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Abstract. We consider the multidimensional Borg-Levinson theorem of determining both the magnetic
field dA and the electric potential V , appearing in the Dirichlet realization of the magnetic Schrödinger
operator H = (−i∇ + A)2 + V on a bounded domain Ω ⊂ Rn, n ≥ 2, from partial knowledge of the
boundary spectral data of H. The full boundary spectral data are given by the set {(λk, ∂νϕk|∂Ω) : k ≥ 1},
where {λk : k ∈ N∗} is the non-decreasing sequence of eigenvalues of H, {ϕk : k ∈ N∗} an associated
Hilbertian basis of eigenfunctions and ν is the unit outward normal vector to ∂Ω. We prove that some
asymptotic knowledge of (λk, ∂νϕk|∂Ω) with respect to k ≥ 1 determines uniquely the magnetic field dA

and the electric potential V .
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1. Introduction

1.1. Statement of the problem. We consider Ω ⊂ Rn, n ≥ 2, a C1,1 bounded domain and we set Γ = ∂Ω.
Let A ∈W 1,∞(Ω,Rn), V ∈ L∞(Ω,R) and consider the magnetic Schrödinger operator H = (−i∇+A)2 +V
acting on L2(Ω) with domain D(H) = {v ∈ H1

0 (Ω) : (−i∇+A)2v ∈ L2(Ω)}.
Let Aj ∈ W 1,∞(Ω,Rn), Vj ∈ L∞(Ω,R), j = 1, 2, and consider the magnetic Schrödinger operators

Hj = H for A = Aj and V = Vj , j = 1, 2. We say that H1 and H2 are gauge equivalent if there exists
p ∈W 2,∞(Ω) ∩H1

0 (Ω) such that H2 = e−ipH1e
ip.

It is well known that H is a selfadjoint operator. By the compactness of the embedding H1
0 (Ω) ↪→ L2(Ω),

the spectrum of H is purely discrete. We note {λk : k ∈ N∗} the non-decreasing sequence of eigenvalues of
H and {ϕk : k ∈ N∗} an associated Hilbertian basis of eigenfunctions. In the present paper we consider the
Borg-Levinson inverse spectral problem of determining uniquely H, modulo gauge equivalence, from partial
knowledge of the boundary spectral data {(λk, ∂νϕk|Γ) : k ∈ N∗} with ν the outward unit normal vector
to Γ. Namely, we prove that some asymptotic knowledge of (λk, ∂νϕk|Γ) with respect to k ∈ N∗ determines
uniquely the operator H modulo gauge transformation.

1.2. Borg-Levinson inverse spectral problems. It is Ambartasumyan who first investigated in 1929
the inverse spectral problem of determining the real potential V appearing in the Schrödinger operator
H = −∆ + V , acting in L2(Ω), from partial spectral data of H. For Ω = (0, 1), he proved in [1] that V = 0
if the spectrum of the Neumann realization of H equals {k2 : k ∈ N}. For the same operator, but endowed
with homogeneous Dirichlet boundary conditions, Borg [6] and Levinson [19] established that the Dirichlet
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spectrum {λk : k ∈ N∗} does not uniquely determine V . They showed that additional spectral data, namely
{‖ϕk‖L2(0,1) : k ∈ N∗}, where {ϕk : k ∈ N∗} is an L2(0, 1)-orthogonal basis of eigenfunctions of H obeying
the condition ϕ′k(0) = 1, is needed. Gel’fand and Levitan proved in [13] that uniqueness is still valid upon
substituting the terminal velocity ϕ′k(1) for ‖ϕk‖L2(0,1) in the one-dimensional Borg and Levinson theorem.

In 1988, Nachman, Sylvester, Uhlmann [21] and Novikov [23] proposed a multidimensional formulation
of the result of Borg and Levinson. Namely, they proved that the boundary spectral data {(λk, ∂νϕk|∂Ω) :
k ∈ N∗}, where ν denotes the outward unit normal vector to ∂Ω and (λk, ϕk) is the kth eigenpair of
−∆ + V , determines uniquely the Dirichlet realization of the operator −∆ + V . The initial formulation
of the multidimensional Borg-Levinson theorem by [21] and [23] has been improved in several ways by
various authors. Isozaki [14] (see also [9]) extended the result of [21] when finitely many eigenpairs remain
unknown, and, recently, Choulli and Stefanov [10] claimed uniqueness in the determination of V from the
asymptotic behavior of (λk, ∂νϕk|Γ) with respect to k. Moreover, Canuto and Kavian [7, 8] considered the
determination of the conductivity c, the electric potential V and the weight ρ from the boundary spectral
data of the operator ρ−1(−div(c∇·)+V ) acting on the weighted space L2

ρ(Ω) endowed with either Dirichlet or
Neumann boundary conditions. Namely, [7, 8] proved that the boundary spectral data of ρ−1(−div(c∇·)+V )
determines uniquely two of the three coefficients c, V and ρ. The case of magnetic Schrödinger operator has
been treated by [25] who determined both the magnetic field dA and the electric potential V of the operator
H = (−i∇+A)2 + V . Here the 2-form dA of a vector valued function A = (a1, . . . , an) is defined by

dA =
n∑

i,j=1
(∂xjai − ∂xiaj)dxj ∧ dxi.

All the above mentioned results were obtained with Ω bounded and operators of purely discrete spectral
type. In some recent work [16] examined a Borg-Levinson inverse problem stated in an infinite cylindrical
waveguide for Schrödinger operators with purely absolutely continuous spectral type. More precisely, [16]
proved that a real potential V which is 2π-periodic along the axis of the waveguide is uniquely determined
by some asymptotic knowledge of the boundary Floquet spectral data of the Schrödinger operator −∆ + V
with Dirichlet boundary conditions.

Finally, let us mention for the sake of completeness that the stability issue in the context of Borg-Levinson
inverse problems was examined in [4, 5, 9, 10, 16] and that related results on Riemannian manifolds were
examined by [2, 5, 15].

1.3. Main result. Let Aj ∈W 1,∞(Ω,Rn), Vj ∈ L∞(Ω,R) and consider the magnetic Schrödinger operators
Hj = H for A = Aj and V = Vj , j = 1, 2. Further we note (λj,k, ϕj,k), k ≥ 1, the kth eigenpair of Hj , for
j = 1, 2. Our main result can be stated as follows.

Theorem 1.1. For j = 1, 2, let Vj ∈ L∞(Ω,R) and let Aj ∈ C1(Ω,Rn) fulfill
∂αxA1(x) = ∂αxA2(x), x ∈ Γ, α ∈ Nn, |α| ≤ 1. (1.1)

Assume that the conditions

lim
k→+∞

|λ1,k − λ2,k| = 0,
+∞∑
k=1
‖∂νϕ1,k − ∂νϕ2,k‖2L2(Γ) <∞ (1.2)

hold simultaneously. Then we have dA1 = dA2 and V1 = V2.

Let us observe that, as mentioned by [10, 16], Theorem 1.1 can be considered as a uniqueness theorem
under the assumption that the spectral data are asymptotically "very close". Conditions (1.2) are similar to
the one considered by [16] and they are weaker than the requirement that

|λ1,k − λ2,k| ≤ Ck−α, ‖∂νϕ1,k − ∂νϕ2,k‖L2(Γ) ≤ Ck
−β

for some α > 1 and β > 1− 1
2n , considered in [10, Theorem 2.1]. Note also that conditions (1.2) are weaker

than the knowledge of the boundary spectral data with a finite number of data missing considered by [14].
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Let us remark that there is an obstruction to uniqueness given by the gauge invariance of boundary
spectral data for magnetic Shrödinger operators. More precisely, let p ∈ C∞0 (Ω) \ {0} and assume that
A1 = ∇p + A2 6= A2, V1 = V2. Then, we have H1 = e−ipH2e

ip and one can check that we can choose the
spectral data of H1 and H2 in such a way that the conditions

∂νϕ1,k|Γ = ∂νϕ2,k|Γ, λ1,k = λ2,k, k ∈ N∗

is fulfilled. Therefore, conditions (1.1)-(1.2) are fulfilled but H1 6= H2. Nevertheless, assuming (1.1) fulfilled,
the conditions dA1 = dA2 and V1 = V2 imply that H1 and H2 are gauge equivalent. Therefore, Theorem 1.1
is equivalent to the unique determination of magnetic Schrödinger operators modulo gauge transformation
from the asymptotic knowledge of the boundary spectral data given by conditions (1.2).

