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a b s t r a c t

This work aims at investigating for the first time the key sonication (US) parameters: power density (DUS),

intensity (IUS), and frequency (FS) – down to audible range, under varied hydrostatic pressure (Ph) and low

temperature isothermal conditions (to avoid any thermal effect).

The selected application was activated sludge disintegration, a major industrial US process. For a

rational approach all comparisons were made at same specific energy input (ES, US energy per solid

weight) which is also the relevant economic criterion.

The decoupling of power density and intensity was obtained by either changing the sludge volume or

most often by changing probe diameter, all other characteristics being unchanged. Comprehensive results

were obtained by varying the hydrostatic pressure at given power density and intensity. In all cases

marked maxima of sludge disintegration appeared at optimum pressures, which values increased at

increasing power intensity and density. Such optimumwas expected due to opposite effects of increasing

hydrostatic pressure: higher cavitation threshold then smaller and fewer bubbles, but higher tempera-

ture and pressure at the end of collapse.

In addition the first attempt to lower US frequency down to audible range was very successful: at any

operation condition (DUS, IUS, Ph, sludge concentration and type) higher sludge disintegration was

obtained at 12 kHz than at 20 kHz. The same values of optimum pressure were observed at 12 and

20 kHz.

At same energy consumption the best conditions – obtained at 12 kHz, maximum power density

720W/L and 3.25 bar – provided about 100% improvement with respect to usual conditions (1 bar,

20 kHz). Important energy savings and equipment size reduction may then be expected.

1. Introduction

1.1. Sonochemical engineering issues

Power ultrasound (US) is well known for its outstanding activa-

tion of various chemical and physical processes [1]. It has been

clearly proved that transient cavitation is the main cause of ultra-

sound efficiency, either by producing active radicals (chemical acti-

vation due to hot spots at bubble cavitation collapse) or very high

shear stresses and shock waves due to pressure spots (physical or

mechanical effects). The latter effects are especially efficient to

clean, erode and activate solid surfaces or to finely disperse multi-

phase media.

Due to extremely complex and coupled phenomena – especially

highly nonlinear behavior of cavitation bubbles, inhomogeneity of

bubble sizes and locations, inhomogeneity of acoustic field – such

ultrasonically assisted processes are far from being conveniently

modeled despite tremendous progress in single bubble dynamics

and sonoluminescence [2,3].

The development of sonochemical processes mainly depends on

two major issues: the convenient knowledge of all relevant param-

eters at small scale and the rational scaling-up [4]. Concerning the

first aspect, the number of possible effective parameters is rather

large and still discussed.

There may be divided in 4 groups:
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– Acoustic parameters, i.e. power density (W/L), power intensity

(W/cm2), frequency, sonication time or better specific US energy

(kJ/kg).

– Geometrical parameters, including geometry and relative size of

reactor, stirrer and emitter, presence of internals, location of the

emitter, liquid filling.

– Standard operation parameters (temperature and pressure).

– Investigated system properties, i.e. physicochemical properties

of liquid(s), solid if any, and gas headspace.

Of course, among thousands of works on ultrasound activa-

tion there is not a single one, for any US application, having

achieved such a large amount of experimental work; most of

them being devoted to show some US effect on a selected

application.

Concerning ultrasonic parameters, frequency effects have been

widely investigated showing a clear difference between high fre-

quencies (>100 kHz), to be selected for radical chemistry, and

low frequencies (<100 kHz), much more efficient for mechanical

and physical effects [5,6].

Despite a clear advantage of lowering the frequency to improve

mechanical effects, extremely few works have tested audible fre-

quencies [7], probably due to a lack of equipment connected to

apprehension of noisy conditions.

Ultrasound power is probably the most important parameter,

but it should be considered from two sides: the power density or

US dose (W/L), always involved in scaling-up studies, and the

power intensity (W/cm2), better connected to the cavitation

threshold. It should be noticed that almost all experimental

works on power effects are performed in same equipment where

increasing the US power will proportionally increase both the

density and the intensity. Consequently, most often, the separate

role of these two power characteristics has been ignored. Very

few works have indeed investigated density and intensity

separately [8–10], by changing either the emitter and/or the

reactor geometry. Moreover note that such changes might result

in additional effects to that expected and a possible misinterpre-

tation of its individual role. Generally speaking, sonication

performances are improved when increasing US power, never-

theless in some works an optimal power has been pointed out

[8,11].

