
Trade-off Approaches for Leak Resistant
Modular Arithmetic in RNS

C. Negre1,2 and G. Perin3

1 Team DALI, Université de Perpignan, France
2 LIRMM, UMR 5506, Université Montpellier 2 and CNRS, France

3 Riscure, Netherlands

Abstract On an embedded device, an implementation of cryptographic
operation, like an RSA modular exponentiation [12], can be attacked by
side channel analysis. In particular, recent improvements on horizontal
power analysis [3,10] render ineffective the usual counter-measures which
randomize the data at the very beginning of the computations [4,2]. To
counteract horizontal analysis it is necessary to randomize the computa-
tions all along the exponentiation. The leak resistant arithmetic (LRA)
proposed in [1] implements modular arithmetic in residue number sys-
tem (RNS) and randomizes the computations by randomly changing the
RNS bases. We propose in this paper a variant of the LRA in RNS: we
propose to change only one or a few moduli of the RNS basis. This re-
duces the cost of the randomization and makes it possible to be executed
at each loop of a modular exponentiation.

Keywords: Leak resistant arithmetic, randomization, modular multiplication,
residue number system, RSA.

1 Introduction

Nowadays, the RSA cryptosystem [12] is constantly used in e-commerce and
credit card transactions. The main operation in RSA protocols is an exponenti-
ation xK mod N where N is a product of two primes N = pq. The secret data
are the two prime factors of N and the private exponent K used to decrypt or
sign a message. The actual recommended size for N is around 2000-4000 bits to
insure the intractability of the factorization of N . The basic approach to perform
efficiently the modular exponentiation is the square-and-multiply algorithm: it
scans the bits ki of the exponent K and performs a sequence of squarings fol-
lowed by a multiplication only when ki is equal to one. Thus the cryptographic
operations are quite costly since they involve a few thousands of multiplications
or squarings modulo a large integer N .

A cryptographic computation performed on an embedded device can be
threaten by side channel analysis. These attacks monitor power consumption
or electromagnetic emanation leaked by the device to extract the secret data.
The simplest attack is the simple power analysis (SPA) [8] which applies when

the power trace of a modular squaring and a modular multiplication are differ-
ent. This makes it possible to read the sequence of operations on the power trace
of an exponentiation and then derive the key bits of the exponent. This attack
is easily overcome by using an exponentiation algorithm like the Montgomery-
ladder [6] which render the sequence of operation uncorrelated to the key bits.
A more powerful attack, the differential power analysis (DPA) [8], makes this
counter-measure against SPA inefficient. Specifically, DPA uses a large number
of traces and correlate the intermediate values with the power trace: it then track
the intermediate value all along the computation and then guess the bits of the
exponent. Coron in [4] has shown that the exponentiation can be protected from
DPA by randomizing the exponent and by blinding the integer x. Recently the
horizontal attacks presented in [13,3] require only one power trace of an expo-
nentiation, and threaten implementations which are protected against SPA and
DPA with the method of Coron [4]. The authors in [3] explains that the best
approach to counteract horizontal attack is to randomize the computations all
along the exponentiation.

One popular approach to randomize modular arithmetic is the leak-resistant
approach presented in [1] based on residue number system (RNS). Indeed, in [1],
the authors noticed that the mask induced by Montgomery modular multiplica-
tion can be randomized in RNS by permuting the moduli of the RNS bases. In
this paper we investigate an alternative method to perform this permutation of
bases. Our method changes only one modulus at a time. We provide formula for
this kind of randomization along with the required updates of the constants in-
volved in RNS computations. The complexity analysis shows that this approach
can be advantageous for a lower level of randomization compared to [1]. In other
words this provides a trade-off between efficiency and randomization.

The remainder of the paper is organized as follows. In Section 2 we review
modular exponentiation methods and modular arithmetic in RNS. We then re-
call in Section 3 the leak resistant arithmetic in RNS of [1]. In Sections 4 and
Appendix A we present our methods for randomizing the modular arithmetic in
RNS. We then conclude the paper in Section 5 by a complexity comparison and
some concluding remarks.

2 Review of modular exponentiation in RNS

2.1 Modular exponentiation

The basic operation in RSA protocols is the modular exponentiation: given an
RSA modulus N , an exponent K and a message x ∈ {0, 1, . . . , N−1}, a modular
exponentiation consists to compute

z = xK mod N.

This exponentiation can be performed efficiently with the square-and-multiply
algorithm. This method scans the bits ki of the exponent K = (k`−1, . . . , k0)2
from left to right and performs a sequence of squarings followed by multiplica-
tions by x if the bit ki = 1 as follows:

r ← 1
for i from `− 1 downto 0 do
r ← r2 mod N
if ki = 1 then
r ← r × x mod N

end if
end for

The complexity of this approach is, in average, ` squarings and `/2 multiplica-
tions.

Koche et al. in [8] showed that the square-and-multiply exponentiation is
weak against simple power analysis. Indeed, if a squaring and a multiplication
have different power traces, an eavesdropper can read on the trace of a modular
exponentiation the exact sequence of squarings and multiplications, and then
deduce the corresponding bits of K. It is thus recommended to perform an
exponentiation using, for example, the Montgomery-ladder [6] which computes
xK mod N through a regular sequence of squarings and multiplications. This
method is detailed in Algorithm 1. The regularity of the exponentiation prevents
an attacker to directly read the key bits on a single trace.