We stress out that the problem under examination in this text is a Borg-Levinson inverse problem
for the magnetic Schrödinger operator H = (−i∇ + A)2 + V . To our best knowledge, there are only
two multi-dimensional Borg-Levinson uniqueness result for magnetic Schrödinger operators available in the
mathematical literature, [15, Theorem B] and [25, Theorem 3.2]. In [15], the authors considered general
magnetic Schrödinger operators with smooth coefficients on a smooth connected Riemanian manifold and
they proved unique determination of this operator modulo gauge invariance from the knowledge of the
boundary spectral data with a missing finite number of data. In [25], Serov treated this problem on a
bounded domain of Rn, and he proved that, for A ∈ W 1,∞(Ω,Rn) and V ∈ L∞(Ω,R), the full boundary
spectral data {(λk, ∂νϕk|Γ) : k ∈ N∗} determines uniquely dA and V . In contrast to [15, 25], in the present
paper we prove that the asymptotic knowledge of the boundary spectral data, given by the conditions (1.2), is
sufficient for the unique determination of dA and V . To our best knowledge, conditions (1.2) are the weakest
conditions on boundary spectral data that guaranty uniqueness of magnetic Schrödinger operators modulo
gauge transformation. Moreover, our uniqueness result is stated with conditions similar to [16, Theorem
1.4], which seems to be the most precise Borg-Levinson uniqueness result so far for Schrödinger operator
without magnetic potential (A = 0).

The main ingredient in our analysis is a suitable representation that allows to express the magnetic
potential A and the electric potential V in terms of Dirichlet-Neumann map associated to the equations
(−i∇ + A)2u + V u − λu = 0 for some λ ∈ C. In [10, 14, 16] the authors applied a similar approach to the
Schrödinger operator −∆ + V with Dirichlet boundary condition1. Inspired by the construction of complex
geometric optics solutions of [3, 11, 17, 18, 22, 24, 27], we prove that the approach of [10, 14, 16] can be
extended to magnetic Schrödinger operators.

We believe that the approach developed in the present paper can be used for results of stability in the
determination of the magnetic field dA and the electric potential V similar to [16, Theorem 1.3]. Indeed,
following the strategy set in this paper we expect a stability estimate associated to the the determination of
the magnetic field dA. The main issue comes from the stability in the determination of the electric potential
V . Nevertheless, we expect that this problem can be solved by adapting suitably the argument developed
in [28] related to the inversion of the d operator on differential forms restricted to the right subspaces.

1.4. Outline. This paper is organized as follows. In Section 2 we consider some useful preliminary results
concerning solutions of equations of the form (−i∇+A)2u+V u−λu = 0 for some λ ∈ C \σ(H). In Section
3 we introduce a representation formula making the connection between Dirichlet-Neumann map associated
to the previous equations and the couple (A, V ) of magnetic and electric potential. Finally, in section 4 we
combine all these results and we prove Theorem 1.1.

Acknowledgements. The author would like to thank Otared Kavian and Eric Soccorsi for their remarks
and suggestions.

1This argument was initially introduced by [14] and was inspired by the Born approximation method of the scattering theory.
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2. Notations and preliminary results

We denote by 〈f, ψ〉 the duality between ψ ∈ H1/2(Γ) and f belonging to the dual H−1/2(Γ) of H1/2(Γ).
However, when in 〈f, ψ〉 both f and ψ belong to L2(Γ), to make things simpler 〈·, ·〉 can be interpreted as
the scalar product of L2(Γ), namely

〈f, ψ〉 =
∫

Γ
f(σ)ψ(σ) dσ.

We introduce the operator H defined as

Hu := (−i∇+A)2u+ V u, u ∈ D(H) :=
{
ψ ∈ H1

0 (Ω) ; (−i∇+A)2ψ ∈ L2(Ω)
}
. (2.3)

Recall that H is associated to the quadratic form b given by

b(u, v) =
∫

Ω
(−i∇+A)u(x) · (−i∇+A)v(x) dx+

∫
Ω
V (x)u(x)v(x) dx, u, v ∈ H1

0 (Ω).

Moreover, the spectrum of H is discrete and composed of the non decreasing sequence of eigenvalues denoted
by σ(H) = {λk ; k ≥ 1}. If we write V = V + − V −, with V ± := max(0,±V ), we have that the spectrum
σ(H) ofH is contained into [−‖V −‖L∞(Ω),+∞). According to [12, Theorem 2.2.2.3], we can show thatD(H)
embedded continuously into H2(Ω). Therefore the eigenfunctions (ϕk)k≥1 of H, that form an Hilbertian
basis, are lying in H2(Ω) and we have ∂νϕk|Γ ∈ H1/2(Γ).

Lemma 2.1. For any f ∈ H1/2(Γ) and λ ∈ C \ σ(H), there exists a unique solution u ∈ H1(Ω) to the
equation {

(−i∇+A)2u+ V u− λu = 0, in Ω,
u(x) = f(x), x ∈ Γ, (2.4)

which can be written as
uλ := u =

∑
k≥1

αk
λ− λk

ϕk, (2.5)

where for convenience we set
hk := ∂νϕk|Γ, and αk := 〈f, hk〉. (2.6)

Moreover

‖uλ‖2L2(Ω) =
∑
k≥1

|αk|2

|λ− λk|2
→ 0 as λ→ −∞.

Finally, there exists µ∗ < 0 such that (−∞, µ∗) ⊂ C \ σ(H) and

sup
λ≤µ∗

‖uλ‖H1(Ω) <∞.

Proof. Since λ /∈ σ(H), one can easily check that (2.4) admits a unique solution uλ ∈ H1(Ω). Moreover, uλ
can be written in terms of the eigenvalues and eigenfunctions λk, ϕk. Indeed, uλ ∈ L2(Ω) can be expressed
in the Hilbert basis (ϕk)k≥1 as

uλ =
∑
k≥1

(uλ|ϕk)ϕk

with (·, ·) the scalar product with respect to L2(Ω). Since uλ ∈ H1(Ω) and ∆uλ = −2iA ·∇uλ+(−i div(A)+
|A|2 + V )uλ ∈ L2(Ω), we have ∇uλ ∈ Hdiv(Ω) = {v ∈ L2(Ω;Rn) : div(v) ∈ L2(Ω)}. Thus, taking the scalar
product of the first equation in (2.4) with ϕk and applying the Green formula we obtain

〈f, hk〉 = (λ− λk) (u|ϕk),
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which yields the expression given by (2.5). The fact that ‖uλ‖ → 0 as λ → −∞ is a consequence of the
fact that we may fix c0 > ‖V ‖L∞(Ω) large enough so that if λ is real and such that λ ≤ −c0, we have
|λ− λk|2 ≥ |c0 − λk|2 for all k ≥ 1, and thus

|αk|2

|λ− λk|2
≤ |αk|2

|c0 − λk|2
,

so that we may apply Lebesgue’s dominated convergence as λ→ −∞.
Now let us consider the last part of the lemma. Since ∇uλ ∈ Hdiv(Ω), multiplying (2.4) by uλ and

applying the Green formula we obtain∫
Ω
|(−i∇+A)uλ|2 dx+

∫
Ω

(V − λ) |uλ|2 dx = −〈∂νuλ + i(A · ν)f, f〉 . (2.7)

Then, since A ∈W 1,∞(Ω,Rn) ⊂ C(Ω,Rn) and f ∈ H 1
2 (Γ), we get

〈A · νf, f〉 =
∫

Γ
(A(x) · ν(x)) |f(x)|2 dσ(x) ∈ R.

Thus, for λ ∈ R \ σ(H), taking the real part of (2.7), we find∫
Ω
|(−i∇+A)uλ|2 dx+

∫
Ω

(V−λ) |uλ|2 dx = −R 〈∂νuλ, f〉 ≤ ‖∂νuλ‖
H−

1
2 (Γ)
‖f‖

H
1
2 (Γ)
≤ C ‖uλ‖H1(Ω) ‖f‖H 1

2 (Γ)

(2.8)
with C a constant depending only on Ω. On the other hand, we have∫

Ω
|(−i∇+A)uλ|2 dx+

∫
Ω

(V−λ) |uλ|2 dx ≥
1
2

∫
Ω
|∇uλ|2 dx−

[
(32 ‖A‖L∞(Ω,Rn) + ‖V ‖L∞(Ω)) + λ

] ∫
Ω
|uλ|2 dx.