Concerning operation conditions, such as temperature, hydro-

static pressure and nature of the gas (either bubbled or lying above

the liquid surface), it is well known that they may significantly

affect transient cavitation intensity as deduced from single bubble

dynamics.

Increasing temperature has a negative effect on cavitation

intensity, leading to a severe dampening of the collapse as soon

as liquid vapor pressure becomes significant in the cavitation bub-

bles. Therefore an optimum temperature is generally expected for

US-assisted applications, whose value depends on how tempera-

ture affects the silent process: for instance, a higher sonication

temperature should be applied for extraction or dissolution with

respect to applications involving only mechanical effects, like solid

disruption, nanoparticle production or emulsification, where room

temperature is most often convenient.

Gas content has mostly been investigated for radical produc-

tion and especially in single bubble dynamics and sonolumines-

cence, showing best effects with monoatomic gases due to the

higher maximum temperature at the end of the quasi adiabatic

collapse.

US mechanical effects have been scarcely investigated with

regard to many works on reactions enhanced by US radical gener-

ation, but an improvement under pressure is usually reported

[12–15], and in the most detailed studies an optimum value has

been found [1,12,14]. For the specific effect of applied pressure

on sonochemical reactions or sonoluminescence, one can refer to

the article of Geng and Thagard [16].

It should be emphasized that all parametric studies are very

fragmentary, either due to single parameter exploration or to

changes in equipment geometry when changing frequency.

1.2. Ultrasonic sludge pretreatment

Sludge processes for wastewater treatment produce large quan-

tity of solid waste, commonly treated by anaerobic digestion. How-

ever, this method requires a pretreatment process due to a rate

limiting step of hydrolysis. Ultrasonic irradiation is a promising

and feasible mechanical disruption technique – mainly based on

cavitation phenomenon – for sludge disintegration and microor-

ganism lyses. Excellent reviews have been published on this major

application of power ultrasound by Show et al. [17], Carrere et

al. [18], Pilli et al. [19] and recently Tyagi et al. [20]. Apart from

sludge characteristics and reactor geometry, US parameters

(frequency – FS, intensity – IUS, density – DUS, etc.) and external

conditions (hydrostatic pressure – Ph, temperature, etc.) should

play some roles in the pretreatment efficiency. However, as for

other applications, there is lack of researches on the integrated

effect of some key US parameters and external conditions on

sludge pretreatment.

Increasing US frequency in the 25–1100 kHz range has been

reported to lower the degree of sludge disintegration [19,21,22].

Lowering FS below 20 kHz could then be interesting and needs spe-

cific investigation.

Most often unit power (power per unit volume or power den-

sity) and intensity (power per unit surface of emitter) have been

varied simultaneously and proportionally by changing US power

in the same equipment [17,23–26]. As expected, higher mechani-

cal shear forces produced at higher IUS rupture microorganism cell

walls, leading to an increased solubilization of organic matter.

For instance, Neis et al. [27] found that the degree of sludge dis-

integration more than doubled by increasing IUS from 6 to 18W/

cm2.

Note that generally acousticians refer to intensity (or acoustic

pressure) while process engineers prefer unit power for scaling-up

purposes.

A preliminary study [28], more sludge oriented, was recently

published comparing several types of sludge under both isother-

mal and adiabatic sonication, and for the first time varying hydro-

static pressure (1–16 bar) but at same input power (150 W), same

frequency (20 kHz) and same probe diameter (35 mm). All compar-

isons were made at equal specific energy input ES, i.e. energy per

solid weight, which is the only rational way for parametric inves-

tigations. It was first verified that, at same specific energy, high

power – then short sonication time – was more efficient. An opti-

mum value of hydrostatic pressure was observed at about 2 bar

with significant improvement as compared to atmospheric

pressure.

