obstruction to uniqueness given by the gauge invariance of boundary
spectral data for magnetic Shrödinger operators. More precisely, let p ∈ C∞0 (Ω \ Ω1) \ {0} and assume that
A1 = ∇p + A2 6= A2, V1 = V2. Then, we have H1 = e−ipH2e

ip and one can check that we can choose the
spectral data of H1 and H2 in such a way that the conditions

∂νϕ1,k|Γ = ∂νϕ2,k|Γ, λ1,k = λ2,k, k ∈ N∗

are fulfilled. Therefore, conditions (1.1)-(1.2) are fulfilled but H1 6= H2. Nevertheless, assuming (1.1)
fulfilled, the conditions dA1 = dA2 and V1 = V2 imply that H1 and H2 are gauge equivalent. Therefore,
Theorem 1.1 is equivalent to the unique determination of magnetic Schrödinger operators modulo gauge
transformation from the asymptotic knowledge of the boundary spectral data given by conditions (1.2).

We stress out that the problem under examination in this text is a Borg-Levinson inverse problem
for the magnetic Schrödinger operator H = (−i∇ + A)2 + V . To our best knowledge, there are only
two multi-dimensional Borg-Levinson uniqueness result for magnetic Schrödinger operators available in the
mathematical literature, [15, Theorem B] and [27, Theorem 3.2] (we refer also to [24] for related inverse
scattering results). In [15], the authors considered general magnetic Schrödinger operators with smooth
coefficients on a smooth connected Riemannian manifold and they proved unique determination of these
operators modulo gauge invariance from the knowledge of the boundary spectral data with a missing finite
number of data. In [27], Serov treated this problem on a bounded domain of Rn, and he proved that, for
A ∈ W 1,∞(Ω,Rn) and V ∈ L∞(Ω,R), the full boundary spectral data {(λk, ∂νϕk|Γ) : k ∈ N∗} determines
uniquely dA and V . In contrast to [15, 27], in the present paper we prove that the asymptotic knowledge
of the boundary spectral data, given by the conditions (1.2), is sufficient for the unique determination of
dA and V . To our best knowledge, conditions (1.2) are the weakest conditions on boundary spectral data
that guaranty uniqueness of magnetic Schrödinger operators modulo gauge transformation. Moreover, our
uniqueness result is stated with conditions similar to [16, Theorem 1.4], which seems to be the most precise
Borg-Levinson uniqueness result so far for Schrödinger operators without magnetic potential (A = 0).

An important ingredient in our analysis is a suitable representation that allows to express the magnetic
potential A and the electric potential V in terms of Dirichlet-to-Neumann map associated to the equations
(−i∇+ A)2u+ V u− λu = 0 for some λ ∈ C. In [14] Isozaki applied a similar approach to the Schrödinger
operator −∆ + V with Dirichlet boundary condition1 and [10, 16] applied the representation formulas of
[14]. Inspired by the construction of complex geometric optics solutions of [3, 11, 17, 18, 23, 26, 30] we prove
that the approach of [10, 14, 16] can be extended to magnetic Schrödinger operators. More precisely, we
derive two representation formulas that allow to recover both the magnetic field and the electric potential of
magnetic Schrödinger operators which means recovery of both coefficients of order one and zero in contrast
to [10, 14, 16] where only determination of coefficients of order zero is considered. This paper is the first
where the extension of the approach developed by [14] to more general coefficients than coefficients of order
zero is considered. Note also that our approach make it possible to prove this extension without imposing
important assumptions of regularity of the admissible coefficients.

We believe that the approach developed in the present paper can be used for results of stability in the
determination of the magnetic field dA and the electric potential V similar to [16, Theorem 1.3]. Indeed,
following the strategy set in this paper we expect a stability estimate associated to the the determination of
the magnetic field dA. The main issue comes from the stability in the determination of the electric potential
V . Nevertheless, we believe that this problem can be solved by adapting suitably the argument developed
in [32] related to the inversion of the d operator on differential forms restricted to the right subspaces.

1.4. Outline. This paper is organized as follows. In Section 2 we consider some useful preliminary results
concerning solutions of equations of the form (−i∇+A)2u+V u−λu = 0 for some λ ∈ C \σ(H). In Section
3 we introduce two representation formulas making the connection between the Dirichlet-Neumann map
associated with the previous equations and the couple (A, V ) of magnetic and electric potential. Finally, in
section 4 we combine all these results and we prove Theorem 1.1.

1This argument was inspired by the Born approximation method of the scattering theory.
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2. Notations and preliminary results

In this section we introduce some notations and we give some properties of solution of the equation
(−i∇+A)2u+ V u− λu = 0. We denote by 〈f, ψ〉 the duality between ψ ∈ H1/2(Γ) and f belonging to the
dual H−1/2(Γ) of H1/2(Γ). However, when in 〈f, ψ〉 both f and ψ belong to L2(Γ), to make things simpler
〈·, ·〉 can be interpreted as the scalar product of L2(Γ), namely

〈f, ψ〉 =
∫

Γ
f(x)ψ(x) dσ(x).

We introduce the operator H defined as

Hu := (−i∇+A)2u+ V u, u ∈ D(H) :=
{
ψ ∈ H1

0 (Ω) ; (−i∇+A)2ψ ∈ L2(Ω)
}
. (2.3)

Recall that H is associated to the quadratic form b given by

b(u, v) =
∫

Ω
(−i∇+A)u(x) · (−i∇+A)v(x) dx+

∫
Ω
V (x)u(x)v(x) dx, u, v ∈ H1

0 (Ω).

Moreover, the spectrum of H is discrete and composed of the non-decreasing sequence of eigenvalues denoted
by σ(H) = {λk ; k > 1}. If we write V = V + − V −, with V ± := max(0,±V ), we have that the spectrum
σ(H) ofH is contained into [−‖V −‖L∞(Ω),+∞). According to [13, Theorem 2.2.2.3], we can show thatD(H)
embedded continuously into H2(Ω). Therefore the eigenfunctions (ϕk)k>1 of H, that form an Hilbertian
basis, are lying in H2(Ω) and we have ∂νϕk|Γ ∈ H1/2(Γ).

From now on, we fix f ∈ H1/2(Γ) and λ ∈ C \ σ(H) and we consider the problem{
(−i∇+A)2u+ V u− λu = 0, in Ω,

u(x) = f(x), x ∈ Γ. (2.4)

We start with two results related to the asymptotic behavior of solutions of (2.4) as λ→ −∞.

Lemma 2.1. For any f ∈ H1/2(Γ) and λ ∈ C \ σ(H), there exists a unique solution u ∈ H1(Ω) to (2.4)
which can be written as

uλ := u =
∑
k>1

αk
λ− λk

ϕk, (2.5)

where for convenience we set
hk := ∂νϕk|Γ, and αk := 〈f, hk〉. (2.6)

Moreover, we have

‖uλ‖2L2(Ω) =
∑
k>1

|αk|2

|λ− λk|2
→ 0 as λ→ −∞.

Proof. Since λ /∈ σ(H), one can easily check that (2.4) admits a unique solution uλ ∈ H1(Ω). Moreover, uλ
can be written in terms of the eigenvalues and eigenfunctions λk, ϕk. Indeed, uλ ∈ L2(Ω) can be expressed
in the Hilbert basis (ϕk)k>1 as

uλ =
∑
k>1

(uλ|ϕk)ϕk

with (·, ·) the scalar product with respect to L2(Ω). Since uλ ∈ H1(Ω) and ∆uλ = −2iA ·∇uλ+(−i div(A)+
|A|2 + V )uλ ∈ L2(Ω), we have ∇uλ ∈ Hdiv(Ω) = {v ∈ L2(Ω;Cn) : div(v) ∈ L2(Ω)}. Thus, taking the scalar
product of the first equation in (2.4) with ϕk and applying the Green formula we obtain

〈f, hk〉 = (λ− λk) (u|ϕk),
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which yields the expression given by (2.5). The fact that ‖uλ‖ → 0 as λ → −∞ is a consequence of the
fact that we may fix c0 > ‖V ‖L∞(Ω) large enough so that if λ is real and such that λ 6 −c0, we have
|λ− λk|2 > |c0 − λk|2 for all k > 1, and thus

|αk|2

|λ− λk|2
6

|αk|2

|c0 − λk|2
,

so that we may apply Lebesgue’s dominated convergence as λ→ −∞. �

Lemma 2.2. For all λ < −‖V ‖L∞(Ω) − 6 ‖A‖2L∞(Ω,Rn), the solution uλ of (2.4) satisfies

‖∇uλ‖L2(Ω\Ω1) 6 C ‖uλ‖L2(Ω1) (2.7)
with C depending only on Ω and Ω1.