Algorithm 1 Montgomery-ladder [6]

Require: x ∈ {0, . . . , N − 1} and K = (k`−1, . . . , k0)2
1: r0 ← 1
2: r1 ← x
3: for i from `− 1 downto 0 do
4: if ki = 0 then
5: r1 ← r1 × r0
6: r0 ← r20
7: end if
8: if ki = 1 then
9: r0 ← r0 × r1

10: r1 ← r21
11: end if
12: end for
13: return (r0)

Some more sophisticated attacks can threaten a naive implementation of
Montgomery-ladder exponentiation. For example differential power analysis [8]
makes it necessary to randomize the exponent and blind the integer x by random
mask as explained in [4]. Horizontal approaches [13,3] are even more powerful
since they require only a single trace to complete the attack and is effective even
if the exponent K is masked and the data x is blinded. The authors in [3] propose
to counteract horizontal power analysis by randomizing each multiplication and
squaring using some temporary mask. In this paper we deal with the problem
of randomizing modular multiplications and squarings: we will use the residue

number system (RNS) to represent integers and perform efficiently modular
operations.

2.2 Montgomery multiplication in RNS

Let N be a modulus and let x, y be two integers such that 0 ≤ x, y < N . One
of the most used methods to perform modular multiplication x × y mod N is
the method of Montgomery in [9]. This approach avoids Euclidean division as
follows: it uses an integer A such that A > N and gcd(A,N) = 1 and computes
z = xyA−1 mod N as follows:

q ← −xyN−1 mod A
z ← (xy + qN)/A

(1)

To check the validity of the above method we notice that (xy+qN) mod A = 0,
this means that the division by A is exact in the computation of z and then
z = xyA−1 mod N . The integer z is almost reduced modulo N since z =
(xy + qN)/A < (N2 + AN)/A < 2N : if z > N , with a single subtraction of
N we can have z < N . In practice the integer A is often taken as a power of 2
in order to have almost free reduction and division by A.

For a long sequence of multiplications, the use of the so-called Montgomery
representation is used

x̃ = (x×A) mod N. (2)

Indeed, the Montgomery multiplication applied to x̃ and ỹ output z̃ = xyA
mod N , i.e., the Montgomery representation of the product of x and y.

Residue number system. In [11] the authors showed that the use of residue
number system (RNS) makes it possible to perform Montgomery multiplication
efficiently with an alternative choice for A. Let a1, . . . , at be t coprime integers.
In the residue number system an integer x such that 0 ≤ x < A =

∏
i=1 ai is

represented by the t residues

xi = x mod ai for i = 1, . . . , t.

Moreover, x can be recovered from its RNS expression using the Chinese re-
mainder theorem (CRT) as follows

x =

(
t∑
i=1

[
xi ×A−1i

]
ai
×Ai

)
mod A (3)

where Ai =
∏t
j=1,j 6=i ai and the brackets [·]ai denotes a reduction modulo ai.

The set A = {a1, . . . , at} is generally called an RNS basis.
Let x = (x1, . . . , xt)A and y = (y1, . . . , yt)A be two integers given in an RNS

basis A. Then, the CRT provides that an integer addition x+y or multiplication
x× y in RNS consists in t independent additions/multiplications modulo ai

x+ y = ([x1 + y1]a1 , . . . , [xt + yt]at),
x× y = ([x1 × y1]a1 , . . . , [xt × yt]at).

The main advantage is that these operations can be implemented in parallel since
each operation modulo ai are independent from the others. Only comparisons
and Euclidean divisions are not easy to perform in RNS and require partial
reconstruction of the integers x and y.

Montgomery multiplication in RNS. In [11] Posch and Posch notice that
the Montgomery multiplication can be efficiently implemented in RNS: they use
the fact that we can modify the second step of the Montgomery multiplication (1)
as

z ← (xy + qN)A−1 mod B

where B is an integer coprime with A and N and greater than 2N . Furthermore,
Posch and Posch propose to perform this modified version of the Montgomery
multiplication in RNS. Specifically, they choose two RNS bases A = (a1, . . . , at)
and B = (b1, . . . , bt) such that gcd(ai, bj) = 1 for all i, j. They perform z =
xyA−1 mod N as it is shown in Algorithm 2: the multiplications modulo A are
done in the RNS basis A and the operations modulo B are done in B.

Algorithm 2 Basic-MM-RNS(x, y,A,B)

Require: x, y in A ∪ B
Ensure: xyA−1 mod N in A ∪ B
1: [q]A ← [−xyN−1]A
2: BEA→B([q]A)
3: [z]B ← [(xy + qN)A−1]B
4: BEB→A([z]B)
5: return (zA∪B)

The second and fourth steps are necessary since if we want to compute z ←
(xy+qN)A−1 mod B in B we need to convert the RNS representation of q from
the basis A to the basis B: the base extension (BE) performs this conversion.
The fourth step is also necessary to have z represented in both bases A and B.

