François Pomerleau
email: francois.pomerleau@mavt.ethz.ch

Francis Colas
email: francis.colas@mavt.ethz.ch

Roland Siegwart
email: rsiegwart@ethz.ch

Stéphane Magnenat

Comparing ICP Variants on Real-World Data Sets Open-source library and experimental protocol

Keywords: experimental protocol, iterative closest point, registration, open-source, SLAM, mapping

Many modern sensors used for mapping produce 3D point clouds, which are typically registered together using the iterative closest point (icp) algorithm. Because icp has many variants whose performances depend on the environment and the sensor, hundreds of variations have been published. However, no comparison frameworks are available leading to arduous selection of an appropriate variant for particular experimental conditions. The first contribution of this paper consists of a protocol that allows for a comparison between icp variants, taking into account a broad range of inputs. The second contribution is an open-source icp library, which is fast enough to be usable in multiple real-world applications, while being modular enough to ease comparison

Introduction

Laser-range sensors were a cornerstone to the development of mapping and navigation in the last two decades. Nowadays, rotating laser scanners, stereo cameras or depth cameras (rgb-d) can provide dense 3D point clouds at a high frequency. Using the iterative closest point (icp) registration algorithm [START_REF] Besl | A method for registration of 3-D shapes. Pattern Analysis and Machine Intelligence[END_REF][START_REF] Chen | Object modeling by registration of multiple range images[END_REF], these point clouds can be matched to deduce the transformation between them and, consequently, the 6 degrees-of-freedom motion of the sensor. Albeit originally proposed for object reconstruction, the robotics field has extensively applied registration for global scene reconstruction. icp is a popular algorithm due to its simplicity: its general idea is easy to understand and to implement. However, the basic algorithm only works well in ideal cases. This led to hundreds of variations (around 400 papers published in the last 20 years, see Figure 1) around the original algorithm that were demonstrated on different and incommensurable experimental scenarios. This highlights both the usefulness of icp and the difficulty to find a versatile version. Because there exists no comparison framework, the selection of an appropriate variant for particular experimental conditions is difficult. This is a major problem because registration is at the front-end of the mapping pipeline, and its selection affects arbitrarily the results of all subsequent steps. There is therefore a need for streamlining the selection of a registration algorithm given a type of environment.

The first contribution of this paper is a protocol to allow comparison between icp variants. This protocol encompasses an experimental methodology and evaluation metrics, as already proposed in other fields such as stereo correspondence detection [START_REF] Scharstein | A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms[END_REF], multi-view stereo reconstruction [START_REF] Seitz | A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms[END_REF], optical-flow computation [START_REF] Baker | A Database and Evaluation Methodology for Optical Flow[END_REF][START_REF] Geiger | Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite[END_REF] and visual odometry [START_REF] Geiger | Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite[END_REF]. The performance of icp algorithms is affected by the type of environment, the trajectory realized in that environment and the uncertainties of the initial poses. Our protocol provides a consistent way to compare icp variants in all these conditions.

The second contribution of this paper is an opensource modular icp library and related helper programs, which allow to compare several icp variants within the same framework. This library is based on our optimized implementation of nearest-neighbor search with kd-tree, called libnabo 1 . It is one of the fastest kd-tree library for icp thanks to more compact data structures than rival implementations [START_REF] Elseberg | Comparison of nearest-neighbor-search strategies and implementations for efficient shape registration[END_REF]. Being both modular and fast, our icp library provides an ideal solution for comparing registration algorithms.

The last contribution of this paper is a revisit of well-established icp variants using our library and our protocol, using recently-published data sets [START_REF] Pomerleau | Challenging Data Sets for Point Cloud Registration Algorithms[END_REF] that cover a variety of environments with ground-truth poses. We show that even if the point-to-plane distance metric is in general superior to the point-to-point distance metric, it can be less precise for large disturbances of the initial alignments and loses its advantages in unstructured environments.

2 Related Work

Overview of icp

As introduced previously, the body of work related to icp is very large, and reviewing it is beyond the scope of this paper. We rather focus on the main components of the algorithm as presented in [START_REF] Rusinkiewicz | Efficient variants of the ICP algorithm[END_REF]. First, point clouds can be filtered, for example, to remove redundant points or compute descriptors like normals. The Point Cloud Library (pcl) is a good example of state-of-the art implementations of point cloud filters [START_REF] Rusu | 3D is here: Point Cloud Library (PCL)[END_REF]. Then, a matching function needs to be applied to associate elements from a reading point cloud to a reference point cloud. This 1 http://github.com/ethz-asl/libnabo, version 1.0.1 association is usually done in the Euclidean space using kd-tree to accelerate the search [START_REF] Elseberg | Comparison of nearest-neighbor-search strategies and implementations for efficient shape registration[END_REF]. When icp is applied to robotics, a special care needs to be taken to properly handle mismatches or outliers. Different statistics can be used to identify outliers, like removing the higher-distance quantile of all paired points [START_REF] Chetverikov | The Trimmed Iterative Closest Point algorithm[END_REF]. Finally, the remaining points can be used to minimize the alignment error. The most common distance metrics are point-to-point [START_REF] Besl | A method for registration of 3-D shapes. Pattern Analysis and Machine Intelligence[END_REF] and point-to-plane [START_REF] Chen | Object modeling by registration of multiple range images[END_REF].

Recently, promising solutions appeared to deal with uncertainty specific to mobile platforms. To name a few, the metric-icp targets robustness against rotation error [START_REF] Armesto | A generalization of the metric-based Iterative Closest Point technique for 3D scan matching[END_REF] while normal distributions transform (ndt) [START_REF] Magnusson | Scan registration for autonomous mining vehicles using 3D-NDT[END_REF] tackels structural uncertainty.