The present work aims at providing an extensive parameter

investigation including three main aspects: (i) the separate roles

of power density and power intensity, (ii) the effect of very low fre-

quency, down to the audible range (12 kHz) as compared to 20 kHz

the usual low frequency, (iii) the role of hydrostatic pressure under

the complete range of ultrasonic parameters (power density, inten-

sity and frequency).

Such unprecedented parameter exploration in the same equip-

ment concerns the special application of sludge solubilization (or

disintegration) which represents the largest scale of US-assisted

industrial processes. In isothermal low temperature conditions,

transient cavitation being the only cause of sludge disintegration,

the main trends of this work are likely to be found in other cavita-

tion controlled applications.



2. Materials and methods

Most of the useful information was given in Le et al. [29]. This

section mainly details new improved ultrasound equipment: two

frequencies, two probe sizes at each frequency, larger US power

range, which have been used here on a single type of activated

sludge.

2.1. Sludge samples

Waste activated sludge (WAS) was collected from Ginestous

wastewater treatment plants (Toulouse, France). Note that sludge

sampling was performed at different periods in relation with the

changes in US equipment along this work. Synthetic sludge sample,

whose properties are given in Table 1a, was used for investigating

PUS and IUS effects. The effect of FS was then looked into using the

synthetic WAS characterized in Table 1b.

Sludge was stored in a freezer, which might change some phys-

ical characteristics of the sludge, but should not significantly affect

COD solubilization results [30]. In the present study, less than 8%

difference in sludge disintegration results have been observed

between fresh sludge (without freezing) and frozen sludge for

the ES range of 7000–50,000 kJ/kgTS. The sludge was defrosted

and diluted with distilled water before experiments to make syn-

thetic sludge samples with 28 g/L of total solid (TS), the optimum

concentration for sludge US disintegration [28].

2.2. Ultrasound application

Ultrasonic irradiation was emitted by a cup-horn ultrasound

unit included in an autoclave reactor which was connected to a

pressurized N2 bottle (see Fig. 1).

The reactor and its internals were made of 316 L stainless steel.

The reactor had an internal diameter of 9 cm and a depth of 18 cm,

for a maximum capacity of 1 L. A cooling water stream (15 °C) was

continuously circulated in an internal coil to control temperature

(T) of the solution at 28 ± 2 °C during sonication. The solution

was stirred by a Rushton type turbine (32 mm diameter) at

500 rpm according to our previous work [28]. A constant volume

(V) of synthetic sludge sample (0.5 L) was used for all experiments,

excepting that exploring intensity variations at constant density

through proportional changes in power and volume (cf. Fig. 5).

The US equipment was especially built up by Sinaptec for this

work in order to access to audible frequency. It included two gen-

erators working at 12 and 20 kHz, and for each two associated

probes of 13 and 35 mm diameter, labeled as SP and BP, respec-

tively. The probes being mounted flush at the bottom of this cup-

horn type reactor, the exact sonication area was exactly known,

better than with a dipping horn, allowing accurate analysis of

intensity effects. The maximum PUS (transferred from the generator

to the transducer) was 100W and 400 W for SP and BP, respec-

tively. The 20 kHz device was composed of four elements: a piezo-

electric transducer, a titanium booster, an aluminum flange

ensuring a good mechanical connection, and the cup-horn emitter.

There was no booster for the 12 kHz device. During operation, the

transducer was cooled by compressed air.

Due to the technical limitations of the US systems, IUS ranged

between 5.2 and 75W/cm2 (Table 2). It is probably well above

the cavitation threshold for WAS at atmospheric pressure (accord-

ing to the range for water with many impurities) even though it

was suggested to be at about 20 W/cm2 by Zhang et al. [22]. Note

that the maximum power ratio of 360/50 between BP and SP cor-

responds to the surface ratio of the probes, allowing comparison

at same IUS.

