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CAUCHY PROBLEM AND EXPONENTIAL STABILITY FOR THE
INHOMOGENEOUS LANDAU EQUATION

KLEBER CARRAPATOSO, ISABELLE TRISTANI, AND KUNG-CHIEN WU

ABSTRACT. This work deals with the inhomogeneous Landau equation on the torus in the
cases of hard, maxwellian and moderately soft potentials. We first investigate the linearized
equation and we prove exponential decay estimates for the associated semigroup. We then
turn to the nonlinear equation and we use the linearized semigroup decay in order to construct
solutions in a close-to-equilibrium setting. Finally, we prove a exponential stability for such
a solution, with a rate as close as we want to the optimal rate given by the semigroup decay.
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1. INTRODUCTION

1.1. The model. In this paper, we investigate the Cauchy theory associated to the spatially
inhomogeneous Landau equation. This equation is a kinetic model in plasma physics that de-
scribes the evolution of the density function F' = F(¢,z,v) in the phase space of position and
velocities of the particles. In the torus, the equation is given by, for F' = F(t,x,v) > 0 with
t € RY, z € T® = R3/Z3 (that we assume without loss of generality to have volume one) and
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v € R3,

(1.1)

where the Landau operator @ is a bilinear operator that takes the form

{(’%F—i—v-VwF: Q(F, F)
Fli—o = o

(12) Q(G, F)(’U) = 81 /RS aij(v — ’U*) [G*[)JF — FajG*] d’U*,

and we use the convention of summation of repeated indices, and the derivatives are in the
velocity variable, i.e. 9; = 9,,. Hereafter we use the shorthand notations g. = g(v.), f = f(v),
0jg« = 0p,,9(vs), 05 f = 0y, f(v), etc.
The matrix a;; is symmetric semi-positive, depends on the interaction between particles and
is given by
ViUy

(13) oss0) = o7 (55 - 72,

We define, see [22], in 3-dimension the following quantities
bl(v) == 83‘&17‘ (1)) = -2 |U|V Vi,

1.4
(14) c(v) = dija;5(v) = =2(y+3) [v]” or c=8ndy if yv=-3.

We can rewrite the Landau operator (L2)) in the following way
(1.5) Q(G,F) = (ajj *y G)0i; F — (c %y G)F =V, - {(a*y, g)Vuf — (b*y g9) [}

We have the following classification: we call hard potentials if v € (0, 1], Maxwellian molecules
if v = 0, moderately soft potentials if v = [—2,0), very soft potentials if v € (—3,—2) and
Coulombian potential if v = —3. Hereafter we shall consider the cases of hard potentials,
Maxwellian molecules and moderately soft potentials, i.e. v € [—2,1].

The Landau equation conserves mass, momentum and energy. Indeed, at least formally, for
any test function ¢, we have

1 o F  0;F,
Q(F,F)pdv = —/ a;;(v — vy )FF, - (05 — 0jp4) dv duy,
s 2 Jus s FF
from which we deduce that
(1.6)
d
— Fcp(v)dxdvz/ [Q(F,F) —v-V,Flpw)drdv =0 for p(v)=1,v,v%.
dt Jpsxgs T3 xR3

Moreover, the Landau version of the Boltzmann H-theorem asserts that the entropy
H(F) ::/ F log F dx dv
T3 xR3

is non increasing. Indeed, at least formally, since a;; is nonnegative, we have the following
inequality for the entropy dissipation D(F):
d

dt

1 OF  OiF, o;F  0O;F,
:5/ aij(v—v*)FF* ( F - I3 ) (JT— },
T3 xR3 xR3 * *

It is known that the global equilibria of (1)) are global Maxwellian distributions that are
independent of time ¢ and position . We shall always consider initial data Fp verifying

/ Fydxdv =1, / Fovdrdv =0, / Fy [v|? d dv = 3,
T3 xR3 T3 xR3 T3 xR3

D(F) := — 2 H(F)

) dv dv,. dxz > 0.
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therefore we consider the Maxwellian equilibrium
p(v) = (2m) 22

with same mass, momentum and energy of the initial data.
We linearize the Landau equation around g with the perturbation

F=u+f.
The Landau equation (L)) for f = f(¢,z,v) takes the form
@) Wf=A+QU, [):=Lf—v-Vaf +Q(f, f)
' fit=0 = fo = Fo — p,

where A = £ — v - V, is the inhomogeneous linearized Landau operator and the homogeneous
linearized Landau operator L is given by

Lf:=Qu f)+Q(f n)
= (aij * p)0ij [ — (cx ) f + (aij * f)Oip — (c* f)p.

Through the paper we introduce the following notation

(1.8)

(1.9) ij(v) = az; * p, bi(v) =bixp, c(v)=cxp.

The conservation laws (L6l can then be rewritten as, for all ¢t > 0,

(1.10) / ft,z,v)p()dedv =0 for @) =1,v,|v|%
T3 xXR3

1.2. Notations. Through all the paper we shall consider function of two variables f = f(xz,v)
with € T3 and v € R3. Let m = m(v) be a positive Borel weight function and 1 < p,q < oco.
We define the space LILE(m) as the Lebesgue space associated to the norm, for f = f(x,v),

I azzemy = (1 F 1 Loemll o = [[llm fllze]l q

1/q
( / 15 d:c>
q/p
/T% (/R2 |f (2, v)|P m(v)? dv) dx

We also define the high-order Sobolev spaces W™4W5P(m), for n, £ € N:

£ oyt o (my = > 1050 fl L3 L2 () -
0<|a|<¢,0<[B|<n, [a|+]B|[<max(¢,n)

1/q

This definition reduces to the usual weighted Sobolev space Wf:g (m) when p = ¢ and £ = n,

and we recall the shorthand notation H¢ = W%2. In the case of negative Sobolev spaces we
define the space H, L(m) associated to the norm

||f||H;}J m) ||mf||H;£
v (m) ,

as well as HH,1(m), for n € N, associated with the norm

1/2
Il em sty = > 108 Flpamsimy = Do (/ﬂr% lm &7 1173, dﬂC)

0<|Bl<n 0<|Bl<n

We shall denote WP (m) = Wf:g (m) when considering spaces in the two variables (z,v). More-
over, we denote WP = W4P(T3) and it’s dual space is W, 0’ when considering only the
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z-variable. Similarly, W% (m) = W%P(R3;m) and it’s dual space is W, “*' (m) when consider-
ing only the v-variable.

Let X,Y be Banach spaces and consider a linear operator A : X — X. We shall denote
by Sa(t) = e* the semigroup generated by A. Moreover we denote by %(X,Y) the space of
bounded linear operators from X to Y and by || - [[5(x,y) its norm operator, with the usual
simplification B(X) = (X, X).

For simplicity of notations, hereafter, we denote (v) = (1 + |v[?)"/?; a ~ b means that there
exist constants ¢1,cy > 0 such that ¢1b < a < ¢ob; we abbreviate “ < C'” to “ <7, where C is
a positive constant depending only on fixed number.

1.3. Main and known results.

1.3.1. Cauchy theory and convergence to equilibrium. We develop a Cauchy theory of perturba-
tive solutions in “large” spaces for v € [—2,1]. We also deal with the problem of convergence to
equilibrium of the constructed solutions, we prove an exponential convergence to euqilibrium.
Let us now state our assumptions for the main result.