Registration Benchmarking

The seminal work of Rusinkiewicz and Levoy [START_REF] Rusinkiewicz | Efficient variants of the ICP algorithm[END_REF] on the comparison of variants of the icp algorithm led to significant progress in the field of scan registration. The experiments employ simulated objects, highlighting different spatial constraints and sensor noises. Wulf et al. [START_REF] Wulf | Benchmarking urban six-degree-of-freedom simultaneous localization and mapping[END_REF] present an evaluation method for simultaneous localisation and mapping (slam) heavily linked to icp. They compare icp using pairwise scans and icp using metascans (i.e., concatenation of past scans) along with full slam solutions. They observe that, compare to pairwise match, metascans lead to slower error accumulation but also slow down computational time to a point compromising real-time execution. The authors conclude with the statement that research in robotics benchmarking techniques requires more consideration. The demand for a stronger experimental methodology in robotics is also stressed by Amigoni et al. [START_REF] Amigoni | An insightful comparison between experiments in mobile robotics and in science[END_REF]. The authors survey different slam publications in order to highlight proper evaluation metrics that are applied to slam algorithms. Three principles of an experimental methodology in science (i.e, comparison, reproducibility/repeatability and justification/explanation) are translated in requirements for stronger slam results. As stated in their publication, a sound methodology should allow researchers to gain an insight about intrinsic (ex., computational time, parameters used, parameter behaviors) and extrinsic (ex., accuracy, precision) quantities. The authors reported that, even though comparisons between algorithms are present in slam publications, very few researchers can reuse the same protocol and directly compare their results without having to re-implement other solutions.

Registration quality depends on many external factors. Typically, a single type of environment is selected for evaluation. The latter is mostly urban [START_REF] Pathak | Evaluation of the robustness of planar-patches based 3D-registration using marker-based ground-truth in an outdoor urban scenario[END_REF][START_REF] Wulf | Benchmarking urban six-degree-of-freedom simultaneous localization and mapping[END_REF] or well structured environment, like tunnels [START_REF] Magnusson | Evaluation of 3D registration reliability and speed -A comparison of ICP and NDT[END_REF]. The robustness of registration against initial misalignment is explored in [START_REF] Hugli | Geometric matching of 3D objects: assessing the range of successful initial configurations[END_REF]. This type of exploration is continued with an evaluation of icp against ndt in order to compare the valley of convergence of both methods [START_REF] Magnusson | Evaluation of 3D registration reliability and speed -A comparison of ICP and NDT[END_REF]. In the work of Pathak et al. [START_REF] Pathak | Evaluation of the robustness of planar-patches based 3D-registration using marker-based ground-truth in an outdoor urban scenario[END_REF], the sensitivity of their registration algorithm to low spatial overlap is identified and used to predict scan-matching failures.

When presenting registration results, authors face the problem of reducing the dimensionality of their results to low-dimension and meaningful performance metrics. Early work mainly focuses on the rapidity of convergence and the final accuracy of different solutions [START_REF] Rusinkiewicz | Efficient variants of the ICP algorithm[END_REF]. Typical parameters of interest concern translation and rotation for a total of 6 dimensions. While summarizing the translation components using the Euclidean distance is commonly accepted, different methods are used for the rotation. The work of Wulf et al. [START_REF] Wulf | Benchmarking urban six-degree-of-freedom simultaneous localization and mapping[END_REF] mixes scans in 3D (928 scans over 1 km) with ground-truth poses in 2D. Consequently, the evaluation is done in 2D using Euclidean distance for translation errors and absolute value of the orientation differences. To produce statistics about the overall experiment, the authors propose to use the standard deviation of all errors and the maximum error as evaluation metrics. Doing their evaluation directly in 3D, Tong et al. [START_REF] Tong | Threedimensional SLAM for mapping planetary work site environments[END_REF] define two separate rootmean-squared (rms) errors (i.e, one on translation and another on rotation components). For both errors, they employ the Euclidean distance between the computed poses and the ground-truth poses, using a rotation vector parametrization for the orientation. Addressing the problem of multiple rotation metrics, Huynh [START_REF] Huynh | Metrics for 3D Rotations: Comparison and Analysis[END_REF] proposes an evaluation of 6 types of different distance for SO(3) used in the scientific litterature. She concludes that the norm of the difference of Euler Angles is not a distance and that the use of geodesic distance on a unit sphere should be preferred. Instead of using continuous metrics, Hugli and Schutz [START_REF] Hugli | Geometric matching of 3D objects: assessing the range of successful initial configurations[END_REF] propose to use Successful Initial Configuration map, or sic-map, to display results on a 2D plot. The authors used fixed thresholds on the error to identify failure, weak success and success of the registration. The sic-maps help to visualize the convergence region but limits the number of samples that can be tested. This type of result representation also makes comparison between different variants difficult to display.

In this paper, we applied the principles proposed by Amigoni et al. [START_REF] Amigoni | An insightful comparison between experiments in mobile robotics and in science[END_REF] to a subset of the slam problem: scan registration. In the light of the recent work on registration, we aimed at bringing those different evaluation types into the same protocol. This protocol should enhance deeper investigation of registration algorithms by considering (1) a set of external factors and (2) a set of performance metrics.

Method

In this section, we highlight the different elements that influence the outcome of icp variants and that can be controlled in order to evaluate those variants. We also introduce robust metrics that we consider for a quantitative assessment of the algorithm.

Sensitivity to Input

icp takes two scans as input with an initial alignment of one with respect to the other. As icp is an approximate algorithm essentially doing local convergence, its result dependents on the initial pose. This initial guess is typically provided by inertial-measurement accumulation, odometry or heuristic motion models which all have limited precision and increasing uncertainty with time between observations. It is therefore important to assess how well an icp solution converges close to the correct pose based on various initial hypotheses. To this aim, we propose to sample the space of initial alignment by adding perturbations to a ground-truth value. While the error distribution of odometry models is usually not Gaussian for non-linear kinematic models, the deviation from a Gaussian depends on the actual model and command history, that go beyond the scope of our data sets. As a reasonable approximation, we sampled the perturbations from zero-mean 6D multivariate Gaussian distribution.

Another factor driving the difficulty of scan matching is the amount of outliers. If there are a lot of points that do not correspond to the same features in both scans, icp runs the risk of converging to a local optimum driven by false matches. We quantified this phenomenon by assessing the overlap ratio of a scan with respect to another (outlier ratio is the complement of the overlap ratio). More formally, the overlap is defined by the ratio of points of a scan A for which there is a matching point in a second scan B. Points are considered as matching in this case if they lie within a distance limit that decreases with the local density of points.