Proof. Let us denote by χ ∈ C∞0 (Ω,R) a function satisfying χ = 1 on Ω \ Ω1. Then, since ∇uλ ∈ Hdiv(Ω),
multiplying (2.4) by χ2uλ and applying the Green formula we obtain

0 =
∫

Ω
(−i∇+A)2uλχ

2uλdx+
∫

Ω
(V − λ)χ2 |uλ|2 dx

=
∫

Ω
|χ∇uλ|2dx+ 2

∫
Ω

(χ∇uλ) · ∇χuλdx

+
∫

Ω
[2i(uλχ)A · uλ∇χ+ iχuλA · χ∇uλ + χ∇uλ · iAχuλ]dx+

∫
Ω

(|A|2 + V − λ)χ2 |uλ|2 dx.

(2.8)

Applying the Cauchy-Schwarz inequality we find
‖χ∇uλ‖2L2(Ω) + (−‖A‖2L∞(Ω,Rn) − ‖V ‖L∞(Ω) − λ) ‖χuλ‖2L2(Ω)

6 2 ‖uλ∇χ‖L2(Ω) ‖χ∇uλ‖L2(Ω) + 2 ‖A‖L∞(Ω) ‖χuλ‖L2(Ω) ‖uλ∇χ‖L2(Ω) + 2 ‖A‖L∞(Ω) ‖χuλ‖L2(Ω) ‖χ∇uλ‖L2(Ω)

6 4 ‖uλ∇χ‖2L2(Ω) +
‖χ∇uλ‖2L2(Ω)

4 + ‖A‖2L∞(Ω,Rn) ‖χuλ‖
2
L2(Ω) + ‖uλ∇χ‖2L2(Ω) + 4 ‖A‖2L∞(Ω,Rn) ‖χuλ‖

2
L2(Ω)

+
‖χ∇uλ‖2L2(Ω)

4 .

From this estimate, we deduce
‖χ∇uλ‖2L2(Ω)

2 + (−‖V ‖L∞(Ω) − 6 ‖A‖2L∞(Ω,Rn) − λ) ‖χuλ‖2L2(Ω) 6 5 ‖uλ∇χ‖2L2(Ω) .

Using the fact that λ < −‖V ‖L∞(Ω) − 6 ‖A‖2L∞(Ω,Rn), we obtain

‖∇uλ‖2L2(Ω\Ω1) 6 ‖χ∇uλ‖
2
L2(Ω) 6 10 ‖uλ∇χ‖2L2(Ω) 6 10 ‖∇χ‖2L∞(Ω) ‖uλ‖

2
L2(Ω1) 6 C ‖uλ‖

2
L2(Ω1) .

From this estimate we deduce (2.7).
�

It is clear that the series (2.5) giving uλ in terms of αk, λk and ϕk, converges only in L2(Ω) and thus we
cannot deduce an expression of the normal derivative ∂νuλ in terms of αk, λk and hk. To avoid this difficulty,
in a similar way to [16], we have the following lemma:

Lemma 2.3. Let f ∈ H1/2(Γ) be fixed and for λ, µ ∈ C \ σ(H) let uλ and uµ be the solutions given by
Lemma 2.1. If we set v := vλ,µ := uλ − uµ, then

∂νv =
∑
k>1

(µ− λ)αk
(λ− λk)(µ− λk) hk , (2.9)

the convergence taking place in H1/2(Γ).
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Proof. Let vλ,µ := uλ − uµ; One verifies that vλ,µ solves{
(−i∇+A)2vλ,µ + V vλ,µ − λvλ,µ = (λ− µ)uµ, in Ω,

vλ,µ(x) = 0, x ∈ Γ. (2.10)

Since (uµ|ϕk) = αk/(µ− λk), it follows that

vλ,µ =
∑
k>1

(λ− µ)αk
(λk − λ)(µ− λk) ϕk,

the convergence taking place in D(H). Since the operator v 7→ ∂νv is continuous from D(H) into H1/2(Γ),
the result of the lemma follows. �

The next lemma states essentially that if for j = 1 or j = 2 we have two magnetic potentials Aj , two
electric potentials Vj and uj := uj,µ solutions of{

(−i∇+Aj)2uj + Vjuj − µuj = 0, in Ω,
uj(x) = f(x), x ∈ Γ, (2.11)

then u1,µ and u2,µ are close as µ→ −∞: in some sense the influence of the potentials Aj and Vj are dimmed
when µ→ −∞. More precisely we have:

Lemma 2.4. Let Vj ∈ L∞(Ω,R) and Aj ∈W 1,∞(Ω,Rn) be given for j = 1 or j = 2, and denote by Hj the
corresponding operator defined by (2.3). We assume that condition (1.1) is fulfilled. For f ∈ H1/2(Γ) and
µ ∈ (−∞, µ∗) ⊂ C \ σ(H), let uj,µ := uj be the solution of (2.11). Then zµ := u1,µ− u2,µ ∈ H2(Ω) converge
to 0 in H2(Ω) as µ→ −∞. In particular ∂νzµ → 0 in L2(Γ) as µ→ −∞.

Proof. Since the trace map v 7→ ∂νv is continuous fromH2(Ω) to L2(Γ), it is enough to show that zµ ∈ H2(Ω)
and ‖zµ‖H2(Ω) → 0 when µ → −∞. We fix µ < µ∗ with µ∗ < −‖V ‖L∞(Ω) − 6 ‖A‖2L∞(Ω,Rn) less than the
constants given by Lemma 2.1 for A = Aj , V = Vj , j = 1, 2. Without lost of generality we assume that
Hj − µ∗ is positive, j = 1, 2. One verifies that zµ solves the equation{

(−i∇+A1)2zµ + V1zµ − µzµ = −2i(A2 −A1) · ∇u2,µ + (p2 − p1)u2,µ, in Ω,
zµ(x) = 0, x ∈ Γ (2.12)

with pj = −idiv(Aj) + |Aj |2 + Vj , j = 1, 2. That is, denoting by R1,µ = (H1 − µI)−1 the resolvent of the
operator H1 := (−i∇+A1)2 + V1, we have

zµ = R1,µ(−2i(A2 −A1) · ∇u2,µ + (p2 − p1)u2,µ) =
+∞∑
k=1

(wµ, ϕ1,k)
(λ1,k − µ)ϕ1,k

with wµ = −2i(A2 −A1) · ∇u2,µ + (p2 − p1)u2,µ and (λ1,k)k>1, (ϕ1,k)k>1 respectively the eigenvalues of H1
and an Hilbertian basis of eigenfunctions associated to these eigenvalues. Since wµ ∈ L2(Ω), zµ is lying in
D(H1) and by the same way in H2(Ω). It remains to show that ‖zµ‖H2(Ω) → 0 when µ→ −∞. Since D(H1)
embedded continuously into H2(Ω) there exists a generic constant C depending on A1, V1 and Ω such that

‖zµ‖2H2(Ω) 6 C
∞∑
k=1
|λ1,k − µ∗|2 |(zµ, ϕ1,k)|2 6 C ‖wµ‖L2(Ω) .

On the other hand, condition (1.1) implies

‖wµ‖L2(Ω) 6 C(‖∇u2,µ‖L2(Ω\Ω1) + ‖u2,µ‖L2(Ω))

with C independent of µ. Then, according to Lemma 2.1 and (2.7), we obtain

lim sup
µ→−∞

‖wµ‖L2(Ω) 6 C lim sup
µ→−∞

‖u2,µ‖L2(Ω) = 0.
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Thus, we have
lim sup
µ→−∞

‖zµ‖L2(Γ) 6 C lim sup
µ→−∞

‖zµ‖H2(Ω) 6 C lim sup
µ→−∞

‖wµ‖L2(Ω) = 0.

This completes the proof. �

Armed with these results, we will prove Theorem 1.1 by using some asymptotic properties of solutions
of (2.4) with respect to λ. For this purpose, like in [10, 14, 16] we use representation formulas that will allow
us to make a connection between the boundary spectral data and the potentials A and V .