(HO) Assumptions for Theorem [T
e Hard potentials v € (0, 1] and Maxwellian molecules v = 0:
(i) Polynomial weight: m = (v)* with k >~ +7 +3/2.
(i1) Stretched exponential weight: m = e" )" with r > 0 and s € (0,2).
(iii) Exponential weight: m = ™" with r € (0,1/2).
e Moderately soft potentials v € [-2,0):
(i) Stretched exponential wieght: m = e"(*)" with r > 0, s € (=7, 2).
(ii) Exponential weight: m = e"™” with r € (0,1/2).

Through the paper, we shall use the notation ¢ = 0 when m = (v)* and ¢ = s when m = et

We define the space H3L2(m) (for m a polynomial or exponential weight) associated to the
norm

2 2 2
(1) 1701365 L2 (my = WPl 22 L2 () + IV 2Pl 22 12 (o)~ 1= 072
HIVEAIT2 12 oy —2a-0/2) + IVaR T2 12 (1 0y -50-0/2))
Moreover, we define in an similar way H> H} «(m) associated to

(112) ||h||H'fHU J(m) = ||h||L2H1 Lm) TV h||L2H1 m(v)—(1=0/2))
' =+ ||v2h||L2H1 m<v>,2(1,(,-/2)) + Hvih”igH%’*(m<y>*3(1*0/2))’

where hereafter we introduce the notation
(1.13)
HhH%IIl)’*(m = HhHLz(m w2y T 1PV hHL2 wyrzy T = Py) Ve, h||L2 0y (1+2)/2

with P, the projection onto v, namely P,& = (£ - o |)|v‘

Here are the main results on the fully nonlinear problem (7)) that we prove in what follows.
For simplicity denote X := H3L2(m) and Y := H3H,  (m) (see (LII) and (LI2)).

Theorem 1.1. Consider assumption (HO) with some weight function m. We assume that fq
satisfies (LIQ) and also that Fy = p+ fo > 0. There is a constant eg = eg(m) > 0 such that
if [|follx < eo, then there exists a unique global weak solution f to the Landau equation (L),
which satisfies, for some constant C' > 0,

£l 2o (10,00):x) + 1| L2((0,00);v) < Ceéo-
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Moreover, this solution verifies an exponential decay: for any 0 < Ao < A1 there exists C' > 0
such that

Vi >0, Hf(t)HX Sce_kzt ||f0||X7

where A\1 > 0 is the optimal rate given by the semigroup decay of the associated linearized
operator in Theorem [2.1l.

Let us comment our result and give an overview on the previous works on the Cauchy theory
for the inhomogeneous Landau equation. For general large data, we refer to the papers of
DiPerna-Lions [7] for global existence of the so-called renormalized solutions in the case of the
Boltzmann equation. This notion of solution have been extend to the Landau equation by
Alexandre-Villani [I] where they construct global renormalized solutions with a defect measure.
We also mention the work of Desvillettes-Villani [6] that proves the convergence to equilibrium
of a priori smooth solutions for both Boltzmann and Landau equations for general initial data.

In a close-to-equilibrium framework, Guo in [9] has developed a theory of perturbative so-
lutions in a space with a weight prescribed by the equilibrium of type Hﬁv(u’lﬂ), for any
N > 8, and for all cases v € [—3, 1], using an energy method. Later, for v € [—2,1], Mouhot-
Neumann [I5] improve this result to HX, (1 ~1/?), for any N > 4.

Let us underline the fact that Theorem [[LT] largely improves previous results on the Cauchy
theory associated to the Landau equation in a perturbative setting. Indeed, we considerably
have enlarged the space in which the Cauchy theory has been developed in two ways: the
weight of our space is much less restrictive (it can be a polynomial or stretched exponential
weight instead of the inverse Maxwellian equilibrium) and we also require less assumptions on
the derivatives, in particular no derivatives in the velocity variable.

Moreover, we also deal with the problem of the decay to equilibrium of the solutions that we
construct. This problem has been considered in several papers by Guo and Strain in [I7, 18]
first for Coulombian interactions (v = —3) for which they proved an almost exponential decay
and then, they have improved this result dealing with very soft potentials (y € [-3,—2)) and
proving a decay to equilibrium with a rate of type e " with p € (0,1). In the case v € [—2,1],
Yu [26] has proved an exponential decay in HY, (p=1/?), for any N > 8, and Mouhot-Neumann
[15] in Hﬁv(ufl/z), for any N > 4.

We here emphasize that our strategy to prove Theorem [[L1]is completely different from the
one of Guo in [9]. Indeed, he uses an energy method and his strategy is purely nonlinear, he
directly derives energy estimates for the nonlinear problem while the first step of our proof is
the study of the linearized equation and more precisely the study of its spectral properties.
Then, we go back to the nonlinear problem combining the new spectral estimates obtained on
the linearized equation with some bilinear estimates on the collision operator. Thanks to this
method, we are able to develop a Cauchy theory in a space which is much larger than the one
from the previous paper [9]. Moreover, we obtain the convergence of solutions towards the
equilibrium with an explicit exponential rate.

Since the study of the linearized equation is the cornerstone of the proof of our main result,
we here present the result that we obtain on it and briefly remind previous results.

1.3.2. The linearized equation. We remind the definition of the linearized operator at first order
around the equilibrium:

Af=Q(w f)+Q(f;p) —v-Vaf.

We study spectral properties of the linearized operator A in various weighted Sobolev spaces
WnPWEP. Let us state our main result on the linearized operator (see Theorem E] for a
precise statement), which widely generalizes previous results since we are able to deal with a
more general class of spaces.
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Theorem 1.2. Consider hypothesis (H1), (H2) or (H3) defined in Subsection[21] and a weight
function m. Let £ be one of the admissible spaces defined in [2.2]). Then, there exists explicit
constants A\1 > 0 and C > 0 such that

Vi>0, Vfe& [ISa(t)f —Moflle <Ce ™| f —Tof]e,
where Sy (t) is the semigroup associated to A and Iy the projector onto the null space of A by

(L14).

We first make a brief review on known results on spectral gap properties of the linearized
operator in the homogeneous £ defined in (L8). On the Hilbert space L2(u~'/?), a simple com-
putation gives that £ is self-adjoint and (Lh, h>L%(#71/2) < 0, which implies that the spectrum
of £ on L2(p~!) is included in R~. Moreover, the nullspace is given by

N(‘C) = Span{,uv UL, V24, U3 [, |v|2u}
We can now state the existing results on the spectral gap of £ on L?(p~/?). Summarising
results of Degond and Lemou [5], Guo [9], Baranger and Mouhot [2], Mouhot [13], Mouhot and
Strain [16] for all cases v € [—3, 1], we have: there is a constructive constant A\g > 0 (spectral
gap) such that

(114) <_‘Ch7 h>L%(H*1/2) > )\OHthi**(#*lﬂ)v Vhe N(L)J',
where the anisotropic norm || - || g1 (,-1/2) is defined by
a3z sy = IY 2 PVAL T o) + [(0) 22 = PR L 1709

+ H<v>(7+2)/2h||2L%(M,1/2),

where P, denotes the projection onto the v-direction, more precisely P,g = (ﬁ . g) ﬁ We
also have from [9] the reverse inequality, which implies a spectral gap for £ in L2(px~'/2) if and
only if v+2 > 0.

Let us now mention the works which have studied spectral properties of the full linearized
operator A = £ —v-V,. Mouhot and Neumann [I5] prove explicit coercivity estimates for hard
and moderately soft potentials (y € [~2,1]) in H. ,(u~'/?) for £ > 1, using the known spectral
estimate for £ in (LI4). It is worth mentioning that the third author has obtained in [24] an
exponential decay to equilibrium for the full linearized equation in L%v(;fl/ %) by a different

method, and the decay rate depends on the size of the domain. Let us summarize results that
we will use in the remainder of the paper in the following theorem.