Base extension. This is the most costly step in the RNS version of the Mont-
gomery multiplication (Algorithm 2). We review the best known method to
perform such RNS base extension. Let x = (x1, . . . , xt)A be the representation
of an integer x in the RNS basis A, the CRT 3 reconstructs x as follows:

x̂ai =
[
xai ×A−1i

]
ai

for i = 1, . . . , t, (4)

x =
(∑t

i=1 x̂ai ×Ai
)
− αA (5)

The correcting term −αA corresponds to the reduction modulo A in (3). We
get the RNS representation [x]bj for j = 1, . . . , t of x in B by simply reducing

modulo bj the expression in (5):

x∗bj =
[∑t

i=1 x̂ai ×Ai
]
bj
, for j = 1, . . . , t,

[x]bj =
[
x∗bj − αA

]
bj

for j = 1, . . . , t.
(6)

We give some details on how to perform the above computations.

• Computations of x∗bj . If the constants [Ai]bj are precomputed then x∗bj for
j = 1, . . . , t can be computed as

x∗bj =

[
t∑
i=1

x̂ai × [Ai]bj

]
bj

.

There is an alternative method proposed by Garner in [5] which computes
x∗bj , but we will not use it in this paper, so we do not recall it here. The

reader may refer to [5] to further details on this method.
• Computations of α. The base extension in (6) necessitates also to compute
α. We arrange (5) as follows

t∑
i=1

x̂ai ×Ai = x+ αA =⇒
t∑
i=1

x̂ai
ai

=
x

A
+ α =⇒ α =

⌊
t∑
i=1

x̂ai
ai

⌋
(7)

since when 0 < x < A we have 0 < x/A < 1.

The MM-RNS algorithm. Following [7] we inject in Algorithm 2 the formu-
las (4), (5) and (7) corresponding to the computations of the base extensions.
We obtain the Montgomery multiplication in RNS (MM-RNS) shown in Al-
gorithm 3 after some modifications. Specifically, the base extension of q and the
computation of z are merged as follows

zbi ← [(sbi +

t∑
j=1

qajAjN − αAN)A−1]bi = [sbiA
−1 + (

t∑
j=1

qaja
−1
j − α)N]bi .

In the second base extension BEB→A we rewrite [Bj]ai = [b−1j B]ai .
The complexity of each step of the MM-RNS algorithm is given in terms of

the number of additions and multiplications modulo ai or bi. These complexities
are detailed in Table 1. For the computation of α and β we assume that each ai
and bi can be approximated by 2w which simplifies the computations in Step 6
and Step 10 as a sequence of additions (cf. [7] for further details).
Constants used in MM-RNS. In Algorithm 3, an important number of con-
stants take part of the computations:

[N−1]A, [N]B,
[b−1j]ai , [a

−1
j]bi for i, j = 1, . . . , t,

[B]ai , [B
−1
i]bi for i = 1, . . . , t,

[A−1]bi , [A
−1
i]ai for i = 1, . . . , t.

(8)

Algorithm 3 MM-RNS(x, y,A,B)

Require: x, y in A ∪ B for two RNS bases A = {a1, . . . , at} and B = {b1, . . . , bt} s.t.
A =

∏t
i=1 ai, B =

∏t
i=1 bi, gcd(A,B) = 1, 1 ≤ x, y ≤ N,B ≥ 4N et A > 2N .

Ensure: xyA−1 mod N in A ∪ B
1: Precomputations in B: [N]B, [A

−1]B, [b
−1
j]B for j = 1, . . . , t and [B−1

i]bi for
i = 1, . . . , t

2: Precomputations in A: [N−1]A and [a−1
j]A, [A

−1
j]aj for j = 1, . . . , t and [B]A

3: s = [x · y]A∪B
4: //- - - - - - - - - base extension A → B - - - - - -
5: qai ← [sai × (−N−1)×A−1

i]ai for i = 1 to t
6: α←

⌊∑t
i=1 qai/ai

⌋
7: zbi ← [sbiA

−1 + (
∑t

j=1 qaja
−1
j − α)N]bi for i = 1 to t

8: //- - - - - - - - - base extension B → A - - - - - - -
9: qbi ← [zbi ×B

−1
i]bi for i = 1 to t

10: β ←
⌊∑t

i=1 qbi/bi
⌋

11: zai ← [(
∑t

j=1 qbj b
−1
j − β)B]ai for i = 1 to t

Table 1. Complexity of MM-RNS

Step #Mult. #Add.

3 2t 0
5 2t 0
6 0 t− 1
7 t(t+ 2) t(t+ 1)
9 t 0
10 0 t− 1
11 t(t+ 1) t2

Total t(2t+ 8) t(2t+ 3)− 2

Only, the constants [B−1]ai , [B
−1
i]bi , [A]bi and [A−1i]ai are susceptible to change

and to be updated during the run of a modular exponentiation if the bases A
and B are modified.

