N

N

Cauchy problem and exponential stability for the
inhomogeneous Landau equation
Kleber Carrapatoso, Isabelle Tristani, Kung-Chien Wu

» To cite this version:

Kleber Carrapatoso, Isabelle Tristani, Kung-Chien Wu. Cauchy problem and exponential stabil-
ity for the inhomogeneous Landau equation. Archive for Rational Mechanics and Analysis, 2016,
10.1007/s00205-015-0963-x . hal-01143343v2

HAL Id: hal-01143343
https://hal.science/hal-01143343v2
Submitted on 21 Dec 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01143343v2
https://hal.archives-ouvertes.fr

CAUCHY PROBLEM AND EXPONENTIAL STABILITY FOR THE
INHOMOGENEOUS LANDAU EQUATION

KLEBER CARRAPATOSO, ISABELLE TRISTANI, AND KUNG-CHIEN WU

ABSTRACT. This work deals with the inhomogeneous Landau equation on the torus in the
cases of hard, Maxwellian and moderately soft potentials. We first investigate the linearized
equation and we prove exponential decay estimates for the associated semigroup. We then
turn to the nonlinear equation and we use the linearized semigroup decay in order to construct
solutions in a close-to-equilibrium setting. Finally, we prove an exponential stability for such
a solution, with a rate as close as we want to the optimal rate given by the semigroup decay.
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1. INTRODUCTION

1.1. The model. In this paper, we investigate the Cauchy theory associated to the spatially
inhomogeneous Landau equation. This equation is a kinetic model in plasma physics that de-
scribes the evolution of the density function F = F(¢,z,v) in the phase space of position and
velocities of the particles. In the torus, the equation is given by, for F' = F(t,x,v) > 0 with
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t € R, x € T3 = R3/Z3 (that we assume without loss of generality to have volume one |T3| = 1)

and v € R3,
o OF +v-V,F = Q(F, F)
' Fli—o = I

where the Landau operator @ is a bilinear operator that takes the form
(1.2) Q(G, F)(v) = ai/ 1y (v — v.) (G0, F — FO,G.] dos,
R3

and we use the convention of summation of repeated indices, and the derivatives are in the
velocity variable, i.e. 9; = 0,,. Hereafter we use the shorthand notations G, = G(v.), F' = F(v),
0;Gy = 0p,,G(v4), O;F = 0,, F(v), etc.

The matrix a;; is symmetric semi-positive, depends on the interaction between particles and
is given by

ViUj

(1.3) aij(v) = o2 (6”- - W) .

We define (see [21]) in 3-dimension the following quantities

bi(v) = 8jaij (’U) =-2 |’U|'y Vi,

c(v) = 0ija:5(v) = =2(y+3) [v]” or c¢=8ndy if v=-3.

We can rewrite the Landau operator (L2)) in the following way

(1.5) Q(G, F) = (aij *y G)0i F — (cxy G)F =V, - {(ay 9)Vof — (b* g) f}-

We have the following classification: we call hard potentials if v € (0, 1], Maxwellian molecules
if v = 0, moderately soft potentials if v € [—2,0), very soft potentials if v € (—3,—-2) and
Coulombian potential if v = —3. Hereafter we shall consider the cases of hard potentials,
Maxwellian molecules and moderately soft potentials, i.e. v € [—2,1].

The Landau equation conserves mass, momentum and energy. Indeed, at least formally, for
any test function ¢, we have

(1.4)

/ Q(F,F)pdv = —l/ a;;(v — vy ) FF, b _ OF (05 — Djps) dv duy,
R3 2 Jr3xmrs3 F F

from which we deduce that

(1.6)
d
— F(p(v)dxdv:/ [Q(F,F) —v-V,Flow)dzdv =0 for o(v)=1,v, v
dt Jraxps T3 xRS

Moreover, the Landau version of the Boltzmann H-theorem asserts that the entropy
H(F) ::/ F log F dx dv
T3 xR3

is non increasing. Indeed, at least formally, since a;; is nonnegative, we have the following
inequality for the entropy dissipation D(F):
d
D(F):=—-—H(F
(F) i= — S H(F)
1 o F  0;F. 0;F  0;F.
:—/ a;j(v —v.)FF, - e
2 J13«R3 xR? F F, F F,
It is known that the global equilibria of (LI are global Maxwellian distributions that are
independent of time ¢ and position . We shall always consider initial data Fp verifying

/ Fydxdv =1, / Fovdrdv =0, / Fy [v|? dx dv = 3,
T3 xR3 T3 xR3 T3 xR3

> dv dvy. dz > 0.
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therefore we consider the Maxwellian equilibrium
plv) = (2m) 22

with same mass, momentum and energy of the initial data.
We linearize the Landau equation around p with the perturbation

F=u+f.
The Landau equation () for f = f(¢,z,v) takes the form
Wf=Af+ QU f)=Lf—v-Vaf +Q(f, f)
Jit=0 = fo = Fo — 1,

where A = £ — v -V, is the inhomogeneous linearized Landau operator and the homogeneous
linearized Landau operator L is given by

Lf:=Qu f)+Q(f 1
= (aij * p)i; f — (cx p) f + (ay; * f)Oijp — (c* fp.

Through the paper we introduce the following notation

(1.7)

(1.8)

(1.9) ij(v) = az; * p, bi(v) =bixp, cv) =cxp.

The conservation laws (L6l can then be rewritten as, for all ¢t > 0,

(1.10) / ft,z,0)p(v)dedv =0 for ¢(v)=1,v,|v]*
T3 xR3

1.2. Notations. Through all the paper we shall consider function of two variables f = f(x,v)
with € T3 and v € R3. Let m = m(v) be a positive Borel weight function and 1 < p,q < co.
We define the space LLLE(m) as the Lebesgue space associated to the norm, for f = f(x,v),

£ zazeemy = [ lezemll o = [lllm £l

1/q
( / 5 g dw>
a/p
/ (/ [f(z,0)|P m(v)P dv) dx
13 \ JR3

We also define the high-order Sobolev spaces W 4W£P(m), for n, ¢ € N:
1 vz o tm oy = > 10502 £l .28 (-

0<|a|<f, 0<[B]<n, |a|+|B|<max(¢,n)

L

1/q

This definition reduces to the usual weighted Sobolev space Wf:g (m) when p = ¢ and £ = n,
and we recall the shorthand notation H* = W*%2. We shall denote W*P(m) = Wf:fj (m) when
considering spaces in the two variables (z,v).

Let X,Y be Banach spaces and consider a linear operator A : X — X. We shall denote
by Sa(t) = e* the semigroup generated by A. Moreover we denote by %(X,Y) the space of
bounded linear operators from X to Y and by || - [[5(x,y) its norm operator, with the usual
simplification B(X) = (X, X).

For simplicity of notations, hereafter, we denote (v) = (1 + |v|>)*/?; a ~ b means that there
exist constants c1,cy > 0 such that ¢1b < a < ¢ob; we abbreviate “ < C'” to “ <7, where C is
a positive constant depending only on fixed number.
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1.3. Main results.

1.3.1. Cauchy theory and convergence to equilibrium. We develop a Cauchy theory of perturba-
tive solutions in “large” spaces for v € [—2,1]. We also deal with the problem of convergence to
equilibrium of the constructed solutions, we prove an exponential convergence to equilibrium.
Let us now state our assumptions for the main result.

(HO) Assumptions for Theorem [T
e Hard potentials v € (0, 1] and Maxwellian molecules v = 0:
(i) Polynomial weight: m = (v)¥ with k > v+ 7+ 3/2.
(i1) Stretched exponential weight: m = e" )" with r > 0 and s € (0,2).
(iii) Exponential weight: m = ™" with r € (0,1/2).
e Moderately soft potentials v € [—2,0):
(i) Stretched exponential weight: m = ") with r > 0, s € (—7,2).
(ii) Ezponential weight: m = "™’ with r € (0,1/2).

Through the paper, we shall use the notation ¢ = 0 when m = (v)* and ¢ = s when m = et

We define the space H2L2(m) (for m a polynomial or exponential weight) associated to the
norm
(111) 11322 L2 (my = 12122 22 () + ||th|\%ng(m@)—(l—wz))
HIVEAIT2 12 (o) -2a-072) + I Va2 12 1m0y -500-0/2))

We also introduce the velocity space Hi*(m) through the norm
(1.12)

Hh’HQH})’*(m) = HhHig(m(w(w@/z) + ”vavhH%g(m(U)wﬂ) + I - Pv)vvhHQLg(m(U)(wz)/z),

[v]

with P, the projection onto v, namely P,¢ = (§ . i) ﬁ, as well as the space H3(H, ,(m))
associated to

HhH%g(Hg,*(m)) = |‘h|‘%§(H1},*(m)) + ||th|\%§(Hgy*(m@)—(l—n/z)))

HIVERI L2 miwy-20-272)) T IVERI L2 011 ey 300720y

1.13 _ 2 2
(1.13) = /Tg 1P llrs (my + /T2 Hth”H;*(m(v)f(lfa/z))
+ /Tg ||vih’H%I}“*(m<v>*2(1*0/2)) + /Tg Hvithqu*(m<v>—3<1—o/2>)-

Here are the main results on the fully nonlinear problem (7)) that we prove in what follows.
For simplicity denote X :=H3L2(m) and Y := H3(H, ,(m)) (see (LII) and (L.I3)).

Theorem 1.1. Consider assumption (HO) with some weight function m. We assume that fg
satisfies (LIQ) and also that Fy = p+ fo > 0. There is a constant eg = €g(m) > 0 such that
if || follx < €0, then there exists a unique global weak solution f to the Landau equation (L),
which satisfies, for some constant C' > 0,

[ £l Zo= ([0,00):) + 1| L2((0,00);v) < Ceéo-
Moreover, this solution verifies an exponential decay: for any 0 < Ao < A1 there exists C > 0
such that
Vi>0, [[f()]x < Ce | follx,
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where A1 > 0 is the optimal rate given by the semigroup decay of the associated linearized
operator in Theorem [2.1l.

Let us comment our result and give an overview on the previous works on the Cauchy theory
for the inhomogeneous Landau equation. For general large data, we refer to the papers of
DiPerna-Lions [7] for global existence of the so-called renormalized solutions in the case of the
Boltzmann equation. This notion of solution have been extend to the Landau equation by
Alexandre-Villani [I] where they construct global renormalized solutions with a defect measure.
We also mention the work of Desvillettes-Villani [6] that proves the convergence to equilibrium
of a priori smooth solutions for both Boltzmann and Landau equations for general initial data.

In a close-to-equilibrium framework, Guo in [9] has developed a theory of perturbative so-
lutions in a space with a weight prescribed by the equilibrium of type ch\fv(u_l/ %), for any
N > 8, and for all cases v € [—3,1], using an energy method. Later, for v € [—2, 1], Mouhot-
Neumann [I5] improve this result to HY, (1 ~1/2), for any N > 4.

Let us underline the fact that Theorem [[T] largely improves previous results on the Cauchy
theory associated to the Landau equation in a perturbative setting. Indeed, we considerably
have enlarged the space in which the Cauchy theory has been developed in two ways: the
weight of our space is much less restrictive (it can be a polynomial or stretched exponential
weight instead of the inverse Maxwellian equilibrium) and we also require less assumptions on
the derivatives, in particular no derivatives in the velocity variable.

Moreover, we also deal with the problem of the decay to equilibrium of the solutions that we
construct. This problem has been considered in several papers by Guo and Strain in [I7} 18] first
for Coulombian interactions (y = —3) for which they proved an almost exponential decay and
then, they have improved this result dealing with very soft potentials (y € [-3, —2)) and proving
a decay to equilibrium with a rate of type e~ **" with p € (0,1). In the case v € [~2,1], Yu [25]
has proved an exponential decay in HY, (u~'/?), for any N > 8, and Mouhot-Neumann [I5] in
HY (u=1/?), for any N > 4.

We here emphasize that our strategy to prove Theorem [[.1]is completely different from the
one of Guo in [9]. Indeed, he uses an energy method and his strategy is purely nonlinear, he
directly derives energy estimates for the nonlinear problem while the first step of our proof is
the study of the linearized equation and more precisely the study of its spectral properties.
Then, we go back to the nonlinear problem combining the new spectral estimates obtained on
the linearized equation with some bilinear estimates on the collision operator. Thanks to this
method, we are able to develop a Cauchy theory in a space which is much larger than the one
from the previous paper [9]. Moreover, we obtain the convergence of solutions towards the
equilibrium with an explicit exponential rate.

Our strategy is thus based on the study of the linearized equation. And then, we go back to
the fully nonlinear problem. This is a standard strategy to develop a Cauchy theory in a close-to-
equilibrium regime. However, we have to emphasize here that our study of the nonlinear problem
is very tricky. Indeed, usually (for example in the case of the non-homogeneous Boltzmann
equation for hard spheres in [§]), the gain induced by the linear part of the equation allows
directly to control the nonlinear part of the equation so that the linear part is dominant and we
can use the decay of the semigroup of the linearized equation. In our case, it is more difficult
because the gain induced by the linear part is anisotropic and it is not possible to conclude using
only natural estimates on the bilinear Landau operator. As a consequence, we establish some
new very accurate estimates on the Landau operator to be able to deal with this problem.