3. Representation formulas

From now on, for all x = (x1, . . . , xn) ∈ Cn and y = (y1, . . . , yn) ∈ Cn, we denote by x · y the quantity

x · y =
n∑
k=1

xkyk

and for all x ∈ Rn we denote by x⊥ the subspace of Rn defined by {y ∈ Rn : y · x = 0}. Moreover, we set
Aj ∈ C1(Ω,Rn), Vj ∈ L∞(Ω,R), j = 1, 2, and we assume that condition (1.1) is fulfilled. For j = 1, 2 and
λ ∈ C \ R, we associate to the problem{

(−i∇+Aj)2uj + Vjuj − λuj = 0, in Ω,
uj(x) = f(x), x ∈ Γ (3.13)

the Dirichlet-to-Neumann map

Λj,λ : H 1
2 (∂Ω) 3 f 7→ (∂ν + iAj · ν)uj,λ|Γ,

where uj,λ solves (3.13). The goal of this section is to apply the Dirichlet-to-Neumann maps Λj,λ to some
suitable ansatzs associated with (3.13) in order to get two representation formulas involving the magnetic
potentials Aj and the electric potentials Vj , j = 1, 2. A similar approach was developed by [14] and
[10, 16] used the representation of [14]. The idea is to establish the link between the electric and magnetic
potentials and the boundary spectral data by mean of an expression involving the Dirichlet-to-Neumann
maps Λ1,λ, Λ2,λ. We start with two general representation formulas, stated in the next subsection, where
some properties of the ansatzs will not be completely specified. This will allow us to clarify the main goal
of these formulas. Then, in Subsection 3.2 we will introduce the remaining properties of our ansatzs and
establish some asymptotic properties from our representations which will be one of the main points of our
analysis.

3.1. General representation formulas. In this subsection we introduce the first formulation of two rep-
resentation formulas involving respectively the Dirichlet-to-Neumann maps Λ1,λ, Λ2,λ and some ansatzs
associated with problem (3.13). In [14], Isozaki considered such formulas for Schrödinger operators −∆ + V
with an electric potential V , in other words for Schrödinger operators with a variable coefficient of order
zero. In our case we need to extend this strategy to Schrödinger operators with both magnetic and electric
potentials, which means an extension to Schrödinger operators with variable coefficients of order zero and
one. In addition, we need to consider ansatzs that allow to recover both the magnetic field and the electric
potential. Therefore, we consider some ansatzs, associated with (3.13), of the form

Φj,λ(x) = eζj ·xgj(x), ζj ∈ Cn, x ∈ Ω, j = 1, 2 (3.14)

with ζj satisfying ζj · ζj = −λ and with g1 and g2 respectively a solution of

ζ1 · ∇g1 + (iζ1 ·A1,])g1 = 0, ζ2 · ∇g2 − (iζ2 ·A2,])g2 = 0 (3.15)

with Aj,] some smooth function close to the magnetic potential Aj , j = 1, 2. More precisely, we fix η1, η2 ∈
Sn−1 = {y ∈ Rn, |y| = 1} and we define Aj,] ∈ C∞0 (Rn,Rn), j = 1, 2, some smooth approximations on Ω
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of Aj . Then, we set ζ1 = i
√
λη1, ζ2 = −i

√
λη2 and we consider solutions of the transport equations (3.15)

given by

g1(x) := eiψ1(x), g2(x) := b2(x)e−iψ2(x), ψj(x) := −
∫ 0

−∞
ηj ·Aj,](x+ sηj)ds, η2 · ∇b2(x) = 0, x ∈ Rn.

Therefore, we consider ansatzs associated with (3.13) taking the form

Φ1,λ(x) := ei
√
λη1·xeiψ1(x), Φ2,λ(x) := e−i

√
λη2·xb2(x)e−iψ2(x), x ∈ Ω. (3.16)

We assume in addition that b2 ∈W 2,∞(Rn) and we recall that ψj solves the equation
ηj · ∇ψj(x) = −ηj ·Aj,], j = 1, 2, x ∈ Rn.

For the time being, we consider general ansatzs of the form (3.16) with the properties describe above.
Additional information about the parameter λ, the function Aj,], the vector ηj , j = 1, 2, and the function b2
will be given in Subsection 3.2. In a similar way to [11, 17, 18, 23, 26, 30], in the construction of our ansatzs
we consider some smooth approximations of the magnetic potentials instead of the magnetic potentials to
obtain sufficiently smooth functions Φj,λ, j = 1, 2. Using this approach, we can weaken the regularity
assumption imposed on admissible magnetic potential from W 3,∞(Ω) to C1(Ω). Further, for j = 1, 2, we put

Sj(λ, η1, η2) =
〈
Λj,λΦ1,λ,Φ2,λ

〉
=
∫

Γ
(Λj,λΦ1,λ)Φ2,λ(x)dσ(x). (3.17)

In other words, we apply Λj,λ, j = 1, 2, to ansatzs of the form (3.14) with ζ1 = i
√
λη1, ζ2 = −i

√
λη2,

g1 = eiψ1 and g2 = b2e
−iψ2 . We recall that quantities similar to S1 and S2 have also been used by [11, 14, 16,

17, 18, 23, 26, 30]. Let us also mention that, like in [14, 16], the ansatzs (3.16) do not depend on the potential
V1 and V2 which are coefficients of order zero of the equation (3.13). On the other hand, the ansatzs (3.16)
depend on the magnetic potentials A1 and A2 which are coefficients of order one of the equation (3.13). By
modifying the construction of [14, 16] with the new expression gj , j = 1, 2, we will extend the approach of
[14, 16] to Shrödinger operators with magnetic potentials. From now on, for the sake of simplicity we will
systematically omit the subscripts λ in Φj,λ, j = 1, 2, in the remaining of this text. In view of determining
the behavior of S1−S2, as Iλ→ +∞, we introduce the following representations associated with S1 and S2.

Proposition 3.1. For all λ ∈ C \ R and ηj ∈ Sn−1, j = 1, 2, the scalar products Sj(λ, η1, η2) have the
following expression

S1(λ, η1, η2)
= 2
√
λ

∫
Ω
η2 · (A1 −A2,])ei

√
λ(η1−η2)·xb2e

i(ψ1(x)−ψ2(x))dx

+
∫

Ω
(V1 − q12)ei

√
λ(η1−η2)·xb2e

i(ψ1(x)−ψ2(x))dx

−i
∫

Γ
ei
√
λ(η1−η2)·xei(ψ1(x)−ψ2(x))(b2

√
λη2 + b2∇ψ2 + i∇b2 + b2A1) · νdσ(x)

−
∫

Ω

[
(H1 − λ)−1

(
2
√
λη1 · (A1 −A1,]) + q11

)
Φ1

] (
2
√
λη2 · (A1 −A2,])b2 + V1b2 − q12

)
e−i
√
λη2·xe−iψ2dx,

(3.18)

S2(λ, η1, η2)
=
∫

Ω

[
2
√
λη2 · (A2 −A2,]) + V2 − q22

]
ei
√
λ(η1−η2)·xb2e

i(ψ1(x)−ψ2(x))dx

−i
∫
∂Ω
ei
√
λ(η1−η2)·xei(ψ1(x)−ψ2(x))(b2

√
λη2 + b2∇ψ2 + i∇b2 + b2A2) · νdσ(x)

−
∫

Ω

[
(H2 − λ)−1

(
2
√
λη1 · (A2 −A1,]) + q21

)
Φ1

]
(2
√
λη2 · (A2 −A2,])b2 + V2b2 − q22)e−i

√
λη2·xe−iψ2dx.
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(3.19)
Here we denote by q11, q12, q21, q22 the expressions

q11 = −idiv(A1) + |A1|2 + V1(x) + 2A1 · ∇ψ1 − i∆ψ1 + |∇ψ1|2 ,

q12 = ∆b2 − 2i∇ψ2 · ∇b2 − 2i∇b2 ·A1 +
(
−i∆ψ2 − |∇ψ2|2 − 2∇ψ2 ·A1 − idiv(A1)− |A1|2

)
b2,

q21 = −idiv(A2) + |A2|2 + V2(x) + 2A2 · ∇ψ1 − i∆ψ1 + |∇ψ1|2 ,

q22 = ∆b2 − 2i∇ψ2 · ∇b2 − 2i∇b2 ·A2 +
(
−i∆ψ2 − |∇ψ2|2 − 2∇ψ2 ·A2 − idiv(A2)− |A2|2

)
b2.