Theorem 1.3 ([15]). Consider £ > 1 and E := Hﬁ?v(,ufl/z). Then, there exists a constructive
constant Ao > 0 (spectral gap) such that A satisfies on E:

(i) the spectrum L(A) C {z € C: Rez < =N} U {0};
(i1) the null space N(A) is given by

(1.15) N(A) = Span{p, v, vajt, v3pt, |v|* 1},
and the projection Iy onto N(A) by

3
Hof:(/ fdxdv)u-i—Z(/ Uifdiﬂd?))UiM
T3 xRR3 i—1 T3 xR3

> =3 (Jv[*=3)
*‘<Jﬁng3 g Jdrd 18 "

(iii) A is the generator of a strongly continuous semigroup Sy (t) that satisfies
(1.17) VE>0,¥f€E, [Sa(t)f —Toflp < e | f —of|e.

(1.16)
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To prove Theorem [[2] our strategy follows the one initiated by Mouhot in [I4] for the
homogeneous Boltzmann equation for hard potentials with cut-off. The latter theory has then
been developed and extend in an abstract setting by Gualdani, Mischler and Mouhot [§], and
Mischler and Mouhot [IT]. They have applied it to Fokker-Planck equations and the spatially
inhomogeneous Boltzmann equation for hard spheres. This strategy has also been used for the
homogeneous Landau equation for hard and moderately soft potentials by the first author in
[3, 4] and by the second author for the fractional Fokker-Planck equation and the homogeneous
Boltzmann equation for hard potentials without cut-off in [I9] 20] (see also [12] for related
works).

Let us describe in more details this strategy. We want to apply the abstract theorem of
enlargement of the space of semigorup decay from [8] [I1] to our linearized operator A. We shall
deduce the spectral/semigroup estimates of Theorem [[L2 on “large spaces” £ using the already
known spectral gap estimates for A on Hﬁyv(u_l/Q), for ¢ > 1, described in Theorem [[3]
Roughly speaking, to do that, we have to find a splitting of A into two operators A = A+ B
which satisfy some properties. The first part A has to be bounded, the second one B has to
have some dissipativity properties, and also the semigroup (ASg(t)) is required to have some
regularization properties.

We end this introduction by describing the organization of the paper. In Section[2we consider
the linearized equation and prove a precise version of Theorem In Section B] we come back
to the nonlinear equation and prove our main result Theorem [T.1]

Acknowledgements. The authors would like to thank Stéphane Mischler for his help and his
suggestions. The first author is supported by the Fondation Mathématique Jacques Hadamard.
The second author has been partially supported by the fellowship I’Oréal-UNESCO For Women
in Science. The third author is supported by the Ministry of Science and Technology (Taiwan)
under the grant 102-2115-M-017-004-MY2 and National Center for Theoretical Science.

2. THE LINEARIZED EQUATION

2.1. Functional spaces. Let us now make our assumptions on the different potentials v and
weight functions m = m(v):

(H1) Hard potentials v € (0,1]. For p € [1, o0] we consider the following cases
(i) Polynomial weight: let m = (v)* with k > v+ 2+ 3(1 — 1/p), and define the abscissa
Am,p = 00.
(i1) Stretched exponential weight: let m = """ with r > 0 and s € (0,2), and define the
abscissa A, 1= 00.
. . )2 s . '7
(iii) Bxponential weight: let m = ") with r € (0,1/2) and define the abscissa A, , =
0.

(H2) Maxwellian molecules v = 0. For p € [1, o] we consider the following cases
(i) Polynomial weight: let m = (v)* with k > v+ 2+ 3(1 — 1/p), and define the abscissa
Amp = 2[k = (v +3)(1 = 1/p)].
(i1) Stretched exponential weight: let m = """ with r > 0 and s € (0,2), and define the
abscissa A, 1= 00.
(i7i) Ezponential weight: let m = e with r € (0,1/2) and define the abscissa A, , =
0.

(H3) Moderately soft potentials v € [-2,0). For p € [1, o0] we consider the following cases
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(i) Stretched exponential weight for v € (—2,0): let m = ") with r > 0, s € (0,2) and
s+ > 0, and define the abscissa A, p := oo.

(ii) Exzponential weight for v € (—2,0): let m = ¢"")" with » € (0,1/2) and define the
abscissa Ay, p 1= 00.

(iii) Ezponential weight for v = —2: let m = ¢’ with » € (0,1/2), and define the
abscissa A, p i= 4r(1 — 2r).

Under these hypothesis, we shall use the following notation for the functional spaces:
(21) E = Hﬁ?v(u_1/2)7 [0 > 1,

in which space we already know that the linearized operator A has a spectral gap (Theorem [[3J),
and also, under hypotheses (H1), (H2) or (H3),

Ly ,(m), Vpe |l o0l;
(2.2) &=L WrPWhP(m), Vpe|l,2],neN*, LeN;
H'H;'(m), Vne€{-1}UN;

and for each space we define the associated abscissa Ag = A, 5.

The main result of this section, which is a precise version of Theorem [[L2] reads

Theorem 2.1. Consider hypothesis (H1), (H2) or (H3) with some weight m, and let £ be
one of the admissible spaces defined in (22]).

Then, for any A < Mg and any A1 < min{\g, A}, where we recall that N\g > 0 is the spectral
gap of A on E (see (LIT)), there is a constructive constant C > 0 such that the operator A
satisfies on &:

(i) (A) C {z € C| Rz < =M} U{0};
(i1) the null-space N(A) is given by (LIH) and the projection Iy onto N(A) by (LIG);
(iii) A is the generator of a strongly continuous semigroup Sa(t) that verifies

VE>0Yfe&, |[Sat)f —Toflle < Ce ™ |If —Iofle.

Remark 2.2. (1) Observe that:

e Cases (H1), (H2)-(ii)-(iii) or (H3)-(i)-(ii): we can recover the optimal estimate
A1 = Ag since Ay, p = +00.

e Case (H2)-(i): in this case we have m = (v)*, and we can recover the optimal estimate
A1 = Ag if k£ > 0 is large enough such that A, , =2k —6(1 — 1/p) > Ao. Otherwise, we
obtain A; < 2k —6(1 — 1/p).

e Case (H3)-(iii): in this case we have y = —2, m = ")’ and Am,p = 4r(1 — 2r) and
the condition 0 < r < 1/(2).

(2) This theorem also holds for other choices of space, namely for a space £ that is an

interpolation space of two admissible spaces &1 and &; in ([22]). We will use this on Section Bl to
study the nonlinear equation.

The proof of Theorem 21 uses the fact that the properties (i)-(ii)-(iii) with Ay = A¢ hold on
the small space E (Theorem [[3) and the strategy described in section
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2.2. Splitting of the linearized operator. We decompose the linearized Landau operator £
defined in (L8) as £ = Ay + By, where we define

(2.3) Aof = (aij * [)Oiju — (cx flp, — Bof = (aij * p)dij f — (cx p) f.
Consider a smooth positive function y € C2°(R2) such that 0 < x(v) < 1, x(v) =1 for |v| < 1
and x(v) = 0 for |v| > 2. For any R > 1 we define xg(v) := x(R™v) and in the sequel we shall
consider the function Mxg, for some constant M > 0.

Then, we make the final decomposition of the operator A as A = A+ B with

(2.4) A=Ay + Mxg, B:=By—v-V;— Mxg,
where M > 0 and R > 0 will be chosen later (see Lemma [2.0]).
2.3. Preliminaries. We have the following results concerning the matrix a;;(v).