Therefore, choosing µ∗ = −(32 ‖A‖L∞(Ω,Rn) + ‖V ‖L∞(Ω))−
1
2 , we have (−∞, µ∗) ⊂ R \ σ(H) and for λ < µ∗

we obtain ∫
Ω
|(−i∇+A)uλ|2 dx+

∫
Ω

(V − λ) |uλ|2 dx ≥
‖uλ‖2H1(Ω)

2 .

Combining this estimate with (2.8) we get that

‖uλ‖H1(Ω) ≤ 2C ‖f‖
H

1
2 (Γ)

, λ < µ∗.

This completes the proof the lemma since the right hand side of this inequality is independent of λ.
�

It is clear that the series (2.5) giving uλ in terms of αk, λk and ϕk, converges only in L2(Ω) and thus we
cannot deduce an expression of the normal derivative ∂νuλ in terms of αk, λk and hk. To avoid this difficulty,
in a similar way to [16], we have the following lemma:

Lemma 2.2. Let f ∈ H1/2(Γ) be fixed and for λ, µ ∈ C \ σ(H) let uλ and uµ be the solutions given by
Lemma 2.1. If we set v := vλ,µ := uλ − uµ, then

∂νv =
∑
k

(µ− λ)αk
(λ− λk)(µ− λk) hk , (2.9)

the convergence taking place in H1/2(Γ).

Proof. Let vλ,µ := uλ − uµ; One verifies that vλ,µ solves{
(−i∇+A)2vλ,µ + V vλ,µ − λvλ,µ = (λ− µ)uµ, in Ω,

vλ,µ(σ) = 0, σ ∈ Γ. (2.10)
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Since (uµ|ϕk) = αk/(µ− λk), it follows that

vλ,µ =
∑
k

(λ− µ)αk
(λk − λ)(µ− λk) ϕk,

the convergence taking place in D(H). Since the operator v 7→ ∂νv is continuous from D(H) into H1/2(Γ),
the result of the lemma follows. �

The next lemma states essentially that if for j = 1 or j = 2 we have two magnetic potentials Aj , two
electric potentials Vj and uj := uj,µ solutions of{

(−i∇+Aj)2uj + Vjuj − µuj = 0, in Ω,
uj(x) = f(x), x ∈ Γ, (2.11)

then u1,µ and u2,µ are close as µ→ −∞: in some sense the influence of the potentials Aj and Vj are dimmed
when µ→ −∞. More precisely we have:

Lemma 2.3. Let Vj ∈ L∞(Ω,R) and Aj ∈W 1,∞(Ω,Rn) be given for j = 1 or j = 2, and denote by Hj the
corresponding operator defined by (2.3). For f ∈ H1/2(Γ) and µ ∈ (−∞, µ∗) ⊂ C \ σ(H), let uj,µ := uj be
the solution of (2.11). Then, for any 0 < ε < 1/4, zµ := u1,µ − u2,µ ∈ H2(Ω) converge to 0 in H2(1−ε)(Ω)
as µ→ −∞. In particular ∂νzµ → 0 in L2(Γ) as µ→ −∞.

Proof. Since the trace map v 7→ ∂νv is continuous from H2(1−ε)(Ω) to L2(Γ) (e.g. Theorem 9.4 in Chapter
4 of [20]), it is enough to show that zµ ∈ H2(Ω) and ‖zµ‖H2(1−ε)(Ω) → 0 when µ→ −∞. We fix µ < µ∗ with
µ∗ < 0 the minimal value of the constant given by Lemma 2.1 for A = Aj , V = Vj , j = 1, 2. Without lost
of generality we assume that Hj − µ∗ is strictly positive, j = 1, 2. One verifies that zµ solves the equation{

(−i∇+A1)2zµ + V1zµ − µzµ = −2i(A2 −A1) · ∇u2,µ + (p2 − p1)u2,µ, in Ω,
zµ(σ) = 0, σ ∈ Γ, (2.12)

with pj = −idiv(Aj) + |Aj |2 + Vj , j = 1, 2. That is, denoting by R1,µ = (H1 − µI)−1 the resolvent of the
operator H1 := (−i∇+A1)2 + V1, we have

zµ = R1,µ(−2i(A2 −A1) · ∇u2,µ + (p2 − p1)u2,µ) =
+∞∑
k=1

(wµ, ϕ1,k)
(λ1,k − µ)ϕ1,k

with wµ = −2i(A2 −A1) · ∇u2,µ + (p2 − p1)u2,µ and (λ1,k)k≥1, (ϕ1,k)k≥1 respectively the eigenvalues of H1
and an Hilbertian basis of eigenfunctions associated to these eigenvalues. Since wµ ∈ L2(Ω), zµ is lying in
D(H1) and by the same way in H2(Ω). It remains to show that ‖zµ‖H2(1−ε)(Ω) → 0 when µ → −∞. Since
D(H1) embedded continuously into H2(Ω) there exists a constant C2 depending on A1, V1 and Ω such that

‖v‖2H2(Ω) ≤ C2

∞∑
k=1
|λ1,k − µ∗|2 |(v, ϕ1,k)|2 , v ∈ D(H1).

In a same way, one can find a constant C1 depending on A1, V1 and Ω such that

‖v‖2H1(Ω) ≤ C1

∞∑
k=1
|λ1,k − µ∗| |(v, ϕ1,k)|2 , v ∈ D(H1).

Therefore, by interpolation (e.g. Theorem 5.1 in Chapter 1 of [20]), there exists a constant C2(1−ε) depending
on ε, A1, V1 and Ω such that

‖v‖2H2(1−ε)(Ω) ≤ C2(1−ε)

∞∑
k=1
|λ1,k − µ∗|2(1−ε) |(v, ϕ1,k)|2 , v ∈ D(H1).
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It follows

‖zµ‖2H2(1−ε)(Ω) ≤ C2(1−ε)

∞∑
k=1

|λ1,k − µ∗|2(1−ε) |(wµ, ϕ1,k)|2

|λ1,k − µ|2
≤ C2(1−ε)

‖wµ‖2L2(Ω)

|µ− µ∗|2ε
. (2.13)

On the other hand, we have
‖wµ‖2L2(Ω) ≤ C ‖u2,µ‖H1(Ω)

with C independent of µ. Then, according to Lemma 2.1, we obtain
sup
µ≤µ∗

‖wµ‖2L2(Ω) ≤ C sup
µ≤µ∗

‖u2,µ‖H1(Ω) <∞.

Combining this with estimate (2.13) we find

‖zµ‖2H2(1−ε)(Ω) ≤ C2(1−ε)
supλ≤µ∗ ‖wλ‖

2
L2(Ω)

|µ− µ∗|2ε
.

We complete the proof by remarking that the right hand side of this inequality converge to 0 as µ→ −∞. �

3. A representation formula

From now on, for all x = (x1, . . . , xn) ∈ Cn and y = (y1, . . . , yn) ∈ Cn, we denote by x · y the quantity

x · y =
n∑
k=1

xkyk

and for all x ∈ Rn we denote by x⊥ the subspace of Rn defined by {y ∈ Rn : y · x = 0}. Moreover, we set
Aj ∈ C1(Ω,Rn), Vj ∈ L∞(Ω), j = 1, 2, and we assume that condition (1.1) is fulfilled.

For j = 1, 2, we associate to the problem{
(−i∇+Aj)2uj + Vjuj − λuj = 0, in Ω,

uj(x) = f(x), x ∈ Γ (3.14)

the Dirichlet-Neumann map
Λj,λ : H 1

2 (∂Ω) 3 f 7→ (∂ν + iAj · ν)uj,λ|Γ,
where uj,λ solves (3.14).