In robotics, this overlap is primarily governed by the field of view and the motion of the sensor. Indeed, without dynamic elements in the scene, the overlap corresponds mainly to the ratio between the intersection of sensor fields of view on the one hand, and the field of view of the reference point cloud on the other hand. If the motion, especially for rotation, is large when compared to the field of view, then the overlap can be too low for icp to converge properly. For slow sensors, like 2D laser scanners generating 3D point clouds by rotating around an axis, it is therefore preferable to do scan matching for each consecutive pair of scans. However, on faster sensors like rgb-d cameras running up to 30 Hz, it is often possible and even desirable to skip several scans, as long as the overlap does not fall too low.

Finally, the content of the scans themselves can have a huge influence on the registration quality. Indoor environments typically exhibit a lot of planar surfaces (ground, walls, ceiling, tables, ...) that are therefore locally regular. In that case, if the matching step is slightly wrong, a wrongly-associated point still has a good chance of behaving like the correct point. On the opposite, natural environments with trees, bushes, and herbs will have false matches detrimental to the error minimization. Moreover, environments without a reasonable ratio of horizontal and vertical objects might lack information for proper registration. This typically happens in long and straight hallway or outside on open space where the ground is the major surface present.

Evaluation Metrics

For each icp solution, initial alignments (i.e. being the ground truth plus perturbation) is applied to all selected pairs of scans. At the end, the evaluation produces samples from the distribution of resulting alignments for each pair of scans. Then, cumulating error distributions over all pairs of scans eases the analyze of samples from that particular icp solution for a given environment and a given perturbation level. We can also accumulate over the different environments for the marginal distribution of error of a given icp solution.

However, this distribution lies in SE(3), the special Euclidean group in dimension 3, whereas we are mainly interested in both the translation and rotation. Therefore, we projected the 6D distribution into the translation and rotation errors. Given the ground-truth transformation expressed by a 4×4 homogeneous matrix T g and its corresponding transformation found by the registration solution T r , we can define the remaining error ∆T as follows:

∆T = ∆R ∆t 0 1 = T r T -1 g (1)
with its translation error e t , defined as the Euclidean norm of translation vector ∆t:

e t = ∆t = ∆x 2 + ∆y 2 + ∆z 2 (2)
and its rotation error e r , defined as the Geodesic distance directly from the rotation matrix ∆R:

e r = arccos trace(∆R) -1 2 (3)
In order to compare these distributions, we used robust statistics like the median and the quantiles instead of mean and covariance. Indeed, as the error distributions are far from Gaussians, the empirical mean and covariance are not really indicative values for interpreting precision and accuracy. This choice is similar to May et al. [START_REF] May | Three-dimensional mapping with time-of-flight cameras[END_REF] where the authors defined A50, A75, A95 as the respective quantiles for probabilities 0.5 (i.e. the median), 0.75 and 0.95 of the error distributions. Another advantage of these statistics is that they allow interpretation in terms of accuracy and precision. The solution under evaluation is accurate if the values of A50, A75 and A95 are close to zero. The solution is precise if the difference between those quantiles are small.

Throughout this paper, we present the cumulative function of the distribution of outcomes against the distance of the outcome with respect to ground truth. Those graphs thus present the proportion of outcomes that lie beneath a given error. Moreover, it is easy to see the value of this error for each quantile. This type of representation was called Recall-Accuracy threshold in a previous work [START_REF] Jian | Robust Point Set Registration Using Gaussian Mixture Models[END_REF]. An alternative presentation of those results is to show the histogram of the number of outcomes for each error bin, which corresponds to the derivative of the cumulative that we propose. However, that presentation renders difficult the comparison of many distributions and the depiction of the A50, A75 and A95 statistics.

Finally, the computing time can be an important factor, especially for online applications with real-time constraints and embedded systems with limited processing power. It is however challenging to get an absolute evaluation of the computing time that is relevant for different hardware and different use cases. The choice of programming language, the technical level of the programmers, the amount of parallelism, etc. are all elements that could affect time performance. In general, time evaluation should be considered as qualitative measurement unless all those elements are controlled and known to be as uniform as possible.

Protocol

With those metrics, we can now propose a protocol for the evaluation of icp variants that goes beyond parameter identifications.

First, variants should always be compared to a commonly accepted icp baseline. This contrasts with papers that compare novel variants between themselves in order to highlight a specific hypothesis. While we recognize the interest of these works, the amount of icp variants presented in the literature calls for more effort to relate them. In Section 5.2, we analyze two classical variants that we considered reasonable choices for icp baselines.

Second, icp variants need to be compared on enough data in order to reduce the risk of overfitting and to ensure statistically-signifiant interpretations. Specific fields of application may require specialized data sets but efforts should be made to also compare on generic data sets. To obtain a comparison as unbiased as possible, the data should cover different kinds of environments at different overlap levels. In this paper, we propose to employ a group of 3D robotics data sets covering a variety of environments. Moreover, algorithms should be compared with different perturbation distributions in order to assess their robustness. We propose three different perturbation levels (easy, medium and hard) according to the characteristics of the data set (mainly the scale of the elements in the environment and the noise of the sensor).

Finally, the actual comparison should be made with respect to the distribution of errors rather than being made just on a single result. We propose to use quantiles as robust statistics to quantitatively describe and compare the different results.

Modular ICP

icp is an iterative algorithm performing several sequential processing steps, both inside and outside the main loop. For each step, there exist several strategies, and each strategy demands specific parameters.

To our knowledge, there is currently no software tool to compare these strategies. The pcl has a partial support for filters in its registration pipeline, but not a completely reconfigurable icp chain 2 . To enable such a comparison, we have developed a modular icp chain, as illustrated in Figure 2, and made it available as open source in the form of the libpointmatcher library 3 . This library is written in c++11, restricted to the subset supported by gcc 4.4 and more recent versions. In the icp chain, every module is a class that can describe its own possible parameters, therefore enabling the whole chain to be configured at run time using yaml [START_REF] Ben-Kiki | YAML Ain't Markup Language (YAML TM) version 1.2[END_REF]. This text-based configuration aids to explicit parameters used and eases the sharing of working setups with others, which ultimately allows for reproducibility and reusability of the solutions. Table 1 lists the available modules.

Our icp chain takes as input two point clouds, in 2D or 3D, and estimates the translation and the rotation parameters that minimize the alignment error. We called the first point cloud the reference and the second the 2 We are in contact with pcl developers to integrate parts of our work into it.