Lemma 2.3. The following properties hold:

(a) The matriz a(v) has a simple eigenvalue ¢1(v) > 0 associated with the eigenvector v and a
double eigenvalue 2(v) > 0 associated with the eigenspace v-. Moreover, when |v| — 400
we have

(1(v) ~2(0)7  and  lo(v) ~ (V)72
(b) The function a;; is smooth, for any multi-index 3 € N3
|07 ai;(v)] < Cg o)+ V7!
and ) )
aij (V)65 = L (V) [Pog]” + L2 (0)[(1 — P)¢|
> co{ () |Pog* + ()T - Py)Ef? Y,
for some constant co > 0 and where P, is the projection on v, i.e. P,&; = ({ . ﬁ) L
(¢c) We have
ai;(v) = tr(a(v)) = £1(v) + 202(v) = 2/ [ — v T2 1 (vs) dos and bi(v) = —£1(v) v;.
R3
(d) If jv] > 1, we have
18%¢,(v)| < Ca(w)~ 1Al and 10245 (v)] < Cplv)1T2718,
Proof. We just give the proof of item (d) since (a) comes from [5 Propositions 2.3 and 2.4,

Corollary 2.5], (b) is [0, Lemma 3] and (c) is evident. For item (d), the estimate of |9°fa(v)]
directly comes from (a) and [9, Lemma 2]|. For ¢1(v), using (b) and (c),

Aubi(v) = 0y (= 1 (v)vy)
and hence
|0u01(v)llv] < C(lE(v)] +10ubi(v)]) < C(w)7
note that |v| > 1, we have
|0ut1(v)] < Clo]™H{v)” < o).
The high order estimate is similar and hence we omit the details. O

The following elementary lemma will be useful in the sequel (see [3| Lemma 2.5] and [
Lemma 2.3]).

Lemma 2.4. Let Jo(v) := [gs [0 — w|*p(w) dw, for 0 < o < 3. Then it holds:
(a) If 2 < o < 3, then Jo(v) < [v]|® + Cy|v]|*/? + C4, for some constant Cy > 0.
(b) If 0 < o < 2, then Jo(v) < |[v|* + Cy, for some constant Co, > 0.

(c) If =3 < e <0, then Jo(v) < C(v)* for some constant C' > 0.
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We define the function ¢, , as

(2.5) Gmp(V) = aij(v)a“Tm

- (p— D)y (0) 2O | o () 2 <1 - 1> 2(v),

m m m D
and also the function ¢,, , given by

N 2 _ Oiim 2\ _ o;m O;m
Pmp(v) = (— - 1) aij(v) ;@ + (2 - 5) i (v) ——

P m o m
2 - &-m 1
—b;(v - —1)¢(v),
+p1()m +(p ) ®)
and hereafter, in order to treat both weight functions at the same time, we remind the notation:
o =0 when m = (v)* and o = s when m = " ()",
We prove the following result concerning ¢, , and @, p.

Lemma 2.5. Consider (H1), (H2) or (H3), and let @, and @pmp be defined in 2H) and
1) respectively. Then we have:
o Assume o € [0,2):

(1) For all positive A < A\ p and 6 € (0, Ay p — A) we can choose M and R large enough such
that

(2.6)

Pm.p(v) = MxR(v) S(v)1+e.
Pm.p(v) = MxR(v) S(v)1+e.

(2) For all positive X < A p and 6 € (0, A, p — ) we can choose M and R large enough such
that

<A
<A

Pm.p(v) = MxR(v) + MOjxR(v) < =X = d(v)"".
Pm.p(v) = MxR(v) + MOjxR(v) < =X = d(v)"".
e Assume o = 2: The same conclusion as before holds for ¢p, ,. Moreover, concerning ©m,p, the

previous estimates also hold if if we restrict r € (0,1/(2p)) in assumptions (H1)-(iii), (H2)-
(iit), (H3)-(ii), and also modifying the value of the abscissa Ay, p = 4r(1 — 2rp) in (H3)-(iii).

Proof of LemmalZ3. Step 1. Polynomial weight. Consider m = (v)* under hypothesis (H1) or
(H2). On the one hand, we have

aim B . _9 &m 8jm 1.2, —4
m = kvl<v> ’ m m =k it <v> ,
O 53 k)= o k(k — 2y (o)~

Hence, from definitions (I4)-(T3) and Lemma 2.3 we obtain
81- ;1 _ _ _ _ _ _ _
Qi == = (0i55) k(v) 7 + (@ivivy) k(k = 2)(0) ™" = @i k(0) 7 + 2(v) k(k = 2)[o[*(v) ™7,
where we recall that the eigenvalue £1(v) > 0 is defined in Lemma[23l Moreover, arguing exactly
as above we obtain
(9im 8jm

aij — = =~ = (@ijviv;) K> (v) ™ = L1(v) K2 Jo* () ~*

and also, using the fact that b;(v) = —¢;(v)v; from Lemma 23]

3im

b = — 01 (v)v; kv (v) "2 = —1(v) k[v|* (v) 2.

On the other hand, from item (c¢) of Lemma [Z3] and definitions (4)-(T3) we obtain that
a;i(v) =01 (v) +205(v) and ¢(v) = —2(y + 3)J4(v),



CAUCHY PROBLEM AND STABILITY FOR THE LANDAU EQUATION 11

where J,, is defined in Lemma 2.4l It follows that
Pm.p(v) = 2kla(v) (0)(v) 72 + kb1 (v) (v) 7 + k(k — 2) £2(v) [v]*(v) ~*

T (p— DR £2(0) [of2{0) ~* — 26 £2(0) [0 () > + 207 + 3) (1 - }9) 1)

Since ¢1(v) ~ 2(v)?, la(v) ~ (V)72 and ¢1(v)[v]> ~ 203(v) when |v] — +oo thanks to
Lemma 23, and also J(v) ~ (v)? from Lemma 24 (since in this case we have v > 0), the
dominant terms in ([Z7) are the first, fifth and sixth ones, all of order (v)Y. Then we obtain
(2.8) lim sup @ p(v) < =2[k — (v +3)(1 = 1/p)] (v)7,

|[v] =400

(2.7)

and recall that k& > (v +3)(1 —1/p). Doing the same kind of computations, we obtain the same
asymptotic for @, p,

(2.9) lim sup @m p(v) < =2[k — (v +3)(1 = 1/p)}(v)”.

|[v] =400

Step 2. Stretched exponential weight. We consider now m = exp(r(v)®) satisfying (H1), (H2)
or (H3). In this case we have

0i 0;m 0
L rsvi(v)* 2, imo;m._ 125200, (1) 254,
m m m
diym _ s—25 o s —4 2.2 \25—4
=rs(v)* =0 + rs(s — 2)v;v(V)° T + s vv;(v) .
m

Then we obtain

Om,p(v) = 2rs Lo (v) (W) ™2 4+ rs by (v) (V) T2 + rs(s — 2) L1 (v)|v]* (V)54
2.10
(210 + pr2s? £1(v)|v* (0) 2™ = 2rs £, (V) || (V)57 + 2(y + 3) <1 - %) Jy(v)

In the case 0 < s < 2, arguing as in step 1, the dominant terms in (ZI0) when |v| — 400 are
the first and fiftth one, both of order (v)7**. Then we obtain

(2.11) lim sup @, ,(v) < —2rs{v)*t7,
|[v| =400
and recall that s +~ > 0. In the same way we obtain
(2.12) lim sup @y, p(v) < —2rs(v)7Fe.
|[v| =400
In the case s = 2, the dominant terms in (ZI0) when |v| — 400 are the first, fourth and fifth
ones, all of order (v)7+2. Hence we get
(2.13) lim sup @y, p(v) < —dr(1 — 2pr)(v)7+2.
|[v| =400
However, a similar computation gives
(2.14) lim sup @G p(v) < —4r(1 — 2r)(v)7 12,
|[v] =400
which is better than the asymptotic of ¢, . Thus we need the condition r < 1/2 for @, ,
(which is better than the condition r < 1/(2p) for ¢, p).