Different sonication durations corresponding to four values of

ES (7000, 12,000, 35,000, and 50,000 kJ/kgTS) were tested:

ES ¼ ðPUS � tÞ=ðV � TSÞ

where ES is the specific energy input or energy per total solid

weight (kJ/kgTS), PUS is the US power input (W), t is the sonication

duration (s), V is the sludge volume (L), and TS is the total solid con-

centration (g/L).

The equivalent amplitude of acoustic pressure corresponding to

each PUS and probe size, calculated from the following equation, is

also given in Table 2:

PA ¼ ð2 � IUS � c � qÞ
1=2

where PA is the amplitude of acoustic pressure (Pa), IUS is the ultra-

sonic intensity (W/m2), c is the sound speed (m/s), and q is the den-

sity of the sludge suspension (kg/m3).

The density of the sludge suspension at TS = 28 g/L was

measured at 25 °C and found almost equal to that of water:

996.7 kg/m3. However, the speed of sound in sludge suspensions

was neither measured in this work nor found in others. Values in

different suspensions, e.g. kaolin clay slurries [31], clay sediments

[32,33], cornstarch [34], glass [35], were therefore examined to

find a convenient one. In the weight range of 1–5%, the differences

in sound speed may be ignored and the values are almost equal to

that in water (1496 m/s at 25 °C) which was consequently used for

the calculation.

The conditions listed in Table 2 allowed to investigate the effect

of PUS first, then the effect of IUS resulting either from PUS or emitter

surface variation at atmospheric pressure. The effect of IUS was also

studied by varying sludge volume and PUS proportionally with the

same BP to keep the same DUS. FS effect (12 and 20 kHz) was then

looked into using BP in a PUS range of 50–360W. Finally, hydro-

static pressure vas varied (1–6 bar) for each combination of PUS,

probe size (IUS), and FS to approach the corresponding optimal pres-

sure. Many experiments were duplicated and the coefficients of

variation of sludge disintegration results were about 5%.

2.3. Analytical methods

Total and volatile solids contents (TS and VS, respectively) were

measured according to the following procedure [36]. TS was deter-

mined by drying a well-mixed sample to constant weight at 105 °C.

VS was obtained from the weight loss on ignition (550 °C) of the

residue.

The degree of sludge disintegration (DDCOD) was calculated by

determining the soluble chemical oxygen demand after strong

alkaline disintegration of sludge (SCODNaOH) [28] and the chemical

oxygen demand in the filtered (0.2 lm) supernatant before and

after treatment (SCOD0 and SCOD respectively) using Hach spectro-

photometric method [37]:

Table 1

Characteristics of the sludge samples.

Parameter Value

a b

Raw sludge sample

pH 6.3 6.3

Total solids (TS) g/L 31.9 34.2

Volatile solids (VS) g/L 26.4 30.2

VS/TS % 82.8 88.3

Synthetic sludge sample

Total solids (TS) g/L 28.0 28.0

Mean SCOD0 g/L 2.8 4.1

SCODNaOH 0.5M g/L 22.7 22.1

TCOD g/L 36.3 39.1

SCODNaOH/TCOD % 62.5 56.5



DDCOD ¼ ðSCODÿ SCOD0Þ=ðSCODNaOH ÿ SCOD0Þ � 100ð%Þ

DDCOD represents the normalized quantity of organic carbon

that has been transferred from the cell content (disruption) and

solid materials (solubilization) into the external liquid phase of

sludge.

3. Results and discussion

3.1. Preliminary experiments: selection of temperature conditions

It is well known that cell lysis and then COD solubilization may

occur at moderate temperature without any other activation. It

was first verified that only negligible COD changes occurred within

2 h at 28 °C under the selected stirring speed (500 rpm).

US isothermal experiments achieved at three different temper-

atures clearly showed better solubilization at 55 °C than at 28 °C

and 80 °C (Fig. 2). Indeed results of solubilization at 80 °C gave very

similar performances with or without US (round symbols in Fig. 2),

Fig. 1. Ultrasonic autoclave set-up.