The goal of this section is to apply the Dirichlet-Neumann maps Λj,λ to some suitable ansatz in order to
get a representation formula involving the magnetic potentials Aj and the electric potentials Vj , j = 1, 2. A
similar approach was considered by [10, 14, 16]. All these authors considered this representation formula for
Schrödinger operators −∆ +V with an electric potential V , in other words for Schrödinger operators with a
variable coefficient of order zero. In our case we need to extend this strategy to Schrödinger operators with
both magnetic and electric potentials, which means an extension to Schrödinger operators with variable
coefficients of order zero and one. Therefore, in accordance with results related to the determination of
magnetic Schrödinger operators from boundary measurements (e.g. [3, 11, 17, 18, 22, 24, 27]), we consider
some ansatzs of the form

Φj,λ(x) = eζj ·xgj(x), ζj ∈ Cn, x ∈ Ω, j = 1, 2 (3.15)
with ζj chosen in such way that (−∆− λ)eζj ·x = 0 and with g1 and g2 respectively a solution of

ζ1 · ∇g1 + (iζ1 ·A1,])g1 = 0, ζ2 · ∇g2 − (iζ2 ·A2,])g2 = 0
with Aj,] some smooth functions close to the magnetic potential Aj , j = 1, 2. More precisely, we fix λ ∈ C\R,
η1, η2 ∈ Sn−1 = {y ∈ Rn, |y| = 1} and Aj,] ∈ C∞(Ω,Rn), j = 1, 2, and we define the ansatzs

Φ1,λ(x) := ei
√
λη1·xeiψ1(x), Φ2,λ(x) := e−i

√
λη2·xb2(x)e−iψ2(x), x ∈ Ω, (3.16)

where ψj is a solution lying in W 2,∞(Ω) of
ηj · ∇ψj(x) = −ηj ·Aj,], j = 1, 2
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and b2 ∈ W 2,∞(Rn) satisfies η2 · ∇b2 = 0. In the construction of our ansatzs we consider some smooth
approximation of the magnetic potentials instead of the magnetic potentials to obtain sufficiently smooth
functions Φj,λ, j = 1, 2. Further, for j = 1, 2, we put

Sj(λ, η1, η2) =
〈
Λj,λΦ1,λ,Φ2,λ

〉
=
∫

Γ
(Λj,λΦ1,λ)Φ2,λ(x)dσ(x). (3.17)

In other words we apply Λj,λ, j = 1, 2, to ansatzs of the form (3.15) with ζ1 = i
√
λη1, ζ2 = −i

√
λη2, g1 = eiψ1

and g2 = b2e
−iψ2 . From now on, for the sake of simplicity we will systematically omit the subscripts λ in

Φj,λ, j = 1, 2, in the remaining of this text. In view of determining the behavior of Sj , j = 1, 2, as Iλ→ +∞
we first establish the following lemma.

Lemma 3.1. For all λ ∈ C \ R and ηj ∈ Sn−1, j = 1, 2, the scalar products Sj(λ, η1, η2) have the following
expression

S1(λ, η1, η2)

= 2
√
λ
∫

Ω η2 · (A1 −A2,])ei
√
λ(η1−η2)·xb2e

i(ψ1(x)−ψ2(x))dx

+
∫

Ω(V1 − q12)ei
√
λ(η1−η2)·xb2e

i(ψ1(x)−ψ2(x))dx

−i
∫

Γ e
i
√
λ(η1−η2)·xei(ψ1(x)−ψ2(x))(b2

√
λη2 + b2∇ψ2 + i∇b2 + b2A1) · νdσ(x)

−
∫

Ω

[
(H1 − λ)−1

(
2
√
λη1 · (A1 −A1,]) + q11

)
Φ1

] (
2
√
λη2 · (A1 −A2,])b2 + V1b2 − q12

)
e−i
√
λη2·xe−iψ2dx,

(3.18)

S2(λ, η1, η2)
=
∫

Ω

[
2
√
λη2 · (A2 −A2,]) + V2 − q22

]
ei
√
λ(η1−η2)·xb2e

i(ψ1(x)−ψ2(x))dx

−i
∫
∂Ω e

i
√
λ(η1−η2)·xei(ψ1(x)−ψ2(x))(b2

√
λη2 + b2∇ψ2 + i∇b2 + b2A2) · νdσ(x)

−
∫

Ω

[
(H2 − λ)−1

(
2
√
λη1 · (A2 −A1,]) + q21

)
Φ1

]
(2
√
λη2 · (A2 −A2,])b2 + V2b2 − q22)e−i

√
λη2·xe−iψ2dx.

(3.19)
Here we denote by q11, q12, q21, q22 the expressions

q11 = −idivA1 + |A1|2 + V1(x) + 2A1 · ∇ψ1 − i∆ψ1 + |∇ψ1|2 ,

q12 = ∆b2 − 2i∇ψ2 · ∇b2 − 2i∇b2 ·A1 +
(
−i∆ψ2 − |∇ψ2|2 − 2∇ψ2 ·A1 − idivA1 − |A1|2

)
b2,

q21 = −idivA2 + |A2|2 + V2(x) + 2A2 · ∇ψ1 − i∆ψ1 + |∇ψ1|2 ,

q22 = ∆b2 − 2i∇ψ2 · ∇b2 − 2i∇b2 ·A2 +
(
−i∆ψ2 − |∇ψ2|2 − 2∇ψ2 ·A2 − idivA2 − |A2|2

)
b2.

Moreover, Hj, j = 1, 2, denotes the selfadjoint operator (−i∇+Aj) + Vj acting on L2(Ω) with domain

D(Hj) = {v ∈ H1
0 (Ω) : (−i∇+Aj)v ∈ L2(Ω)}.

Proof. We start with the expression of S1(λ, η1, η2). Recall that

(−i∇+A1)2u+ V1u− λu = −∆u− 2iA1 · ∇u+ qu− λu
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with q(x) = −idivA1(x) + |A1(x)|2 + V1(x). Therefore, in light of (3.16) we have
(−i∇+A1)2Φ1 + V1Φ1 − λΦ1
= (λ+ 2

√
λη1 · ∇ψ1 − i∆ψ1 + |∇ψ1|2)Φ1 + (2

√
λη1 ·A1 + 2A1 · ∇ψ1)Φ1 + qΦ1 − λΦ1

= 2
√
λ(η1 · ∇ψ1 + η1 ·A1)Φ1 + q11Φ1

with q11 = q+ 2A1 · ∇ψ1 − i∆ψ1 + |∇ψ1|2. On the other hand, since ψ1 satisfies η1 · ∇ψ1 + η1 ·A1,] = 0, we
deduce that

(−i∇+A1)2Φ1 + V1Φ1 − λΦ1 =
[
2
√
λη1 · (A1 −A1,]) + q11

]
Φ1. (3.20)

Now consider u1 the solution of{
(−i∇+A1)2u1 + V1u1 − λu1 = 0, in Ω,

u1(x) = Φ1(x), x ∈ ∂Ω.
Note that, with our assumptions one can check that D(H1) = H1

0 (Ω) ∩ H2(Ω). In view of (3.20), we can
split u1 into two terms u1 = Φ1 + v1 with v1 the solution of{

(−i∇+A1)2v1 + V1v1 − λv1 = −
[
2
√
λη1 · (A1 −A1,]) + q11

]
Φ1, in Ω,

v1(x) = 0, x ∈ ∂Ω.
Then, we have

u1 = Φ1 − (H1 − λ)−1
[
2
√
λη1 · (A1 −A1,]) + q11

]
Φ1. (3.21)

Further, as
S1 =

∫
∂Ω

(∂ν + iA1 · ν)u1(x)e−i
√
λη2·xb2e

−iψ2(x)dσ(x), (3.22)

from (3.17), and (∇+ iA1)u1e
−i
√
λη2·xeiψ2 ∈ H(div,Ω), we get

S1 =
∫

Ω
div
(

(∇+ iA1(x))u1(x)e−i
√
λη2·xb2e

−iψ2(x)
)
dx

=
∫

Ω
(∇+ iA1)2u1e

−i
√
λη2·xb2e

−iψ2dx+
∫

Ω
(∇+ iA1)u1 · (∇− iA1)e−i

√
λη2·xb2e

−iψ2dx

(3.23)

by applying Stokes formula. Doing the same with (∇− iA1)e−i
√
λη2·xb2e

iψ2 ∈ H(div; Ω) we find out that∫
Ω

(∇+ iA1)u1 · (∇− iA1)e−i
√
λη2·xb2e

−iψ2dx

= −i
∫

Γ
u1(x)e−i

√
λη2·xe−iψ2(

√
λb2η2 + b2∇ψ2 + i∇b2 + b2A1) · νdσ(x)

−
∫

Ω
u1(x)(∇− iA1)2e−i

√
λη2·xb2e

−iψ2dx.