Since the study of the linearized equation is the cornerstone of the proof of our main result,
we here present the result that we obtain on it and briefly remind previous results.
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1.3.2. The linearized equation. We remind the definition of the linearized operator at first order
around the equilibrium:

Af=Q(u f)+Q(f;n) —v-Vaf.
We study spectral properties of the linearized operator A in various weighted Sobolev spaces
WrPWEP. Let us state our main result on the linearized operator (see Theorem 2] for a

precise statement), which widely generalizes previous results since we are able to deal with a
more general class of spaces.

Theorem 1.2. Consider hypothesis (H1), (H2) or (H3) defined in Subsection[21] and a weight
function m. Let € be one of the admissible spaces defined in (2Z2)). Then, there exist explicit
constants A1 > 0 and C' > 0 such that

Vt20, Vel |[ISat)f-ofle <Ce ™ |f —Toflle,
where Sa(t) is the semigroup associated to A and Iy the projector onto the null space of A

by (L14]).

We first make a brief review on known results on spectral gap properties of the homogeneous
linearized operator £ defined in (L8). On the Hilbert space L2(u~'/?), a simple computation
gives that L is self-adjoint and (Lh, h)r2(,-1/2y < 0, which implies that the spectrum of £ on

L?(p~1) is included in R™. Moreover, the nullspace is given by

N(E) = Spa‘n{ua V1, V24, V3L, |’U|2/14}

We can now state the existing results on the spectral gap of £ on L2(x~'/?). Summarising
results of Degond and Lemou [5], Guo [9], Baranger and Mouhot [2], Mouhot [13], Mouhot and
Strain [16] for all cases v € [—3,1], we have: there is a constructive constant A\g > 0 (spectral
gap) such that

(114) <_£h7 h>Lg(,u*1/2) 2 )‘OH}LH%{}) e (u=1/2y Vhe N(E)J'
where the anisotropic norm || - |1 (,-1/2) is defined by
Wl -1z = Y2 P VRN g2y + [(0) 022 = Po)VAIT (1729
+ () 02217,

(u=1/2)
where P, denotes the projection onto the wv-direction, more precisely P,g = (| ) To]
also have from [9] the reverse inequality, which implies a spectral gap for £ in L2(x~1/2) if and

only if v +2 > 0.

Let us now mention the works which have studied spectral properties of the full linearized
operator A = L —v-V,. Mouhot and Neumann [I5] prove explicit coercivity estimates for hard
and moderately soft potentials (y € [-2,1]) in HY ,(u~'/2) for £ > 1, using the known spectral
estimate for £ in (LI4). It is worth mentioning that the third author has obtained in [23] an
exponential decay to equilibrium for the full linearized equation in L%v(u’l/ 2) by a different
method, and the decay rate depends on the size of the domain. Let us summarize results that
we will use in the remainder of the paper in the following theorem.

Theorem 1.3 ([15]). Consider £op > 1 and E := Hﬁ?v(ufl/z). Then, there exists a constructive
constant Ao > 0 (spectral gap) such that A satisfies on E:

(i) the spectrum E(A) C {z € C: Rez < =X} U{0};
(ii) the null space N(A) is given by

(1.15) N(A) = Span{p, v1 1, vapt, v3pt, |v|* 1},
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and the projection Iy onto N(A) by
H0f=</ fdxdv)u-i—
T3 xRR3 ;

3
</ v f dx dv> Vi b
(1.16) i=1 xRS

2 2
([ S ) GE2D),
T3 xR3 6 6

(iii) A is the generator of a strongly continuous semigroup Sy (t) that satisfies

(1.17) Vt>0,VfeE, |Sa(t)f—Mofllep<e ™|f—of|e-

To prove Theorem [[2] our strategy follows the one initiated by Mouhot in [I4] for the
homogeneous Boltzmann equation for hard potentials with cut-off. The latter theory has then
been developed and extend in an abstract setting by Gualdani, Mischler and Mouhot [g], and
Mischler and Mouhot [IT]. They have applied it to Fokker-Planck equations and the spatially
inhomogeneous Boltzmann equation for hard spheres. This strategy has also been used for the
homogeneous Landau equation for hard and moderately soft potentials by the first author in
[3, 4] and by the second author for the fractional Fokker-Planck equation and the homogeneous
Boltzmann equation for hard potentials without cut-off in [I9] 20] (see also [12] for related
works).

Let us describe in more details this strategy. We want to apply the abstract theorem of
enlargement of the space of semigroup decay from [8| [T1] to our linearized operator A. We shall
deduce the spectral /semigroup estimates of Theorem [[L2 on “large spaces” £ using the already
known spectral gap estimates for A on wa(u_l/Q), for £ > 1, described in Theorem [[3
Roughly speaking, to do that, we have to find a splitting of A into two operators A = A+ B
which satisfy some properties. The first part A has to be bounded, the second one B has to
have some dissipativity properties, and also the semigroup (ASg(t)) is required to have some
regularization properties.

We end this introduction by describing the organization of the paper. In Section2lwe consider
the linearized equation and prove a precise version of Theorem In Section Bl we come back
to the nonlinear equation and prove our main result Theorem [l

Acknowledgements. The authors would like to thank Stéphane Mischler for his help and his
suggestions. The first author is supported by the Fondation Mathématique Jacques Hadamard.
The second author has been partially supported by the fellowship I’Oréal-UNESCO For Women
in Science. The third author is supported by the Ministry of Science and Technology (Taiwan)
under the grant 102-2115-M-017-004-MY2 and National Center for Theoretical Science.

2. THE LINEARIZED EQUATION

2.1. Functional spaces. Let us now make our assumptions on the different potentials v and
weight functions m = m(v):

(H1) Hard potentials « € (0, 1]. For p € [1, 00] we consider the following cases
(i) Polynomial weight: let m = (v)* with k > v +2+3(1 —1/p), and define the abscissa
Am,p 1= 00.
(i1) Stretched exponential weight: let m = """ with r > 0 and s € (0,2), and define the
abscissa Ay, 1= 00.
. . )2 s . '7
(iii) BEwponential weight: let m = ™) with r € (0,1/2) and define the abscissa A, , =
0.
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(H2) Maxwellian molecules v = 0. For p € [1, c0] we consider the following cases
(i) Polynomial weight: let m = (v)* with k > v +2+3(1 —1/p), and define the abscissa
Amp = 2[k = (v +3)(1 = 1/p)].
(ii) Stretched exponential weight: let m = )" with 7 > 0 and s € (0,2), and define the
abscissa Ay, p 1= 00.
(i7i) Ezponential weight: let m = er* with r € (0,1/2) and define the abscissa Ay, p =
00.

H3) Moderately soft potentials v € [—2,0). For p € [1, o] we consider the following cases
Y g
(i) Stretched exponential weight for v € (—2,0): let m = e")" with 7 > 0, s € (0,2) and
s+ > 0, and define the abscissa A, p := o0o.
(ii) Exzponential weight for v € (—2,0): let m = ¢"")" with » € (0,1/2) and define the
abscissa A, 1= 0.
(iii) Exponential weight for v = —2: let m = ™) with r € (0,1/2), and define the
abscissa Am, p := 4r(1 — 2r).

Under these hypothesis, we shall use the following notation for the functional spaces:
(21) E = Hﬁ?v(u_1/2)7 [0 > 1,

in which space we already know that the linearized operator A has a spectral gap (Theorem [L3)),
and also, under hypotheses (H1), (H2) or (H3),

o { Lg,v(m)v Vp € [1,00];

(2.2) ¢
WEWER(m), Ype[L2lne N, e,

and for each space we define the associated abscissa Ag = Ap, 5.

The main result of this section, which is a precise version of Theorem [[L2] reads

Theorem 2.1. Consider hypothesis (H1), (H2) or (H3) with some weight m, and let £ be
one of the admissible spaces defined in (22]).

Then, for any A < Ag and any A1 < min{\g, A}, where we recall that N\g > 0 is the spectral
gap of A on E (see (LIT)), there is a constructive constant C > 0 such that the operator A
satisfies on &£:

(i) Z(A) C{zeC|Rz< =M} U{0};
(ii) the null-space N(A) is given by (ILIH) and the projection Iy onto N(A) by (LIG);
(iii) A is the generator of a strongly continuous semigroup Sx(t) that verifies

Vt>0,Vfe&, [Sat)f —Toflle < Ce ™ ||f —Iof|e.

Remark 2.2. (1) Observe that:
e Cases (H1), (H2)-(ii)-(iii) or (H3)-(i)-(ii): we can recover the optimal estimate
A1 = Ag since Ay, p = +00.
e Case (H2)-(i): in this case we have m = (v)*, and we can recover the optimal estimate
A1 = Ao if k£ > 0 is large enough such that A, , = 2k —6(1 — 1/p) > Ao. Otherwise, we
obtain A\; < 2k — 6(1 — 1/p).
e Case (H3)-(iii): in this case we have y = —2, m = ")’ and Am,p = 4r(1 — 2r) and
the condition 0 < r < 1/2.
(2) This theorem also holds for other choices of space, namely for a space £ that is an
interpolation space of two admissible spaces & and & in ([2.2]).
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The proof of Theorem 2] uses the fact that the properties (i)-(ii)-(iii) with A\; = A¢ hold on
the small space E (Theorem [[3]) and the strategy described in section [[.3.2]

In a similar way we shall obtain Theorem [2] we shall also deduce a regularity estimate on
the semigroup Sp that will be of crucial importance in the study of the nonlinear equation in
Section[3l For the sake of simplicity, and because it is the case that we shall use for the nonlinear
equation, we only present this result for the particular case of p =2 and ¢ =0 in ([Z2)).

Define the space H} «(m), associated to the norm

150t = 112 ooy + 1T oy I = PV iy
as well as the space Hg(Hi*(m)), with n € N, by
(2.3) ||f||§1;(H;*(m)) = Z ||ij‘f||%§(H7}’*(m = / ||ij||H1
0<j<n 0<j<n

We hence define the negative Sobolev space H;'(H, }(m)) by duality in the following way

(2.4) I e 2 (myy = sup (f, ) mp 2(m)-
”d)”H;l(H}j,*(m))S

Theorem 2.3. Consider hypothesis (H1), (H2) or (H3) with some weight m. Let & =
H}LZ(m) and €y = H}(H, }(m)). Then, for any X < A1, the following regularity estimate
holds

(2.5) / N SA (BT —Thy) f[2 dt < C(I — o) fI2_,,

for some constant C > 0.

2.2. Splitting of the linearized operator. We decompose the linearized Landau operator £
defined in (L8) as £ = Ay + By, where we define

(2.6) Aof = (aij * [)Oijp — (cx flp, — Bof = (aij * )i f — (cx p)f.
Consider a smooth positive function y € C°(R3) such that 0 < y(v) <1, x(v) =1 for |v] < 1
and x(v) = 0 for |v| > 2. For any R > 1 we define xr(v) := x(R™'v) and in the sequel we shall
consider the function Mxg, for some constant M > 0.

Then, we make the final decomposition of the operator A as A = A+ B with

(27) A= A0+MXR5 B::BO_U'VI_MXRa
where M > 0 and R > 0 will be chosen later (see Lemma [Z7]).
2.3. Preliminaries. We have the following results concerning the matrix a;;(v).

Lemma 2.4. The following properties hold:

(a) The matriz a(v) has a simple eigenvalue ¢1(v) > 0 associated with the eigenvector v and a
double eigenvalue l3(v) > 0 associated with the eigenspace v-. Moreover, when |v| — +o0
we have

01 (v) ~2(v)7  and fla(v) ~ (V)72
(b) The function a;; is smooth, for any multi-index 3 € N3
|0%a;(0)] < Cp(v)+2 17

and

aij (v)&&5 = L1(0)|Po&]? + 6 (v)|(1 — Py)¢)?
> co{ (V)| Po€I* + (0) (1 = P,)E?Y,

for some constant ¢y > 0 and where P, is the projection on v, i.e. P,&; = (§ . ﬁ) T
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(c) We have
@i (v) = tr(a(v)) = 1 (v) + 2la(v) =2 [ v — v T2 p(vs) dvs and  bi(v) = —1(v)v;.

R3
(d) If lv| > 1, we have
096, (v)| < Co()™ 181 and  [9%02(v)| < Calv)r 21
Proof. We just give the proof of item (d) since (a) comes from [, Propositions 2.3 and 2.4,
Corollary 2.5], (b) is [9, Lemma 3] and (c) is evident. For item (d), the estimate of |9°fa(v)]
directly comes from (a) and [9, Lemma 2|. For ¢1(v), using (b) and (c),
81,(31-(1;) = BU( — fl (’U)’Ui) N
and hence -
|0u01(0)[Jv] < C(J2 (v)] + [0ubi(v)]) < C(o)7,
note that |v| > 1, we thus have
|0ut1(v)] < Clo]™Hv)” < Clo)? .

The high order estimate is similar and hence we omit the details. O

The following elementary lemma will be useful in the sequel (see [3, Lemma 2.5] and [4,
Lemma 2.3]).
Lemma 2.5. Let Jo(v) := [gs [v — w|*p(w) dw, for —3 < o < 3. Then it holds:

(a) If2 < a < 3, then Jo(v) < [0]* + Cu|v]|*/? + Cy, for some constant Cy, > 0.
(b) If 0 < e < 2, then Jo(v) < |[v|* + Cy, for some constant Co > 0.
(c) If =3 < e <0, then Jo(v) < C(v)* for some constant C' > 0.
We define the function ¢, , as
_ &m
(2.8) Om,p(v) == a;;(v) ;1

and also the function ¢,, , given by

5nn(@) = (2= 1) @) 2™ 4 (2= %) 4, () 2 2m
Spm,p(v) = (p 1) al](”) m + (2 p) Qij (v)

2 - (%m 1 _
+ 25,022 4 (- 1) eto),
and hereafter, in order to treat both weight functions at the same time, we remind the notation:
o =0 when m = (v)* and o = s when m = " ()",

We prove the following result concerning ¢, , and @, p.