3 Leak resistant arithmetic in RNS

The authors in [1] notice that the use of RNS facilitates the randomization of the
representation of an integer and consequently the randomization of a modular
multiplication. Indeed, if a modular exponentiation xK mod N is computed
with MM-RNS the element is set in Montgomery representation

x̃ = x×A mod N

and in the RNS bases A and B, i.e., [x̃]A∪B. The Montgomery representation
induces a multiplicative masking of the data x by the factor A. The authors
in [1] propose to randomly construct the basis A to get a random multiplicative
mask A on the data.

Specifically, the authors in [1] propose two levels of such randomization: ran-
dom initialization of the bases A and B at the very beginning of a modular
exponentiation and random permutations of RNS bases A and B all along the
modular exponentiation.

Random initialization of the bases A and B and x̃. We assume that we have
a set of 2t moduli M = {m1, . . . ,m2t}. At the beginning of the computations
we randomly set

A ←− {t random distinct elements in M}
B ←−M\A (9)

Note that we always have A ∪ B =M.
Then the input of x of the modular exponentiation algorithm is first set in

the residue number system M = A ∪ B by reducing x modulo each ai and bi

[x]A∪B = ([x]a0 , . . . , [x]at , [x]b0 , . . . , [x]bt).

Then we need to compute the Montgomery representation [x̃]A∪B from [x]A∪B.
The authors in [1] give a method which simplifies this computation. They assume
that the RNS representation of

M mod N = (
∏2t
i=1mi) mod N

= A×B mod N

is precomputed. They compute [x̃]A∪B from [x]A∪B by a single MM-RNS with
bases B and A in reverse order:

MM-RNS([x]A∪B, [(M mod N)]A∪B,B,A)

The output of this multiplication is the expected value:

[(x×M ×B−1 mod N)]A∪B = [(x×A mod N)]A∪B = [x̃]A∪B.

Random change of the bases A and B. The authors in [1] propose to change
the bases A and B during the RSA exponentiation as follows:

Anew ←− {t random distinct elements in M}
Bnew ←−M\Anew

(10)

The bases A and B change all along the exponentiation, this implies to perform
the base extension (BE) in MM-RNS using the approach of Garner [5] instead of
the CRT formula. Otherwise the constants Ai and Bi would have to be updated
which can be expensive.

The update of the bases A and B implies to also update the Montgomery
representation x̃ = x×Aold mod N of x from the old bases Aold∪Bold to the new

Algorithm 4 Update of x̃

Require: x̃old and Anew,Bnew,Aold,Bold and [M mod N]M
Ensure: x̃new

1: temp← MM-RNS(x̃old, (M mod N),Bnew,Anew)
2: xnew ← MM-RNS(temp, 1,Aold,Bold)

representation x̃ = x×Anew mod N in the new basesAnew∪Bnew. The proposed
approach in [1] consists in two modular multiplications (cf. Algorithm 4).

We can easily check the validity of Algorithm 4: Step 1 computes temp =
(xAold)× (Anew×Bnew)×B−1new mod N and Step 2 correctly computes xnew =
(xAoldAnew)×A−1old mod N = xAnew mod N in the required RNS bases.

The main drawback of this technique is that it is a bit costly: it requires
two MM-RNS multiplications to perform the change of RNS representation.
Consequently, using Table 1, we deduce that the amount of computation involved
in this approach is as follows

#Mult. = 2t(2t+ 8) and #Add. = 2t(2t+ 3)− 4.

4 Random update of the RNS bases with a set of spare
moduli

In this section, our goal is to provide a cheaper variant of the leak resistant
arithmetic in RNS proposed in [1] and reviewed in Section 3.

4.1 Proposed update of the bases and Montgomery representation

We present a first strategy which modifies only one modulus in A while keeping
B unchanged during each update of the RNS bases. We need an additional set
A′ of spare moduli where we randomly pick the new modulus for A. We have
three sets of moduli:

• The first RNS basis A = {a1, . . . , at+1} which is modified after each loop
iteration.
• The set A′ = {a′1, . . . , a′t+1} of spare moduli.
• The second RNS basis B = {b1, . . . , bt+1} which is fixed at the beginning of

the exponentiation.

The integers ai, bi and a′i are all pairwise co-prime and are all of the form 2w −
µi where w is the same for all moduli and µi < 2w/2. We will state later in
Subsection 4.2 how large A and B have to be compared to N to render the
proposed approach effective. But to give an insight A and B are roughly w-bits
larger than N which means that the considered RNS bases contain t+ 1 moduli.

Update of the base A. Updating the basis A is quite simple: we just swap
one element of A with one element of A′ as follows

• r ← random in {1, . . . , t, t+ 1}
• r′ ← random in {1, . . . , t, t+ 1}
• ar,new ← a′r′,old
• ar′,new ← ar,old

In the sequel we will denote Aold and Anew the base A before and after the
update, we will use similar notation for other updated data.

Update of the Montgomery-RNS representation. The modification of the
basis requires at the same time the corresponding update of the Montgomery rep-
resentation of x. Indeed we need to compute x̃new = [(xAnew mod N)]Anew∪B
from its old Montgomery representation x̃old = [(xAold mod N)]Aold∪B. The
following lemma establishes how to perform this update.