3 http://github.com/ethz-asl/libpointmatcher reading. The icp algorithm tries to align the reading onto the reference. To do so, it first applies filtering to the point clouds, and then it iterates through a sequence of processing blocks. For each iteration, it associates points in reading to points in reference and finds a transformation of reading that minimizes the alignment error.

Processing Blocks

More specifically, the icp chain consists of several steps, implemented by modules. The steps and the corresponding types of modules are:

-Data filtering: TransformationChecker modules can stop the iteration depending on some conditions. For example, a condition can be the number of times the loop was executed, or it can be related to the matching error.

Because the modules can be chained, we defined that the relation between modules must agree through a OR-condition, while all and-conditions are defined within a single module.

Matches OutlierWeights TransformationParameters

Figure 2 The modular icp chain as implemented in libpointmatcher. Note that some data filters are applied to the reading once and some are applied at each iteration step.

Data Types

The icp chain provides standardized interfaces between each step. This allows for the addition of novel algorithms to some steps to evaluate their effect on the global icp behavior. These interfaces are:

-The DataPoints class represents a point cloud. For every point, it has features and, optionally, descriptors. Features are typically the coordinates of the point in the space. Descriptors contain information attached to the point, such as its color, its normal vector, etc. In both features and descriptors, every point can have multiple channels. Every channel has a dimension and a name. For instance, a typical 3D cloud might have the channels "x", "y", "z", "w" of dimension 1 as features (using homogeneous coordinates), and the channel "normal" of size 3 as descriptor. There are no sub-channels, such as "normal.

x", for the sake of simplicity. Moreover, the position of the points are in homogeneous coordinates because they need both translation and rotation, while the normals need only rotation. All channels contain scalar values of the scalar type from the template parameter. Although this might be sub-optimal in memory, it eases a lot the interaction between the different modules.

-The Matches class is the result of the data-association step, before outlier rejection. It corresponds to a list of associated reference identifiers, along with the corresponding squared distance, for all points in the reading. A single point in the reading can have one or multiple matches. -The OutlierWeights class contains the weights of the associations between the points in Matches and the points in the reference. A weight of 0 means no association, while a weight of 1 means a complete trust in association. -The TransformationParameters is a transformation in the special Euclidean group of dimension n, SE(n), implemented as a matrix of size n + 1 × n + 1.

Implementation

All modules are children of parent classes defined within the PointMatcher class. This class is templatized on the scalar type for the point coordinates, typically float or double. Additionally, the PointMatcherSupport namespace hosts classes that do not depend on the template parameter. Every kind of module has its own pair of .h and .cpp files. Because modules can enumerate their parameters at run time, only the parent classes lie in the publicly-accessible headers. This maintains a lean and easy-to-learn application programming interface (api).

To use libpointmatcher from a third-party program, the two classes ICP and ICPSequence can be instantiated. The first provides a basic registration between a reading and a reference, given an initial transformation. The second provides a tracker-style interface: an instance of this class receives several point clouds in sequence and continuously updates the transformation with respect to a user-provided point cloud. This is useful to limit drift due to noise in case of high-frequency sensors [START_REF] Pomerleau | Tracking a depth camera: Parameter exploration for fast ICP[END_REF]. A common base class, ICPChainBase, holds the instances of the modules and provides the loading mechanism.

When doing research, it is crucial to understand what is going on, in particular in complex processing pipelines like the icp chain. Therefore, libpointmatcher provides two inspection mechanisms: the logger and the inspector. The logger is responsible for writing information during execution to a file or to the console. It will typically display light statistics and warnings. The inspector provides deeper scrutiny than the logger. There are several instances of inspectors in libpointmatcher. For instance, one dumps icp operations as vtk files [START_REF] Schroeder | Visualization Toolkit: An Object-Oriented Approach to 3D Graphics[END_REF], allowing to visualize the inner loop of the algorithm frame by frame. Another inspector collects statistics for performance evaluation.

Evaluation

In this section, we show how we applied libpointmatcher to two relatively different cases of scan matching: a fast rgb-d camera and a rolling 2D lidar, demonstrating the genericity of our modular icp chain. In a second part, we give new insights on well-accepted icp variants using our comparison protocol.

Applications based on the modular icp chain

The first application consists in estimating the pose of a Kinect rgb-d sensor in a home-like environment in real-time (30 Hz). Using the ICPSequence class of our modular icp library, this tracker integrates with ros and publishes the 3D pose as tf, the standard way to describe transformations between reference frames in ros. We explored different parameters related to point-cloud filtering for sensor-noise rejection, the selection of sub-sampling methods, and the approximation for the nearest-neighbour search. We first left out points beyond 7 m because these are very noisy with the Kinect. We then sub-sampled the reading randomly, typically keeping 20 % of the 3D points generated from of a 160×120 depth image. For the reference, we used the SamplingSurfaceNormal module that efficiently combines sub-sampling and normal generation. This module decomposes the point-cloud space in boxes, by recursively splitting the cloud through axis-aligned hyperplanes in such way to maximize the evenness of the aspect ratio of the boxes. When the number of points in a box reaches a threshold value, the filter computes the center of mass of these points and its normal by taking the eigenvector corresponding to the smallest eigenvalue of all points in the box. The reference and the reading points are associated up to a distance of 0.1 m using a kd-tree. As the Kinect works indoor, we performed point-to-plane error minimization. The upper part of Table 2 summarizes the configuration of the icp chain for this application. At the top of Figure 3, one of the 27 paths executed while being tracked in parallel with a Vicon system. The Vicon was used to determine the ground truth poses during this evaluation. The bottom of Figure 3 shows the main factor influencing the registration speed: the number of points randomly subsampled for the reading, with real time achieved with 4'000 points using a single core of a laptop Core i7 Q 820 processor. About 1'700 points are sufficient for highquality tracking, which is achievable in real-time on an old Intel Xeon L5335. An Atom can run at about 10 Hz, with enough points for approximate tracking. The complete results are available in a previous paper [START_REF] Pomerleau | Tracking a depth camera: Parameter exploration for fast ICP[END_REF]. This experiment shows that our library can scale on a large range of computational power and provide high-quality, real-time tracking on current average hardware.