Lemma 2.6. Consider (H1), (H2) or (H3), and let ¢myp and @mp be defined in (28
and 29) respectively. Then we have:
e Assume o € [0,2):

(1) For all positive X < A p and 6 € (0, A p — ) we can choose M and R large enough such
that

m m m

- (p— Vg (0) O™ o () 8 <1 - 1> 2(v),

(2.9)

mp(v) — MxR(v) — o(v)".
Pmp(v) — Mxr(v) — d(v)7 .
(2) For all positive A < A p and 6 € (0, Ay p — A) we can choose M and R large enough such
that

< -
< -

Om,p(v) = Mxg(v) + MOjxr(v) — §{v)7t7,

<A
Gmp(v) — Mxr(v) + MOjxr(v) < =\
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o Assume o = 2: The same conclusion as before holds for ¢p, ,. Moreover, concerning om,p, the
previous estimates also hold if we restrict v € (0,1/(2p)) in assumptions (H1)-(iii), (H2)-(iii),
(H3)-(ii), and also modifying the value of the abscissa A p = 4r(1 — 2rp) in (H3)-(iii).
Proof of LemmalZ2.6. Step 1. Polynomial weight. Consider m = (v)* under hypothesis (H1) or
(H2). On the one hand, we have

om o;m 6jm

:k’L -2 :k2i' —4
)

UL - _
;1 =65 k()72 + k(k — 2)vv; (v)
Hence, from definitions (I4)-(T3) and Lemma 2:4] we obtain

iy ™ (B k) ™+ (@) bl — 2)(0) ™ = k(o)™ + 62 (0) b — 2)[ol () ™

o)

where we recall that the eigenvalue ¢1 (v) > 0 is defined in Lemmal[Z4l Moreover, arguing exactly
as above we obtain

_ &m 8m _ _ _
Gy ——= == = (aivivy) K (0) " =l () Kol (v) 7
and also, using the fact that b;(v) = —¢;(v)v; from Lemma 2.4
&-m

b; = —l1(V); kv ()72 = £y (v) ko2 (v) 2.
On the other hand, from item (c¢) of Lemma [Z4] and definitions (L4)-(L9) we obtain that
a;i(v) =01 (v) +202(v) and ¢(v) = —2(y + 3)J4(v),
where J,, is defined in Lemma It follows that
Pmp(v) = 2kla(0)(0) (V)72 + Kl (v) (V)7 + k(k = 2) &1 (v) [o]* (v)
(210 +(p— DE201(0) o] ()™ = 2k 01 (v) [v2(v) 72 4+ 2(y + 3) (1 - %) Jy(v).

Since ¢1(v) ~ 2(v)?, la(v) ~ (V)72 and ¢1(v)[v|> ~ 203(v) when |v] — +oo thanks to
Lemma 2.4, and also Jy(v) ~ (v)? from Lemma (since in this case we have v > 0), the
dominant terms in (ZI0) are the first, fifth and sixth ones, all of order (v)?. Then we obtain
(2.11) }iﬁsﬁg Pmp(v) < =2k — (v +3)(1 - 1/p)] ()",

and recall that k& > (y+3)(1 —1/p). Doing the same kind of computations, we obtain the same
asymptotic for @, p,

(2.12) lim sup @, p(v) < —2[k — (v +3)(1 — 1/p)]{v)".

|[v] =400

Step 2. Stretched exponential weight. We consider now m = exp(r(v)®) satisfying (H1), (H2)
or (H3). In this case we have

0; o;m 0;
UL rsvi(v)* 2, iMmo;m._ T252vivj (v) 254,
m m m
diym _ s—25 _ s —4 2.2 \25—4
=rs(v)’ =0 + rs(s — 2)v;v;(v)° T + s vv;(v) .
m

Then we obtain
Om,p(v) = 2rs éQ(’U)<1}>572 +rsl (v)(v}sf2 +7rs(s—2) Kl(v)|v|2<v>574

2.13
219 £t O P = 2P 4 20 +3) (12 1) (0
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In the case 0 < s < 2, arguing as in step 1, the dominant terms in (ZI3]) when |v| = +o0 are
the first and fifth one, both of order (v)7"5. Then we obtain

(2.14) lim sup @y, p(v) < —2rs(v)?*s,

|[v] =400
and recall that s+~ > 0. In the same way we obtain

(2.15) lim sup @, p(v) < —2rs{v)77e.

|[v] =400

In the case s = 2, the dominant terms in (ZI3]) when |v| — 400 are the first, fourth and fifth
ones, all of order (v)7*2. Hence we get

(2.16) lim sup o p(v) < —4r(1 — 2pr)(v)72.

|[v| =400
However, a similar computation gives

(2.17) lim sup @G p(v) < —4r(1 — 2r)(v)7 12,

|[v] =400

which is better than the asymptotic of ¢, . Thus we need the condition r < 1/2 for @, ,
(which is better than the condition r < 1/(2p) for ¢m, ;).

Step 3. Conclusion. Finally, thanks to the asymptotic behaviour in (Z.IT), (ZI4)) and (2.16]), for
any A < A\, p we can choose M and R large enough such that ¢, p(v) — Mxg(v) < —A—46(v)7t7
for some 0 > 0 small enough, which gives us point (1) of the lemma.

For the point (2) we use d;xr(v) = R7'9;x(v/R) and write

P pl0) ~ Mxa(®) + MOXR(0) < Pnplv) ~ Mya(v) + M Tneiujon = B(0).
We fix some A € (A, A, p). First we choose R large enough such that, for all [v| > Ry, we have
Pmp(v) +6(v)7T7 < =X
for some 0 > 0 small enough, which implies that, for any |v| > 2R,
O (v) + 0W)"7 = P p(v) + 5(0)TTT < =X
Then we choose M > 0 large enough such that, for all |v| < Ry,
O(v) + 0W)"7 = mp(v) + 0()TH = Mxg, (v) < =X

Finally, we choose R > R; large enough such that, for any R < |[v| < 2R,
to +o Cx 3 Cy
D(v) + 6(v)777 < @iy (V) + 6(v)7 +Mf < —/\—I—Mﬁ <=
and we easily observe that now for Ry < |[v| < R we have
D(v) +6(0)""7 = P p(v) + (V)T = Mxp(v) < A= M < =\,

which concludes the proof for ¢, ,. Concerning @, ,, in the same way, inequalities ([2.12)),

2I8) and 2I7) yield the result. O
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2.4. Hypodissipativity. In this subsection we prove hypodissipativity properties for the op-
erator B on the admissible spaces £ defined in ([2.2]).
Hereafter we define the space Wvljf (m), with 1 < p < oo, associated to the norm

1, = 112 iy serimy = NPT 72 2y L= PV 72 sy
as well as the space WP (W, P(m)), with n € N, by
1) Wi = 2 Mgy = X [ 1,

0<ji<n 0<j<n

Lemma 2.7. Consider hypothesis (H1), (H2) or (H3). Let p € [1,+00] and n € N. Then,
for any A < A, we can choose M > 0 and R > 0 large enough such that the operator (B + \)
is dissipative in WP LP(m), in the sense that

(219) VE2 0, [Sa(t)llsarszsomy < Ce .
Moreover there hold: if p=1
(2.20) /0 S50 oz L3y W L () o)) B < 00,
and if 1 <p < o0

> Apt 4
(2:21) /0 TNSEO w2 oy wzm vy < 0

Proof of Lemma[2.7. We only consider the case n = 0, the general case being treated in the
sama way since V, commutes with B.
Let us denote ®'(z) = |2|P~!sign(z) and consider the equation

of=Bf=Bof —v-Vuf —Mxrf.
For all p € [1,400), we have
ol P,
s oy = [ @O m
From (L) and (24), last integral is equal to

/dij(v)ﬁijf(:t,v)fb'(f)mp - /E(v)f(:t,v)fb'(f)mp

/v Vo f(z,0)® (f /MXR f(x,0)® (f)mP
=T+ T +1T5+ Ty
The term T3 vanishes thanks to its divergence structure and terms 75 and T} are easily computed,
giving
Ty = —/E(v)|f(:1c,v)|pmp and Ty = —/MXR(U)|f(CC,U)|pmp.
Let us compute then the term 7. Using that 9;; f®'(f) = p~'0:;(|fP) — (p — 1)0: fO; f| P2

we obtain
= %/@ij(v)@jﬂﬂp)m’) -- 1)/aij(v)8if6jf|f|f7‘2mp.

Performing two integrations by parts on the first integral of 7} it yields
4
J@n® 0 m =201 [ @@ a0
/ (omal0) = Mxu)} P,
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where @, ,, is defined in ([2.8). We can also get, by a similar computation,
JEne @ m = =Zm-1) [ a0) 07 8/ >
/ [Bm (o) ~ Mxa()} |7 m?.

Thanks to Lemma 2.6 for any A < A, , we can choose M and R large enough such that
Omp(v) — Mxgr(v) < =X+ 5(v)7+7. Hence it follows, using Lemma 2.4

pdt”f”“'(m < —co(p — 1)/{<U>V|vav(fp/2)|2 + ()| = PV, (fP/2)[2} mP
= My = 1057 FIE -

(2.22)
)
ol ||f||Lp my < —co(p—1) /{<U>V|vav(mfp/2)|2 + ()T — PV, (mfP/?)|?}y mP2

yto
= M1y = S1) T £ -

from which we easily obtain (2.I9) for any 1 < p < co. For p = oo, let g = mf, it is easy to
check that g satisfies the equation

_ _ oim ~
Org + v Vag = i (0)0ij9 — 255 (v)=—=0;9 + Pm,oc(v)g — Mxr(v)g,
by the standard maximum principle argument (for example, see [24]), we have
1S8() fllse, (m) < 67At||f||L;fv(m)-

This completes the proof of (Z19).
The proof of [220) and [221)) follows easily from (2Z22) by keeping all the terms at the
right-hand side and integrating in time. O

Define the operator B,, by B,,h := mB(m~1h), more precisely

6 .
(2 24) Bmh = &ij&jh — 2C_Lw 8 h + {20,1']'7— — C_Lij
= C_Lijaijh + ﬂjajh + (C - MXR)h — V- Vzh

Observe that if f satisfies 0;f = Bf, then h := mf satisfies O;h = B,,h. We then define the
operator B}, the (formal) adjoint operator of B,, with respect to the usual scalar product L2 v

by
- 0; 0; 6
Bfn¢:aij8ij¢+{2bj+2aij mm} J¢+{aw il }¢—|—’Uvm¢
=1 aij0;5¢ + B;0i¢ + (" — MxR)p +v - V6.
Remark that, denoting h := Sg,, (t)ho and ¢; := Sg: (t)¢o, which verify the equations dih; =
Bmht and 0y = B, ¢4, there holds
(hts do)anrz = (hos Gt) Hrp2.

Lemma 2.8. Consider hypothesis (H1), (H2) or (H3), and letn € N. Then, for any A < Am, 2,
we can choose M and R large enough such that the operator (B}, +X) is hypo-dissipative in H*L?,
in the sense that

(2.26) Vt>0, |Ss: (t)|lamnrey < Ce ™
" (HyL3)

(2.25)
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Moreover there holds

(227 /0 NS8O g(arp r122 om sz L3 my U < 0
where we recall that H}(H, }(m)) is defined in (24).

Proof. We consider the case n = 0, the others being the same because V, commutes with B}, .
Let 0r¢p = B}, ¢, where we recall that B}, is defined in (Z25). We have

/(BE@ ¢ = / <@z‘j ai;ﬁm -+ 2b; oim _ MXR) ¢°

m

+/<aija”7m +Bi) ai(¢2)+/v-vz¢¢+/aijaij¢¢

=T+ T +T5+ Ty

Performing one integration by parts, we obtain
d;;m omo;m - d;m
TQ—/<—ELijU—+C_Lijl—J——bj J —5) ¢2.
m m

The term T3 gives no contribution thanks to its divergence structure in x. Moreover we deal
with T4 using that 8w¢¢ = %&J (¢2) - 8Z¢8J¢, which implies

Ty = _/dijai¢6j¢+%/é¢2-

Finally, we obtain that
/(Bfnaﬁ) ¢ = _/aijai¢aj¢ + /{@m,z — Mxr}¢*

< —c / {(W)|P,Vo> + () F2|(I = P,)Vo*} + / {Pm,2 — Mxr} ¢°.

where we recall that @, 2 is defined in (Z9).
Thanks to Lemma [20] for any positive A < A2 and 6 € (0, A, 2 — A), we can thus find
M, R > 0 large enough such that ¢, 2(v) — Mxr < —X\ — §{v)7T7. We can conclude that
1d
2dt

(2.28)

yto

672 < =AlglIZ2 — dll(v) = 6122
2 a+2
= co {1(0)3 Vo6 3a(ny + 110) 3 (1 = PVl 3 } -
From this inequality we easily obtain (2.26)) and also the regularity estimate
| e 1, 001y dt 5 N0l

Consider now the function h that satisfies 9;h = B,,h. Using that (Sg,, (t)h, #) g2 = (b, Spx (£)®) arir2,
this last estimate implies by duality (see (2.4]))

oo
| e 1S, Ol e S 100

Finally we deduce [227) by using the fact that Sg, (t)h = mSp(t)f. O

We now investigate hypodissipative properties of B in high-order velocity spaces.