Moreover, Hj, j = 1, 2, denotes the selfadjoint operator (−i∇+Aj) + Vj acting on L2(Ω) with domain
D(Hj) = {v ∈ H1

0 (Ω) : (−i∇+Aj)v ∈ L2(Ω)}.
Note that formulas (3.18)-(3.19) contain expressions involving the magnetic potentials A1, A2 and the

electric potentials V1, V2, expressions on the boundary ∂Ω and expressions described by the resolvent (Hj −
λ)−1, j = 1, 2. Using condition (1.1) one can check that the expressions on ∂Ω of S1 and S2 coincide and
applying the decay of the resolvent (Hj − λ)−1, j = 1, 2, as Iλ → +∞ we will show in the next subsection
that, for some suitable choice of our ansatzs, the expressions

−
∫

Ω

[
(H1 − λ)−1

(
2
√
λη1 · (A1 −A1,]) + q11

)
Φ1

] (
2
√
λη2 · (A1 −A2,])b2 + V1b2 − q12

)
e−i
√
λη2·xe−iψ2dx,

−
∫

Ω

[
(H2 − λ)−1

(
2
√
λη1 · (A2 −A1,]) + q21

)
Φ1

]
(2
√
λη2 · (A2 −A2,])b2 + V2b2 − q22)e−i

√
λη2·xe−iψ2dx,

vanish as Iλ → +∞. Thus, what will remain in the asymptotic expansion of S1 − S2, as Iλ → +∞, will
be two expressions involving A1 − A2 and V1 − V2. These two expressions, that will be given in the next
subsection, are one of the main ingredients in our proof. The remaining of this subsection will be devoted
to the proof of Proposition 3.1.
Proof of Proposition 3.1. Let us first remark that the expressions (3.18)-(3.19) correspond to some
asymptotic expansion of the expression Sj , j = 1, 2, with respect to

√
λ 2. We will prove (3.18)-(3.19) by

combining properties of the ansatzs (3.14), with properties of solutions of (3.13) when f = Φ1. This proof
will be divided into two steps, first for S1 then for S2. We start by showing that for j = 1, 2 and f = Φ1
problem (3.13) admits a unique solution uj ∈ H2(Ω) taking the form

u1 = Φ1 − (H1 − λ)−1
[
2
√
λη1 · (A1 −A1,]) + q11

]
Φ1, (3.20)

u2 = Φ1 − (H2 − λ)−1
[
2
√
λη1 · (A2 −A1,]) + q21

]
Φ1. (3.21)

Then, combining these formulas with the properties of the ansatzs (3.14) and applying the Green formula,
we derive (3.18)-(3.19).

We start with the expression of S1(λ, η1, η2). Let us first prove (3.20). Recall that
(−i∇+A1)2u+ V1u− λu = −∆u− 2iA1 · ∇u+ qu− λu

with q(x) = −idiv(A1)(x) + |A1(x)|2 + V1(x). Therefore, in light of (3.16) we have
(−i∇+A1)2Φ1 + V1Φ1 − λΦ1
= (λ+ 2

√
λη1 · ∇ψ1 − i∆ψ1 + |∇ψ1|2)Φ1 + (2

√
λη1 ·A1 + 2A1 · ∇ψ1)Φ1 + qΦ1 − λΦ1

= 2
√
λ(η1 · ∇ψ1 + η1 ·A1)Φ1 + q11Φ1

with q11 = q+ 2A1 · ∇ψ1 − i∆ψ1 + |∇ψ1|2. On the other hand, since ψ1 satisfies η1 · ∇ψ1 + η1 ·A1,] = 0, we
deduce that

(−i∇+A1)2Φ1 + V1Φ1 − λΦ1 =
[
2
√
λη1 · (A1 −A1,]) + q11

]
Φ1. (3.22)

2This statement will be clarified in the next subsection where we will give additional information about the parameter λ
and the vectors η1, η2.
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Now consider u1 the solution of{
(−i∇+A1)2u1 + V1u1 − λu1 = 0, in Ω,

u1(x) = Φ1(x), x ∈ ∂Ω.

Note that, with our assumptions one can check that D(H1) = H1
0 (Ω) ∩ H2(Ω). In view of (3.22), we can

split u1 into two terms u1 = Φ1 + v1 with v1 the solution of{
(−i∇+A1)2v1 + V1v1 − λv1 = −

[
2
√
λη1 · (A1 −A1,]) + q11

]
Φ1, in Ω,

v1(x) = 0, x ∈ ∂Ω.

Then, u1 ∈ H2(Ω) take the form (3.20). Using this formula we will complete the proof of (3.18). Since

S1 =
∫
∂Ω

(∂ν + iA1 · ν)u1(x)e−i
√
λη2·xb2e

−iψ2(x)dσ(x), (3.23)

from (3.17), applying Green formula, we get

S1 =
∫

Ω
div
(

(∇+ iA1(x))u1(x)e−i
√
λη2·xb2e

−iψ2(x)
)
dx

=
∫

Ω
(∇+ iA1)2u1e

−i
√
λη2·xb2e

−iψ2dx+
∫

Ω
(∇+ iA1)u1 · (∇− iA1)e−i

√
λη2·xb2e

−iψ2dx.

(3.24)

Doing the same with the second term on the right hand side of this formula, we find out that∫
Ω

(∇+ iA1)u1 · (∇− iA1)e−i
√
λη2·xb2e

−iψ2dx

= −i
∫

Γ
u1(x)e−i

√
λη2·xe−iψ2(

√
λb2η2 + b2∇ψ2 + i∇b2 + b2A1) · νdσ(x)

−
∫

Ω
u1(x)(∇− iA1)2e−i

√
λη2·xb2e

−iψ2dx.

In light of (3.16) and the identity u1|Γ = Φ1, this entails∫
Ω(∇+ iA1)u1 · (∇− iA1)e−i

√
λη2·xb2e

−iψ2dx

= −i
∫

Γ e
i
√
λ(η1−η2)·xei(ψ1(x)−ψ2(x))(

√
λb2η2 + b2∇ψ2 + i∇b2 + b2A1) · νdσ(x)

−
∫

Ω u1(x)(∇− iA1)2e−i
√
λη2·xb2e

−iψ2dx.

Moreover, one can check that

(∇− iA1)2e−i
√
λη2·xb2e

−iψ2 =
(
−λb2 − 2

√
λ(η2 · ∇ψ2 +A1 · η2)b2 − 2i

√
λη2 · ∇b2 + q12

)
e−i
√
λη2·xe−iψ2

with q12 = ∆b2−2i∇ψ2 ·∇b2−2i∇b2 ·A1+
(
−i∆ψ2 − |∇ψ2|2 − 2∇ψ2 ·A1 − idiv(A1)− |A1|2

)
b2. Combining

this with the fact that ψ2 satisfies η2 · ∇ψ2 + η2 ·A2,] = 0 and b2 solves η2 · ∇b2 = 0, we deduce that

(∇− iA1)2e−i
√
λη2·xb2e

−iψ2 =
(

[−λ− 2
√
λη2 · (A1 −A2,])]b2 + q12

)
e−i
√
λη2·xe−iψ2 .

Therefore, we find∫
Ω(∇+ iA1)u1 · (∇− iA1)e−i

√
λη2·xb2e

−iψ2dx

= −i
∫

Γ e
i
√
λ(η1−η2)·xei(ψ1(x)−ψ2(x))(

√
λb2η2 + b2∇ψ2 + i∇b2 + b2A1) · νdσ(x)

−
∫

Ω u1(x)
(
−λb2 − 2

√
λη2 · (A1 −A2,])b2 + q12

)
e−i
√
λη2·xe−iψ2dx.