Fig. 2. Effect of temperature on DDCOD by isothermal US (20 kHz, atm. pressure,

PUS = 150 W, BP, WAS presented in Table 1a) and thermal hydrolysis.



suggesting that, at such high temperature, cavitation is much less

efficient than at lower temperatures (due to high vapor content

in collapsing bubbles) and might be ignored as regard to pure ther-

mal effects.

Even though 55 °C is much better for sludge disintegration, a

temperature of 28 °C has been selected in this work devoted to

parameter effects on US efficiency, in order to avoid any mixed

thermal and US effects. In addition it should be mentioned that

preliminary heating up to 55 °C yet produced significant solubiliza-

tion before starting isothermal sonication, which would result in

less accurate data analysis.

3.2. Effect of PUS on sludge disintegration

The effect of US power PUS onWAS disintegration was studied at

20 kHz for the two probes. As explained before, changing PUS in the

same equipment will result in similar changes in density DUS and

intensity IUS. Results are given in Fig. 3. The same conclusion was

deduced from the experiments conducted on different PUS ranges

and with both probe sizes. The higher PUS, the higher DDCOD was

achieved at same ES due to the increase in cavitation intensity.

Despite higher uncertainty at low DDCOD (then low ES), the main

effect was clearly observed at the lowest ES value (7000 kJ/kgTS)

where DDCOD was improved by 40% and 67% when increasing PUS
from 50 to 100 W for SP (Fig. 3a) and from 50 to 360W for BP

(Fig. 3b), respectively.

This limited but always positive effect of PUS on WAS disintegra-

tion proves that in the investigated range of IUS (<75 W/cm2), there

is no significant ‘‘saturation effect’’ due to a bubble cloud formation

near the probe and then no severe damping of the US wave, as

observed in some previous works [38–40].

In agreement with other researchers [24,30,41–43], the highest

PUS – shortest sonication time mode was the most effective protocol

for sludge pretreatment in these conditions (low temperature,

atmospheric pressure and IUS < 75W/cm2).

3.3. Effect of IUS and DUS on sludge disintegration

In order to separately investigate power density and intensity,

two probe sizes were used. Comparisons were made at same spe-

cific energy.

Effects of IUS on sludge disintegration were investigated at same

PUS (50 W) then same DUS, by changing the probe: SP (IUS = 37.5 W/

cm2) vs. BP (IUS = 5.2 W/cm2). These experiments were conducted

at 20 kHz. Results are shown in Fig. 4, along with those of a com-

plementary experiment conducted with the big probe at the same

Fig. 3. Effect of ES and PUS on DDCOD (20 kHz, atm. pressure, WAS presented in Table 1a): (a) SP (b) BP.

Fig. 4. Comparison of IUS (same DUS = 100 W/L) and DUS (same IUS = 37.5 W/cm2)

effects on DDCOD at different ES (20 kHz, atm. pressure, WAS from Table 1a).

Fig. 5. Effect of IUS (at same DUS = 300 W/L by changing PUS and sludge volume

proportionally with the same probe) on DDCOD (20 kHz, atm. pressure, WAS from

Table 1b, BP).

Table 2

Test parameters and levels.

Combination IUS (W/cm2) DUS (W/L) Equivalent acoustic pressure (bar)

SP 50 W 37.5 100 10.6

SP 75 W 56.3 150 13.0

SP 100 W 75. 200 15.0

BP 50W 5.2 100 3.9

BP 150 W 15.6 300 6.8

BP 360 W 37.5 720 10.6



IUS value of 37.5 W/cm2 as the small one, but at a higher DUS

(360 W-BP, 720W/L), for comparison of both effects.

First, experiments at the same PUS of 50 W showed only very lit-

tle improvements of DDCOD (less than 5%) when increasing IUS from

5.2 to 37.5 W/cm2. A similar but less significant observation could

be deduced from Fig. 3 for a higher PUS level: only about 10% of

DDCOD improvement was achieved when increasing IUS by approx-

imately 5 times, from 150W-BP (15.6 W/cm2) to 100W-SP (75 W/

cm2) combination. Conversely, increasing DUS from 100 to 720W/L

by using the big probe instead of the small one and keeping same

IUS (37.5 W/cm2) provided much better disintegration (up to 60% at

the lowest ES).