The second application is the mapping of a 7-floor staircase with a search-and-rescue robot (Figure 4). This robot is equipped with tracks and flippers to increase the motion capabilities. However, this implies that the motion estimated from the tracks encoder is highly unreliable, even on flat ground. The robot has a 2D laser scanner mounted on an horizontal axis, allowing it to roll back and forth to acquire 3D scans in front of the robot. In this application, the robot acquires scans with a stop-and-go strategy. The robot maintains an onboard map of the environment (600 k points) that was processed online. When a new scan was available, the robot performed icp with this map as reference and the scan as reading, like metascan used in [START_REF] Wulf | Benchmarking urban six-degree-of-freedom simultaneous localization and mapping[END_REF]. As this is an office environment, we used a point-to-plane variant, which implies that we extracted the normals of the points prior to each registration. The points were associated up to a distance of 0.5 m using a kd-tree. As there was a low expectation of encountering dynamic elements, the 95 % closest points were kept. However, matched points with surface normal vectors differing by more than 45 degrees are discarded. This prevented the points from the ceiling to be matched with the points from the floor above, which would distort the whole map by having floors without thickness. The bottom part of Table 2 summarizes the configuration of the icp chain. Note that there is no global relaxation or loop closure, the parallel floors visible in Figure 4 are solely due to good registration quality.

Both examples demonstrate the added value of a modular icp chains as they have different requirements that can still be fulfilled with the same open-source icp library.

Revisiting well-established icp variants

In this section, we demonstrate our evaluation protocol on two well-established icp variants. We have implemented both of them using our library before applying them to different environments. They can provide a fair baseline to which new algorithms can be compared. Furthermore, this shows the relation between environment type, icp distance metric and convergence performances.

Data sets

We selected 6 different environments from the "Challenging Laser Registration" data sets [START_REF] Pomerleau | Challenging Data Sets for Point Cloud Registration Algorithms[END_REF]. These data sets4 include ground-truth poses and cover a broad range of applications and conditions, including dynamic outliers such as people walking in the range of the laser while it is scanning. Each data set consists of around thirty full 3D scans. The scans were taken with an Hokuyo UTM-30LX 2D laser range sensor mounted on a tilting platform. The ground-truth poses of the platform were tracked with millimetric precision using a theodolite. Table 3 summarizes the features of the selected data sets: Apartment (Figure 5), ETH, Stairs, Wood (in summer), Gazebo (in winter, see Figure 6), and Mountain Plain. These 6 data sets cover various types of environments: artificial and natural, cluttered and open, homogeneous and highly variable.

Figure 7 shows the overlap between each pair of scans in all data sets. First, one can see that the overlap is not exactly symmetric. Indeed, if a scan is smaller than the other, all its points will find a match in the second, but not the other way around. Second, Apartment and Stairs show clusters of scans with high overlap within themselves but low overlap with others. This is due to the segmentation of the volumes in the environment; typically, scans inside a room will all have a relatively high overlap while in-between rooms the overlap will quickly drop. In comparison, ETH, Wood, and Mountain Plain share a pattern showing a high overlap that decreases as the index difference grows, as expected. Finally, Gazebo shows relatively high values of overlap for each of its scans because the environment is rather open, with few occlusions. We would expect Mountain Plain to show also high overlap but it is not the case due to the ground configuration, which is quite uneven, and the lack of points upwards and sideways, which can be confirmed by the number of points per scan as shown in Table 3.

The quality of registration is very sensitive to overlap [START_REF] Pathak | Evaluation of the robustness of planar-patches based 3D-registration using marker-based ground-truth in an outdoor urban scenario[END_REF]. However, overlap is not homogeneous in a given data set path. For example, Figure 8 shows the evolution of the error in the Apartment dataset for the point-toplane distance metric. Scans were registered following the path, which means that every scan was paired with the scan recorded just before. In most cases, the registration is satisfying. However, there are a few places, around openings, where the performance degrades. Those places correspond to opening of the field of view which corre- sponds to a sudden decrease in the overlap. Change in overlap doesn't appear uniformly in all paths executed while recording data sets. Thus, it is possible that the difference in overlap between 2 paths shade the impact on the type of environment. To overcome this limitation, we randomly selected 35 pairs of scans ensuring a uniform coverage of the overlap between 0.30 to 0.99 for all data sets. Those pairs were selected using the values of Figure 7 with the lower bound of 0.30 forced by the lowest overlap value in Gazebo.

Perturbations

For the sampling of the initial poses, we designed three different sets of initial perturbations sampled from Gaussian distributions with three different variance magnitudes (see Table 4). Figure 9 shows the cumulative probability as a function of translation error for the three perturbation sets: easy, medium and hard. The filled backgrounds show the respective theoretical distributions. It is worth noting that the norm of multivariate- Gaussian-distributed variables is a χ-distribution. The difference and the jaggedness of the sampled distribution compared to the theoretical distribution is due to the relatively low number of samples, 64, compared to the 6 dimensions of the sampling space. As we aim at proposing those perturbation samples to the community to allow everyone to compare their solution in the same conditions as ours, we felt that increasing significantly the number of perturbations would deter people from trying due to the computation time it would take. The sub-sampling we used required 2240 tests per perturbation type per environment, which we consider to be a reasonable compromise between the number of samples and the evaluation time.

A list of the selection of scans combined with the precomputed perturbation for all data sets is available by direct communication with the authors and will be accessible on a web site for convenience in a near future.

Selection and Optimization of icp Parameters

We wish to revisit two of the textbook icp variants, using point-to-point [START_REF] Besl | A method for registration of 3-D shapes. Pattern Analysis and Machine Intelligence[END_REF] and the point-to-plane [START_REF] Chen | Object modeling by registration of multiple range images[END_REF] distance metrics, both combined with the trimmed-icp outlier rejection [START_REF] Chetverikov | The Trimmed Iterative Closest Point algorithm[END_REF]. We have chosen these because they are the most compared and researchers need to re-implement them every time. We hope accelerating the comparison process for more modern solutions by providing those two baseline solutions in an open-source library.

Albeit simple, they depend on a certain number of parameters. We have fixed some and optimized others to allow for an efficient convergence of the algorithm. Table 5 shows the final values after optimization. We aimed at both minimizing the error and maximizing the performance, following the method described in a previous work [START_REF] Pomerleau | Tracking a depth camera: Parameter exploration for fast ICP[END_REF].