Step 3. Conclusion. Finally, thanks to the asymptotic behaviour in (28], ZI1) and 2I3), for
any A < A, p we can choose M and R large enough such that ¢, ,(v) —Mxg(v) < —A—05(v)7*
for some 0 > 0 small enough, which gives us point (1) of the lemma.

For the point (2) we use 9;xr(v) = R7'9;x(v/R) and write

C
Omp(V) = Mxr(v) + MIjxr(V) < Pmp(v) — Mxgr(v) + Mﬁx 1r<|oj<2r =: P(v).
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We fix some \ € (), Am.p). First we choose Ry large enough such that, for all |v] > Ry, we have
Pmp(V) +8()7FT < =X
for some ¢ > 0 small enough, which implies that, for any |v| > 2Ry,
O(v) + 5(V)7T7 = (V) + 5(V)TTT < =N
Then we choose M > 0 large enough such that, for all [v] < Ry,
B(v) +6(0)" = Pmp(v) +6(v)"F7 — Mxp, (v) < —A.

Finally, we choose R > R; large enough such that, for any R < |v| < 2R,

B(0) + 50 < o p(v) + D)+ M < R MEX <
and we easily observe that now for Ry < |[v| < R we have

O (v) + 6()17 = (V) + V)T — Mxp(v) < A= M < =),

which concludes the proof for ¢,, ,. Concerning @, ,, in the same way, inequalities (2.9), [212)
and ([2I4) yield the result. O

2.4. Hypodissipativity. In this subsection we prove hypodissipativity properties for the op-
erator B on the admissible spaces £ defined in ([22]).

Lemma 2.6. Consider hypothesis (H1), (H2) or (H3) and let p € [1,+00]. Then, for any
A < Am,p, we can choose M > 0 and R > 0 large enough such that the operator (B + \) is
dissipative in LY (m), in the sense that

VE>0, [ISs(t)]lar,my < Ce .
Proof of Lemma[Z8. Let us denote ®'(z) = |2|P~sign(z) and consider the equation
Of=Bf=Bof —v-Vaf = Mxrf.
For all p € [1,4+00), we have
1d
s oy = [ B0 ()

From (Z3) and (L), last integral is equal to
/dij (v)0i; f(z,v)®'(f)m? — /E(U)f(ac, 0)®' (f)m?

= [oeVar@o@ (Pt~ [ M) @o)@' (fme
=Ty +Tr +T5+ Ty
The term T3 vanishes thanks to its divergence structure and terms 75 and T} are easily computed,
giving
7= [cwlfopm ad Ti=- [ Mxa@)f (o).
Let us compute then the term 7. Using that 9;; f®'(f) = p~'0;;(|fP) — (p — 1)0: fO; f| P2
we obtain

T = %/@ij(v)@jﬂﬂp)m’)— (p— 1)/dij(v)8if6jf|f|f7‘2mp.
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Performing two integrations by parts on the first integral of T} it yields
G oy = [ BV 2 =~ =1) [ ass)dis0,5 117
+ [ {onsle) = Mxa(@)} 7P,

where @, ,, is defined in ([23]). We can also get, by a similar computation,
JEn@m =—p=1) [ a@am o) | fr-Emr?
+ [ (Bmae) = Mxao)} |7

Finally, thanks to Lemma [2.3] for any A < A, , we can choose M and R large enough such
that @, p(v) — Mxgr(v) < =X+ §(v)7T7. Tt follows that the operator B + X is dissipative in
L% ,(m), more precisely, for all f € L% (m), we have

(2.15) IS8 fllLe ,omy < €N llLe ,om)-
Indeed we obtain

My < —calp = 1) [P IPVLTP + @7 = PVSRY P 0

Jyto
- )\”flizl)/l)(m) — [ {v)™ fHI[),P(m)'

(2.16)

en)

Wy < —alp = 1) L IRT P + @71 = PV P

yto
— MWy = 1) FUE

from which 2I5)) follows for any p € [1,00). For p = 0o, let g = mf, it is easy to check that ¢
satisfies the equation

_ _ oym ~
Og +v-Vaug = a;j(v)0ijg — 2a;; (v)ﬁajg + P, (V)g — MxR(V)g
by the standard maximum principle argument (for example, see [25]), we have

IS5t fllzee, (my < € fllLes, (m)-
This completes the proof of the lemma. O
Lemma 2.7. Consider hypothesis (H1), (H2) or (H3), ¢ € N and n € N*. Then, for any

A < A1, we can choose M > 0 and R > 0 large enough such that the operator B + X is
hypo-dissipative in W W, (m), in the sense that

Vit >0, ||SB(t)||{%,(W;,1Wf,l(m)) < Ce M.
Proof of Lemma[2.7 Consider the equation
Of=Bf =Bof —v-Vof = Mxr/f.

Remind that Byf = Q(u, f) and remark that a-derivatives commute with the operator 5, thus
for any multi-index o, 8 € N3, we have

0507 (Bf) = 9 (B f)

and

09Bof =05Q(u )= Y Cayan Q05 11,05 f)

altas=«a
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and, writing v - V. f = 0,04, f,
0;Bf =Bojf + > Coan,aa { Q7 11,057 ) — (07 v1) 0z, (952 f) — M (95" xr) (052 f) }
artas=a,|la|>1
finally
03 0.Bf = B(939; )
+ > Cornax{ QO 1,05207 f) — (951 0i)0y, (05207 ) — M(95" xr) (05205 f) }

artas=a,|la|=1

+ > Car,a {1 QO3 11, 05207 f) — M (9 xR) (95207 1)}

o tas=a,|og|>2

We shall treat in full details the case £ = n = 1, the others £,n > 2 being treated in the same
way.

Case { =n =1 : Step 1. Deriwatives in x. First, using the computation (2.1 for p = 1, we
have

(2.18) SNzt om = [ Goma(0) = Mxa)} |7 m.

As explained before, the z-derivatives commute with the operator B, so for any multi-index
B € N? we get from ([ZI6]) that

d
(2.19) 102l o = [ £oma(w) = Mxate)HoLslm.

Step 2. Derivatives in v. We now consider the derivatives in v. For any a € N? with |a| = 1,
we compute the evolution of v-derivatives:

(05 f) = B(0, f) + Q(IFp, [) — (05 vi)0u, f — M (I xR)S-
From the previous equation we deduce that
[ 1805 + @@z, 1) ~ (05000, = MG xr) Ysign(@5 ym
=Ty +To+T35+Ty+ T,

108 1l o
where
7y = [ B0 1) sign(@; £ m
7, = [(@5a5) 0,1 sign(d £) m
7=~ [(@050) fsign@; f)ym
7, = [ (05000, fsign(@; £y m =0

T = [ M@xw)fsign(0 f)m.
Again using the computation (2I6) of Lemma for p = 1, we have

T — / {@m(v) — Mxr(v)}|82f|m.