Lemma 2.9. Consider hypothesis (H1), (H2) or (H3), £ € N and n € N*. Then, for any
A < Am,1, we can choose M > 0 and R > 0 large enough such that the operator B + X is
hypo-dissipative in W1W,L(m), in the sense that

-\t
Vi =0, S5Ol vz iwermy) < Ce™ ™
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Proof of LemmalZ.9. Consider the equation

Of=Bf=Bof —v-Vaof — Mxrf.

Remind that By f = Q(u, f) and remark that x-derivatives commute with the operator B, thus
for any multi-index o, 8 € N3, we have

0507 (Bf) = 97 (B f)

and

09Bof =00Q(u )= > Coyan @05 1,052 f)

altoas=«a

and, writing v - V, f = v;0,, f,

OyBf =Boyf+ > Conaa { Q07 1,07 ) — (07 v:) 0, (052 f) — M (95" X R)(05° f) }

artaz=a,|a|>1
finally
07 02Bf = B(93dL f)
+ >, Cornax{ QO 1, 05207 f) — (951 0i)0y, (85207 ) — M(95 xr) (0520 f) }

artaz=a,la|=1

+ > Car,a {1 QO3 11, 05207 f) — M (93 xR) (95207 1)}

o1 taz=a,|og|>2

We shall treat in full details the case £ = n = 1, the others £,n > 2 being treated in the same
way.

Case { =n =1 : Step 1. Deriwatives in x. First, using the computation ([Z22) for p = 1, we
have

(2.29) Gzt m = [ omate) = Mxa()} i1/ m.

As explained before, the z-derivatives commute with the operator B, so for any multi-index
B € N? we get from ([Z.22)) that

d
(2.30) 101w = [ £oma(s) = Mxae)}ol sl m.

Step 2. Derivatives in v. We now consider the derivatives in v. For any a € N* with |a| = 1,
we compute the evolution of v-derivatives:

(07 f) = B(9; f) + QO . [) = (0501) 0, f — M (I XR) S

From the previous equation we deduce that

d . o
G108 o = [ {B@21) + QMOFm 1) = (05000, £ — M@ ) sien(Dz 1) m
=Ty +To+T35+ Ty + T,
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where

7y = [ (o5 1) sign(@; 1) m

T = /(33dij) ij f sign(9, f)m

7=~ [(@50) fsign@; f)m

71 = — [ (0500, sign(0 fym =0
~ [ 2100z (o pym

Again using the computation (2.22) of Lemma [Z7] for p = 1, we have
7, - / {mt (0) = Mxn0)HOg flm

Concerning T, we use the following fact on the derivative of xg:

10y xr(v)| = 5a (R)‘ < %1R<\ [<2R>

which implies that
C
Ts < Mgl r<ppi<er fllzy ,om)-
Performing integration by parts, we get

T+ 15 = /8 a;; 0; f 0;msign(0y f) /80‘17 0;m fsign(0g f) =: A+ B.

When m is a polynomial weight m = (v)*, we can easily estimate T + T3, thanks to another
integration by parts, by

T+ T3 = /{(33%) Bigm + 2(950;) 0ym} fsign(05 f) S 1{0) " fllLs,om)s

where we have used |0%a;;| < C(v)7*1|02b;| < (v)7, |9;m| < C(v)~tm and |9;;m| < C{v)~"2m.

We now investigate the case of (stretched) exponential weight m = e” ()" First, we can easily

estimate the term B, since 9;m = Cv;{v)°~?m, as

B S @) ey, m)-

For the other term, integrating by parts again (first with respect to the 9%-derivative then to
the 0;-derivative), gives us

0 7 0j
A== [ a2 5,50 ot s+ [[ay0i08m) 0, sient ),
and we investigate the last term in the right-hand side. Recall that

i€ = (1(v)| Pug]? + L2(v)| (1 — Py)E,
we decompose 0;f = P,0;f + (I — P,)0;f and similarly for 9;(05m), then a tedious but
straightforward computation yields

/ i 0:(0%m) O, f sign(92 f)

= / {rsﬂl (0)(W)* 72 + rs(s — 2)01 (v)|v|* (W) 4+ 725201 (v)|v|* (V)25 4} P,oS f sign(05 f)m

+ /rs&(v)(vf‘z (I — P,)0% f sign(95 f)m
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—  0Oiym

Recall that ¢, 1(v) = a;; =& o

m

T+ A< / (b (v) — Mxr(v)} 02 f|m

+ 2b; (see eq. ([Z8)), hence we obtain

with 9
Ym,1(v) = l;jj?m + 7502 (v) (V)72 + rsly(v){v) 2

+75(s — 2)01(v)[v)? (0)* ™ 4 25201 (v)|v]* (v) 254
Thanks to the asymptotic behaviour of ¢;(v) and ¢3(v) in Lemma 24 and arguing as in

Lemma 2.6, we obtain first that

lim sup ¥, 1 (v) < —rs(V)?™5 if0<s<2;
|[v| =400

2.31
( ) lim sup ¥ 1(v) < =2r(1 —4r), if s =2;

|[v| =400

and then for any positive A < A, 1 and § € (0, A1 — A) we can choose M, R large enough such
that ¥, 1(v) — Mxgr(v) < =X —6(v)717,

Putting together all the previous estimates of this step, and denoting ¢ (v) = ¢, 1(v) when
m = (v)* and ¢ (v) = Y1 (v) when m = €™} we obtain
(2.32)

G0 les o < [1670) = dxrb oz fim+ [ {Cto) o7t 4 O tncicant f1m

Step 8. Conclusion. Consider the standard norm on W} (m)
Ifllwrromy = 1f 2 omy + 1V fllLs my + Vo fllzs, om)-
Gathering the previous estimates (2:29), (Z30) and 232), we finally obtain

d N c
E”f”vv;;q}(m) < /{‘Pm,l(v) +CY T+ M §1R§|v\§2R - MXR} |flm

+ / {oma(v) = Mxg}[Vaf|m + / (67 (v) — MxR}|Vof|m.

Remark that, since o € [0, 2], the function ¢2, (v) := @ 1(v) + C(v)777~1 has the same asymp-
totic behaviour of ¢, 1(v) (see eq. (ZI1) and eq. (ZI4])). Then, arguing as in Lemma 2.6] (and
(231), for any positive A < A1 and § € (0, A1 — A), one may find M > 0 and R > 0 large
enough such that
C
1 (0) + O+ M g lpgjuicor = Mxn < =X = 8(0)*7,
Pma(v) = Mxr < =X = 0(v)""7,
£ () ~ Mxn < —A = Do)+,
This implies that

d
EHfHW;;;(m) < _)‘Hf”Wml;;(m) - 5||f||wm1;;(m(v>w+n)a
which concludes the proof in the case ¢ = 1.

Case ¢ > 2 : The higher order derivatives are treated in the same way, so we omit the proof. [

Lemma 2.10. Consider hypothesis (H1), (H2) or (H3), £ € N and n € N*. Then, for any
A < Apm,2, we can choose M > 0 and R > 0 large enough such that the operator B + X is
hypo-dissipative in HP H'(m), in the sense that

Vt >0, [IS5(t)]lmemr mem)) < Ce .
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Proof of Lemma[Z10. Let us consider the equation 0, f = Bf = Bof — M xrf. Again we treat
the case £ =1 in full details, the others £ > 2 being the same.

Case { =n=1: Step 1. L? estimate. The L;v(m) estimate is a special case of Lemma [2.7]
from which we have

i1 o < =0 [LEP IR + )20 = PV 2 e

(2.33) 2dt
+ / {@ma(v) = Mxr()}f2m?.

Step 2. x-derivatives. Recall that the z-derivatives commute with the equation, so for any
B € N3 we have

d
o 50273 o) < —co / ()P (D2 + )21 = P,V (921)P} m?

+ [fpnale) = Mxa(w)Hof s m*

Step 3. v-derivatives. Let a € N® with |a| = 1. We recall the equation satisfied by 92 f
010y f = B(9y f) + Q07 1, [) = (95vi) O, f — M(OxR) S

From last equation we deduce that

1d
2dt

10571122 . my / (B2 F) + QO ) — (0%0:) 0u, f — M(OxR) [} 0% f m?

=T+ T2 +T5+ T, + T,
where
7, = [ B0z m?
T = /(835ij)3ijf33fm2
7=~ [0 sor fm?
7=~ [0, f 95 f i
T = [ M@xw)f 05w
We have from Lemma [2.7]

T < —c / ()P (02 ) + (o) 2(I — PV, (00 )2} m?
(2.35)
+ / {oma(v) — Mxr(v)}|0sf12 m?.

The terms T3, T4 and T5 are easy to estimate: for any ¢ > 0 we get

(2.36) T, < 5||33f||%gyu(m) + 0(5)||33f||%3m(m),

C C
(2.37) Ts < M5 l1r<p<2r 95 fl1Ze ) + M= |1r<ipi<2r flzz >
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and using Lemma 27} (b),
z<C [yt 0z m?

PEE yot
< Cllw) = 97 fl12 omy + Cl0) = fllTz m)-

Let us now deal with the part T5. Performing integrations by parts, we have:

T = /(6g‘dij)6ijf8§‘fm2

(2.38)

- [@siparsorrm ~ [@an oy o0z nm® — [(@5a) 055085 o
= — (To1 + Toa + To3) .

We first deal with T5;. Using Lemma [2Z4] we have

T < C [ () 10,5105 11 m?

< C||<’U>%vvf||%§’v(m) = C||<U>%va’uf||%§,u(m) + C||<’U>%(I - Pv)vvf”%iu(m)

(2.39)

As far as Tho is concerned, the integration by parts gives,
Ty = —/53[(1 - x)m2] ai; 0; f 0i(0y f) — /(1 - X)m25ij 05(05 f) 0i(07 f)
- [a= om0y 0z0:0) ~ [ @50 9350,02.)
=: — (T221 + Tooa + TV223> + T290.
Let us estimate fzgz + T223, using integration by parts,
Ta22 + Toos

= [ 0w [60) PVAG05 ) PV of +600) (1 = PV0505 ) (= PV
4 [ 0m? [00) P03 1) PTG ) + (o) (T = PIVA(GES) - (1 = P)V(021)]
S, - / (0201(0)) PaV (2 ) - PuVuf (1 — y)m?

- / (025(0)) (I — P)Vo(02 ) - (I — Po)Vouf (1 — x)m?

- [ 160 - 6] ¢ - R)23@21) %f (1 - x)m?

_ / [61(v) — £2(0)] (I — P,)V,0% f % (1= y)m?

=: —Tro1 +Too1 + ... +T24.
This means Toy = Thog + Ta21 + ... + Tho4. In order to estimate Thy, we need to estimate Too;

for i =0,...,4 (lemma 24 plays an important role in those estimates). First of all, we obtain

Tooo < C TV f] Vo (85 f)] [x|m?
[v]<2

< ell(0)2 Vo3 HIZ2 omy + CEN@EVoflIZ2 )
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For T21, we have
m<cC [ ICEEA A ORI
< ) F PO s oy + CENE) T PVufI2s o
For Th25, we have

Ta22 < C <U>’Y+1|(I - Pv)vvﬂ |(I - Pv)vv(agf)l m2

lv[>1

a4l o a4l
< ‘€||<U> 2 (I - Pv)vv(av f)H%i,v(m) + C(E)||<U> 2 (I - Pv)vvfnii’v(m)

For T5o3, we obtain

Toz3 < C () + @IV T = Po) V(05 f) m?
lv[>1
a+2 o 2
< el (v)™> (I = P,)V, (05 DIz my + 0(5)||<U>;va||ig’v(m)-
Finally, for Tso4,
T <C [ (@ 4 @)D - PV, f|m?
lv[>1
2 o a2
< ell(0) 2V NZz ,my + CENW) T (I = P)VufllZz  (my
This completes the estimate of Ty that we write, gathering previous bounds, as

ol o y+2 fe”
Ta2 < el (v)2 PoVu (05 )z, (m) +ell{v) 2 (I = P)Vu(05 f)llzz, (m)

(2.40) - St2
C(E)||<U>§vavf||L§,v(m) + C(E)H<U>T (I - Pv)vvf”Li,v(m)-

Concerning Ts3, we apply the same process as Tho: we first write
Tas = — /(33@1'3')3# dm* xg
- /a;‘zl(v) P,Vym? - P,V,f (1 —x)0%f

- / 0% 5(0) (I — P)Vom? - (I — PV, (1—x) 0 f

— / [61(v) = L2(v)] (I — P,)05m? Y 'lvvlg’f 1-x)oyf
v Vym?

- [ 16 - ) (- Ryoes T -0 02
=:Thsp + ... + T34.