Then, from (3.20) we get∫
Ω

(∇+ iA1)u1 · (∇− iA1)e−i
√
λη2·xb2e

−iψ2dx
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= −i
∫

Γ
ei
√
λ(η1−η2)·xei(ψ1(x)−ψ2(x))(

√
λb2η2 + b2∇ψ2 + i∇b2 + b2A1) · νdσ(x)

+λ
∫

Ω
u1e
−i
√
λη2·xb2e

−iψ2dx+ 2
√
λ

∫
Ω
η2 · (A1 −A2,])ei

√
λ(η1−η2)·xb2e

i(ψ1(x)−ψ2(x))dx

−
∫

Ω
q12e

i
√
λ(η1−η2)·xb2e

i(ψ1(x)−ψ2(x))dx

−
∫

Ω
[(H1 − λ)−1

(
2
√
λη1 · (A1 −A1,]) + q11

)
Φ1]

(
2
√
λη2 · (A1 −A2,])b2 − q12

)
e−i
√
λη2·xe−iψ2dx.

(3.25)

Next, taking into account the fact that (∇+ iA1)2u1 = (V1 − λ)u1 in Ω, we obtain∫
Ω(∇+ iA1)2u1e

−i
√
λη2·xb2e

−iψ2dx =
∫

Ω(V1 − λ)u1e
−i
√
λη2·xb2e

−iψ2dx

= −λ
∫

Ω u1e
−i
√
λη2·xb2e

−iψ2dx+
∫

Ω V1e
i
√
λ(η1−η2)·xb2e

i(ψ1(x)−ψ2(x))dx

−
∫

Ω V1

[
(H1 − λ)−1

(
2
√
λη1 · (A1 −A1,]) + q11

)
Φ1

]
e−i
√
λη2·xb2e

−iψ2dx.

Finally, we deduce (3.18) from (3.24)-(3.25).
Now let us consider (3.19). For this purpose, we start by proving formula (3.21). In a similar way to

(3.20), we have
(−i∇+A2)2Φ1 + V2Φ1 − λΦ1 = 2

√
λ(η1 · ∇ψ1 +A2 · η1)Φ1 + q21Φ1

with q21 = −idiv(A2) + |A2|2 + V2(x) + 2A2 · ∇ψ1 − i∆ψ1 + |∇ψ1|2. Then, since ψ1 is a solution of
η1 · ∇ψ1 + η1 ·A1,] = 0, we deduce that

(−i∇+A2)2Φ1 + V2Φ1 − λΦ1 =
(

2
√
λη1 · (A2 −A1,]) + q21

)
Φ1.

Moreover, one can check that the solution u2 of{
(−i∇+A2)2u2 + V2u2 − λu2 = 0, in Ω,

u2(x) = Φ1(x), x ∈ ∂Ω

is given by (3.21). Repeating our previous arguments, we deduce

S2 =
∫

Ω
(∇+ iA2)2u2e

−i
√
λη2·xb2e

−iψ2dx+
∫

Ω
(∇+ iA2)u2 · (∇− iA2)e−i

√
λη2·xb2e

−iψ2dx. (3.26)

On the other hand, using the fact that ψ2 is a solution of the equation η2 · ∇ψ2 + η2 ·A2,] = 0, we get∫
Ω

(∇+ iA2)u2 · (∇− iA2)e−i
√
λη2·xb2e

−iψ2dx

= −i
∫

Γ
ei
√
λ(η1−η2)·xei(ψ1(x)−ψ2(x))(

√
λb2η2 + b2∇ψ2 + i∇b2 + b2A2) · νdσ(x)

−
∫

Ω
u2(x)

(
−λb2 − 2

√
λη2 · (A2 −A2,])b2 + q22

)
e−i
√
λη2·xe−iψ2dx (3.27)

with q22 = ∆b2−2i∇ψ2 ·∇b2−2i∇b2 ·A2+
(
−i∆ψ2 − |∇ψ2|2 − 2∇ψ2 ·A2 − idiv(A2)− |A2|2

)
b2. Combining

this with (3.21)-(3.26) and repeating our previous arguments we obtain (3.19). �

3.2. Asymptotic properties of S1 − S2 and representation formulas for A1 − A2 and V1 − V2. In
this subsection we will apply formulas (3.18)-(3.19) in order to derive two expressions involving A1−A2 and
V1 − V2 from the asymptotic expansion of S1 − S2, as Iλ → +∞. For this purpose, we start by specifying
our choice for the parameter λ, the function Aj,], the vector ηj , j = 1, 2, and the function b2 appearing in
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(3.14). Let us first define the parameter λ and the vectors η1, η2. We consider an arbitrary ξ ∈ Rn \ {0} and
pick η ∈ Sn−1 such that η · ξ = 0. Then, for τ > |ξ| we put

Bτ =

√
1− |ξ|

2

4τ2 , η1(τ) = Bτη −
ξ

2τ , η2(τ) = Bτη + ξ

2τ and λ(τ) = (τ + i)2, (3.28)

in such a way that 
η1, η2 ∈ Sn−1,

√
λ(η1 − η2)→ −ξ, as τ → +∞,

Iλ→ +∞, as τ → +∞,

I
√
λη1, I

√
λη2 are bounded with respect to τ > |ξ| .

(3.29)

In order to get a suitable expression of the functions Aj,], we first need to extend identically the magnetic
potentials Aj , j = 1, 2. For this purpose we set Ω̃ an arbitrary open bounded set of Rn such that Ω ⊂ Ω̃ and
we define Ã1 ∈ C1

0(Ω̃,Rn) such that Ã1|Ω = A1. Then, we define Ã2 by

Ã2(x) =
{
A2(x), for x ∈ Ω,
Ã1(x), for x ∈ Ω̃ \ Ω.

In view of (1.1), it is clear that Ã2 ∈ C1
0(Ω̃,Rn). We define the functions Aj,] ∈ C∞0 (Rn;Rn), j = 1, 2, by

Aj,](x) := χδ ∗ Ãj(x) =
∫
Rn
χδ(x− y)Ãj(y)dy,

where χδ(x) = δ−nχ(δ−1x), with δ > 0, is the usual mollifer with χ ∈ C∞0 (Rn), supp(χ) ⊂ {x ∈ Rn : |x| 6 1},
χ > 0 and

∫
Rn χdx = 1. From now on we set δ = τ−

1
3 and we recall that

ψj(x) = −
∫ 0

−∞
ηj ·Aj,](x+ sηj)ds.

We set also
b2(x) = eiω·xy · ∇

[
exp

(
−i
∫
R
η2 ·A](x+ sη2)ds

)
e−iω·x

]
, (3.30)

where A] = A2,] −A1,], ω = Bτξ − |ξ|
2η

2τ ∈ η
⊥
2 , Bτ =

√
1− |ξ|24τ2 , and

b(x) = eix·ξy · ∇
[
exp

(
−i
∫
R
η ·A(x+ sη)ds

)
e−ix·ξ

]
, ψ(x) =

∫ 0

−∞
η ·A(x+ sη)ds.

Here y ∈ Sn−1 ∩ η⊥, y · ∇ denotes the derivative in the y = (y1, . . . , yn) direction given by

y · ∇ =
n∑
j=1

yj∂xj

and A is the function defined by A2 −A1 on Ω extended by 0 outside of Ω. Note that, in view of condition
(1.1) we have A ∈ C1

0(Ω). Since Ãj ∈ C1
0(Rn,Rn), we find

‖Aj,] −Aj‖L∞(Ω) 6
∥∥Aj,] − Ãj∥∥L∞(Rn) 6 Cδ = Cτ−

1
3 (3.31)

with C depending on Ω and any M > max
j=1,2

∥∥Ãj∥∥W 1,∞(Rn). On the other hand, one can check that

‖∂αxAj,]‖L∞(Rm) 6 Cδ
|α|−1 = Cτ

|α|−1
3 , α ∈ Nn \ {0}, (3.32)

where C depends on Ω and any M > max
j=1,2

∥∥Ãj∥∥W 1,∞(Rn).
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Remark 3.2. Let us observe that, our anstazs are related to the principal part of the complex geometric
optics solutions of [31] and the extension of this construction to magnetic Schrödinger operators by [11, 17,
18, 23, 26, 30]. Nevertheless, in contrast to the complex geometric optics solutions of [31], the large parameter
of the ansatzs (3.14), that will be send to +∞ for the uniqueness result, is given by Iλ where the parameter
λ appears explicitly in (3.13). This makes it possible to construct ansatzs bounded with respect to the large
parameter and to use the resolvent (Hj−λ)−1, j = 1, 2, for the construction of a remainder term that admits
a decay with respect to the large parameter Iλ. Moreover, in contrast to the geometric optics solutions of [31],
whose principal parts take the form (3.14) when ζj · ζj = 0, our construction is not restricted to dimension
n > 3. Indeed, the vector ζj, j = 1, 2, that we consider in the present paper are subjected only to the
condition (3.29), already considered by [14], which requires only the two orthogonal vectors η and ξ appearing
in (3.28). For this reason, in contrast to the construction of [31], that requires three orthogonal vectors, our
construction works also for n = 2.