Concerning T, we use the following fact on the derivative of xg:

v

0y'x (E)’ < %1R5\U|S2R,

1
95 xr(0)] = -



CAUCHY PROBLEM AND STABILITY FOR THE LANDAU EQUATION 15

which implies that
C
Ts < ME”]-RSMSQR flley ,om)-
Performing integration by parts, we get

T2 + T3 = — /83&@' &f 3jm s1gn(83‘f) + /8363 @mf&gn((?g‘f) = A =+ B

When m is a polynomial weight m = (v)¥, we can easily estimate Ty + T3, thanks to another
integration by parts, by

T+ T = /{(335ij) Bigm + 2(950;) dym} fsign(0g f) S () fllLs ,m)s
where we have used [0%a;;| < C{v)7T1, 10%b;| < (v)7, |0;m| < C{v)~tm and |9;;m| < C(v)~2m.

We now investigate the case of (stretched) exponential weight m = e™(")" . First, we can easily

estimate the term B, since 9;m = Cv;{v)°~?m, as

B S flley -

For the other term, integrating by parts again (first with respect to the 05-derivative then to
the 0;-derivative), gives us

0ij — 0
A== [ a2 0,2 iz o+ [ aiy0108m) 0, sign(oz ).
m m
and we investigate the last term in the right-hand side. Recall that

ai;6i&5 = (1(v)|Po€]* 4 L2 (v)|(I — P,)EP,

we decompose 0,;f = P,0;f + (I — P,)90;f and similarly for 9;(05m), then a tedious but
straightforward computation yields

/ i 0:(0%m) 0, f sign(92 f)

= / {Tsﬁl(v)<v>sf2 +rs(s —2) (v)|v|2<v>574 + T282£1(1})|1}|2<1}>2574} P05 f sign(05 f)m

+ / rsla(v) (v)*~2 (I — P,)92 f sign(6% f) m.

8]'777,
m

Recall that ¢y, 1(v) = @i; ai;'lm + 2b; (see eq. (Z3))), hence we obtain

T+ A< / (b () — Mxr(v)} |05 f|m

with
a;m

Y (v) == bj :n + 7502 (v) (V) 7% + rsly (v){v)* 2

+75(s — 2)01(v)|v)? (0)* ™ 4 2521 (v)|v]* (v) 254
Thanks to the asymptotic behaviour of ¢;(v) and ¢3(v) in Lemma and arguing as in
Lemma [Z5], we obtain first that

lim sup ¥y, 1 (v) < —rs{v)?™* if 0 < s <2;
|[v| =400

limsup ¢, 1(v) < =2r(1 —4r), if s =2;

|[v| =400

(2.20)

and then for any positive A < A1 and § € (0, A1 — A) we can choose M, R large enough such
that ¥, 1(v) — Mxgr(v) < =X —d6(v)717,
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Putting together all the previous estimates of this step, and denoting ¢ (v) = ¢, 1(v) when
m = (v)* and ¢ (v) = Y1 (v) when m = €™} we obtain
(2.21)

d _ M
GO o < [(670) = Mxn@} 103 51m + [{C)7** 7 + € dncpcant flm

Step 8. Conclusion. Consider the standard norm on W} (m)
I lwriomy = IF 2y o) + IV fllzy om) + 1V flly  om)-
Gathering the previous estimates ([2.I8]), (219) and 221]), we finally obtain

o C
I g < [ Goma®) + O 4 M Ftngpizan - My fim

4 / (oma(v) = Mxa}|Vaf|m + / (67 (v) — Myg}|Vof|m

Remark that, since o € [0, 2], the function ¢2, (v) := @ 1(v) + C(v)777~1 has the same asymp-
totic behaviour of ¢y, 1(v) (see eq. (2Z8)) and eq. (ZI1])). Then, arguing as in Lemma 23] (and
(220)), for any positive A < Ap,1 and § € (0, A1 — A), one may find M > 0 and R > 0 large
enough such that
C
#m1 (V) + O+ M plpaiuicon = Mxr < =A=6(0)7*7,
Pm1(v) = Mxr < =X = 0(v)""7,
97 (v) = Mxpr < =X —§(v)*7.
This implies that

d
g waimy < =AM llwazony = S It g gyrey:
which concludes the proof in the case ¢ = 1.

Case / > 2 : The higher order derivatives are treated in the same way, so we omit the proof. [J

Lemma 2.8. Consider hypothesis (H1), (H2) or (H3), { € N and n € N*. Then, for any
A < A2, we can choose M > 0 and R > 0 large enough such that the operator B + X is
hypo-dissipative in HIH'(m), in the sense that

VE>0, [IS5(t)]lmern mem)) < Ce ™

Proof of LemmalZ8. Let us consider the equation 0;f = Bf = Bof — Mxrf. Again we treat
the case £ =1 in full details, the others £ > 2 being the same.

Case { =n =1: Step 1. L* estimate. The L2  (m) estimate is a special case of Lemma 2]
from which we have

- S oy < —c0 [CRPIPT LS + (02| = PV
+ / {oma(v) — Mxr(v)}f2m?

Step 2. x-derivatives. Recall that the z-derivatives commute with the equation, so for any
B € N? we have

GIOZTIEs o < —co [P IPVLGZOR + o) ¥2I(T = PIVL@2N)P)
/ {oma(v) — Mxa(0)}2f12 m?

(2.23) 2 dt
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Step 3. v-derivatives. Let o € N* with |a| = 1. We recall the equation satisfied by 92 f

010y f = B(9y f) + Q07 [) = (95vi) O, f — M(OxR) S

From last equation we deduce that

where

1d
S 02 P oy = / (B3 F) + QO ) — (0%0:) Ou, f — M(OxR) [} 0% f m?

=T+ T2+ T35+ T4+ T5,
T, = / B(02f) 02 f m?
T2 = /(63&@‘) &Jf 83‘]‘ m2
Ty = - / (0%¢) f 05 f m®
7= - [ (0w 0n. 105 f

7; = [ MO0

We have from Lemma

(2.24)

Ty < o [( 1P @D + @I~ P05 1) m?

N / {om,2(v) = Mxr(v)}05 fI> m?.

The terms T3, Ty and T5 are easy to estimate: for any € > 0 we get

(2.25)

(2.26)

Ty < €| F I oy + CEI T3 -

c . c
Ts < M4 l1r<joi<2r 0, Flzz my + M |1r<ipi<2r FIZz omy»

and using Lemma 23} (b),

(2.27)

T<C / ()L |f] 18 f| m?

A1 g st
< Cll(v) ™ 05 flZz om) +C||(v) ™2 Flzz m)-

Let us now deal with the part Ts. Performing integrations by parts, we have:

TQ = /(83&ij)8ijf83fm2

. / (05F;) 0,1 02 fm? — / (0%a1;) 9,1 002 fym® / (0%a1;) 0 f 02 f Dy
=: — (T + Too + To3) .

We first deal with T5;. Using Lemma [2.3] we have

(2.28)

Ty < C / (o) 10 1 0 £ m?

< C||<’U>%vvf||%§’v(m) = C||<U>%va’uf||%§,v(m) + C||<’U>%(I - Pv)vvf”%g,v(m)

17
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As far as Tho is concerned, the integration by parts gives,
Ty = —/53[(1 —x)m?] ai; 0;f 0,07 f) — /(1 —x)m? @i 0;(9; f) 0:(0; f)
- /(1 —xX)m® a;; 0, f 0:(9505 f) — /(53%) 9;f 0:(93 ) xm?
=: — (T221 + Toon + TV223> + T290.

Let us estimate Thao + Thos, using integration by parts,
Taos + T
= [ = 0m [60) PVAGR02) - PVAS 4+ a(0) (= POVL(03050) - (I = PV, J]
4 [ = 0m [60) P03 ) PVLOES) + £a(0) (1 = PIVu(03) (1 = P)T(05 )
= T — [(O0,0) PV (021) - Vs (1=
- [@2) (1 = PV ) (= PIVuf (1= e

- [ 18w - )] 1= Pozrn oz -y

_ / [61(v) = La(v)] (I — P,)V,05 f ! i;;g (1 —x)m?