The apparently poor effect of IUS may be surprising as it is

claimed to be a significant parameter in some of the previous

works [19,27,44]. It should be recalled that in our experiments

IUS was varied by varying probe size in the same reactor, which

involves an important modification of the ultrasonic field with a

reduced irradiated volume. It could be therefore suggested that

the expected gain due to higher cavitation at higher IUS would

approximately be balanced by the reduced volume of the cavita-

tion zone. Of course this approximate balance should no longer

be expected when IUS is reduced down to the cavitation threshold

where US has no more effects.

Another way of checking this parameter would consist of

changing both the reactor volume and PUS proportionally with

the same probe. Obviously, changing reactor size would be much

more complex to achieve, especially under pressure. Thus addi-

tional experiments were carried out via changing PUS and sludge

volume proportionally, with the same BP to keep the same DUS

(300 W/L). They are labelled in Fig. 5: 150 W–0.5 L, 210 W–0.7 L,

and 270W–0.9 L. Note that a sludge volume between 0.5 and

0.9 L corresponds to the maximum possible range for the reactor

configuration used in this work. Despite a rather restricted inten-

sity range (16–28W/cm2) DDCOD variations were clearly higher

than in the previous experiments with same sonicated volume

and different probe sizes. As shown in Fig. 5, the best conditions

for DDCOD were the intermediate ones which might be intuitively

explained by opposite effects of increasing intensity (thus cavita-

tion strength) and increasing volume (thus damping US wave far

from the emitter surface and reducing the active volume fraction).

In addition, the stirring speed might be unable to well homogenize

the 0.9 L suspension (as it was optimized at 0.5 L). Therefore, with

this approach of variable sludge volume, a clear optimum of IUS
could be found, i.e. 22W/cm2, contrary to probe size variation.

These two approaches of intensity effects leading to very differ-

ent results confirm the complexity of experimental analysis of

ultrasound intensification of any process due to the additional

effects of reactor and probe design on the acoustic field, especially

in transient cavitation conditions. The clear variation of US effi-

ciency when changing slightly the sonicated sludge volume might

be more significant than the poor effect observed when changing

much more the intensity but through probe size.

3.4. Effect of frequency on the efficacy of sludge sonication

As mentioned earlier, even though most applications using

mechanical effects of US power are improved when reducing FS,

nearly no information is available under 20 kHz – the usual limit

of commercial equipment corresponding also to the limit of human

hearing. Sludge sonication at 12 kHz was investigated for the first

time, and assessed through DDCOD and particle size reduction with

respect to the standard 20 kHz treatment. According to the avail-

ability of the equipment, experiments were successively carried

out at 50 and 150W, using sludge sample given in Table 1a, then

at 360W using WAS sample given in Table 1b. Results are shown

on Fig. 6.

Fig. 6 shows that with the two different sludge samples, the

lower the frequency, the more the sludge was disintegrated due

to more violent cavitation. As previously found at 20 kHz, more

sludge disintegration was achieved at higher PUS and again the

largest differences were noticed at low ES. It is interesting to note

that the beneficial effect of lowering frequency is clearly enhanced

at increasing power, for example, at the lowest ES (7000 kJ/kgTS) by

21%, 45% and 64% for PUS of 50, 150 and 360 W, respectively. At

lower frequencies, shock waves are stronger and mechanical

effects are favoured due to the resonance bubble size being inver-

sely proportional to the acoustic frequency [45]. However, at low

FS, the maximum collapse time and the maximum size of the

expanded cavity are increased, thus the optimum cavitation effect

should occur at higher PUS [40].

Although it was shown that particle size reduction had much

faster dynamics than COD solubilization [28], it was interesting

to compare particle size reduction under 12 and 20 kHz sonication.

As shown in Fig. 7, the lower the frequency, the faster the sludge

particle size was reduced during the first two minutes after which

the differences in size were very small.