Our icp chain starts by sub-sampling both the reference and the reading point clouds. In the case of point-to-point, both point clouds are sub-sampled with uniform probability using the RandomSampling module. We explored the space of sub-sampling ratios using probabilities of keeping points in the range of {0.001, 0.01, 0.05, 0.1, 0.5, 1.0} for the reading and {0.001, 0.01, 0.05, 0.1, 1.0} for the reference. In the case of point-to-plane, because we wanted to extract the normals we used the SamplingSurfaceNormal module. We explore thresholds of sizes {5, 7, 10, 20, 100, 200}. For the reading, we used the same sub-sampling method as for point-topoint, looking for ratios of {0.001, 0.01, 0.05, 0.1, 0.5, 1}. After exhaustive search, this optimization returns ratios of 0.05 for both the reference and the reading for point-to-point, and a ratio of 0.05 for the reading and a threshold of 7 points for the reference for point-to-plane.

The matching step looks for the nearest neighbors of every point using a kd-tree. We use the KDTree mod- ule, which has three parameters: the number of nearest neighbors in the reference to associate to each point in the reading, an approximation factor allowing a maximum error of 1 + between the returned nearest neighbor and the true nearest neighbor [START_REF] Arya | Approximate nearest neighbor queries in fixed dimensions[END_REF], and a maximal distance beyond which neighbors are not considered any more. We use only one neighbor for the sake of simplicity. We choose a value of 3.16 for because as shown in a previous work [START_REF] Pomerleau | Tracking a depth camera: Parameter exploration for fast ICP[END_REF], this value leads to the fastest registration. 5 Indeed, with a smaller , nearest-neighbor queries take longer, and with a larger , more iterations are required until convergence because of the matching errors.

Following the original implementation, we do not set any distance limit to the association. Our nearestneighbor library, libnabo, has been shown to be one of the fastest kd-tree for icp [START_REF] Elseberg | Comparison of nearest-neighbor-search strategies and implementations for efficient shape registration[END_REF].

We then rejected outliers whose distance is larger than a certain quantile. Using the TrimmedDist module, we explored keeping a ratio of {0.2 0.5 0.7 0.75 0.8 0.85 0.90 0.95 0.9999}. Based on this search, we decided to keep the 75 % closest points for point-to-point and 70 % for point-to-plane. For further details on parameter behaviors, we refer to a previous work [START_REF] Pomerleau | Tracking a depth camera: Parameter exploration for fast ICP[END_REF].

Results

We executed our protocol for both solutions leading to a total of 80,640 registrations (i.e. 2 solutions × 6 data sets × 35 paired scans × 3 types of perturbation × 64 perturbations). The overall translation results propose that point-to-plane (A50 = 0.76 m) is more accurate by 20 % than point-to-point (A50 = 0.97 m) solution. The advantage is reversed when looking at the difference between A95 and A50, which shows that point-to-point is more precise by 30 %. The same trend is observed for the rotation with the accuracy gain cranking to 40 % for point-to-plane while the precision advantage stay at 30 % for point-to-plane. For a deeper investigation, all results in Table 6 are subdivided in three categories: first data sets, second perturbation levels, and third distance metrics. We can observe once more that most of the times the results of point-to-plane are better than pointto-point. Point-to-point error can however out-perform point-to-plane error for hard perturbations.

To explore the influence of the environment, Figure 10 compares the translation error combining all perturbations for each solution. Note that the A95 values for ETH exceed the graph, being 12.16 m for point-topoint and 16.87 m for point-to-plane. Focusing on A50 and A75, we see that the gain of point-to-plane over point-to-point is overcome in the data sets Wood and Plain. This observation proposes that the accuracy of each solution follows the level of structure found in each data set. When looking at the A95 statistics, point-toplane is in all cases higher then point-to-point, meaning that point-to-plane does not guarantee better worstcase errors than point-to-point. It is worth noting that ETH consists of a long hallway with repetitive elements, which seems to drag down the A95 performance in translation while keeping reasonably low rotation errors (see Table 6). The data set plain have an even higher defi- Given that point-to-plane has a better overall performance, Figure 11 focuses exclusively on that solution and shows the cumulative probabilities of its translation error. Those curves are similar to precision-recall graphs in that the more top-left the curve the better the algorithm performs. The top plot emphases the influence of the environments given easy perturbations. This type of situation would happen for a mobile robot able to maintain low uncertainty on its localization in-between registrations. All of the environments keep their median error under 10 cm except Wood and Plain. Although considered as a semi-structured environment, Gazebo keeps lower error, with Apartment, than the other environments. The bottom plot goes a bit deeper in the analysis by expending the results for Apartment to assess the influence of the perturbation levels. Each curve is associated with its initial perturbation level represented as a filled area. Ideally, all pairs of scans would have less residual errors after the registration leading to curves closer to zero than their associate perturbation level. One can observe that, for all perturbation types, there are still roughly 25% of the registrations presenting worse translation then their initial perturbations. We believe the cause to be mainly the weak robustness of the solution against a range of different overlap ratios.

To demonstrate this low performance, Figure 12 shows the relation between the pre-computed overlap between scans and the translation errors for both solutions over all environments and all perturbation types. The statistics A50, A75, and A95 were extracted for each bin of paired scan sharing the same overlap, with the bin size being 0.08. Both solutions share the same Outlier Filtering Module tuned to handle 70 % and 75 % of outliers. This results in both solutions following the same trend leading to poor performance at low overlap values. The error reaches a median error larger than 2 m for a range of overlap from 0.30 to 0.38. Finally, Figure 13 shows the cumulative probabilities of the time needed to converge for point-to-plane. The figure opposes structured environments (solid lines) to unstructured and semi-structured environments (dashed lines). It is interesting to note that in Plain the solutions converge rapidly but, based on Table 6, to a large translation error. This means that the observed errors were estimated to be below 1 cm and 0.001 rad (see the line Transformation checking in Table 5) leading to an early exit out of the iteration loop. For the overall performance between the two solutions, point-to-point is 80 % faster than point-to-plane with a median time of 1.45 s compared to 2.58 s respectively. This suggests that for point-to-plane, the extra time required to extract surface normal vectors is not compensated for by the saving on the number of iterations required to converge. All the results were obtained on a 2.2 GHz Intel Core i7, using libpointmatcher (C++) with separate registrations running on a single core without GPU acceleration. The solutions are not multi-threaded but we executed 4 tests in parallel on a single machine to reduce the total testing time.