—=: —Tog1 + Tog1 + - + Thos .

This means Thy = Thog + T221 + ... + Thoyg. In order to estimate Thy, we need to estimate Too;
fori =0,...,4 (lemma plays an important role in those estimates). First of all, we obtain

Tooo < C (T f IV (05 )] |x|m?
[v]<2

< ell(0)2 Vo35 HIZz ,omy + CEN@EVuflIZ2 oy

For Tho1, we have

Too < C WPV f PV (05 f)| m?

lv[=1

< 5||<U>%vav(33f)||%gm(m) +CE)| <U>%vaUfH%§yu(m) :

For Thoo, we have

Taa<C [ 070 = PO = PIVu(0; Pl
v|[>1

L2 o E2S]
< ell () F (T = PVo@5 D32y + CEONW) T (T = PV my-

For Tha3, we obtain
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Finally, for T224 5

Tooa <C ()™ + W) )V O NI = Po) Vo f|m?

lv[>1
o P +2
< W) V@D iy + CEOI®)F (= PIVuS 22 ()

This completes the estimate of Thy that we write, gathering previous bounds, as

ol o 42 fe”
Ta < el ()2 PV (05 )z, (m) +€ll{v) > (I = P)Vu (05 f)llzz , (m)

(2.29) 5 Y42
C(E)H<U>§vavf||llﬁm(m) + C(E)H<U>T (I - Pv)vvf”Lﬁm(m)-

Concerning Tb3, we apply the same process as Tho: we first write
Tz = — /(83&ij)3jf dym?* xg
- /a:}zl(v) P,Nym? - P,V f (1—x) 05 f
- / O20s(v) (I = P,)Vym?® - (I = PV, f (1 —x) 93 f

- / [1(v) = L2(v)] (I — P,)0sm? Y 'lvvlg’f (1-x)oyf

v Vym?

- [ 16 - ) (- Ryoss T -0 02
=:Thso + ... + T34.

Note that (I — P,)V,m? = 0, one can easily get Thzs = Th33 = 0. Let us estimate the other
terms, by Lemma 23] we have

Toso < C /| R AN
v|<2
< e ()20 F2s oy + NIVl gy
also

Ty <C [ R0
[v|>1

~Y+20—4

< C(£)||<’U>%P’UV'Uf”%§w(m) +ell(w) = 001z om);

and

Toss < C/| ) ()72 + W) ) [ = Py) Vo f] 105 f| m?
v|>

y+20—-2

vi2 o
< CEI) (= P)Vufl3a oy +el @) F 7012 -

Gathering previous inequalities we complete the estimate of Thg

a2

o—2
Tps < 5||<U>%83f||%gyu(m) +el(o) = 05 flz2 m)

x yt2
+ C(E)H <U> 2 vavf”%g,v(m) + C(E)H <U> 2 (I - Pv)vvf”%g,v(m)

(2.30)
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Putting together (224) to ([Z30) we get, using the fact that 1 + (v)7 4 (v)7+2972 < (p)7+,
231

||<9af||L2

S s £ ~ler=2) [ {EPIPTL O PP + (02T = PVA(02) P} m?

+ [ {omato) + e +Cloy~ 4 M7

+C(e) / {() PV f? + ()72 = P,)Vof|*} m?

Lr<pol<2r — Mxr(v)} 05 fI? m?

_ C o
+ / {C<U>’Y b M§1R§|v\g2R} |fI?m® + C(e)]|0g f”%%v(m)

Step 4. Conclusion in the case £ =n = 1. We now introduce the following norm on H!H}!(m)
||f||%1(m) = ||f||%§’v(m) + ||wa||%§,v(m) +n ||V’Uf||%§,v(m)7

which is equivalent to the standard H, ,(m)-norm for any n > 0. Gathering estimates ([Z22),
223) and 23] of previous steps, we obtain

31 sy < (0 +0CE) [ {0 1P 4+ (o) 211 = PYTus P
+/{1/)21(”)+77M%1RSUISZR_MXR(U)}f2m2
oo X [ {7 IRT@LNE 7~ ROV

[B]=1
+/{¢in(v) — Mxgr(0)} |V, f[?m?

tn(-cn+e) 3 [{@PIPVLGNR + @I - P)V.@2 P

la|=1
C
77/ {1/),2”(”) + ME]-RS\v|§2R - MXR(U)} Vo f P m?

where we have defined
m(v) = Pm2(v) + Cnlo) ™1,
m (V) 1= Pm2(v) +1C(e),
U (V) = Pm2(v) +e(0) 777+ Co)7 ™
Let us fix any A < Ap 2. We first choose € > 0 small enough so that —cp + ¢ < 0 and
—Am,2 +¢e < =X Then we choose n > 0 small enough such that —cy + nC(e) < 0 and

—Am.2 +nC(g) < —\. Hence the functions 1!, have the same asymptotic behaviour than ,, o

(see (28), (ZII) and 2I3)). Then, using Lemma 2 for any A < Ay, 2 and § € (0, Ay 2 — A),
one may find M > 0 and R > 0 large enough such that

IN

- 5<v>’)’+0'7

A
X = 6wyt
A

C
Y0 (v) + nMﬁlewng — Mxr(v)
P, (v) = Mxg(v)

C
Yo, (v) + Mﬁle\wng — Mxr(v)

I /\

IN

— §{v)7te.
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This implies
1y < M1y = S0 s
—K{H< > PV f13amy + 10) 5 (= PV f 32}
= K{ ) PoTu(Ta (o) + 100 F (T = PV (T ) (o)}

— K{0)F PV (T ) 3oy + 40D (0 = PV oy}
and then
1S5() fll e my < Ce™ (| Fllar, (m)-
This concludes the proof of the hypodissipativity of B+ X in H ,(m).

Case ¢ > 2 : The higher order derivatives are treated in the same way, introducing the (equiv-
alent) norm on H*HE(m)

12z oy = 1y + > 0110507 F113m-
1<]e|+[B|<max(£,n);|o| <L]B|<n
and choosing 7 > 0 small enough as in the case £ = 1. O

Lemma 2.9. Consider hypothesis (H1), (H2) or (H3), £ € N and n € N*, and p € [1,2].
Then, for any A < A, p, we can choose M > 0 and R > 0 large enough such that the operator
B+ X\ is hypo-dissipative in WPWEP(m), in the sense that

Vi Z 07 HSB( )H%(W" PW@ P(m)) < Cei)\t-

Proof. Tt is a consequence of Lemmas 2.7 and 2.8, together with the Riesz-Thorin interpolation
theorem. 0

Lemma 2.10. Consider hypothesis (H1), (H2) or (H3). Then, for any A < Am,2, we can
choose M and R large enough such that the operator B + X is hypo-dissipative in H'H,*(m),
for any n € {—=1}UN, in the sense that

Vi >0, 1S5 srrm st my) < Ce ™
Proof. We consider the equation 0, f = Bf and split the proof into five steps.

Step 1. We first make the change of unknown h := fm and define the corresponding operator
Bnh :=m B(m~h) which writes:

Binh = m (aij * 1)0;;(m~'h) — (c* p)h —v-Vih — M xgrh

= (m0i;(m~ Y (aij * p) — c* u— M xRg)h
+2m 0;(m ™ ) (aij * p)dih — v - Vih + (aij * 1)di;h.

We hence define B}, the (formal) adjoint operator of B,,, by

0; o;m -0
(2.32) B;kn(b = ( ;m MXR) o+ 2 (bi + #ma”) 0ip+v-Vyp+ dijaij¢.