From now on, our goal is to derive from (3.18)-(3.19) two formulas from some asymptotic properties of
S1 − S2 as τ → +∞. For this purpose we need the following intermediate result which follows from (3.31)
and (3.32).

Lemma 3.3. Let the condition introduced above be fulfilled. Then, we have

sup
τ>|ξ|+1

‖b2‖L∞(Rn) <∞ (3.33)

and
lim

τ→+∞
b2(x) = b(x), lim

τ→+∞
ψ1(x)− ψ2(x) = ψ(x), x ∈ Rn. (3.34)

Proof. Note first that

b2(x) =
(
−iω · y − i

∫
R
η2 · y · ∇A](x+ sη2)ds

)
exp

(
−i
∫
R
η2 ·A](x+ sη2)ds

)
. (3.35)

On the other hand, we have |ω| 6 1+|ξ| and, since Ã2−Ã1 is compactly supported and Ã2−Ã1 ∈ C1
0(Rn,Rn),

we find y · ∇A] = χδ ∗
(
y · ∇(Ã2 − Ã1)

)
. Therefore, we obtain

‖b2‖L∞(Rn) 6 1 + |ξ|+ C ‖χδ‖L1(Rn)
∥∥y · ∇(Ã2 − Ã1)

∥∥
L∞(Rn,Rn) 6 1 + |ξ|+ CM

with C a generic constant depending only on Ω and M > max
j=1,2

∥∥Ãj∥∥W 1,∞(Rn). From this last estimate we

deduce (3.33). Now let us prove (3.34). Since Ã1 and Ã2 coincide outside of Ω, we have Ã2 − Ã1 = A.
Therefore, we deduce that A] = χδ ∗A and

|y · ∇A](x+ sη2)− y · ∇A(x+ sη)| 6 |y · ∇A](x+ sη2)− y · ∇A](x+ sη)|+|y · ∇A](x+ sη)− y · ∇A(x+ sη)| .
(3.36)

The second term on the right hand side of this estimate can be rewritten as

y · ∇A](x+ sη)− y · ∇A(x+ sη) = χδ ∗ [y · ∇A](x+ sη)− y · ∇A(x+ sη)

and since A ∈ C1
0 (Rn), we get

lim
τ→+∞

y · ∇A](x+ sη)− y · ∇A(x+ sη) = 0, x ∈ Rn, s ∈ R. (3.37)

For the first term on the right hand side of (3.36), using the fact that for τ sufficiently large we have

η2 = η + ξ

2τ + o
τ→+∞

(
1
τ

)
and applying (3.32), we get

|y · ∇A](x+ sη2)− y · ∇A](x+ sη)| 6 ‖A]‖W 2,∞(Rn) |s(η − η1)| 6 C |s| τ− 2
3
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with C depending on ξ, Ω, Ã1 and Ã2. In view of this estimate we have

lim
τ→+∞

y · ∇A](x+ sη2)− y · ∇A](x+ sη) = 0, x ∈ Rn, s ∈ R.

Combining this last result with (3.36)-(3.37), we get

lim
τ→+∞

y · ∇A](x+ sη) = y · ∇A(x+ sη), x ∈ Rn, s ∈ R.

Then, using the fact that supp(A]) ⊂ Ω + {x ∈ Rn : |x| 6 δ} and (3.32), by the dominate convergence
theorem we get that

lim
τ→+∞

∫
R
y · ∇A](x+ sη2)ds =

∫
R
y · ∇A(x+ sη)ds, x ∈ Rn.

Putting this together with (3.35) and the fact that ω → ξ, η2 → η as τ → +∞, we obtain

lim
τ→+∞

b2(x) =
(
−iξ · y +−i

∫
R
η · y · ∇A(x+ sη)ds

)
exp

(
−i
∫
R
η ·A(x+ sη)ds

)
= b(x), x ∈ Rn.

Using similar arguments we deduce that

lim
τ→+∞

ψ1(x)− ψ2(x) = ψ(x) =
∫ 0

−∞
η ·A(x+ sη)ds, x ∈ Rn.

This completes the proof of the lemma. �

Applying (3.18)-(3.19), (3.31)-(3.34) and sending τ → +∞, we obtain our first formula involving the
magnetic potentials A1, A2.

Proposition 3.4. Fix ξ ∈ Rn \ {0} and η ∈ Sn−1 such that η · ξ = 0. Let λ, η1 and η2 be defined by (3.28)
and let b2 be defined by (3.30). Then, we have

lim
τ→+∞

S1 − S2√
λ

= 2
∫

Ω
η · (A1 −A2)e−iξ·xbeiψ(x)dx. (3.38)

Proof. With reference to (3.16) and (3.28) we have |Φ1(x)| = e−η1·x and
∣∣∣e−i

√
λη2·x

∣∣∣ = eη2·x for all x ∈ Ω,

hence ‖Φ1‖2L2(Ω) =
∫

Ω e
−2η1·xdx 6 |Ω|e2|Ω| and

∥∥∥e−i
√
λη2·x

∥∥∥2

L2(Ω)
6 |Ω|e2|Ω| since |η1| = |η2| = 1. Moreover,

in view of (3.28), we have the estimate∥∥(Hj − λ)−1∥∥
B(L2(Ω)) = 1

dist(λ, σ(Hj))
6

1
|Iλ|

= 1
2τ , j = 1, 2.

In addition, in light of (3.32), we get

‖ψj‖W 2,∞(Ω) 6 Cδ = Cτ
1
3 , ‖bj‖W 2,∞(Ω) 6 Cδ

2 = Cτ
2
3

with C a generic constant depending on ξ, Ω and Ãj , j = 1, 2. Putting these estimates together with (1.1),
(3.18)-(3.19) and (3.31) , we deduce that

S1 − S2√
λ

= 2
∫

Ω
η2 · (A1 −A2)ei

√
λ(η1−η2)·xb2e

i(ψ1(x)−ψ2(x))dx+ O
τ→+∞

(
τ−

1
3

)
.

Combining this with (3.29), (3.33)-(3.34) and applying the dominate convergence theorem we deduce (3.38).
�

Using similar arguments and assuming that the magnetic potentials are known (A1 = A2), we obtain
our second formula involving the electric potentials V1, V2.
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Proposition 3.5. Assume that A1 = A2. Fix ξ ∈ Rn \ {0} and η ∈ Sn−1 such that η · ξ = 0. Let λ, η1 and
η2 be defined by (3.28) and b2 = 1. Then, we have

lim
τ→+∞

S1 − S2 =
∫

Ω
(V1 − V2)e−iξ·xdx. (3.39)

Proof. Note that for A1 = A2 we have q11 − V1 = q21 − V2, q12 = q22, A1,] = A2,]. Therefore, we deduce
that (3.18)-(3.19) imply

S1 − S2 =
∫

Ω
(V1 − V2)ei

√
λ(η1−η2)·xei(ψ1(x)−ψ2(x))dx−

∫
Ω

[
λ
(
(H1 − λ)−1 − (H2 − λ)−1)Q1

]
Q2dx

−
∫

Ω

[√
λ(H1 − λ)−1Q1

]
V1e
−i
√
λη2·xe−iψ2dx−

∫
Ω

[√
λ(H1 − λ)−1V1Φ1

]
Q2dx

−
∫

Ω

[
(H1 − λ)−1V1Φ1

]
V1e
−i
√
λη2·xe−iψ2dx+

∫
Ω

[√
λ(H2 − λ)−1Q1

]
V2e
−i
√
λη2·xe−iψ2dx

+
∫

Ω

[√
λ(H2 − λ)−1V2Φ1

]
Q2dx+

∫
Ω

[
(H2 − λ)−1V2Φ1

]
V2e
−i
√
λη2·xe−iψ2dx,

(3.40)

where

Q1 = 2η1 · (A1 −A1,])Φ1 + (q11 − V1)Φ1√
λ

, Q2 =
(

2η2 · (A1 −A1,])−
q12√
λ

)
e−i
√
λη2·xe−iψ2 .