3.5. Effect of PUS, IUS, and FS on the optimum pressure and subsequent

DDCOD

According to our previous research [28], performed at constant

power density and intensity (300 W/L and 15.6 W/cm2, respec-

tively), the same optimum of pressure was found (about 2 bar)

whatever ES and sludge type. This section presents the dependence

of this optimal pressure on DUS and IUS by changing the probe size,

as well as on FS. As previously, this optimum is related to US solu-

bilization of organic matter quantified through DDCOD.

3.5.1. Effect of power density and intensity on optimum pressure

Sonication at 20 kHzwas applied on secondary sludge (Table 1a)

at an ES value of 50,000 kJ/kgTS, varying hydrostatic pressure

between 1 and 6 bar with 0.5 bar intervals to look for the optimum.

Results are presented in Fig. 8. Note that due to limitation of the

apparatus, the US system could not work at pressures higher than

2 bar for SP at 50 W.

Fig. 8a dispatches data obtained with BP at various pressures

for three power inputs (50, 150 and 360W), then three propor-

tional values of density and intensity. A marked optimum

appeared in any case. This optimal pressure shifts toward higher

values when increasing PUS: 1 bar (or even lower) at 50 W, 2 bar

at 150 W, and 3.5 bar at 360 W. In addition the corresponding

maximum of DDCOD is also significantly higher at higher power,

showing the great advantage of sonication under convenient pres-

sure: 56% improvement at 360 W with respect to atmospheric

pressure. Even more spectacular results are shown on Fig. 8b indi-

cating that the optimum pressure and the corresponding maxi-

mum of DDCOD are very sensitive to the probe size. The

comparison of DDCOD variations at 50 W shows very different

behaviors at increasing pressure: continuous decrease with BP

and marked maximum with SP. It should be noted that at 1.5 bar

and 50 W, the efficiency of sludge disintegration is more than dou-

ble at high intensity (SP vs. BP). It should be recalled that con-

versely no significant effect of intensity through probe size

variation was previously observed at atmospheric pressure (cf.

Fig. 4). A last and unexpected information is given by these figure

when comparing DDCOD/pressure profiles: in some cases lower

power may be more efficient if it is used near the corresponding

optimum pressure. For example, on Fig. 8a at 2 bar: DDCOD is about

20% higher at 150 W than at 360 W; on Fig. 8b at 1.5 bar: 50 W is

better than 100W (by about 30%). This is clearly in contradiction

to the general rule of higher power – shorter sonication time, which



is nevertheless always verified (and even more marked) near opti-

mum pressures.

The existence of an optimumpressure was yet shown in our pre-

vious work [28] and may easily be explained from the simplified

cavitation bubble collapse model proposed by Neppiras [46]. This

model assumes an isothermal bubble growth up to the maximum

radius where the bubble is mainly filled by vapor at equilibrium

at the ambient temperature To, then a very fast adiabatic collapse

leading to a hot spot at Tmax and Pmax within the bubble:

Tmax ¼ To
Pmðcÿ 1Þ

P

� �

Pmax ¼ P
Pmðcÿ 1Þ

P

� �

c

cÿ1

� �

where To is temperature of the bulk solution, c is the ratio of specific

heats, P is the pressure in the bubble at its maximum size and usu-

ally assumed to be the vapor pressure of the liquid, Pm is the total

solution pressure at the moment of final collapse (Pm � Ph + Pa, with

Ph the hydrostatic pressure and Pa the acoustic pressure).

Note that calculations of single bubble dynamics often show the

hot spot before the maximum acoustic amplitude is reached, then

hydrostatic pressure could have even more influence than acoustic

pressure. Thereby, increasing hydrostatic pressure leads to an

increase of Pmax and Tmax, i.e. of cavitation intensity. For US mechan-

ical effects only the pressure peak appears relevant.

On the other hand, as abovementioned, increasing hydrostatic

pressure also results in an increase in the cavitation threshold, thus

the amplitude of acoustic pressure (PA depending on IUS) should be

in excess as compared to hydrostatic pressure for cavitation

bubbles to be generated: indeed it can be roughly assumed that if

Ph ÿ PA > 0, there is no resultant negative pressure andno cavitation.