Lemma 1. We consider two RNS bases A and B and let A′ be the set of spare
moduli. We consider an integer x modulo N given by its RNS-Montgomery rep-
resentation [x̃]A∪B = [(x × A mod N)]A∪B where A = a1a2 · · · at+1. Let r and
r′ be two random integers in {1, . . . , t, t+ 1} and Anew and A′new be the two set
of moduli obtained after exchanging ar,old et a′r′,old. Then the new Montgomery-
RNS representation of x in Anew ∪ B can be computed as follows:

λ = [−x̃ar,old ×N−1]ar,old ,
x̃new = [(x̃old + λ×N)× a−1r,old × ar,new]Anew∪B

(11)

and satisfies x̃new = (x×Anew) mod N given in the bases Anew ∪ B.

Proof. We first notice that s1 = x̃old + λN satisfies s1 ≡ x̃old mod N and that

[s1]ar,old = [x̃old + λ×N]ar,old
=
[
x̃old − [x̃]ar,old ×N−1 ×N

]
ar,old

= 0.

In other words s1 can be divided by ar,old and then multiplied by ar,new

x̃new = ((x̃old + λN)/ar,old)ar,new.

which satisfies

x̃new mod N = ((x̃old + λN)/ar,old)ar,new mod N
= xAolda

−1
r,oldar,new mod N

= xAnew mod N

The value of x̃new is computed in the RNS basis Anew ∪ B by replacing the
division by ar,old by a multiplication by a−1r,old and by noticing that its value
modulo ar,new is equal to 0. This leads to (11).

�

Update of the constants. If we want to apply MM-RNS (Algorithm 3) after
the update of the basis A and the Montgomery-RNS representation of x, we need
also to update the constants involved in Algorithm 3. The constants considered
are the one listed in (8) along with the following additional set of constants
associated to the set of moduli A′:

[−N−1]a′i i= 1,. . . ,t+1,
[A−1]a′i , [B]a′i i= 1,. . . ,t+1,

[b−1j]a′i , [a
′−1
j]bi i,j= 1,. . . ,t+1,

[a−1j]a′i , [a
′−1
j]ai i,j= 1,. . . ,t+1.

These constants are updated as follows:

• Constant −N−1. The constants [−N−1]ai only changes when i = r and
[−N−1]a′i only change when i = r′. Then this update consists only in a
single swap

swap([−N−1]ar , [−N−1]a′
r′

).

• Constant N . The constants [N]bi , i = 1, . . . , t + 1 do not change when the
base A is updated.
• Constants A−1i and A−1. The constants [A−1i]ai and [A−1]a′i and [A−1]bi are

updated as follows:

[A−1i]ai ← [[A−1i]ai × a−1r,new × ar,old]ai for i 6= r,
[A−1]a′i ← [[A−1]a′i × a

−1
r,new × ar,old]a′i for i 6= r′,

[A−1]bi ← [[A−1]bi × a−1r,new × ar,old]bi for i 6= r′,

and the two remaining special cases are:

[A−1r]ar,new
← [[A−1]a′

r′,old
× ar,old]ar′,old (Note that a′r′,old = ar,new),

[A−1]a′
r′,new

← [[A−1r]ar,old × a−1r,new]ar,old (Note that ar,old = a′r′,new).

• Constants [B−1i]bi , [B]ai and [B]a′i . The constants [Bi]bi and [B]ai for i 6= r
and [B]a′i for i 6= r′ are not affected by the modification on A. The only
required modification is the following swap

swap([B]ar , [B]a′
r′

).

• Constants [b−1j]ai , [b
−1
j]a′i , [a

−1
j]ai , [a

−1
j]a′i , [a

′−1
j]ai , and [a′−1j]a′i . The constants

which evolve are the ones corresponding to ar and a′r′ and require only swaps:

swap([b−1j]ar , [b
−1
j]a′

r′
) for j = 1, . . . , t+ 1,

swap([a−1r]bj , [a
′−1
r′]bj) for j = 1, . . . , t+ 1,

swap([a−1j]ar , [a
−1
j]a′

r′
) for j = 1, . . . , t+ 1 and j 6= r,

swap([a′−1j]ar , [a
′−1
j]a′

r′
) for j = 1, . . . , t+ 1 and j 6= r′.

Complexity of the updates. We evaluate the complexity of the above random
change of the basis A: the update of x̃ and the update of the constants. We do
not consider swap operations since they do not require any computations. The
cost of the update of the Montgomery representation x̃ of x contributes to 6t+4
multiplications and 2t + 1 additions and the contribution of the update of the
constants is equal to 6t+ 2 multiplications.

Table 2. Complexity of the updates when using a set of spare moduli

Operation #Mult. #Add.

Updates of x̃ 6t+ 4 2t+ 1
Updates of the constants 6t+ 2 0

4.2 Proposed randomized Montgomery-ladder and its validity

We present the modified version of the Montgomery-ladder: compared to the
original Montgomery-ladder (Algorithm 1), this version inserts an update of
the RNS bases and related constants along with an update of the data at the
beginning of the loop iteration. This approach is shown in Algorithm 5. For the
sake of simplicity, conversions between RNS and regular integer representation
are skipped.