Note that (I — P,)V,m? = 0, one can easily get Thzs = Th33 = 0. Let us estimate the other
terms, by Lemma 2.4, we have

Tozo < C (WY f110 fI x| m?
[v]<2

< 5||<U>%afff||%g,v(m) + C(E)||<U>%va||%§’v(m)
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also
Ty < C / ()72 | PV £ 00 f| m?
[v|>1

w+a4

< @) PV flIEz oy +ll{0) 95 flZz om)s

and
Ts < C / ({07772 4+ o)) (T = PV 1105 flm?
lv[>1

’Y+0

CENW)T (I =PVl m +ell ()

Gathering previous 1nequaht1es we complete the estimate of Ths
Tys < €||<U>%83f||%i’v(m) + £[[{v) 6af||L2 L (m)
O PuVuf 72 my + CE)lI(0) = = (I-P,)V, Fllzz ¢

Putting together (2.38) to 241 we get, using the fact that 1 + (v)” + (v)"”‘z" 2 < (wyrte,
(2 42)

||aaf||L2 < —(co—¢) / {)PVL (05 NI + (0) 72T = P) VL (05 )P} m?

a‘“f||L2

’y+2a 2

(2.41)

2 dt
+ / {sﬁm,2(v) +e)tT+ O+ M%1R§|U\S2R - MXR(U)} |05 fI? m?
+CE) [ {7 IRTASP + (02| = PIT S}
C
+ [ e+ M anapizanh 1w + OO

Step 4. Conclusion in the case { =n = 1. We now introduce the following norm on H!H}!(m)
11 gy = W22 oy + 1V SN2y + 0 1V F 22 ()

which is equivalent to the standard H} ,(m)-norm for any n > 0. Gathering estimates (Z33),
(I?EZI) and (242) of previous steps, we obtain

3351 sy < (=0 40 CEN) [ {0 1P + (0 21T = PV P
+/{¢0( )+nMglR<\ |<ar — MxR(v )}f2m2
—o Y [{erinv.@ine <v>7+2|<1—Pv>vv<a£f>|2}m2

4 [ {0k ) = Mxr()} V.12 m
nf-aate) X [ {0 IRTLGNE + ) - PV}

lee|=1

[ {200+ G 1nciican = Mxao) ) 19,17

where we have defined
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Let us fix any A < Ap 2. We first choose € > 0 small enough so that —cp + ¢ < 0 and
—Amz2 + € < —A. Then we choose n > 0 small enough such that —cop + nC(e) < 0 and
—Am,2 +nC(g) < —A. Hence the functions ¢!, have the same asymptotic behaviour than ¢y, »
(see (ZII), 2I4) and (ZI4)). Then, using Lemma[Z0] for any A < Ap,2 and § € (0, Ay 2 — A),
one may find M > 0 and R > 0 large enough such that

C
Yo, (V) + 77MR13<\ j<er — MxR(v) < =X —6(v)7H7,
Ui (V) = MxR(v) < =X = 6(v)7"7,
C
¢2 ( )+MR1R<‘ |<2R_MXR(U) S )\—5<’U>’Y+U.
This implies
— — 2
Sy < ANy~ SUSI bmorers

—K{||< > PoVu Iy + 10) 5 (L= P)Vof 2o |
— K{ 1) PV oVl y + 1005 (L = PV (Vo)) |

= K{I03 P VoV ) + 1005 (T = P)Vu(Vol M3 |

and then
IS5 fllas,omy < Ce™ I £lla1, (m)-
This concludes the proof of the hypodissipativity of B+ X in Hy ,(m).

Case ¢ > 2 : The higher order derivatives are treated in the same way, introducing the (equiv-
alent) norm on H*HE(m)

”f”fqnm = [I£1720my + > 0805 F1132 m):
1<]al+]B|<max(£,n);|o| <41 B|<n
and choosing 7 > 0 small enough as in the case ¢ = 1. O

Lemma 2.11. Consider hypothesis (H1), (H2) or (H3), £ € N and n € N*, and p € [1,2].
Then, for any A < A\ p, we can choose M > 0 and R > 0 large enough such that the operator
B+ X is hypo-dissipative in WPWEP(m), in the sense that

Vt Z O7 ||SB(t)||.@(W£’pW§’p(m)) S Ce_)\t.

Proof. Tt is a consequence of Lemmas and 210, together with the Riesz-Thorin interpolation
theorem. g

2.5. Regularization. We now turn to the boundedness of A as well as regularization properties
of ASg(t). We recall the operator A defined in (271
Af =Aof + Mxrf = (aij * f)Oijpn — (c* fu+ Mxrf,

for M and R large enough chosen before. Thanks to the smooth cut-off function yg, for any
q € [1,400], p > ¢q and any weight function m under the hypotheses (H1)-(H2)-(H3), we easily
obtain

IMxrfllLa,u-1/2) S N fllLazsm)-

Taking derivatives we get an analogous estimate, for any n,f € N,

||MXRf||W;lvqwqu(Mfl/2) /S ||f||W;WngP(m)v
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Arguing by duality we also have
”MXRf”HgHv (n=1/2) ~ ”f”HnH L(m)

Finally we obtain
% (L2,,(m), L2 ,(n™72)), Vp € [1,00);

(2.43) Mxrg €
B (WErWEr (m), Wt WEr(u™12)), Wpe (1,2, ne N, (e N.

We know obtain the boundedness of A.
Lemma 2.12. Consider (H1), (H2) or (H3) and a weight function m.

(i) For any p € [1,00], there holds

Ae B (L, m), 1L, (n™1%)).
(i) For any p € [1,2] , n € N* and ¢ € N, there holds
Ac (Wm"’pr’p(m), W;@wap(mm)) .
In particular A € B(E)NHB(E) for any admissible space € in [22)).
Proof. Thanks to ([Z43]) we just need to consider the operator Ag. We write
Aof = (aij * [)Oijp — (e x [l

and split the proof into several steps.

Step 1. Since vy € [—2, 1] we have |a;j(v —vs)| < (v)72(v,)7"2, which implies |(a;; * f)(v)| <
() 2| fll L1 ((0)7+2). Therefore, for any p € [1,00], we have

[(aij * £)0ipll Lpu-172y S L oyr+2ys
from which we can also easily deduce
10505 (aij * £l ppcu-rrzy S D 105708 Fllpa quyra).-
a1 <a
Integrating in the z-variable, we finally get
[[(as; = f)aij/‘”vvz"vafvp(ufl/% S ”f”vvgvafvl((vay

Step 2. Assume 7y € [0, 1]. In that case we have |c(v—uv,)| S (v)7(v,)” and the same argument

as above gives
Il (c* f)ﬂ”wm"mwf’?(#—lm) N ||f||wm"’r'wf’1(<v>w)-

Step 8. Assume 7 € [-2,0). We decompose ¢ = ¢y + c_ with ¢ = cl},j5q and ¢ = ¢l |<;.

For the non-singular term c; we easily get, for any p € [1, o0],
ICeq = Ppllpu-1r2) S 1Ny
whence
[[(cq * f)U”vv;’Pqu’P(#fl/?) S ”f”W,;’ow’l-

We now investigate the singular term c_. For any p € [1,3/|7|) we get

e % Dl sy = e HU2IE, < v = 1 U*<1|f<v*>|\ p2 ()

<f If(v*)lp{ / |v—v*|vp1|m<1u”2<v>}

<1 oy
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where we have used that |y|p < 3 (so that the integral in v is bounded) and Lemma 33 Taking
derivatives and integrating in x it follows

[[(c— * f)ﬂ”wgvafvp(ufl/% N ||f||W§vPW§vP((U>v)a Vp € [1,3/]y]).
Remark that by Holder’s inequality, for any ¢ € (3/(3 + ), oo] we have

1/q
[(c—* f)(v)] 5/ [V — 0" Ly, <1 [f(0)] S (/ v — v, |71 1|v—v*|§1) I fllze S I1fllpas
Vs Vx

which implies
(e Ppllcgu-1r2) S fllzg, Vo e Lo,
and similarly
Nem % Ditllymomeresrey S 1 lgpowees V€ 1,00,

Observe that in particular the operator T'f = (c_* f)u is a bounded operator from W W21 (m)
to W2IWE (u=1/2) and from W°WE>(m) to W W5 (u~1/2), thus by interpolation also
from W2 PWEP(m) to WHPWEP(u~1/2) for any p € [1,00]. This together with estimates of
previous steps completes the proof of points (i) and (ii). O

We turn now to regularization properties of the semigroup Sp. We follow a technique intro-
duced by Hérau [10] for Fokker-Plank equations (see also [22] Section A.21] and [I1]).

Lemma 2.13. Consider hypothesis (H1), (H2) or (H3) and let mo be some weight function
with v + o > 0. Define
mo if v €[0,1]; mo if v € [0,1];
e { W) Fmo  ifye[-2,0). { )*mg if v € [-2,0).
Then there hold:
(1) From L? to H® for £ > 1:

Vie (0,1], IS8l m(r2(my), e (me)) < Ct3?
(2) From L' to L?:
vt e (0,1], 18B(E) | (L1 (ma),2(mr)) < CE5.
(3) From L? to L*°:
vt e (0,1], 188 (E) | (L2 (ma), Lo (mr)) < CE5.

Proof of LemmalZ13. We consider the equation d; f = Bf and split the proof into three steps.

Step 1: from L? to H. We only prove the case £ = 1, the other cases being treated in the same
way. Let us define

F(t ) = T2y + Vo I 2ne) + @2 (Vafs Vo f) 12(me) + a3t (Ve flI 22 (ng) -
We now choose «;, i = 1,2,3 such that 0 < ag < as < a3 <1 and a% < 2aia3. Then, there
holds
2F(t, f) = ast® | Vaw f 112 (me)-
Moreover, denoting f; = Sp(t)f, we have

d d 9 9 d 9
E‘F(tvft) = a”ft”p(ml) + a1 [V fellzzgng) a1t EHvath(mo)

d
% <szt7 V'ufiE>L2(7m))

d
+3as t? | Va fill 2 (me) + @3t a”vift”%?(mo)'

+ 202t (Vo fi, Vo fi) L2(mg) + 02 2
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We need to compute

GV oDty = Y [1O2BH02) + ©21) 03 (B1)} i
la|=1

Let us denote f, := 0% f and f, := 05 f to simplify and recall that
8;1(8.]0) = aijaijfm —cfe —v-Vaofe — MXRfe,

and
aS(Bf) = aijaijfv - Efv —U- szv - MXRfv

+ (0yai5)0i; f — (O7€) f — fa — M(O7XR) S
Using the same computation as in Lemma 210, we obtain

[0z @3 + @21) 03 (BI) i =T+ T+ 1o+ T,

where

Ty := —2/&@‘ 0ifz 05 fo m%,

Tl = /{Qomoﬂ(v) — 2MXR(’U)}fw fv m%u

1oim — [ {0pa) 258 00, } 035 g — [ (ore+ d@px 1 o~ [ 12w
and

7, =~ [(05a) 0008, m3
For the term T7, from the proof of Lemma we get

y+o yto

T15/<v>”+“|fm|va|m3§6t||<v> = O L2 (mey +2 T 1) 05 F I (me)-

In a similar way, using [0%a;;| < C(v)7+L, |93b;] < C(v)” and |9;m?| < C{v)°~'m?, we obtain
for the second term

M o
725 [Vt + [ {0 + G tnccan 110 m3 = 10811

LM 3 e M
Set {1+ 0+ Fncean f 0P md+ et [+ Pangucanf 1028

yto

Fe T Vo fll T2 mg) = 105 T2 (me)-
We now investigate Ty and, decomposing 0; fz = P,0; fo + (I — P,)0; f5 and the same for 0, f,,

we easily get

Ty S et{11(0) PV (02 )3 2(mg) + 1) T (1 = Po)Vo (02 )2 }

+ e [(0)F Py 05 32y + 10)7% (I = PIV(O2 )13 20me) }-

For the remainder term T3, arguing as in the proof of Lemma 210 (term T2 in that lemma, see

(240)) gives us
Ty S et{[[(0)2 PaVo (05 F)32mg) + [10)F (1= PV F)lI3 2 }

y+2

+ e I E Po Vo f G2y + 1(0) % (L= Po) VoG 2(mg) }-




CAUCHY PROBLEM AND STABILITY FOR THE LANDAU EQUATION 27

Finally, putting together previous estimates we obtain
/ {(Va(BAVof + VafVu(Bf)} mp
S et {10) " Vad [3agm) + 1002 PoVo(Va )2y + ||<v>%“<f—Pv>vv<vwf>||%z<mo>}
+ Ce 0 V2 + 1002 PV (Vo) angy + 1100) (= P)Vu(Tuf 21 |

N Cgfltfl{||<,U>%vavf||2L2(m0) + ) (T — Pv)vvfIILz(m)}
+ OE_lt_1||f||%2(mo) - ”vmf”%%mo)'

Using Cauchy-Schwarz inequality, we also write the following

200t (Va f, Vo [ L2(mo) < Q2 (€t2||vmf||%2(m0) + 05_1||va||%2(mo)> :

Moreover, picking up estimates of Lemma 210 it follows that: for any 0 < A < Ay, 2 and
0 <d < A2 — A, there are M, R > 0 large enough such that,

JBn1mt < -a{l0)F PV + 166)H (T = PIVaT IRy}
— A1 2y — Ol ()%
also, for some ¢y > 0 to be chosen later,
/ Vo(BAVf md < —co{ [10)F PoVu(Vol) 3 egm) + 100} (L= PO)Vo(Tu )32 |
~ AIVoF132mg) — 81l (0) 2V, ||%2<m0
+ C{10)F PoVuf [32my) + 10)75 (I = PVl 320 }
+ C||f||L2(mo) +Ceg 'tV f||L2 (mo) T Cc0t||Va f||L2(m0

2 (ma)s

and finally
y+2
[ VulBHVat 8 < ~a{ 1)} PVATa Dl +10)F (1= PITUTa D)y}
~ MV f 122 (mgy — Oll(0) % (o}
‘We choose
Eg = 52, oy = 55/2, Qg 1= 54, g = 59/2.