Discussion

We have sub-sampled the point clouds using a fixed reduction percentage leading to the use of approximatly 10,000 points per scan. However, the different data sets have a different number of points per scan in average, for instance Apartment has twice as much as Stairs. It would be better to reduce the point clouds to a fixed number of points instead of a ratio to ensure more constant processing time given that the precision gain is very low for a larger number of points [START_REF] Pomerleau | Challenging Data Sets for Point Cloud Registration Algorithms[END_REF]. As demonstrated in Figure 8, overlap between scans can largely vary depending on the motion of the robot and the environment configuration. One of the limitation of trimming outliers based on quartile is that this assumes a constant overlap of scans which is hard to control with a mobile platform. In order to work around this limitation, it would be important to detect those places and react appropriately. For example, the robot could acquire scans more frequently or reduce its velocity at those places. Also, more flexible outlier-rejection algorithms need to be investigated to cope with the variability of the overlap.

The use of the A95 statistic might seem excessive but it is important to note that it implies that 1 registration over 20 is beyond this value. In the robotics context, this is very significant and can be the difference between a stable system and a system that breaks its map every so often.

The point-to-plane solution can be stable for applications where: first, the environment type can be controlled to be highly structured; second, the overlap is kept high while the robot is moving; and third, the state estimation used as initial pose for the registration remains within 10 cm and 10 • . This type of conditions are usual for laboratory experiments but are unlikely to happen in real applications.

The procedure we propose relies on some specific data sets in order to have a common ground of comparison in the scientific community. However, as the sensor is the same across all data sets, we cannot measure its effect on the icp performances. The sensor has nevertheless two important features, noise and field of view, that can have an influence on icp. Indeed, sensors may have different noise levels and even noise profiles and different icp variants might cope better with some than others. Furthermore, the field of view and the pointdensity profile of the sensor inside its field of view can have a huge influence on the icp performance as those characteristics govern the overlap and the possibility of multiple pairings in-between scans.

Finally, as explained previously, some applications require online matching of sensor data. In these cases, the time spent in icp is a relevant criterion to compare variants. However, processing time is difficult to measure given that internal memory management, processor load, and processor types are all relevant factors that cannot easily be compensated for and that can drastically change time measurements. On the other hand, theoretical complexity is not sufficient as different icp variants will mostly have a comparable complexity but different constant factors. Having a single computer dedicated to running all the different icp variants in the same condition would yield a general idea of the relative efficiency. However, different icp variants would scale differently for different practical cases. A comparison of the variants in the specific case of application is thus always pertinent. Our library can facilitate this comparison by highlighting only the relevant changes. Indeed, the efficiency of an implementation is an important factor of time performance that can bias the comparison of algorithms. Having a library in which only the modules to be compared change already reduces a lot this effect by maintaining an homogeneous environment for most data processing.

In a nutshell, researchers using our protocol should maintain a certain uniformity by: 1. Characterizing the main parameters of their novel solution. 2. Evaluating their solutions using the predefined data sets and pairs of scans and perturbations.

3. Recording translation and rotation errors following Equations 2 and 3. 4. Recording computational time excluding data acquisition but including preprocessing steps. 5. Reporting strength and weakness against environment type, perturbation level and overlap ratio. 6. Comparing their results with formal solution in terms of precision and accuracy using A50, A75 and A95 statistics. 7. Making their results publicly available, when possible, so that other researchers can accelerate the comparison process.

Conclusion

In this paper, we proposed a protocol to compare icp variants. We lay the emphasis on the repeatability of the results by selecting publicly available data sets. We also presented an open-source modular icp library that can further improve on the repeatability by allowing easy tests and comparisons with baseline variants. Thus, this modular library is the companion of choice of our protocol. Finally, we demonstrated our evaluation framework by comparing well-established icp variants in a rich variety of environments. This refreshes the observations from Rusinkiewicz and Levoy [START_REF] Rusinkiewicz | Efficient variants of the ICP algorithm[END_REF] by using data sets closer to robotic applications. The performances of these baseline variants show a high variability and strongly display the need for improved icp methods for natural, unstructured and information-deprived environments. This need opens the door for other researchers to challenge their novel solutions against our baselines. We would welcome additional data sets with different sensors and other icp implementations but our comparison is already a stepping stone in icp comparison that can be built upon. We believe that this combination of protocol, software, and baseline results shows nicely how open-source software can drive research forward.

Figure 1

 1 Figure 1 Evolution of the number of publications over the years based on IEEE Xplore. Results were obtained for Iterative Closest Point appearing in the abstract or the title of publications.

Figure 3

 3 Figure 3 Tracking the pose of a Kinect rgb-d sensor in a home-like environment. Top: projection on the xy-plane of a tracked position (dark-red) versus the measured ground truth (light-green). Each grid square is half a meter. Bottom: performance for different processors: Intel Core i7 Q 820 (blue "×"), Intel Xeon L5335 (red "•"), and Intel Atom Z530 (black " * ")

 reference SurfaceNormal extraction of surface normal vectors RandomSampling random sub-sampling, keep 50 % Data filtering of reading SurfaceNormal extraction of surface normal vectors UniformizeDensity keep uniform density Data association KDTree kd-tree matching with 0.5 m max. distance Outlier filtering TrimmedDist keep 95 % closest points SurfaceNormal remove when normals are more than 45 degrees off Error minimization PointToPlane point-to-plane Transformation checking Differential min. error below 1 cm and 0.001 rad Counter iteration count reached 30 Bound transformation beyond bounds

Figure 4

 4 Figure 4 Mapping of a 7-floor staircase using a search-and-rescue robot. Left: side view of the resulting map with the floor colored based on elevation. Middle: top view of the E floor with the ceiling removed and the points colored based on elevation. Right: photograph of the robot with climbing capability.

Figure 6

 6 Figure 6 Overview of the Gazebo data set. Top: photograph of benches under the gazebo covered with wine trees. Bottom: aerial view of the gazebo using the acquired scans. The color of the points shows their elevation: high points are in dark blue, low points are in light grey

Figure 5 Figure 7

 57 Figure 5 Overview of the Apartment data set. Left: photograph of the kitchen. Middle: top view of the point clouds with the ceiling removed. The color of the points shows their elevation: high points are in dark blue, low points are in light grey. The yellow lines with black dots represent the path of the scanner through the apartment. Top right: photograph of the living room. Bottom right: photograph of the bed room.