On the other hand, since H2 − λ = H1 − λ− (V1 − V2), for τ sufficiently large we have

(H1 − λ)−1 − (H2 − λ)−1 = (H1 − λ)−1
(
Id−

(
Id− (V1 − V2)(H1 − λ)−1)−1

)
= −(H1 − λ)−1

∞∑
k=1

(
(V1 − V2)(H1 − λ)−1)k .

Combining this with the fact that Iλ = 2τ , |λ| 6 |τ2 − 1|+ 2τ , and the fact that∥∥(H1 − λ)−1∥∥
B(L2(Ω)) +

∥∥(V1 − V2)(H1 − λ)−1∥∥
B(L2(Ω)) 6

C

|Iλ|
= C

2τ
with C depending only on V1, V2 and Ω, we deduce that

sup
τ>|ξ|+1

∥∥λ ((H1 − λ)−1 − (H2 − λ)−1)∥∥
B(L2(Ω)) <∞. (3.41)

In addition, (3.31)-(3.32) imply
lim

τ→+∞
‖Q1‖L∞(Ω) = lim

τ→+∞
‖Q2‖L∞(Ω) = 0.

Putting this result together with (3.29), (3.40)-(3.41), we obtain

lim sup
τ→+∞

∣∣∣∣(S1 − S2)−
∫

Ω
(V1 − V2)ei

√
λ(η1−η2)·xei(ψ1(x)−ψ2(x))dx

∣∣∣∣ = 0.

On the other hand, repeating the arguments of Lemma 3.3, we find

lim
τ→+∞

ψ1(x)− ψ2(x) = ψ(x) =
∫ 0

−∞
η ·A(x+ sη)ds = 0

since A1 = A2. Thus, applying the dominate convergence theorem we obtain

lim
τ→+∞

∫
Ω

(V1 − V2)ei
√
λ(η1−η2)·xei(ψ1(x)−ψ2(x))dx =

∫
Ω

(V1 − V2)e−ix·ξdx

and we deduce (3.39). �

Armed with formulas (3.38)-(3.39), in the next section we will complete the proof of Theorem 1.1.
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4. Proof of the main result

This section is devoted to the proof of our main result. In all this section, for j = 1 and j = 2, we
consider two magnetic potentials Aj and electric potentials Vj satisfying the assumptions of Theorem 1.1
and we denote by Hj the associated operators defined by (2.3) for A = Aj and V = Vj . Let (λj,k, ϕj,k)k>1 be
a sequence of eigenvalues and eigenfunctions of Hj . In order to prove Theorem 1.1, in light of (3.38)-(3.39),
we prove first that the condition

lim
τ→+∞

S1(λ(τ), η1(τ), η2(τ))− S2(λ(τ), η1(τ), η2(τ))√
λ(τ)

= 0 (4.42)

implies dA1 = dA2. Then, we show that for A1 = A2 the condition

lim
τ→+∞

S1(λ(τ), η1(τ), η2(τ))− S2(λ(τ), η1(τ), η2(τ)) = 0 (4.43)

implies V1 = V2. Finally, we complete the proof by proving that condition (1.1)-(1.2) imply (4.42)-(4.43).
We start by proving that (4.42) implies dA1 = dA2.

Lemma 4.1. Let η1(τ), η2(τ) and λ(τ) be fixed by (3.28) and b2 be defined by (3.30). Assume that (4.42)
is fulfilled. Then, we have dA1 = dA2.

Proof. Combining (4.42) with (3.38) we deduce that for all ξ ∈ Rn \ {0}, η ∈ Sn−1, satisfying η · ξ = 0, we
get ∫

Ω
η · (A2 −A1)e−iξ·xb(x)eiψ(x)dx = 0.

Here b takes the form
b(x) = eix·ξy · ∇

[
exp

(
−i
∫
R
η ·A(x+ sη)ds

)
e−ix·ξ

]
with y ∈ Sn−1 ∩ η⊥. Then, applying Fubini’s theorem, we obtain

0 =
∫
Rn
η ·A(x)e−iξ·xb(x)eiψ(x)dx =

∫
η⊥

∫
R
η ·A(x′ + tη)eiψ(x′+tη)b(x′)e−iξ·x′dtdx′.

Here we use the fact that b(x) = b(x− (x · η)η) and ξ · η = 0. On the other hand, for all x′ ∈ η⊥ and t ∈ R,
we have

η ·A(x′ + tη)eiψ(x′+tη) = η ·A(x′ + tη) exp
(

i
∫ t

−∞
η ·A(x′ + sη)ds

)
= −i∂t exp

(
i
∫ t

−∞
η ·A(x′ + sη)ds

)
.

Therefore, we find∫
Rn
η ·A(x)e−iξ·xb(x)eiψ(x)dx = −i

∫
η⊥

[∫
R
∂t exp

(
i
∫ t

−∞
η ·A(x′ + sη)ds

)
dt

]
b(x′)e−iξ·x′dx′

= −i
∫
η⊥

[
exp

(
i
∫
R
η ·A(x′ + sη)ds

)
− 1
]
b(x′)e−iξ·x′dx′.

It follows ∫
η⊥

[
exp

(
i
∫
R
η ·A(x′ + sη)ds

)
− 1
]
b(x′)e−iξ·x′dx′ = 0. (4.44)

We fix i, j ∈ {1, . . . , n} such that i < j and we assume that ξ ∈ {ξ = (ξ1, . . . , ξn) : ξi 6= 0}. We can
choose η = ξjei−ξiej√

ξ2
i
+ξ2

j

and y = ξiei+ξjej√
ξ2
i
+ξ2

j

∈ η⊥. Here (e1, . . . , en) is the canonical basis of Rn defined by
e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1). Then, (4.44) implies∫

η⊥

[
exp

(
i
∫
R
η ·A(x′ + sη)ds

)
− 1
]
y · ∇

[
exp

(
−i
∫
R
η ·A(x′ + sη)ds

)
e−ix

′·ξ
]
dx′ = 0.
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Integrating by parts we get
−i√
ξ2
i + ξ2

j

·
∫
Rn

(ξjy · ∇ai(x)− ξiy · ∇aj(x))e−ix·ξdx = −i
∫
η⊥

(∫
R
η · y · ∇A(x′ + sη)ds

)
e−ix′·ξdx′ = 0

with A = (a1, . . . , an). Integrating again by parts, we find∫
Rn

(ξjai − ξiaj)e−ix·ξdx = y · ξ√
ξ2
i + ξ2

j

∫
Rn

(ξjai − ξiaj)e−ix·ξdx

= −i√
ξ2
i + ξ2

j

·
∫
Rn

(ξjy · ∇ai(x)− ξiy · ∇aj(x))e−ix·ξdx = 0

and it follows that for all ξ ∈ {ξ = (ξ1, . . . , ξn) : ξi 6= 0} we have F [∂xjai − ∂xiaj ](ξ) = 0. On the other
hand, since ∂xjai− ∂xiaj is compactly supported, F(∂xjai− ∂xiaj)(ξ) is continuous in ξ ∈ Rn and it follows
F(∂xjai − ∂xiaj) = 0 on Rn. From this last result, we deduce that ∂xjai − ∂xiaj = 0 which implies that
dA1 = dA2. �

Now assuming that A1 = A2, we show in the next lemma that (4.43) implies V1 = V2.

Lemma 4.2. Let η1(τ), η2(τ) and λ(τ) be fixed by (3.28) and b2 = 1. Assume that A1 = A2 and (4.43) is
fulfilled. Then, we have V1 = V2.