Therefore, for any ¢ € [0, 1], we can gather previous estimates to obtain

E}-(t f)

<+ (—Co + Ce/? 4+ Ce®? + C€3> {||<U>% PV o fillT2(my) + ||<U>VTH (- Pv)vat||2L2(m1)}
+ 1%/ (—eo + C=12) {J|(0)F PoVu(Vu i) Bang) + 1000 (1= P)Vu(Vo )z |
+1%e9/2 (—Co + 061/2) { )2 P,V (Vs Tl Z2(mg) + (V) (- Pu)vv(vzft)||2L2(m0)}
= A2y = 1) 5 FllE oy + CHE + €2 FelE2ome

= AV filz gy — 1772 (8= ) 1100) 5 Vo fillE

— 2 ()\59/2t — 0% — 5 e+ 54) ||wat||L2(m0) — 1392 ((5 - 51/2) I|{v) E

Ve fellZ2(mo)-
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We then choose € > 0 small enough such that the following conditions are fulfilled:
—co+ Cet? 4 Ce®? + Ce® < —K <0,
—co+Ce'? < —K <0,
A+ Ct(? + &%) < —K <0,
§—Ce'? < —K <0,
Ce"? 454 Ce?? — et < —K < 0.

We have then proved that, for any ¢ € [0, 1],

d Ato

SF(t 1) < =K By + 90l + EIVaF gy } = 00105 fulZa,

which implies

O Vawfill2mg) < Ft fr) < F(O, fo) = 1 follZ2(m, -
We deduce

Vi€ (0,1, [IVauSs(t)fll2amo) < C ™ | follL2(ma);
and the proof of point (1) for £ = 1 is complete.

Step 2: from L' to L?. We define,

G(t, fo) = el 1 () + 0 VT, f2),
F(t, fr) = 1 fellZ2(my) + o1 Vo fell72(mo)
+ a2t Va fi, Vo i) 12 (mo) + @3t Va fill 22 (mg)
for some N to be chosen later. Thanks to Holder and Sobolev inequalities (in T2 x R3), there
holds
10)9l3e S 1Vawgll 75 o) gl 2,
which implies that
1/2 3/2
113 20mey S IF G gy IV (o )13
(2.44) S Cet™ PN f 1 Lr(ma) + €I Va,w f I L2(mo) + 1607 FllT2(mo)

Y+o

S Cat™ N f s (may + e IVaw f I L2(me) + 1) = T2 (m,);

Y+to

where we have used in last line that (v)°~tmg < (v) 2 my. Arguing as in step 1, we have

yto

d ~
2Tt f2) < =K {13y + 1V fel2mgy + Ve F W2ong) | = 01105 fell oy

Putting together previous estimates it follows

d o
79 f) < —K| el 2 gy + @0 NEVTLE(E, f)

Y+o

- K/aotN{HftH%z(ml) + Vo fell 2 me) + t4||vmf||%2(mg)} — Saot™[[(0) = fillF2(my)

< =K fell 71 (o)
+ a0 N fill 2y + CaoNEN TV fill 32 (mg) + CaoNEV 2|V fil| 7

ato

- K/aofN{HftH%?(ml) F Vo fill 2 me) + L‘4||wa||%2(mo)} — 6aot™[(0) = fillF2 (-

mo)
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Choose t, € (0,1) so that NtV *+1 < K’t"V then, for any t € [0, t.],

yto

d _ 1teo
Eg(taft) < K| fell 21 (may + Caot™ M fellF2(myy — 00t [[(0) = fill 22y

= K" ot {90 fill3 2 ) + 1V ) |-
Thanks to ([2:44), for any ¢ € [0, t.], we get

yto

d
9 fi) < =(K = Ceaot™ ) fell 71 oy — c0t™ (8 = Ce)|[(v)
= apt" K" = C)| Voo fll72(mo)

Fell 22 my)

Taking N = 16 and choosing £ > 0 small enough then oy > 0 small enough, we get %g(t, fi) <0
then

vte[0,t], OO fillFzim,y < Gt fe) < G0, fo) = [ follZs(ma)-
This ends the proof of point (2), using the fact that the norm is propagated for ¢ > t..
Step 3: From L? to L. Arguing by duality as in Lemma[Z38] the proof follows as in step 2. O

We define the convolution S * Sy by
t
(S1+S8)(8) ;:/ S1(7) Salt — 7) dr,
0

and, for n € N*, we define S by S0 = & « SE=1) with S&D = S.

Corollary 2.14. Consider hypothesis (H1), (H2) or (H3), and spaces &y, &1 of the type E or
& defined in 1) and Z2). Then for any N < X\ < Ay, p (where X is defined in Lemmas [2-7},
2.8, [2.9, or[Z11)) there exists N € N such that

[|(ASg)*N) ()l (e, ,60) < Ce Nt Vit >0.

Proof. Tt is a consequence of the hypodissipativity properties of B (Lemmas 27 2.9 210 and
2.17), the boundedness of the operator A (Lemma [2ZT2)), and the regularization properties in
Lemma 13| together with [11} Lemma 2.4] and [8, Lemma 2.17]. O

2.6. Proof of Theorem [2.11 Thanks to the estimates proven in previous section, we can now
turn to the proof of Theorem 2.1

Proof of Theorem[2l Let £ be an admissible space defined in (2.2) and consider ¢y > 1 large
enough such that E := H (u~'/2) defined in ZI) satisfies £ C &£. Recall that in the
small /reference space E we already have a spectral gap in Theorem

Then the proof of Theorem [2.1] is a consequence of the hypo-dissipative properties of B in
Lemmas 2.7, 2.9] 210, 2.TT], the boundedness of A in Lemma[2. 12 and the regularizing properties
of (ASg)*N) in Corollary .14, with which we are able to apply the “extension theorem” from
[8, Theorem 2.13] (see also [I1, Theorem 1.1]). O

2.7. Proof of Theorem [2.3l We give in this subsection a regularity estimate for the semi-
group Sr.

Proof of Theorem [2.3. A key argument in the proof of [8] Theorem 2.13] in order to obtain the
exponential decay (that gives point (i4i) in Theorem 2] is the following factorization of the
semigroup, for any ¢ € N*,

~
—

(2.45) SA()(I =) = ((I —Tp)Sg * (ASE)) () + (Sa(I — TIp) * (ASs)*9)(¢),

J

Il
=]
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which has been used with £ = N given by Corollary ZT4 We now turn to the proof of (23],
and recall that £ = H'L?(m) and £_; = H}'(H, }(m)). For sake of simplicity, in what follows,

we denote ey (t) := e. We write [245) with £ = N + 1
N
SA()(I =To) = > (I = To)Sp * (ASE)*))(t) + (Sa(I — TIp) * (ASp) ™) « (AS))(#),
§=0
so that, for any Ap < Ap,2 and any A < A1, where A\; < min{\g, Ap} is given by Theorem [2.1]
we have

N
(2.46) MSA()(I —TIp) = Y S;(t) + Sn41(t)
7=0
with
8;(t) = (I = Mo)erSs * (exASs) ) (1), §=0,...,N,
and

Swia(t) = (exSa(T — Tho) = (exASs) ™) 5 (ex ASg)) ().

We now prove that [|e*Sy(t)(I — Io)||me_,.e) € L7(R4) by evaluating each term in (2.40),
which in turn completes the proof of (21). Using Lemma 2T2] we easily observe that thanks
to Lemmas 27 and [Z.§ there hold

[} ASB(1)l|5(s_, &) < ClleMSa(t)lBe_, )5
and also
1€ AS5(1) | s(e.e) < ClleSp(t)l|ee.ey) < Cem PPN,
from which we first obtain
X ASs (1) 5e_1.6) € Li[R+), €M ASE(1)llsce.e) € Li (Ry).
Therefore we deduce
1So®)llee.6) = XSs(t)l|5ee 1 .6) € LT (R+),
and, for j=1,...,N,
1S;()lse_.e) < ClleMSp(t)llsce.e) * 1(exAS) ™ (0)l5e.e) * N ASE () lls(e 2,
which implies by induction
I1S; () Ise 1.6y € Ly (Ry) * Ly (R4 ) * L(R4) C LF(Ry).
For the last term we first observe that, thanks to Theorem [I.3]
1M SA ()T = Tho) ||,y < Ce™ PN e Li(Ry),
and also, thanks to Corollary 2.14]
1(exASE) "™ (1)l (e, ) < Ce™ PPN e Li(Ry).
These estimates finally yield
[SN+1(O)lBe1.6)
< CllMSA(OI = o)l z(m, ) * |(exASE) ™ (1) | se, ) * 1N ASB ()|l 536 1 6) € L (R,
which completes the proof of ([Z.3]). |
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3. THE NONLINEAR EQUATION

This section is devoted to the proof of Theorem[I.1l We develop a perturbative Cauchy theory
for the (nonlinear) Landau equation using the estimates on the linearized operator obtained in
the previous section.

3.1. Functional spaces. We recall the following definitions
s my = l10) ™2
and we also define the (stronger) norm
11z . my = 1 (0) 2

Recall the space H3 L2(m) defined in (LTI associated to the norm

1 z20m = D0 IVESIT2 12 gy -s0-2720)5

0<5<3

X a+2
() + 10T PV flZ2(y + 110) ™= (T = Po) Vo flZ2(m),

'v+2

LH
f||L2 (m) + ||< > vavfn%g(m) + ||<U> 2 (I - Pv)vvf”%%(m)

and also the space H2(H, ,(m)) defined in (LI3) by

1B omn = D IVEFIZ2 0 miwy-s0-0r2))-
0<;<3 ’

IIV s (moy—s0-0/2)-
X )

0<5<3

We define in a similar way the space H3(H} ,,(m)) using the norm H, . (m) (instead of
H, .(m)). We also define the negative Sobolev space H3(H, }(m)) by duahty in the follow-
ing way

||f||Hg(H;i(m)) = sup (f, D) mz p2(m)

”d—’”yg(}]%’*(m))g

= sup Z (V9L Vi) 12 12 (m(v)—10-a/2))-

61323 (a3, my <L o<j<3

(3.1)

The results on the linearized operator A in Theorems[2.1] and are stated for spaces of the
type H2L?(m), but they can be easily adapted for the spaces H2L2(m) above, more precisely
we have:

Corollary 3.1. Consider hypothesis (H1), (H2) or (H3) and some weight function m, with
the additional assumption k > v+ 5+ 3/2 in the case of polynomial weight m = (v)*. Then for
any A < Am,2 and any A1 < min{ g, A}, there exists a constant C > 0 such that

Vt>0,VfeHILIm), [|Sa(t)T = To)fllazrz(m) < Ce M (I = o) f 2312 (m)-

Moreover, for any A < A1,

>~ 2Xt 2 2
| ISA O =101y 0 < CIT =Ty 11
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3.2. Dissipative norm for the linearized equation. We construct now a norm for which
the linearized semigroup Sx(t) is dissipative, with a rate as close as we want to the optimal rate
decay from Theorem [2.I] and also has a stronger dissipativity property.

Proposition 3.2. Consider some weight function m satisfying (HO), and let X = H3L2(m)
and Y :=H3(H), ,(m)). Consider another weight function m satisfying (H1)-(H2)-(H3) with
m < m{v)~1=9/2) and denote X := HEL2(1m).

Define for any n > 0 and any Mg < A1 (where A1 > 0 is the optimal rate in Theorem [2.1)) the
equivalent norm on X

(3.2) 15 == 0l FII% + /0 IS (T)eT fI% dr.

Then there is p > 0 small enough such that the solution fi = Sa(t)f to the linearized equation
satisfies, for any t > 0 and some constant K > 0,

1d
L LSO < Ml — KISsFIF VS € X, Tof =0
Proof. First we remark that the norm ||- [l £2 (m) is equivalent to the norm || -[|33 2 ;) defined

in (LII) for any > 0 and any Ay < A;. Indeed, using Corollary B}, we have
1 F 5 2y < NG 2 0my = 0l iz 22 (m) +/0 ISa (7)™ Fll3s 12 () T

<l 13 £2 () +/0 02672('\142)7||f||gr¢ng(m) dr < (0 + O fIl33 12 (m)-

We now compute, denoting f; = Sx(t) f,

5 dt|||ft|||H3L2 my = MASe fo)nzL2(m) + / EHS ’\QtftH%.[ng(m) dr =: I + I.