Figure 8

 8 Figure 8 Point-to-plane solution in the Apartment data set: separate statistics for every poses. The path of the scanner (green) with the A50 and A75 statistics overlaid on a sketch of the environment.

Figure 9

 9 Figure 9 Cumulative probability as function of translation error for each of the perturbation set. The lines are based on the actual 64 samples; the filled backgrounds correspond to the theoretical curves. The easy sampled and theoretical curves overlay due to scaling.

 Differentialmin. error below 1 cm and 0.001 rad

Figure 11

 11 Figure 11 Cumulative probabilities of errors for point-toplane icp variant. Top: influence of environments given an easy perturbation level. The gray stripes correspond to the quantiles of interest, namely A50, A75 and A95. Bottom: influence of the three perturbation levels on the Apartment data set with the filled backgrounds correspond to the theoretical curves of initial perturbations.

Figure 12

 12 Figure 12 Correlation between the overlap of two scans and the translation error for point-to-plane over all environments and all perturbation types.

Figure 13

 13 Figure[START_REF] Jian | Robust Point Set Registration Using Gaussian Mixture Models[END_REF] Cumulative probabilities of the time needed to converge for point-to-plane with easy perturbations. The solid lines represent structured environments while dashed lines represent unstructured and semi-structured environments.

Table 1

 1 List of processing blocks available in libpointmatcher. This list displays the current status of the library and is intended to evolve through time.

		Current module implementations				
	Data filtering	FixStepSampling, MaxDensity, MaxPointCount, MaxQuantileOnAxis, MinDist, ObservationDirection,
		OrientNormals, RandomSampling, RemoveNaN, SamplingSurfaceNormal, Shadow, SimpleSensorNoise,
		SurfaceNormal					
	Data association	KDTree, KDTreeVarDist					
	Outlier filtering	MaxDist, MedianDist, MinDist, SurfaceNormal, TrimmedDist, VarTrimmedDist
	Error minimization	PointToPlane, PointToPoint				
	Transformation checking Bound, Counter, Differential				
	Inspection	Performance, VTKFile					
	Log	File					
	reading reference	Data Data Data filter filter filter Data filter Data filter Data filter	Data filter Data filter Data filter	Matcher	Outlier filter Outlier filter Outlier filter	Error minimizer	Trans. checker Trans. checker Trans. checker
				iteration			

DataPoints

Trans.

Table 2

 2 Configurations of icp chains for the Kinect tracker and the 7-floor mapping applications.

Table 3

 3 Characteristics of 6 data sets used to revisit well-established icp variants.

Table 4

 4 Standard deviations on each component and number of samples for each perturbation level.

Table 5

 5 Configurations of icp chains for revisiting well-established icp variants. Top: point-to-point. Bottom: point-to-plane.

Table 6

 6 Overall view of the precision obtained with our 2 proposed baselines for different perturbations (easy (EP), medium (MP), hard (HP)). Top: Translation error [m]. Bottom: rotation error [rad]. Darker tones correspond to high error.

			Apartment	Stairs	ETH	Gazebo	Wood	Plain
			A50 A75 A95 A50 A75 A95 A50 A75 A95 A50 A75 A95 A50 A75 A95 A50 A75 A95
	Translation	EP MP HP	Plane 0.06 0.47 2.11 0.09 1.17 3.49 0.10 0.44 6.06 0.11 0.38 2.08 0.25 1.55 4.75 0.42 1.54 4.15 Point 0.13 0.54 1.54 0.35 1.29 2.57 0.47 2.23 6.86 0.28 0.60 1.71 0.39 1.48 4.21 0.51 1.46 3.09 Plane 0.20 1.04 2.98 0.61 2.08 4.64 0.60 4.06 16.3 0.28 0.96 3.51 1.25 2.92 6.62 1.30 2.58 5.58 Point 0.46 1.03 2.32 0.94 1.86 3.38 1.92 4.29 11.2 0.49 1.13 3.18 1.19 2.52 5.15 1.21 2.17 3.76 Plane 1.35 2.18 3.66 2.05 3.28 5.50 4.18 8.55 19.6 1.87 3.33 6.95 2.79 4.52 7.86 2.35 4.13 8.85 Point 1.29 1.99 3.24 1.81 2.78 4.75 3.84 7.06 14.8 1.58 2.79 4.57 2.32 3.73 6.82 2.02 3.14 6.33
	Rotation	EP MP HP	Plane 0.02 0.20 1.14 0.02 0.31 1.58 0.01 0.02 0.61 0.02 0.08 0.48 0.05 0.34 0.95 0.07 0.20 0.60 Point 0.07 0.25 0.97 0.12 0.39 1.22 0.05 0.22 0.83 0.04 0.17 0.41 0.09 0.29 0.77 0.09 0.20 0.44 Plane 0.08 0.47 1.80 0.16 1.08 2.09 0.01 0.25 2.91 0.04 0.35 0.97 0.31 0.78 1.53 0.19 0.38 0.99 Point 0.20 0.61 1.49 0.33 0.78 1.63 0.14 0.59 1.82 0.15 0.35 0.80 0.32 0.69 1.22 0.20 0.37 0.77 Plane 1.01 1.72 2.95 1.48 1.91 2.94 1.31 2.09 3.11 0.58 1.31 2.88 1.05 1.56 2.53 0.50 1.09 3.05 Point 1.04 1.60 2.53 1.10 1.64 2.53 0.97 1.73 3.05 0.58 1.20 2.59 0.97 1.44 2.35 0.46 0.99 2.09

http://projects.asl.ethz.ch/datasets/doku.php?id= laserregistration:laserregistration

The semantics of has been changed since[START_REF] Pomerleau | Tracking a depth camera: Parameter exploration for fast ICP[END_REF] to be compatible with other open-source implementations.

This work was supported by the EU FP7 IP projects Natural Human-Robot Cooperation in Dynamic Environments (ICT-247870) and myCopter (FP7-AAT-2010-RTD-1). F. Pomerleau was supported by a fellowship from the Fonds québécois de recherche sur la nature et les technologies (FQRNT).