Algorithm 5 Randomized-Montgomery-ladder

Require: x ∈ {0, . . . , N − 1} and K = (k`−1, . . . , k0)2, three RNS bases A,A′,B
1: r̃0 ← [1̃]A∪B
2: r̃1 ← [x̃]A∪B
3: for i from `− 1 downto 0 do
4: UpdateBases(A,A′)
5: UpdateMontRep(r̃0)
6: UpdateMontRep(r̃1)
7: if ki = 0 then
8: r̃1 ← MM-RNS(r̃1, r̃0)
9: r̃0 ← MM-RNS(r̃0, r̃0)

10: end if
11: if ki = 1 then
12: r̃0 ← MM-RNS(r̃1, r̃0)
13: r̃1 ← MM-RNS(r̃1, r̃1)
14: end if
15: end for
16: return (r0)

Now, we establish that the above algorithm correctly outputs the expected
result xK mod N . Indeed, during the execution of the algorithm an overflow
could occur: some data could become larger than A or B. To show that no
overflow occurs we first establish the growing factor produced by an update of
the Montgomery representation.

Lemma 2. Let Aold,A′old,Bold,Anew,A′new and Bnew be the new and the old
RNS bases. Let aimax,old the largest modulus in Aold and aimax,new the largest
modulus in Anew. Assume that x̃old < Naimax,old and let ar and a′r′ be the two

moduli swapped in A and A′. Then we have

x̃new < 4Naimax,new

Proof. From Lemma 1 we have the following expression of x̃new

x̃new = ((x̃old + λN)/ar)× a′r′ . (12)

We then notice that λ < aimax,old. We use the fact that x̃old < Naimax,old and
we expand the product in (12), this gives:

x̃new < (Naimax,old + aimax,oldN)× 1
ar
× a′r′

≤ 2N × aimax,old

ar
× a′r′ .

(13)

We then use that ai = 2w − µi with 0 ≤ µi < 2w/2, which implies that for any
i, j

0 < ai
aj

= 2w−µi

2w−µj
=

2w−µj+µj−µi

2w−µj
= 1 +

µj−µi

2w−µj

< 1 + 2w/2

2w−µj
< 2.

In particular for i = imax and j = r we have 0 <
aimax,old

ar
< 2. We use this to

arrange (13) as follows:

x̃new < 4Na′r′ ≤ 4Naimax,new.

�

Knowing the growing factor induced by the update of the Montgomery rep-
resentation helps us to state a sufficient condition to prevent an overflow in
Algorithm 5.

Lemma 3. Let Amin be the product of the t smallest moduli in A∪A′. Let aimax

be the largest modulus of A. If N satisfies

N <
Amin

32
(14)

and if B is larger than any A then the following assertions hold:

i) The data r̃0 and r̃1 in Algorithm 5 are < Naimax
at the end of each loop.

ii) Algorithm 5 correctly computes r0 = xK mod N .

Proof. i) Let us prove that an update of the base A followed by a modular
multiplication with MM-RNS keeps the data in the interval [0, Naimax

]. We
consider x̃old < Naimax,old and ỹold < Naimax,old. Then, from Lemma 2, we
know that the updates on x̃old and ỹold provide:

x̃new < 4Naimax,new and ỹnew < 4Naimax,new.

If we execute an MM-RNS algorithm with inputs x̃new, ỹnew and bases Anew
and B we obtain a z satisfying

z = (x̃new × ỹnew + qN)/Anew

< (16N2a2imax,new
+AnewN)/Anew

< N(16N
Anew/aimax,new

× aimax,new + 1)

Now, since Anew

aimax,new
is the product of t moduli of A∪A′ it satisfies Amin ≤

Anew

aimax,new
. Then using (14) we obtain that

32N

Anew/aimax,new
× aimax,new

2
<
aimax,new

2

and consequently z < aimax,newN , as required.
ii) At the beginning of each loop r̃0 and r̃1 are in [0, Naimax] then, from i), they

are in [0, Naimax] at the end of the loop. Consequently all the computations
in the algorithm are done without overflow and which then correctly outputs
r0 = xK mod N .

�

5 Complexity comparison and conclusion

In Appendix A we present a variant of the proposed randomization. This variant
avoids the use of the set of spare moduli A′: the modified modulus in A is
randomly picked in B. The complexity of the update of the RNS bases A,B and
the update of the Montgomery representation are sightly larger compared to the
approach of Section 4, but the memory requirement is reduced and the number
of moduli is also reduced.

In Table 3 we report the complexity of the randomization in the Montgomery-
ladder exponentiation for the two following cases:

1. Only one modulus is modified in the basis A. In this case, for each loop turn,
the proposed approach in Section 4 and Appendix A requires an update of
the constant and an update of r̃0 and r̃1 as shown in Algorithm 5.

2. s moduli are modified in A. At each loop turn, we perform s consecutive
updates of the RNS bases A,A′ and the data following the strategy of Sec-
tion 4: this requires s updates of the constants and s updates of r̃0 and r̃1.
In this case, since an update of r̃i multiply by 4 (cf. Lemma 2) at the end
of the s the two data r̃0 and r̃1 are multiplied by 4s. This requires to ex-
pand the three bases A,A′ and B with an additional modulus assuming that
2 × 42s < 2w in order to prevent an overflow in Algorithm 5. The resulting
complexity of this randomization is given in Table 3.