For I we write A = A+ B. Arguing exactly as in Section [2l more precisely Lemma 212 we
first obtain that A € B(H3L2(m), H3 L2(u~1/?)), whence

(Afes fr)ms L2 (m) < C||ft||HgL%(,ﬁ)-

Moreover, repeating the estimates for the hypodissipativity of B in Lemmas 27 and 210 we
easily get, for any Ay < A < Ay, 2 and some K > 0,

(Bf, fluzsrzomy < =AMl flFerem) — KHfH?{g(H;*(m))a
therefore it follows
I < =Ml fillfa 2 gmy — 77K||ftH’2}-L?z’(H1},*(m)) +0C| fill iz 12 (my-

The second term is computed exactly
1 >0 AT
I = 5/0 57 ||Sa(T +1)e™ Fl3 2 (my dT

1 (>~ 0 o
= 5/0 EHSA(T‘Ft)e/\ZTfH%Lng(m) dT—)\z/O ||SA(T)6>\QTft”%-L§L3(m) dr

1 T=+00 0
> {||3A(T)€k27ft||3-131:3(m)} 0 )\2/ ISa(T)e™2T fill3gs 12 () dT
= 0

1 o0 T
= _§||ft||§-[ng(m) —>\2/0 ISa(T)eXT fill31 12 (my AT

where we have used the semigroup decay from Corollary 311
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Gathering previous estimates and using that A > Ay we obtain
L+l < =X {77||ft||§-[ng(m) +/ 1Sa()e" fill 3 12 (m) dT}
0

1
- nKHft”%-[g(H%,*(m)) +0C|| fell iz £z (my — §||ft||§-[2L§(m)'
We complete the proof choosing n > 0 small enough. g

3.3. Nonlinear estimates. We prove in this section some estimates for the nonlinear operator
Q. We will use the following auxiliary results.

Lemma 3.3. Let -3 < a <0 and 0 > 3. Then

Aa(v) == v — 0] (v) 70 dvy < (v)°.
Proof. Let |v] <1/2, thus |vy| +1/2 <14 |v — v,| and we get

Aolo) = [ ol =)o S [ ol o) o S (0"

Consider now |v| > 1/2 and split the integral into two regions: |v — v.| > (v)/4 and |v — v, | <
(v)/4. For the first region we obtain

/3 L, > v — v |* (0) 7 dvy < (v)o‘/ (v,) 7% dv, < (v)*.
R

T RS
For the second region, |v| > 1/2 and |v — v.| < (v)/4 imply |vs| > |v|/4, hence
[ e o=l o) o S @07 [ 1, o o= o S )70 S ()
O
Lemma 3.4. There holds:
(i) For any 6 >~v+4+3/2
(g * f)(w) vivg| + [(as; * £)(©) vil + (aig * ()] S @2 fllLz oy
(i) For any ¢ > (y+ 1)+ + 3/2 (where x4 := max{z,0})
(b % )] S @l g2 goyery-
(i) If v € [0,1], for any 60" >~ +3/2
(e FWIS @7 11l Lz qwyery-
() If v € [-2,0), for any p > % and 0" > 3(1 —1/p)
[(ex WIS )T 1Al o quyery-

In particular, when v € (=3/2,0) we can choose p = 2 and 6" > 3/2; and when ~v €
[—2,—3/2] we can choose p =4 and 0" > 9/4.

Proof. Recall that 0 is an eigenvalue of the matrix a;; so that a;;(v — v4)v; = a5 (v — vs)vs; and
ai; (0 — V) V05 = a5 (V — V)V Vs Using this we can easily obtain, for any § > v+ 4+ 3/2,

[(aij * f)(v) vivj| = |/ aij (v — v )viv; fu| = / ij (V= Vi) Vi Vs f

Vx

< / 02w ] S 02 sy

Vs

S @) (| Fll L2 oye)-
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In a similar way we get
[(@ij * £)() vil S )2 FllL2(wyo-1),
and we easily have, since vy € [-2,1],
[(aij * )W) S @21 fllz2((oyo-2)-

For the term (b * f), we recall that b;(z) = —2|z|7z; and we separate into two cases. When
€ [—1, 1] we have, for any 6’ > v+ 1+ 3/2,

[CEFPIGIPS Iv—v*l”“lf*lﬁ/ (W) ) T £

SO oy S @O llpawyery-
When v € [-2, —1) we use Lemma [33] to obtain, for any ' > 3/2,

12
(b * £) ()] < Iv—vm“<v*>‘9'<v*>9/|f*|5(/ |“—v*|2<v+l><v*>‘29') 111 2 o

SO 2 gyery-
Finally for the last term (¢ * f), recall that ¢(z) = —2(v 4 3)|z|” and separate into two cases.
When ~ € [0, 1] then, for any 6" > v+ 3/2,

e DEIS [ =l 1815 [ @e)in

Vx

S @M Loy S @ Lz wyer

When v € [—2,0) we use Lemma B3] to obtain, for any p > and for any 8” > 3(1 —1/p),

3+’Y

L\ -D/p
ENIS [ o=l ) )" 151 < (/ o — 0772 () ﬁ) TP

< ()7 ||f||Lg(<v>e”)7
thanks to |y|p/(p — 1) < 3. O

We now prove nonlinear estimates for the Landau operator Q.

Lemma 3.5. Consider hypothesis (H1), (H2) or (H3).
(i) For any 6 >~y + 4+ 3/2, there holds

QU 9), Bz my < I lzcayoy gl oy Wiz o
(i) For any 6 >~ +4+3/2 and 6’ > 9/4, there holds
(Q(f.9).9)r26m) S WflLzqwyey ol (mys v € (=3/2,1];
and
(Q(f,9), 9 raemy S W leacewoy 1903 _my + 1z oyery 19l Z2gmy 3 7 € [-2,-3/2].
Proof. We write

QU9 W) rzm = [ O5flas + 11019 = (b % F)g} e
= /(au * )09 0; hm? — /(aij *f)@igﬁjm2h

+ /(bj % f)g 9;hm? + /(bj * f)ghd;m?
=T+ T +T5+ Ty
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Step 1. Point (i). We estimate each term separately.
Step 1.1. For the first term, since the estimate for |v| < 1 is evident, we only consider the

case |v| > 1. We decompose 0;g = P,0;,9 + (I — P,)d;¢ and similarly for 9;h, where we recall

that P,0;9 = vi|v|72(v - V,g). We hence write

T = /(aij & £) {Puig Padsh + Podhg (I — Py)osh + (I — P)oig Podsh + (I — P)dig (I — P,)d;h} m?
=:T11 + T2 + T13 + Tha.

Therefore we have, using Lemma [3.4]

v-Vyg) (v-Vyh
Ty = /(aij * fluv; ( BE ) ( BE )m2

S 22 wyo) /<v>7+2|v|72 |Vog| |Voh|m?
S22 (wye) 10) 2 Vogllza gy [1€0) Vohl| 22 (m).-
Moreover

T = [ (@ o % (L~ P,)0;h} m?

S Wl [ @7l agl (0~ POl

< 2 2tz

Sz wyey 1K0) 2 Vgl Lz my 1(0) 72 (I = Po) Vbl L2 (m),
and similarly

y+2 o
Tus S 1 f 2wy 10) 2 (I = Po)VogllLzm) {0} 2 Vohl[ 12 m)-

For the term T34 we obtain
Tui = [(asy ) (T = P)org) ({1 = P)os1}
S lzzqn [T = Pagl (T = PV

242 142
S le2 ey 1€0) = (I = Po)Vogllz gmy 1) = (I = Py)Vuhl| 12 (m)-

Step 1.2. Let us investigate the second term Th, and again we only consider |v| > 1. Since
dym? = Cvj(v)?~2m?, where we recall that ¢ = 0 when m = (v)* and ¢ = s when m = e"{")"
the same argument as for 77 gives us

T, - /(aij « ) {Py0ig O;m® + (I — P,)dig d;m®} h
= T21 + T22.

Then we have

v - vvg)

Ty = C/(aij « fluiv; (v)7 2 (|T hom?

S Wfllzzqn [ @207 210l [Vugl 11 m?

y+o—2 y+o

S22 wyey 1K0) ™2 Vogllz (m) 1{0) 72 Rl 22 (m),
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and we recall that v+ 0 — 2 < . For the other term we get
T = C [ (s« £)us 07 2 (1 = P)dig) b
S Wy [ 0020721 = P Vgl bl

y+o yto
S llz2 ey 1{v) 2 (I = Po)VogllLzmy () 2 BllL2(m),
and recall that v+ o0 < v+ 2.

Step 1.8. For the term Ty,
T, = C/(bj * [)vj ()77 ghm®

<l / (o)L ()7 |g| [B] m?

yto ato

S Fllzz ey 1K0) 72 gl Lz (my [1{0) 72 Rl L2 (m) -
Remark that up to now we have obtained
T+ To+Tu S [ fllezwyoy gl omy RN E2 (m) s

however in the estimate of the term T3 (see below) we will get a worst estimate (with the norm

gl 72 .. (m) instead of [|g[| a1 _(m))-
Step 1.4. We finally investigate the term T3 and we get

T5 S 2 cwyo /<v>7+1 lg| |V h| m?

a2

jon ™} 2
Sz ey 1K0) 72 gll L2 (my [1€0) 2 Vbl L2 (m)
S 22wy gl a2 .. omy 110) 2 Vbl L2 m)-

We complete the proof of point (i) gathering previous estimates.

Step 2. Point (it). Arguing as in Step 1, with h replaced by g, we already have
T4 To + Tu S |\ fllp2(wyo) ||9||12r{5,*(m)7
and we only estimate the term T3. Integrating by parts we get
T5 = /(bj x f)g;gm? = —%/(c*f)gzm2 - %/(bj x f)o;m?g® = T +11I.
The term I can be estimated exactly as Ty. For I, thanks to Lemma [3.4] we obtain
ISl 160029l 720mys iy € (=3/2,1];

and
TS 1 ey 160) 3 913y + 1L ooy 100 F g3y i € [—2,-3/2);
S22 cwyoy 160D 2 gl Z 2 (my + 15 Lz opory 16002 9l T2y
and that concludes the proof. O

Lemma 3.6. Let assumption (HO) be in force.
(i) There holds

(QUf,9)s Mrsrzmy S | fllazrzom) |9llwe . omy) |1Bll2ez (a2, (m)).

therefore

Q(f, 9)||H2(H;1(m)) N ||f||HgL3(m) ||g||Hg(Hgy**(m))-
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(ii) There holds
(QUf,9), 9)rzrzm) S I fllnz L2 (m) ||9||%3(H;,*(m)) + 1 oz s om) 1911323 22 )

Proof. We only prove point (i7). Point (¢) can be proven in the same manner, using the estimate
of Lemma 51 (7) instead of Lemma B35} (i) as we shall do next.

We write
<Q(f7 ) >'H3L2(m = <Q(f7 ) >L2L2(m + Z aﬂQ fv ) 8mBg>L§L%(m('u>*‘5‘(1*0/2))7
1<|81<3
and
23Q(f,9)= > Cﬁl,ﬂgczwﬂlf,a@g).

B1+B2=
The proof of the lemma is a consequence of Lemma together with the following inequalities,
that we shall use in the sequel when integrating in x € T3,
1/2
(33) Nullz=crp) < Nullmerny, lzors) S Ml Tullzss) S lullf2ps) Nl 2.

Step 1. Using Lemma B.5}H(i¢) and ([B.3) we easily get, for § > v+ 4 +3/2 and ¢ > 9/4,
(Q(f:9):9)12L2(m) S / £l 22 (wye) ||g||%{7}’*(m) 1 oy 191172 oy

S22y 91122 oy my) + I ez e oyery) 191122 22 (m)-
Step 2. Case |ﬁ| = 1. Arguing as in the previous step, from Lemma B35} (i7) and [B3]), it follows
(Qf,079),009) 1212 (m(v)-1-a/2))
/ 1 2 19015 moy-ci—ormny + [ L3y 19812t
S ||f||H§L3((v>9) ||ng||2Lg(H%1*(m@)f(lw/m)) + ||f||Hg(H3((v>9’)) ||VngZL%L%(m(w,(l,a/z)).
Moreover, using now Lemma [B35H(7), we get
(Q(D2£,9),059) 12 L2 (mvy——o/2)
/ 19 £y Mgl ooy —ci—ron [Vl 5oyt
SIVefllazrzwe) 9Lz mr . nwy-a-e2)) 1VagllLz @ oney-a-/2))-
Step 3. Case |B| =2. When 2 = 8 we have
(Q(f,029),009) 12 12 (m(w)—20-0/2)
/ £l 22 (oo I\ 9||H1 _(m(v)—20-0/2)) T ||f||H3((v>0’) ||Vig||ig(m(v>—2<1—a/z))
S ||f||HgL2 Y0 ||V 9||L2 H} , (m{v)—20-c/2))) + ||f||Hg(H1 )0'Y) ||V 9||L2L2(m(v>—2<1fa/2))-
If |B1] = |B2| = 1 then we obtain
(QOF £,0729),059) 12 L2 (m (o) -20-2/2))
S [ 1921z ¥l

(m(v)—2(=0/2)) ||v§tg||H%Y*(m(v)*2(1*0/2))

u**

S IVafllmzrzwyoy Vagllz . my—2a-2/2)) ||V§9||L§(Hg,*(m<v>72<17v/2>))'

v,k
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Finally, when 81 = 3 we get
(Q(O7£.9):079) 12 L2 (m(w) —20-7/2))
/ ||V2f||L2 o gl

v**

m(o)—20-2/2) [ Vagll g1 (m(uy-20-0/2)

SIVaFllzera o 19l s . mwy-20-0/2)) V29l L2 (a1, (mw) —20-0721)