In light of (3.16) and the identity u1|Γ = ϕ1, this entails∫
Ω(∇+ iA1)u1 · (∇− iA1)e−i

√
λη2·xb2e

−iψ2dx

= −i
∫

Γ e
i
√
λ(η1−η2)·xei(ψ1(x)−ψ2(x))(

√
λb2η2 + b2∇ψ2 + i∇b2 + b2A1) · νdσ(x)

−
∫

Ω u1(x)(∇− iA1)2e−i
√
λη2·xb2e

−iψ2dx.

Moreover, one can check that

(∇− iA1)2e−i
√
λη2·xb2e

−iψ2 =
(
−λb2 − 2

√
λ(η2 · ∇ψ2 +A1 · η2)b2 − 2i

√
λη2 · ∇b2 + q12

)
e−i
√
λη2·xe−iψ2

with q12 = ∆b2−2i∇ψ2 ·∇b2−2i∇b2 ·A1 +
(
−i∆ψ2 − |∇ψ2|2 − 2∇ψ2 ·A1 − idivA1 − |A1|2

)
b2. Combining

this with the fact that ψ2 satisfies η2 · ∇ψ2 + η2 ·A2,] = 0 and b2 solves η2 · ∇b2 = 0, we deduce that

(∇− iA1)2e−i
√
λη2·xb2e

−iψ2 =
(

[−λ− 2
√
λη2 · (A1 −A2,])]b2 + q12

)
e−i
√
λη2·xe−iψ2 .
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Therefore, we find∫
Ω(∇+ iA1)u1 · (∇− iA1)e−i

√
λη2·xb2e

−iψ2dx

= −i
∫

Γ e
i
√
λ(η1−η2)·xei(ψ1(x)−ψ2(x))(

√
λb2η2 + b2∇ψ2 + i∇b2 + b2A1) · νdσ(x)

−
∫

Ω u1(x)
(
−λb2 − 2

√
λη2 · (A1 −A2,])b2 + q12

)
e−i
√
λη2·xe−iψ2dx.

Combining this with (3.21) we find∫
Ω(∇+ iA1)u1 · (∇− iA1)e−i

√
λη2·xb2e

−iψ2dx

= −i
∫

Γ e
i
√
λ(η1−η2)·xei(ψ1(x)−ψ2(x))(

√
λb2η2 + b2∇ψ2 + i∇b2 + b2A1) · νdσ(x)

+λ
∫

Ω u1e
−i
√
λη2·xb2e

−iψ2dx+ 2
√
λ
∫

Ω η2 · (A1 −A2,])ei
√
λ(η1−η2)·xb2e

i(ψ1(x)−ψ2(x))dx

−
∫

Ω q12e
i
√
λ(η1−η2)·xb2e

i(ψ1(x)−ψ2(x))dx

−
∫

Ω[(H1 − λ)−1
(

2
√
λη1 · (A1 −A1,]) + q11

)
Φ1]

(
2
√
λη2 · (A1 −A2,])b2 − q12

)
e−i
√
λη2·xe−iψ2dx.

(3.24)
Next, taking into account the fact that (∇+ iA1)2u1 = (V1 − λ)u1 in Ω, we obtain∫

Ω(∇+ iA1)2u1e
−i
√
λη2·xb2e

−iψ2dx =
∫

Ω(V1 − λ)u1e
−i
√
λη2·xb2e

−iψ2dx

= −λ
∫

Ω u1e
−i
√
λη2·xb2e

−iψ2dx+
∫

Ω V1e
i
√
λ(η1−η2)·xb2e

i(ψ1(x)−ψ2(x))dx

−
∫

Ω V1

[
(H1 − λ)−1

(
2
√
λη1 · (A1 −A1,]) + q11

)
Φ1

]
e−i
√
λη2·xb2e

−iψ2dx.

Finally, we deduce (3.18) from (3.23)-(3.24). In the same way we have

(−i∇+A2)2Φ1 + V2Φ1 − λΦ1 = 2
√
λ(η1 · ∇ψ1 +A2 · η1)Φ1 + q21Φ1

with q21 = −idivA2 + |A2|2 + V2(x) + 2A2 · ∇ψ1 − i∆ψ1 + |∇ψ1|2. Then, since ψ1 is a solution of η1 · ∇ψ1 +
η1 ·A1,] = 0, we deduce that

(−i∇+A2)2Φ1 + V2Φ1 − λΦ1 =
(

2
√
λη1 · (A2 −A1,]) + q21

)
Φ1.

Moreover, the solution u2 of{
(−i∇+A2)2u2 + V2u2 − λu2 = 0, in Ω,

u2(x) = Φ1(x), x ∈ ∂Ω
is given by

u2 = Φ1 − (H2 − λ)−1
(

2
√
λη1 · (A2 −A1,]) + q21

)
Φ1. (3.25)

Repeating our previous arguments, we deduce

S2 =
∫

Ω
(∇+ iA2)2u2e

−i
√
λη2·xb2e

−iψ2dx+
∫

Ω
(∇+ iA2)u2 · (∇− iA2)e−i

√
λη2·xb2e

−iψ2dx. (3.26)

On the other hand, using the fact that ψ2 is a solution of the equation η2 · ∇ψ2 + η2 ·A2,] = 0, we get∫
Ω(∇+ iA2)u2 · (∇− iA2)e−i

√
λη2·xb2e

−iψ2dx

= −i
∫

Γ e
i
√
λ(η1−η2)·xei(ψ1(x)−ψ2(x))(

√
λb2η2 + b2∇ψ2 + i∇b2 + b2A2) · νdσ(x)

−
∫

Ω u2(x)
(
−λb2 − 2

√
λη2 · (A2 −A2,])b2 + q22

)
e−i
√
λη2·xe−iψ2dx

with q22 = ∆b2−2i∇ψ2 ·∇b2−2i∇b2 ·A2 +
(
−i∆ψ2 − |∇ψ2|2 − 2∇ψ2 ·A2 − idivA2 − |A2|2

)
b2. Combining

this with (3.25)-(3.26) and repeating our previous arguments we obtain (3.19). �
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In order to get a suitable expression of the functions ψj , Aj,], we first need to extend identically the
magnetic potentials Aj , j = 1, 2. For this purpose we set Ω̃ an open bounded set of Rn such that Ω ⊂ Ω̃ and
we define Ã1 ∈ C1

0(Ω̃,Rn) such that Ã1|Ω = A1. Then, we define Ã2 by

Ã2(x) =
{
A2(x), for x ∈ Ω,
Ã1(x), for x ∈ Ω̃ \ Ω.

In view of (1.1), it is clear that Ã2 ∈ C1
0(Ω̃,Rn). Without lost of generality, we assume that Diam(Ω̃) =

2Diam(Ω). We now introduce the following quantities: we consider an arbitrary ξ ∈ Rn \ {0} and pick
η ∈ Sn−1 such that η · ξ = 0. Then for τ > |ξ| we put

Bτ =

√
1− |ξ|

2

4τ2 , η1(τ) = Bτη −
ξ

2τ , η2(τ) = Bτη + ξ

2τ and
√
λ(τ) = τ + i, (3.27)

in such a way that 
η1, η2 ∈ Sn−1,

√
λ(η1 − η2)→ −ξ, as τ → +∞,

Iλ→ +∞, as τ → +∞,

I
√
λη1, I

√
λη2 are bounded wrt τ > |ξ| .

(3.28)

We define the functions Aj,] ∈ C∞0 (Rn;Rn), j = 1, 2, by

Aj,](x) := χδ ∗ Ãj(x) =
∫
Rn
χδ(x− y)Ãj(y)dy,

where χδ(x) = δ−nχ(δ−1x) is the usual mollifer with χ ∈ C∞0 (Rn), suppχ ⊂ {x ∈ Rn : |x| ≤ 1}, 0 ≤ χ ≤ 1
and

∫
Rn χdx = 1. From now on we set δ = τ−

1
3 and we fix

ψj(x) = −
∫ x·ηj

−∞
Aj,](x+ (s− x · ηj)ηj)ds.

We set also
b2 = eiω·x∂y

[
exp

(
−i
∫
R
η2 ·A](x+ sη2)ds

)
e−iω·x

]
, (3.29)

where A] = A2,] −A1,], ω = Bτξ − |ξ|
2η

2τ ∈ η
⊥
2 , Bτ =

√
1− |ξ|24τ2 , and

b = eix·ξ∂y

[
exp

(
−i
∫
R
η ·A(x+ sη)ds

)
e−ix·ξ

]
, ψ =

∫ x·η

−∞
η ·A(x+ (s− x · η)η)ds.