For comparison purpose we provide in Table 3 the complexity when the
randomization of [1] is performed at each loop turn in a Montgomery ladder.
The complexity can be easily deduced from the complexity results of Section 3.

Table 3. Cost of the randomization in one loop iteration of randomized Montgomery-
ladder

Randomization Method # Mul. # Add. Memory

1 modulus per loop Section 4 18t+ 10 4t+ 2 8t2 + 24t+ 18

1 modulus per loop Appendix A 24t+ 26 4t+ 4 8t2 + 19t+ 20

s moduli per loop s× Section 4 s(12t+ 20) + 6t+ 8 s(4t+ 6) 8t2 + 42t+ 52

t/2 moduli per loop
[1] 8t2 + 32t 8t2 + 12t− 4 8t2

(in average)

The above complexities show that we get a cheaper randomization by chan-
ging only one modulus, at a cost of a lower level of randomization. We can
increase this level by changing more than one modulus at each loop turn, res-
ulting in a trade-off between randomization and complexity. For the average
randomization of s = t/2 moduli changed per loop turn, our method requires
6t2+O(t) multiplications and 2t2+3t additions: this is better than the complex-
ity of [1]. Another advantage of our technique is that it works in the cox-rower
architecture [7] which is the most popular architecture for RNS implementation.

Aknowledgement. This work was partly supported by PAVOIS ANR 12 BS02
002 02. Part of this work was initiated when G. Perin was doing his PhD thesis
at the LIRMM.

References

1. J.-C. Bajard, L. Imbert, P.-Y. Liardet, and Y. Teglia. Leak Resistant Arithmetic.
In CHES, volume 3156 of LNCS, pages 62–75. Springer, 2004.

2. M. Ciet and M. Joye. (Virtually) Free Randomization Techniques for Elliptic Curve
Cryptography. In ICICS 2003, volume 2836 of LNCS, pages 348–359. Springer,
2003.

3. C. Clavier, B. Feix, G. Gagnerot, M. Roussellet, and V. Verneuil. Horizontal
Correlation Analysis on Exponentiation. In Proceedings of ICICS 2010, volume
6476 of LNCS, pages 46–61. Springer, 2010.

4. J.-S. Coron. Resistance against Differential Power Analysis for Elliptic Curve
Cryptosystems. In CHES, pages 292–302, 1999.

5. H.L. Garner. The Residue Number System. IRE Trans. on Elctronic Computers,
8:140–147, June 1959.

6. M. Joye and S.-M. Yen. The Montgomery Powering Ladder. In CHES 2002, volume
2523 of LNCS, pages 291–302. Springer, 2002.

7. S. Kawamura, M. Koike, F. Sano, and A. Shimbo. Cox-Rower Architecture for
Fast Parallel Montgomery Multiplication. In Proc. EUROCRYPT 2000, volume
1807 of LNCS, pages 523–538. Springer Verlag, 2000.

8. P.C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In Advances in
Cryptology, CRYPTO’99, volume 1666 of LNCS, pages 388–397. Springer, 1999.

9. P. Montgomery. Modular Multiplication Without Trial Division. Math. Computa-
tion, pages 519–521, 1985.

10. G. Perin, L. Imbert, L. Torres, and P. Maurine. Attacking Randomized Exponen-
tiations Using Unsupervised Learning. In Proceedings of COSADE 2014, volume
8622 of LNCS, pages 144–160. Springer, 2014.

11. K.C. Posch and R. Posch. Modulo Reduction in Residue Number Systems. IEEE
Trans. Parallel Distrib. Syst., 6(5):449–454, 1995.

12. R.L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems. Communications of the ACM, 21:120–126,
1978.

13. C.D. Walter. Sliding Windows Succumbs to Big Mac Attack. In CHES, number
Generators in LNCS, pages 286–299, 2001.

A Random update of the basis without a set of spare
moduli

In this appendix we present a second approach for a low cost update of the RNS
basis A. We still want to modify the basis A by changing only one modulus.
But we do not use a set of spare moduli A′. The proposed approach exchanges a
random modulus picked in A with a random modulus picked in B. Additionally
to the two RNS bases A and B we will need an additional modulus c:

– A = {a1, . . . , at+1},
– B = {b1, . . . , bt+1},
– and an additional modulus {c}.

We use the following slightly modified version of the Basic-MM-RNS algorithm
(Algorithm 2):

Require: x, y in A ∪ B
Ensure: xyA−1 mod N in A ∪ {c} ∪ B

[q]A ← [−xyN−1]A
BEA→B([q]A)
[z]B ← [(xy + qN)A−1]B
BEB→A∪{c}([z]B) // modified operation
return (zA∪B)

Only the last step is modified: we compute z in A ∪ {c} instead of A. This can
be performed by modifying the last step of Algorithm 3 as follows

[z]A∪{c} ← [(

t∑
j=1

qbj b
−1
j − β)B]A∪{c}.