F.
1/2 1/2

SIVE Nz (e y lgllys H1 . (m(v)~20-o/2)) ||9||H;(Hi’**(m@)aufa/z))) V29l 2 13 mw) 200720
Step 4. Case |8| = 3. When 3 = § we obtain
(Q(f, 559),359>L§L3( wy-sa-or2) S | fll 22 () ||V 9||L2(H1 (m(v)—3(1—c/2)))
+ ||f||H2 (HL((v)?") ||V gHL?LQ(m(v)*?’(l*O/?))'
If |f1] = 1 and |B2] = 2 then
Q25 f,0029), 0 9)L2 L2 (m(v)~30—0/2))

/ IVafllzz (o) V3 Ilms , (miw)-sa-0/2) ||V29||H;*(m<v>73<1w/2>)

SV fllmze (wyo) ||vacg||L§(H}j,**(m(v)*?’(l*v/?))) ||v§g||L§(H})’*(m(v)*3(1*<’/2)))'
When |81| = 2 and |B2] = 1 then we get
Q05 1,0529),059) 12 12 (1 () ~31-/2))

S [ 192z 196l mey-s-r 928l iy -s2-<72)

S ||V§f||H;L2 )) ||V19||2/22H1 L (m(v)—3(1=0/2))) ||ng||1/2 1., (m(v)=30-0/2))) ||vig||L§(H7}’*(m(v)*3(1*fr/2)))-
Finally, when 1 = g, it follows
Q07 f.9) >L2L2( (v)—3(1=c/2))
/ 192 L2300 gl

v**

mwy-3a-2/2) IV2gll a1 iy -sa-e/2))

SIVafllzz Lz o) 19l azcas ., miwy-s0-0/2)) V39l L2 (111 (mw)-s0-0720)-

v,k

Step 5. Conclusion. We can conclude the proof gathering previous estimates and remarking
that, for any n = 0,1, 2, there holds

v+2

1{v) ™2

which implies

L
29l L2 L2 (m(v) -0 -02)) = [[{V) "

n
wg”LgL%(m(v)*"(l*(’/?)) )

||V:,:9||L2(H,}**( (V)= D A=e/2))) ||vmg||L2(H1 (m(v)y=n(1=c/2))),
and observing also that

12z ey S I 1z L2 (m)
and

1 er2cen oyeryy S Wz o, omy)-
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3.4. Proof of Theorem [I.71 We consider the Cauchy problem for the perturbation f = F — p.
The equation satisfied by f = f(t,z,v) is
Of =Af + )
(3.4) f = Af+Qf, f)
Jit=0 = fo = Fo — p.
From the conservation laws (see (L6) and (LI0)), for all ¢ > 0, Iy f; = 0 since Iy fo = 0, more

precisely [ fi(z,v)dzdv = [v;fi(z,v)dzdv = [ |v]*fi(z,v)dzdv = 0, and also IoQ(fy, fi) =
0.

Hereafter we fix some weight function m that satisfies hypothesis (HO). We also fix a weight
function mg satisfying the assumptions of Corollary BI (i.e. mg satisfies (H1), (H2) or (H3)
with the additional condition ko > v + 5 + 3/2 if mg = (v)*0) such that mo < m{v)~(1=9/2),
Observe that this is always possible under the assumptions on m.

We will construct solutions on L°(H2L2(m)) under a smallness assumption on the initial
data || foll#3L2(m) < €0. We introduce the notation to simplify

X =HiLy(m), Y :=H(H, (m), Y =H(H, (m)),

Xo = HiLﬁ(m0)7 Yo = Hi(Hi,*(mO))v }/O/ = Hg(HJ,i (mo)), Zo = Hi(H’L},**(mO))5
where we recall that these spaces are defined in (LCII)-(TI3)-@I), and we also remark that
1fllzo < Ny

We split the proof of Theorem [l into three parts: Theorem [3.9] Theorem and Theo-
rem [3.11] below.

3.4.1. A priori estimates. We start proving a stability estimate.

Proposition 3.7. Any solution f = fi to (B.4) satisfies, at least formally, the following differ-
ential inequality: for any Ao < A1 there holds

1d
2dt
for some constants K,C > 0.

A% < =AallF 1% = (K = ClFx) A1

Proof of Proposition [3.7] Recall that the norm || - ||x is defined in Proposition and it is
equivalent to the || - || x-norm. Thanks to (8:4) we write
1d

=—IflI% = n(f, A (A (M) .80 ()M A ) x, d
s = AN+ [ (ST LS T,

FULQUNx + [ (SADNT L SADTQUE 1), dr
0
=L+ L+Is+ 14
For the linear part I + I, we already have from Proposition B.2] that, for any Ay < Aq,
L+ I < =X flI% = KN fI5-

Let us investigate the nonlinear part. For the term I3, Lemma [B0l(i7) gives us directly

Is SN IS + 1A% Al < Il DAL
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For the last term I, we use the fact that Iy f; = 0 and IoQ(f:, f:) = 0 for all ¢ > 0, together
with Corollary Bl to get

/0 (SA ()T 1, S\ (1T QU ), dr
< / IS ()" Fllxo 1S4 (NeT QU )1, d

) 1/2 S 1/2
s(/ ||8A<T>e“7f||§(od7) (/ ||SA<T>eWQ<f,f>||§(OdT)

%) 1/2 ) 1/2
S([eomipgar) ([T e issnei ik, ar)
0 0

S I lxo 1R H)llvy-

From Lemma B.GH(¢) we have
1QU: Pllvg S 11 llxo 11l zo-
Therefore, using that mo < m(v)~ =72 so that ||f||z, < ||f|ly, we obtain
L S I IAIS S WA A1

and the proof is complete. O

We prove now an a priori estimate on the difference of two solutions to ([B]).

Proposition 3.8. Consider two solutions f and g to BA) associated to initial data fo and
go, respectively. Then, at least formally, the difference f — g satisfies the following differential
inequality

| =

I1f = gll%, < =KIf = gli3;, + Cllgllx, I1f = gll5
+C(llgllve + 1y ) 1 = gllxo I = gllve,

N =
IS8

t

for some constants K,C > 0.

Proof. We write the equation safisfied by f — g:

O(f—9)=AMf—-9)+Qg,f—9)+Q(f —g,f),
(f - 9)\t:0 = fo — go.

Denote X := H3 L2(mg) where mg < mo(v)~(1=/2) (see (3.2)). Then we compute

%%Illft — gell%, = n{(f = 9), A(f — 9)) xo +/0 (Sa(r)e™ 7 (f = g), Sa(1)e™TA(f - 9))%, dr

+n0((f —9),Q(9, f —9))xo + /OOO<SA(T)6“T(f —9),9A(T)e™"Q(g, f — 9))x, dT

0l =0, QU 9. N+ [ SADPT = ) Sy TQ - g2 D, o
=T+ To+T5+T4+T5 + Ts.
Arguing as in Proposition 3.7 we easily obtain,
T+ Ty < —K| f—gll3,

and also
T+ Tu S gl xo I1F = 9113, + gl I1F = allxo 11 = glive-
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Moreover, for the last part T5 + Tg, arguing as in Proposition B7] and using Lemma B6}H(7), we
get,

Ts + 16 S = gllxo 11120 1F = gllve S MF = gllxo 1£lly I1F = gllvo,
which completes the proof. g

3.4.2. Cauchy problem in the close-to-equilibrium setting. Thanks to the a priori estimates in
PropositionB.7and Proposition B8 we are now able to construct solutions to [B.4]) on L{*(X) =
L°(H2L2(m)), assuming a smallness condition on the initial data.

Theorem 3.9. There is a constant eg = eo(m) > 0 such that, if || follx < €o then there exists
a global weak solution f to B4) that satisfies, for some constant C > 0,

[ £l oo ((0,00):) + [ fllL2([0,00):v) < Ceo.
Moreover, if Fo = p+ fo >0 then F(t) = p+ f(t) > 0.

Proof. The proof follows a standard argument by introducing an iterative scheme and using the
estimates established in Propositions 3.7 and B8 thus we only sketch it.

For any integer n > 1 we define the iterative scheme
8n:An+ nfl,n 80:/\0
:{f P+ QUML) Vn>1 and ;f f '
f|t:O:f0 f\t:OZfO

Firstly, the functions f™ are well defined on X for all ¢ > 0 thanks to the semigroup theory in
Theorem 2.I] and Corollary B.1] and the stability estimates proven below.

Step 1. Stability of the scheme. We first prove the stability of the scheme on X. Thanks to
Propositions [3.7] we prove by induction that, if €y > 0 is small enough, there holds

t
(3.5) Vn2>0Yt>0, Au(t):=|fFI% + K/ 1713 dr < 2€5.
0

Step 2. Convergence of the scheme. We now turn to the convergence of the scheme in Xj.
Denote d® = f**1 — f" that satisfies

Od™ = Ad" + Q(f™,d™) + Q(d" ", f"), Vne N
9d® = Ad® + Q(f°, f1).

Thanks to Proposition B7, Proposition 3.8 and estimate ([3.3]), we then prove by induction that,

for €g > 0 small enough, it holds

t
(3.6) Vt>0,Yn>0, Ba(t):=ld7 %, + K/ 215, dr < (C'e0)?",
0

for some constant C’ > 0 that does not depend on .
Therefore the sequence (f™),en is a Cauchy sequence in L°([0, 00); Xo) = L°°([0, 00); H2 L2 (my)),
and its limit f satisfies (B.4) in a weak sense. We then deduce that

L1l Loe (j0,00):%) F 1 f1122([0,00)5v) < Ceeo,

by passing to the limit n — oo in [B3]). Moreover, since Fy = 1+ fo > 0 we easily obtain that
Ft)=p+ f(t) >0 (see e.g. [9]). O

We can now address the problem of uniqueness.

Theorem 3.10. There is a constant €9 = eg(m) > 0 such that, if || follx < €o then there exists
a unique global weak solution f € L>°([0,00); X) N L%*([0,00);Y) to 34) such that

£l 2o (10,00):x) + 1| L2((0,00);) < Ceéo-
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Proof. Let f and g be two solutions to ([34]) with same initial data go = fo that satisfy

£l zo (10,00):x) + 1| L2(0,00);v) < Ceéo-
and

191l o= (0,00):x) + 191122 ([0,00):v) < Ceo-
The difference f — g satisfies then

W(f—9)=Mf-9)+Qg,f—9)+ QU — g, f),
with fo = go. We then compute the standard L2L2(mg)-norm of the difference f — g

1d
5%”]0 = 9l212(m0) = (Af = 9)s f = 9) 1212 (mo) +(Q9: [ = 9)s f = 9) L2122 (mo)

QU =9, f), f — 91212 (mo)-
We write A = A+ B so that we obtain
A(f =9 f =P r2r2(me) < —K|f - g”%%(H%y*(mo)) +OIf = 91212 (mo)-
Moreover, Lemma B0} (ii) together with (B3] gives
(QUg, f = 9), [ — 9 r2r2(mo) < CllgllmzL2 (mo) If — g||%g(H;*(mo)) + Cllgll a2 moy | f = 9117212 (1m)

whence, integrating in time,
t
/ (Qgrs fr —97)s fr — gT>L§L%(m0) dr
0

t
<C sup lgslmzszon [ 1 = 973
T€[0,t] 0 ’

t 1/2 t
+C (/0 ||gr||%rg(Hg(mo))) < sup || fr = gl 72 22 (mo) +/o I fr = gr||%ng(mo)> :

T€[0,t]
Thanks to Lemma B5(i) it follows
QU = 9. ) f — 9 r2r2(mo) < CNf = 9llrzr2(mo) 1 f B2 .. (mo)) |f = 9llL2(m1 (o))

U kK

which integrating in time gives

t
/O (QUfr = grs f2), fr — gT>L§L%(mo) dr

t
<C ( sup || fr — gr||L§L3(mo)> / I fellm2mr . (moy) 1fr = grll L2 mo))
7€[0,1] 0

t 1/2 ¢
<C (/ Lfr 2 o **(mo))) ( sup || fr = g+ 172 12 (mo) +/ 1 fr = 97 ll72 o *(mo))> :
0 ’ T€[0,t] 0 ’

and observe that || fl| 2 (g2 (m2 " S fllzvy < Ceo. Therefore

e (Mo
t
1= s + K [ 187 = 5rlyms oy

t t
< C/O I fr— %H%ng(mo) dr + 060/0 lfr — g‘r”%i(H})’*(mo)) dr

t
+ Ceo ( sup | fr = 97172 22 (o) +/ £ = 97172 (am *(mo))dT> :
T€[0,t] 0 ’
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and when €y > 0 is small enough we conclude the proof of uniqueness by Gronwall’s inequality.
|

3.4.3. Convergence to equilibrium in the close-to-equilibrium setting.

Theorem 3.11. There is a positive constant €1 < €g so that, if || follx < €1, then the unique
global weak solution f to BAl) (constructed in Theorems and [ZI0) verifies an exponential
decay: for any Ao < A1 there exists C' > 0 such that

Vi>0, [f®)lx < Ce | follx,
where we recall that A1 > 0 is the optimal rate given by the semigroup decay in Theorem 21

Proof. From Theorem [B.9] we have

t
sup [l F®)II% + / 1 dr < Cé.
t>0 0

Using Proposition 3.7 we get, if ¢; > 0 is small enough so that —K 4 Ce; < —K/2, and for any
Ao < )\17

| =

1
5 1% < =l fll% — (K = Ce)llfI3

QU

t
K
< =Xllflix = S If15

and then we deduce an exponential convergence

vi>0,  [If®llx < e ifollx,
which implies
V=0, [If®)]x < Ce 2 | follx.
O
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