Here y ∈ Sn−1 denotes a vector lying in η⊥, ∂y = y · ∇ and A is the function defined by A2 − A1 on Ω and
extended by 0 outside of Ω. Note that, in view of condition (1.1) we have A ∈ C1

0(Ω). Since Ãj ∈ C1
0(Rn,Rn),

we find
‖Aj,] −Aj‖L∞(Ω) ≤

∥∥Aj,] − Ãj∥∥L∞(Rn) ≤ Cδ = Cτ−
1
3 (3.30)

with C depending on Ω and any M ≥
∥∥Ãj∥∥W 1,∞(Rn). On the other hand, one can check that

‖∂αxAj,]‖L∞(Rm) ≤ Cδ
|α|−1 = Cτ

|α|−1
3 , α ∈ Nn \ {0}, (3.31)

where C depends on Ω and anyM ≥ max
j=1,2

∥∥Ãj∥∥W 1,∞(Rn). Applying (3.30) and (3.31), we obtain the following.

Lemma 3.2. Let the condition introduced above be fulfilled. Then, we have

sup
τ>|ξ|+1

‖b2‖L∞(Rn) <∞ (3.32)
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and

lim
τ→+∞

b2(x) = b(x), lim
τ→+∞

ψ1(x)− ψ2(x) = ψ(x) =
∫ x·η

−∞
A(x+ (s− x · η)η)ds, x ∈ Rn. (3.33)

Proof. Note first that

b2(x) =
(
−iω · y +−i

∫
R
η2 · ∂yA](x+ sη2)ds

)
exp

(
−i
∫
R
η2 ·A](x+ sη2)ds

)
. (3.34)

On the other hand, we have |ω| ≤ 1+|ξ| and, since Ã2−Ã1 is compactly supported and Ã2−Ã1 ∈ C1
0(Rn,Rn),

we find ∂yA] = χδ ∗ ∂y(Ã2 − Ã1). Therefore, we obtain

‖b2‖L∞(Rn) ≤ 1 + |ξ|+ C ‖χδ‖L1(Rn)
∥∥∂y(Ã2 − Ã1)

∥∥
L∞(Rn,Rn) ≤ 1 + |ξ|+ CM

with C a generic constant depending only on Ω and M ≥ max
j=1,2

∥∥Ãj∥∥W 1,∞(Rn). From this last estimate we

deduce (3.32). Now let us prove (3.33). Since Ã1 and Ã2 coincide outside of Ω, we have Ã2 − Ã1 = A.
Therefore, we deduce that A] = χδ ∗A and
|∂yA](x+ sη2)− ∂yA(x+ sη)| ≤ |∂yA](x+ sη2)− ∂yA](x+ sη)|+ |∂yA](x+ sη)− ∂yA(x+ sη)| . (3.35)

The second term on the right hand side of this estimate can be rewritten as
∂yA](x+ sη)− ∂yA(x+ sη) = χδ ∗ ∂yA(x+ sη)− ∂yA(x+ sη)

and since A ∈ C1
0 (Rn), we get

lim
τ→+∞

∂yA](x+ sη)− ∂yA(x+ sη) = 0, x ∈ Rn, s ∈ R. (3.36)

For the first term on the right hand side of (3.35), using the fact that for τ sufficiently large we have

η2 = η + ξ

2τ + o
τ→+∞

(
1
τ

)
and applying (3.31), we get

|∂yA](x+ sη2)− ∂yA](x+ sη)| ≤ ‖A]‖W 2,∞(Rn) |s(η − η1)| ≤ C |s| τ− 2
3

with C depending on ξ, Ω, Ã1 and Ã2. In view of this estimate we have
lim

τ→+∞
∂yA](x+ sη2)− ∂yA](x+ sη) = 0, x ∈ Rn, s ∈ R.

Combining this last result with (3.35)-(3.36), we get
lim

τ→+∞
∂yA](x+ sη) = ∂yA(x+ sη), x ∈ Rn, s ∈ R.

Then, using the fact that suppA] ⊂ Ω+{x ∈ Rn : |x| ≤ δ} and (3.31), by the dominate convergence theorem
we get that

lim
τ→+∞

∫
R
∂yA](x+ sη2)ds =

∫
R
∂yA(x+ sη)ds, x ∈ Rn.

Putting this together with (3.34) and the fact that ω → ξ, η2 → η as τ → +∞, we obtain

lim
τ→+∞

b2(x) =
(
−iξ · y +−i

∫
R
η · ∂yA(x+ sη)ds

)
exp

(
−i
∫
R
η ·A(x+ sη)ds

)
= b(x), x ∈ Rn.

Using similar arguments we deduce that

lim
τ→+∞

ψ1(x)− ψ2(x) = ψ(x) =
∫ x·η

−∞
A(x+ (s− x · η)η)ds, x ∈ Rn.

This completes the proof of the lemma. �

Applying (3.18)-(3.19) and (3.30)-(3.33), we obtain the following representation
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Lemma 3.3. Fix ξ ∈ Rn \ {0} and η ∈ Sn−1 such that η · ξ = 0. Let λ, η1 and η2 be defined by (3.27) and
let b2 be defined by (3.29). Then, we have

lim
τ→+∞

S1 − S2√
λ

= 2
∫

Ω
η · (A1 −A2)e−iξ·xbeiψ(x)dx. (3.37)

Proof. With reference to (3.16) and (3.27) we have |Φ1(x)| = e−η1·x and
∣∣∣e−i

√
λη2·x

∣∣∣ = eη2·x for all x ∈ Ω,

hence ‖Φ1‖2L2(Ω) =
∫

Ω e
−2η1·xdx ≤ |Ω|e2|Ω| and

∥∥∥e−i
√
λη2·x

∥∥∥2

L2(Ω)
≤ |Ω|e2|Ω| since |η1| = |η2| = 1. Moreover,

in view of (3.27), we have the estimate∥∥(Hj − λ)−1∥∥
B(L2(Ω)) = 1

(dist(λ, σ(Hj)))
≤ 1
|Iλ|

= 1
2τ , j = 1, 2.

In addition, in light of (3.31), we get

‖ψj‖W 2,∞(Ω) ≤ Cδ = Cτ
1
3 , ‖bj‖W 2,∞(Ω) ≤ Cδ

2 = Cτ
2
3

with C a generic constant depending on ξ, Ãj , j = 1, 2, and Ω. Putting these estimates together with (1.1),
(3.18)-(3.19) and (3.30) , we deduce that

S1 − S2√
λ

= 2
∫

Ω
η2 · (A1 −A2)ei

√
λ(η1−η2)·xb2e

i(ψ1(x)−ψ2(x))dx+ O
τ→+∞

(
τ−

1
3

)
.

Combining this with (3.32)-(3.33) and applying the dominate convergence theorem we deduce (3.37).
�

Using similar arguments we obtain the following.

Lemma 3.4. Assume that A1 = A2. Fix ξ ∈ Rn \ {0} and η ∈ Sn−1 such that η · ξ = 0. Let λ, η1 and η2 be
defined by (3.27) and b2 = 1. Then, we have

lim
τ→+∞

S1 − S2 =
∫

Ω
(V1 − V2)e−iξ·xdx. (3.38)

Proof. Note that for A1 = A2 we have q11 − V1 = q21 − V2, q12 = q22, A1,] = A2,]. Therefore, we deduce
that (3.18)-(3.19) imply

S1 − S2 =
∫

Ω
(V1 − V2)ei

√
λ(η1−η2)·xei(ψ1(x)−ψ2(x))dx−

∫
Ω

[
λ
(
(H1 − λ)−1 − (H2 − λ)−1)Q1

]
Q2dx

−
∫

Ω

[√
λ(H1 − λ)−1Q1

]
V1e
−i
√
λη2·xe−iψ2dx−

∫
Ω

[√
λ(H1 − λ)−1V1Φ1

]
Q2dx

−
∫

Ω

[
(H1 − λ)−1V1Φ1

]
V1e
−i
√
λη2·xe−iψ2dx+

∫
Ω

[√
λ(H2 − λ)−1Q1

]
V2e
−i
√
λη2·xe−iψ2dx

+
∫

Ω

[√
λ(H2 − λ)−1V2Φ1

]
Q2dx+

∫
Ω

[
(H2 − λ)−1V2Φ1

]
V2e
−i
√
λη2·xe−iψ2dx,

(3.39)

where

Q1 = 2η1 · (A1 −A1,])Φ1 + (q11 − V1)Φ1√
λ

, Q2 =
(

2η2 · (A1 −A1,])−
q12√
λ

)
e−i
√
λη2·xe−iψ2 .