The random update of the bases A, {c} and B is performed as follows:

r ← random in {1, . . . , t+ 1},
r′ ← random in {1, . . . , t+ 1},

ar,new ← br′,old,
br′,new ← cold,
cnew ← ar,old.

(15)

Update of the Montgomery representation. The update of the basesA, {c}
and B requires also to update the representation of x̃old = xAold mod N given
in Aold ∪ {cold} ∪ Bold to the new value x̃new = xAnew mod N in Anew ∪Bnew.
The following lemma establishes how to perform this update.

Lemma 4. We consider two RNS bases A and B and an additional modulus
{c} which are updated as specified in (15). We consider an integer x given by
its Montgomery representation x̃old = xAold mod N in Aold∪{cold}∪Bold. We
obtain x̃new by first performing

xai,new ← xai,old, for i 6= r,
xar,new ← xbr′ ,old,
xbi,new ← xbi,old, for i 6= r′,
xbr′ ,new ← xc,old,
xc,new ← xar,old.

(16)

and then computes

λ = [−[x̃old]ar,old ×N−1]ar,old ,
x̃new = [(x̃old + λ×N)× a−1r,old × ar,new]Anew∪B.

(17)

Proof. The first set of operations in (16) re-expresses x̃old in Anew ∪ Bnew by
permuting the coefficients of x̃old based on the update of the bases in (15). The
second set of operations (17) consists to first compute s1 = x̃old + λN which
satisfies s1 ≡ x̃old mod N and

[s1]ar,old = [x̃old + λ×N]ar,old
=
[
x̃old − [x̃]ar,old ×N−1 ×N

]
ar,old

= 0.

Then the operation ((x̃old + λN)/ar,old) × ar,new involves an exact division by
ar,old and a multiplication by ar,new and produces x × Anew modulo N . Since
ar,old is invertible in Anew ∪ Bnew we replace the division by a multiplication
with the inverse a−1r,old in Anew∪Bnew and a multiplication by ar,new which leads
to (17). �

Update of the constants. In order to apply the MM-RNS algorithm after
the update of the bases A ∪ {c} ∪ B and of [x̃]A∪B we need to also update the
constants involved in Algorithm 3. These constants are listed in (8), but we need
to consider also the following additional set of constants relative to the modulus
c:

[a−1i]c, [b
−1
i]c for i = 1, . . . , t+ 1,

[c−1]ai , [c
−1]bi for i = 1, . . . , t+ 1,

[N]c, [N
−1]c, [A]c, [A

−1]c, [B]c, [B
−1]c.

Moreover since a modulus in A is susceptible to become a modulus in B and
reciprocally, we need to also maintain the following constants:

[A]bi , [A
−1]bi for i = 1, . . . , t+ 1,

[B]ai , [B
−1]ai for i = 1, . . . , t+ 1.

The proposed updates of the constants are listed below:

• Constants N,N−1, a−1i , b−1i , c−1. The update of the constants only consists
in permutation, and does not require any computation.

• Constants A−1 and A−1i . We update these constants as follows:

[A−1]Bnew
← [A−1old × ar,old × a−1r,new]Bnew

,

[A−1]cnew
← [[A−1r,old]ar,old × a−1r,new]cnew

(since cnew = ar,old),

[A−1j]aj ← [[A−1j]aj × a−1r,new × ar,old]aj for j 6= r,

[A−1r]ar,new
← [[A−1old]br′,old × ar,old]ar,new

(since br′,old = ar,new).

• Constants B and Bi. The updates work as follows:

[Bnew]ai ← [Bold × b−1r′,old × br′,new]ai for i 6= r,

[Bnew]ar,new
← [[Br′,old]br′,old × br′,new]ar,new

(since ar,new = br′,old),

[Bnew]cnew
← [[Bold]ar,old × b

−1
r′,old × br′,new]cnew

(since cnew = ar,old),

[Bj,new]bj ← [[Bj]bj × b−1r′,old × br′,new]bj for j 6= r′,

[Br′,new]br′,new
← [[Bold]cold × b

−1
r′,old]br′,new

(since cold = br′,new).

• Constants B−1 and B−1i . We update these constants as follows:

[B−1new]ai ← [B−1old × br′,old × b
−1
r′,new]ai , for i 6= r

[B−1new]ar,new
← [[B−1r′,old]br′ × b

−1
r′,new]ar,new

, (since ar,new = br′,old),

[B−1new]cnew ← [[B−1old]ar,old × br′,old × b
−1
r′,new]cnew , (since cnew = ar,old),

[B−1j,new]bj ← [[B−1j]bj × br′,old × b−1r′,new]bj , for j 6= r′,

[B−1r′,new]br′,new
← [[B−1old]cold × br′,old]br′,new

(since cold = br′,new).

The complexity of the update of the Montgomery representation (Lemma 4)
and the updates of the constants can be directly deduced from the above formu-
las. Theses complexities are given in the table below.

Operation #Mult. #Add.
Updates of x̃ 6t+ 7 2t+ 2

Updates of the constants 12t+ 12 0