In addition it is generally accepted that less and smaller cavitation

bubbles are formed when increasing hydrostatic pressure.

These two considerations qualitatively explain the existence of

an optimum for hydrostatic pressure which should increase when

Fig. 6. Effect of ES and sound frequency on sludge disintegration (atm. pressure, BP): (a) WAS given in Table 1a. (b) WAS given in Table 1b.

Fig. 7. Mean particle size reduction under US at different FS (PUS = 360 W, atm.

pressure, WAS from Table 1b, BP).

Fig. 8. Effect of hydrostatic pressure on DDCOD ofWAS (Table 1a) for different PUS and probe sizes (FS = 20 kHz, ES = 50,000 kJ/kgTS): (a) BP, (b) SP and comparison SP/BP at same

PUS.



increasing the power intensity. This is the reason of such difference

at 50 W between BP and SP under pressure, which could be even

more important at lower power where the cavitation threshold

would be hardly reached with BP.

3.5.2. Effect of frequency on optimum pressure

Synthetic WAS samples given in Table 1b were used to investi-

gate the effect of very low FS on the optimum pressure and subse-

quent DDCOD. An ES value of 35,000 kJ/kgTS was applied using the

12 kHz sonicator with PUS of 150 and 360 W through BP. Based on

the results observed at 20 kHz, the pressure range 1–4 barwasmore

carefully studied with closer pressure intervals: 0.25 bar. Results

are presented in Fig. 9a showing very similar DDCOD variations with

pressure for each power. As found at 20 kHz (Fig. 9b), the optimum

pressure shifted when increasing PUS. Besides, the location of this

optimum seemed to be independent from FS in the restricted inves-

tigated range: 2 bar at 150 W and 3.5 bar at 360 W (using 0.5 bar

intervals) for 20 kHz as compared to 2.25 bar at 150W and

3.25 bar at 360 W (0.25 bar intervals) for 12 kHz.

It was also verified by comparing Fig. 9a and b that higher

DDCOD was achieved at 12 kHz with 30–40% improvement in the

whole pressure range, including the optimum pressure. Contrary

to power density and intensity the positive effect of very low fre-

quency is very straightforward.

This continuous improvement of sludge solubilization when

lowering frequency, well known also for any US mechanical effect

in the usual frequency range (20–100 kHz), has been demonstrated

and quantified here down to audible range. As it is expected to be

also verified in most US applications it would deserve future work

towards even lower frequencies.

4. Conclusions

An extensive parameter investigation has been performed

based on sludge disintegration assessed by COD solubilization

and the specific energy (US energy per solid weight) as the relevant

criterion for rational comparisons.

The main results concern the importance of hydrostatic pres-

sure which highlights the separate roles of power density and

power intensity. At any investigated condition (PUS, IUS, FS) a clear

optimal pressure was observed due to opposite effects of pressur-

ization: a negative one on the bubble number and size connected

to enhanced cavitation threshold, but a positive one on bubble col-

lapse characteristics (Pmax, Tmax). The higher the power intensity

(and then the higher acoustic pressure PA) and power density,

the higher is the optimum hydrostatic pressure – since much lower

than PA – providing also higher disintegration. In given equipment,

at same specific energy, US performance might be more than dou-

bled by selecting high power and optimum pressure. Nevertheless

at a fixed pressure the usual recommendation ‘‘high power-short

sonication time’’ might fail: a lower power but closer to its opti-

mum pressure could perform better.

In addition, audible frequency was successfully tested: in any

case with same conditions 12 kHz outperforms 20 kHz. This opens

the way to even lower frequencies and to find a possible optimal

frequency as observed at high frequency for US radical

sonochemistry.

This work should be extended to other applications of US

mechanical effects to verify and quantify the very positive role of

hydrostatic pressure. Using high power and the corresponding

optimal hydrostatic pressure would allow very important energy

savings, by partly replacing acoustic pressure by hydrostatic pres-

sure, and in addition much shorter treatment time, then smaller

equipment.
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