On the other hand, since H2 − λ = H1 − λ− (V1 − V2), for τ sufficiently large we have

(H1 − λ)−1 − (H2 − λ)−1 = (H1 − λ)−1
(
Id−

(
Id− (V1 − V2)(H1 − λ)−1)−1

)
= −(H1 − λ)−1

∞∑
k=1

(
(V1 − V2)(H1 − λ)−1)k .
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Combining this with the fact that Iλ = 2τ , |λ| ≤ |τ2 − 1|+ 2τ , and the fact that∥∥(H1 − λ)−1∥∥
B(L2(Ω)) +

∥∥(V1 − V2)(H1 − λ)−1∥∥
B(L2(Ω)) ≤

C

|Iλ|
= C

2τ
with C depending only on V1, V2 and Ω, we deduce that

sup
τ>|ξ|+1

∥∥λ ((H1 − λ)−1 − (H2 − λ)−1)∥∥
B(L2(Ω)) <∞. (3.40)

In addition, (3.30)-(3.31) imply
lim

τ→+∞
‖Q1‖L∞(Ω) = lim

τ→+∞
‖Q2‖L∞(Ω) = 0.

Putting this result together with (3.28), (3.39)-(3.40), we obtain

lim sup
τ→+∞

∣∣∣∣(S1 − S2)−
∫

Ω
(V1 − V2)ei

√
λ(η1−η2)·xei(ψ1(x)−ψ2(x))dx

∣∣∣∣ = 0.

On the other hand, repeating the arguments of Lemma 3.2, we find

lim
τ→+∞

ψ1(x)− ψ2(x) = ψ(x) =
∫ x·η

−∞
A(x+ (s− x · η)η)ds = 0

since A1 = A2. Thus, applying the dominate convergence theorem we obtain

lim
τ→+∞

∫
Ω

(V1 − V2)ei
√
λ(η1−η2)·xei(ψ1(x)−ψ2(x))dx =

∫
Ω

(V1 − V2)eix·ξdx

and we deduce (3.38). �

4. Proof of the main result

This section is devoted to the proof of our main result. In all this section, for j = 1 and j = 2, we
consider two magnetic potentials Aj and electric potentials Vj satisfying the assumptions of Theorem 1.1,
and denote by Hj the associated operators defined by (2.3) for A = Aj and V = Vj . Let (λj,k, ϕj,k)k≥1 be
a sequence of eigenvalues and eigenfunctions of Hj . We start with two intermediate results.

Lemma 4.1. Let η1(τ), η2(τ) and λ(τ) be fixed by (3.27) and b2 be defined by (3.29). Assume that

lim
τ→+∞

S1(λ(τ), η1(τ), η2(τ))− S2(λ(τ), η1(τ), η2(τ))√
λ(τ)

= 0. (4.41)

Then we have dA1 = dA2.

Proof. Combining (4.41) with (3.37) we deduce that for all ξ ∈ Rn \ {0}, η ∈ Sn−1, satisfying η · ξ = 0, we
get ∫

Ω
η · (A2 −A1)e−iξ·xb(x)eiψ(x)dx = 0.

Here b takes the form
b(x) = eix·ξ∂y

[
exp

(
−i
∫
R
η ·A(x+ sη)ds

)
e−ix·ξ

]
with y ∈ Sn−1 ∩ η⊥. Then, we obtain

0 =
∫
Rn
η ·A(x)e−iξ·xb(x)eiψ(x)dx =

∫
η⊥

∫
R
η ·A(x′ + tη)eiψ(x′+tη)b(x′)e−iξ·x′dtdx′.

Here we use the fact that b(x) = b(x− (x · η)η) and ξ · η = 0. On the other hand, for all x′ ∈ η⊥ and t ∈ R,
we have

η ·A(x′ + tη)eiψ(x′+tη) = η ·A(x′ + tη) exp
(

i
∫ t

−∞
η ·A(x′ + sη)ds

)
= −i∂t exp

(
i
∫ t

−∞
η ·A(x′ + sη)ds

)
.
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Therefore, we find∫
Rn
η ·A(x)e−iξ·xb(x)eiψ(x)dx = −i

∫
η⊥

[∫
R
∂t exp

(
i
∫ t

−∞
η ·A(x′ + sη)ds

)
dt

]
b(x′)e−iξ·x′dx′

= −i
∫
η⊥

[
exp

(
i
∫
R
η ·A(x′ + sη)ds

)
− 1
]
b(x′)e−iξ·x′dx′.

It follows ∫
η⊥

[
exp

(
i
∫
R
η ·A(x′ + sη)ds

)
− 1
]
b(x′)e−iξ·x′dx′ = 0. (4.42)

Now assume that ξ ∈ {ξ = (ξ1, . . . , ξn) : ξl > 0, l = 1, . . . , n}. Fix i, j ∈ {1, . . . , n} such that i 6= j. We
can choose η = ξjei−ξiej√

ξ2
i
+ξ2

j

and y = ξiei+ξjej√
ξ2
i
+ξ2

j

∈ η⊥. Here (e1, . . . , en) is the canonical basis of Rn defined by
e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1). Then, (4.42) implies∫

η⊥

[
exp

(
i
∫
R
η ·A(x′ + sη)ds

)
− 1
]
∂y

[
exp

(
−i
∫
R
η ·A(x′ + sη)ds

)
e−ix

′·ξ
]
dx′ = 0.

Integrating by parts we get
−i√
ξ2
i + ξ2

j

·
∫
Rn

(ξj∂yai(x)− ξi∂yaj(x))e−ix·ξdx = −i
∫
η⊥

(∫
R
η · ∂yA(x′ + sη)ds

)
e−ix′·ξdx′ = 0

with A = (a1, . . . , an). Integrating again by parts, we find∫
Rn

(ξjai − ξiaj)e−ix·ξdx = y · ξ√
ξ2
i + ξ2

j

∫
Rn

(ξjai − ξiaj)e−ix·ξdx

= −i√
ξ2
i + ξ2

j

·
∫
Rn

(ξj∂yai(x)− ξi∂yaj(x))e−ix·ξdx = 0

and it follows that for all ξ ∈ {ξ = (ξ1, . . . , ξn) : ξl > 0, l = 1, . . . , n} we have F [∂xjai − ∂xiaj ](ξ) = 0. On
the other hand, since ∂xjai − ∂xiaj is compactly supported, F(∂xjai − ∂xiaj)(ξ) is analytic in ξ ∈ Rn and it
follows F(∂xjai − ∂xiaj) = 0 on Rn. Here we use the fact that {ξ = (ξ1, . . . , ξn) : ξl > 0, l = 1, . . . , n} is an
open set of Rn. From this last result, we deduce that ∂xjai − ∂xiaj = 0 which implies that dA1 = dA2. �

Lemma 4.2. Let η1(τ), η2(τ) and λ(τ) be fixed by (3.27) and b2 = 1. Assume that A1 = A2 and

lim
τ→+∞

S1(λ(τ), η1(τ), η2(τ))− S2(λ(τ), η1(τ), η2(τ)) = 0. (4.43)

Then we have V1 = V2.

Proof. Fix ξ ∈ Rn \ {0} and choose η ∈ Sn−1 ∩ ξ⊥. Fix also b = 1. Thus, combining (3.38) and (4.43), we
find ∫

Rn
V (x)e−ix·ξdx = 0

with V = V1 − V2 extended by 0 outside of Ω. It follows that V1 = V2. �

Now let λ ∈ C and µ ∈ R, such that λ, µ /∈ σ(H1) ∪ σ(H2), and f ∈ H1/2(Γ) consider uj,λ solution to
the equation (2.4) where V := Vj and A = Aj , and also denote

hj,k := ∂νϕj,k|Γ, αj,k := 〈f, hj,k〉.