Proof. Fix ξ ∈ Rn \ {0} and choose η ∈ Sn−1 ∩ ξ⊥. Fix also b = 1. Thus, combining (3.39) and (4.43), we
find ∫

Rn
V (x)e−ix·ξdx = 0

with V = V1 − V2 extended by 0 outside of Ω. It follows that V1 = V2. �

According to Lemma 4.1, 4.2, the proof of Theorem 1.1 will be completed if we show that conditions (1.2)
imply conditions (4.42), (4.43). For this purpose, we adapt the approach of [16] to magnetic Schrödinger
operators. Let f ∈ H 1

2 (Γ) being fixed, with the notations of Lemmas 2.1 and 2.3, we denote by vj,λ,µ :=
uj,λ − uj,µ the solution of (2.10) where V is replaced by Vj and A by Aj . We fix also hj,k := ∂νϕj,k|Γ
αj,k := 〈f, hj,k〉. Recalling that in Lemma 2.4 we have set zµ = u1,µ − u2,µ, in a similar way to [16], writing
the above identity for j = 1 and j = 2, applying (1.1) and then subtracting the resulting equations, we end
up with a new relation, namely

(∂ν + iA1 · ν)u1,λ|Γ − (∂ν + iA2 · ν)u2,λ|Γ = i(A1 −A2) · νf + ∂νu1,λ − ∂νu2,λ

= ∂νzµ + ∂νv1,λ,µ − ∂νv2,λ,µ.
(4.45)

Now let us set
Fj(λ, µ, f) := ∂νvj,λ,µ|Γ, j = 1, 2.

According to (2.9), we have

F (λ, µ, f) := F1(λ, µ, f)− F2(λ, µ, f) =
+∞∑
k=1

[
(µ− λ)α1,k

(λ− λ1,k)(µ− λ1,k) h1,k −
(µ− λ)α2,k

(λ− λ2,k)(µ− λ2,k) h2,k

]
. (4.46)

Consider the following intermediate results.

Lemma 4.3. Let η1, η2, λ be given by (3.28). Consider Φj, j = 1, 2, with Φ1 introduced in the previous
section and Φ2 = e−i

√
λη2·xb2e

−iψ2 , where b2 is defined by (3.30) or b2 = 1. Then, we have

sup
τ>1

∞∑
k=1

∣∣∣∣ 〈Φ1, hj,k〉
λj,k − λ

∣∣∣∣2 <∞, sup
τ>1

∞∑
k=1

∣∣∣∣∣
〈
Φ2, h2,k

〉
λ2,k − λ

∣∣∣∣∣
2

<∞, j = 1, 2. (4.47)
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Proof. We start with the first estimate of (4.47) for j = 1. According to Lemma 2.1 the solution u1,λ of
(2.4) for f = Φ1, A = A1 and V = V1, is given by

u1,λ =
∞∑
k=1

〈Φ1, h1,k〉
λ− λ1,k

ϕ1,k.

Therefore, we have

‖u1,λ‖2L2(Ω) =
∞∑
k=1

∣∣∣∣ 〈Φ1, h1,k〉
λ1,k − λ

∣∣∣∣2 . (4.48)

On the other hand, in view of (3.20), we have

‖u1,λ‖L2(Ω) 6 ‖Φ1‖L2(Ω) +
∥∥∥∥√λ(H1 − λ)−1

[
2η1 · (A1 −A1,]) + q11√

λ

]∥∥∥∥
L2(Ω)

.

Here q11 is the expression introduced in Lemma 3.1. Combining this with the fact that∥∥∥√λ(H1 − λ)−1
∥∥∥
B(L2(Ω))

6
|τ + i|
|Iλ|

= |τ + i|
2τ 6 1

and the fact that, according to (3.31)-(3.32), we have

lim
τ→+∞

‖η1 · (A1 −A1,])‖L∞(Ω) = lim
τ→+∞

∥∥∥∥ q11√
λ

∥∥∥∥
L∞(Ω)

= 0

we deduce the first estimate of (4.47) for j = 1. In a same way, for j = 2 using the fact that according to
(3.32) we have

(−i∇+A2)2Φ1 + V2Φ1 − λΦ1 = O
τ→+∞

(τ)

and repeating our previous arguments we deduce the first estimate (4.47) for j = 2. For the second estimate
of (4.47), repeating the previous arguments we find

(−i∇+A2)2Φ2 + V2Φ2 − λ Φ2 = (i∇+A2)2Φ2 + V2Φ2 − λΦ2 = O
τ→+∞

(τ).

Combining this estimate with the fact that∣∣∣∣∣
〈
Φ2, h2,k

〉
λ2,k − λ

∣∣∣∣∣ =

∣∣∣∣∣
〈
Φ2, h2,k

〉
λ2,k − λ

∣∣∣∣∣
since λ2,k ∈ R, we deduce the second estimate of (4.47) by repeating the above arguments. �

From now on we set
G(λ, µ,Φ1,Φ2) := 〈F (λ, µ,Φ1),Φ2〉

=
+∞∑
k=1

(µ− λ)
[
〈Φ1, h1,k〉

〈
h1,k,Φ2

〉
(λ− λ1,k)(µ− λ1,k) −

〈Φ1, h2,k〉
〈
h2,k,Φ2

〉
(λ− λ2,k)(µ− λ2,k)

]
.

Combining estimates (4.47) with Lemma 4.3, 4.4, 4.5 of [16], we obtain the following.

Lemma 4.4. Let the conditions of Theorem 1.1 be fulfilled and let η1, η2, λ be given by (3.28). Then,
G(λ, µ,Φ1,Φ2) converge to G∗(λ,Φ1,Φ2) as µ → −∞ and G∗(λ,Φ1,Φ2) converge to 0 as τ → +∞. Here
we consider both the case b2 given by (3.30) and the case b2 = 1.

Armed with Lemma 4.4, we are now in position to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Note first that according (4.45), for M = ‖V1‖L∞(Ω) + ‖V2‖L∞(Ω), we have

S1(λ, η1, η2)− S2(λ, η1, η2) =
〈
∂νzµ, e

i
√
λη2·xb2e

iψ2

〉
+G(λ, µ,Φ1,Φ2), µ ∈ (−∞,−M),
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where λ, η1, η2 are fixed by (3.28), b2 is given by (3.30) or b2 = 1 and zµ = u1,µ − u2,µ with uj,µ, j = 1, 2,
the solution of (2.10) where λ is replaced by µ, V by Vj , A by Aj and f by Φ1. In view of Lemma 2.4 and
Lemma 4.4, sending µ→ −∞ we get

S1(λ, η1, η2)− S2(λ, η1, η2) = G∗(λ,Φ1,Φ2).
Then, in view of Lemma 4.4, conditions (4.42) and (4.43) are fulfilled and according to Lemma 4.1 we have
dA1 = dA2. Therefore, condition (1.1) implies that for A = A2 − A1 extended by 0 outside of Ω we have
dA = 0 on Rn. Thus, there exists p ∈W 2,∞(Rn) given by

p(x) =
∫ 1

0
x ·A(tx)dt

such that A = ∇p on Rn. Since Rn \Ω is connected, applying the fact that A = 0 on Rn \Ω, upon eventually
subtracting a constant we may assume that p|Rn\Ω = 0 which implies that p|Γ = 0. Now let us consider the
operator H3 = (−i∇+A1)+V2 acting on L2(Ω) with Dirichlet boundary condition and let (λ3,k, ϕ3,k)k>1 be
a sequence of eigenvalues and eigenfunctions of H3. Since A1 = A2−∇p one can check that H3 = eipH2e

−ip.
From this identity we deduce that

λ3,k = λ2,k, k > 1.
Moreover, for all k > 1 we can choose ϕ3,k = eipϕ2,k and deduce that the condition

∂νϕ3,k = ∂νϕ2,k, k > 1
is also fulfilled. Thus, conditions (1.2) imply that

lim
k→+∞

|λ1,k − λ3,k| = 0 and
+∞∑
k=1
‖∂νϕ1,k − ∂νϕ3,k‖2L2(Γ) <∞.

Then, repeating the arguments of Lemma 4.4 we obtain
lim

τ→+∞
S̃1(λ(τ), η1(τ), η2(τ))− S̃3(λ(τ), η1(τ), η2(τ)) = 0,

where
S̃j(λ, η1, η2) =

〈
Λj,λΦ1, e

i
√
λη2·xeiψ̃2

〉
, j = 1, 3

with
ψ̃2(x) =

∫ x·η2

−∞
η2 ·A1,](x+ (s− x · η2)η2)ds, b2 = 1

and Λ3,λ the Dirichlet-to-Neumann map associated to problem (2.4) for A = A1 and V = V2. Then, in view
of Lemma 4.2 we have V1 = V2. This completes the proof of Theorem 1.1. �
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