According to Lemma 4.1, 4.2, the proof of Theorem 1.1 will be completed if we show that conditions (1.2)
imply conditions (4.41)-(4.43). For this purpose, we adapt the approach of [16] to magnetic Schrödinger
operators.
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Let f ∈ H 1
2 (Γ) being fixed, with the notations of Lemmas 2.1 and 2.2, we denote by vj,λ,µ := uj,λ−uj,µ

the solution of (2.10) where V is replaced by Vj and A by Aj . Recalling that in Lemma 2.3 we have set
zµ = u1,µ − u2,µ, in a similar way to [16], writing the above identity for j = 1 and j = 2, applying (1.1) and
then subtracting the resulting equations, we end up with a new relation, namely
(∂ν + iA1 · ν)u1,λ|Γ − (∂ν + iA2 · ν)u2,λ|Γ = i(A1 −A2) · νf + ∂νu1,λ − ∂νu2,λ = ∂νzµ + ∂νv1,λ,µ − ∂νv2,λ,µ.

(4.44)
Now let us set

Fj(λ, µ, f) := ∂νvj,λ,µ|Γ, j = 1, 2.
According to (2.9), we have

F (λ, µ, f) := F1(λ, µ, f)− F2(λ, µ, f) =
+∞∑
k=1

[
(µ− λ)α1,k

(λ− λ1,k)(µ− λ1,k) h1,k −
(µ− λ)α2,k

(λ− λ2,k)(µ− λ2,k) h2,k

]
(4.45)

and consider the following intermediate results.

Lemma 4.3. Let η1, η2, λ be given by (3.27). Consider Φj, j = 1, 2, with Φ1 introduced in the previous
section and Φ2 = e−i

√
λη2·xb2e

−iψ2 . Then, we have

sup
τ>1

∞∑
k=1

∣∣∣∣ 〈Φ1, hj,k〉
λj,k − λ

∣∣∣∣2 <∞, sup
τ>1

∞∑
k=1

∣∣∣∣∣
〈
Φ2, h2,k

〉
λ2,k − λ

∣∣∣∣∣
2

<∞, j = 1, 2. (4.46)

Proof. We start with the first estimate of (4.46) for j = 1. According to Lemma 2.1 the solution u1,λ of
(2.4) for f = Φ1, A = A1 and V = V1, is given by

u1,λ =
∞∑
k=1

〈Φ1, h1,k〉
λ− λ1,k

ϕ1,k.

Therefore, we have

‖u1,λ‖2L2(Ω) =
∞∑
k=1

∣∣∣∣ 〈Φ1, h1,k〉
λj,k − λ

∣∣∣∣2 . (4.47)

On the other hand, we can split u1,λ into two terms u1,λ = Φ1 + v1,λ where v1,λ solves{
(−i∇+A1)2v1 + V1v1 − λv1 = −G1, in Ω,

v(x) = 0, x ∈ Γ,

where according to (3.20)

G1 = (−i∇+A1)2Φ1 + V1Φ1 − λΦ1 =
√
λ [2η1 · (A1 −A1,]) +K1] Φ1

with

K1 = −idivA1 + |A1|2 + V1(x) + 2A1 · ∇ψ1 − i∆ψ1 + |∇ψ1|2√
λ

.

Thus, we have v1,λ = −(H1 − λ)−1G1 and we deduce that

‖u1,λ‖L2(Ω) ≤ ‖Φ1‖L2(Ω) +
∥∥∥√λ(H1 − λ)−1 [2η1 · (A1 −A1,]) +K1]

∥∥∥
L2(Ω)

.

Combining this with the fact that∥∥∥√λ(H1 − λ)−1
∥∥∥
B(L2(Ω)

≤ |τ + i|
|Iλ|

= |τ + i|
2τ ≤ 1

and the fact that, according to (3.30)-(3.31), we have
lim

τ→+∞
‖η1 · (A1 −A1,])‖L∞(Ω) = lim

τ→+∞
‖K1‖L∞(Ω) = 0
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and we deduce the first estimate of (4.46) for j = 1. In a same way, for j = 2 using the fact that according
to (3.31) we have

(−i∇+A2)2Φ1 + V2Φ1 − λΦ1 = O
τ→+∞

(τ)

and repeating our previous arguments we deduce the first estimate (4.46) for j = 2. For the second estimate
of (4.46), repeating the previous arguments we find

(−i∇+A2)2Φ2 + V2Φ2 − λ Φ2 = (i∇+A2)2Φ2 + V2Φ2 − λΦ2 = O
τ→+∞

(τ).

Combining this estimate with the fact that∣∣∣∣∣
〈
Φ2, h2,k

〉
λ2,k − λ

∣∣∣∣∣ =

∣∣∣∣∣
〈
Φ2, h2,k

〉
λ2,k − λ

∣∣∣∣∣
since λ2,k ∈ R, we deduce the second estimate of (4.46) by repeating the above arguments. �

From now on we set
G(λ, µ,Φ1,Φ2) := 〈F (λ, µ,Φ1),Φ2〉

=
+∞∑
k=1

(µ− λ)
[
〈Φ1, h1,k〉

〈
h1,k,Φ2

〉
(λ− λ1,k)(µ− λ1,k) −

〈Φ1, h2,k〉
〈
h2,k,Φ2

〉
(λ− λ2,k)(µ− λ2,k)

]
.

Combining estimates (4.46) with Lemma 4.3, 4.4, 4.5 of [16], we obtain the following.

Lemma 4.4. Let the conditions of Theorem 1.1 be fulfilled and let η1, η2, λ be given by (3.27). Then,
G(λ, µ,Φ1,Φ2) converge to G∗(λ,Φ1,Φ2) as µ → −∞ and G∗(λ,Φ1,Φ2) converge to 0 as τ → +∞. Here
we consider both the case b2 given by (3.29) and the case b2 = 1.

Armed with Lemma 4.4, we are now in position to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Note first that according (4.44), for M = ‖V1‖L∞(Ω) + ‖V2‖L∞(Ω), we have

S1(λ, η1, η2)− S2(λ, η1, η2) =
〈
∂νzµ, e

i
√
λη2·xb2e

iψ2

〉
+G(λ, µ,Φ1,Φ2), µ ∈ (−∞,−M),

where λ, η1, η2 are fixed by(3.27), b2 is given by (3.29) or b2 = 1 and zµ = u1,µ − u2,µ with uj,µ, j = 1, 2,
the solution of (2.10) where λ is replaced by µ, V by Vj , A by Aj and f by Φ1. In view of Lemma 2.3 and
Lemma 4.4, sending µ→ −∞ we get

S1(λ, η1, η2)− S2(λ, η1, η2) = G∗(λ,Φ1,Φ2).
Then, in view of Lemma 4.4, conditions (4.41) and (4.43) are fulfilled and in view of Lemma 4.1 we have
dA1 = dA2. Therefore, condition (1.1) implies that for A = A2 − A1 extended by 0 outside of Ω we have
dA = 0 on Rn. Thus there exists p ∈W 2,∞(Rn) given by

p(x) =
∫ 1

0
x ·A(tx)dt

such that A = ∇p on Rn. Applying the fact that A = 0 on Rn \ Ω, upon eventually subtracting a constant
we may assume that p|Rn\Ω = 0 which implies that p|Γ = 0. Now let us consider the operator H3 =
(−i∇+A1) + V2 acting on L2(Ω) with Dirichlet boundary condition and let (λ3,k, ϕ3,k)k≥1 be a sequence of
eigenvalues and eigenfunctions of H3. Since A1 = A2 −∇p one can check that H3 = eipH2e

−ip. From this
identity we deduce that

λ3,k = λ2,k, k ≥ 1.
Moreover, for all k ≥ 1 we can choose ϕ3,k = eipϕ2,k and deduce that the condition

∂νϕ3,k = ∂νϕ2,k, k ≥ 1
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is also fulfilled. Thus conditions (1.2) imply that

lim
k→+∞

|λ1,k − λ3,k| = 0 and
+∞∑
k=1
‖∂νϕ1,k − ∂νϕ3,k‖2L2(Γ) <∞.

Then repeating the arguments of Lemma 4.4 we obtain

lim
τ→+∞

S̃1(λ(τ), η1(τ), η2(τ))− S̃3(λ(τ), η1(τ), η2(τ)) = 0

where
S̃j(λ, η1, η2) =

〈
Λj,λΦ1, e

i
√
λη2·xeiψ̃2

〉
, j = 1, 3

with
ψ̃2(x) =

∫ x·η2

−∞
η2 ·A1,](x+ (s− x · η2)η2)ds, b2 = 1

and Λ3,λ the Dirichlet Neumann map associated to problem (2.4) for A = A1 and V = V2. Then in view of
Lemma 4.2 we have V1 = V2. This completes the proof of Theorem 1.1. �
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