Consequently, we have the estimate

fire- | (a oy
—i—/(aija;lm-ybi) ai(¢2)+/v'vm¢¢+/dij8ij¢¢

=Ty +Tr+T5+ Ty
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Performing one integration by parts, we obtain

0ij oim 0, — 0j _
T2:/(_aij ;rbm—i-dij?mj—m—bj ]m—C) 9.

m m

The term T3 gives no contribution thanks to its divergence structure in z. And we deal with T}
using that 9;;¢ ¢ = 30;;(¢?) — 9;¢0;¢, which implies

T, =-— /az—jaisbajw % /6¢2.
Finally, we obtain that
/ BLod=— / 4:;0:00; + / (s — Mxr} &
= ‘CO/{@WIPquﬁI2 + ()21 = PV} + /{%,z — Mxgr} ¢*.

where we recall that @, 2 is defined in ([2.6) and satisfies Lemma 2.5

Thanks to Lemma [2.5] for any positive A < A, 2 and § € (0, Ay 2 — A), we can thus find M, R
large enough such that @, 2(v) — Mxgr < =X — §{v)?"7. We can conclude that

(2.33)

Y+o

/ (B:,0) 6 < —N|l122 — 5] (v) 5 |12

x y+2
— o {[1(0)2 P, Vo2 oy + 10055 = PV a(n } -

Step 2. Since V, commute with the operator B}, we can immediately obtain that if ¢ is solution
of
(2.34) ¢ = B9,

we have

| =

IV26l2s , < —co [ (1 IPVLT20)P + 07210 - PVo(Vo0)P)

N| =
U

t
n / (Bma(v) — Mxa(v)) [Vad|

Step 3. Now, we introduce the notation ¢, := 3¢ where a € N3 and |a| = 1. Let us write the
equation satisfied by ¢, when ¢ is a solution of (Z34]), we have

ajm — MXR} o+ 283 {C_Lijajwm + l_)l} 81(25

m

0ij -
8t¢a - Brnﬁba + 83 {C_Lij]Tm + 2bj
+ 00 Voo + 0700550,
which implies that

1d 2 « o 7”(’9ijm 7‘6jm
§E/|¢a| _/(Bm¢a)¢0t+/ay {a’l] m +2b] m —MXR ¢ ¢ Pa
+2/63 {aijajm

m

+ / (05 @i;)(0ij}) da
= T1+T2+T3+T4+T5.

N bz} 0:6 60+ / (0%0:) (D0, 6) b

Using the step 1 of the proof, we have:

T < —CO/ (<U>V|vav¢a|2 + <U>V+2|(I - Pv)vv¢a|2) + /(@mﬂ(v) - MXR) ¢(21
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Concerning T5, we have

1 a ) - &m — 8m o

—1/3333 {aijaijm +2Bjajm - MXR} ¢°

2 m m

IN

C
/ (C (v)7Ho2 Mﬁ1R<|v<R2) ¢°,

where we have used the fact that a;; a"r;m + 2b; ajnm ~ C{v)7T7. Since d;m = Cv;(v)7*m we
have
3jm

oy (ELZ-J-T) = 9 (a;; Cvj(v)7™?) = COY (viﬁl(v)<v>"72)
which is of order (v)7*9~2, We hence deduce that also in this case, we have
7.5 [( + @IV
Then, for any € > 0, we have
ri<e [0+ c [lozor,

Finally, using the same method as in the proof of Lemma 2.8 (for the term T3 in that lemma),
we obtain

Ty < [ (0P IRVudal + (02| = P)Vu0a?)
+CE) [ (P IPT0 + (01 = PIT.6).
Step 4. We define the following norm on H*
912, = 16l3; , + V2l +nIVubl

which is equivalent to the standard H'-norm for any n > 0, and we compute its evolution when
¢ is a solution of ([2Z.34]). Gathering estimates of previous steps it follows

1d

3ol < et nCE) +C) [ () IRT0R + 07| = P)T.0f)

+ [ (Bmalo) + Ot M St ncpcan — Mxal)) &

— o [ (P IPTATOP + (02U - RIVL(T.0))

4 [ (mal) +nC(E) ~ Mxa(o) V.01

+n(=c0+2C) [ (P IPTLV0)P + (02| = P)Tu(V.0)P)

tn / (Bma(v) + Cz — Myp(v)) [Vuo|?.
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We conclude as in Lemma 28 we first choose € > 0 small enough and then 7 > 0 small enough,
so that

1d ) - c
3510 < [ (8na) + Coy™ 2 4 M S nccan — Mxn()

+ / (Fma(v) — M) [Vaof?

41 [ @malv) + C= = Mxa(v) 9.6
We deduce that for any positive A < Ay, 2 and § € (0, A2 — A), one may find M and R such
that
e = S 1 SO
Step 5. We have proved that for any A < A\, 2,
I5e5 0l < C oy, V6 € HLye V20

The last inequality implies that for any h € H ! and any ¢ € H

(S8, (t)h, ¢) = (h, Sp;, (t)¢) < ||h||H;,}JHSB;(t)¢”H;,U < Ce*Atl\hl\H;;llsbl\H;,v
As a consequence, we obtain that
1S5, (hll -1 < Ce™ (|7 -2
and coming back to the operator B,
1S5 F =1 (my < CE N 1= o
Finally, using the following embeddings for any n € N,
HyLy(m) C HYH, (m) C HH ™ (m),

we deduce that the conclusion of Lemma [2Z10] holds by interpolation (with the results from
Lemma 2.])). O

2.5. Regularization. We now turn to the boundedness of A as well as regularization properties
of ASg(t). We recall the operator A defined in (Z4)

Af = Aof + Mxgrf = (ai; * [)Oijpn — (¢ flu+ Mxr/,
for M and R large enough chosen before. Thanks to the smooth cut-off function yg, for any

q € [1,+00], p > q and any weight function m under the hypotheses (H1)-(H2)-(H3), we easily
obtain

IMxRflLs 12y S N F gL om)-
Taking derivatives we get an analogous estimate, for any n,f € N,

HMXRf”ngquvQ(#—l/z) S Hf”wquwfvp(m)v
Arguing by duality we also have

”MXRf”H;H;l(;ﬁlﬂ) < ”f”H;H;l(m)-

Finally we obtain
% (L2,,(m), L2 ,(n™72)) , Vp e [1,00)
(2.35)  Mxnrel # (ngpwfvp(m), ngqwf*q(mm)) . Vpe[l,2], neN, LeN;

% (H;H;l(m),Hgﬂgl(ml/?)) ., ¥ne-1UN.
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We know obtain the boundedness of A.

Lemma 2.11. Consider (H1), (H2) or (H3) and a weight function m.

(i) For any p € [1,00], there holds

A B (L, m), L2, (i)
(i) For any p € [1,2] , n € N* and ¢ € N, there holds
A€ B (WErWEr (m), WErwWir (/) )
(iii) For alln € {—1} UN, there holds
A€ 2 (HH m). HYH o).

In particular A € B(E)NB(E) for any admissible space € in (22).

Proof. Thanks to (230 we just need to consider the operator Ag. We write Aof = (ai; *
)0 — (c* f)u and split the proof into several steps.

Step 1. Since vy € [—2, 1] we have |a;j(v —vs)| < (v)72(v,)7"2, which implies |(a;; * f)(v)| <
()2 £l L1 ((v)r+2)- Therefore, for any p € [1,00], we have
[(aij * £)0ipll e u-172y S L oyr+2ys
from which we can also easily deduce
1050 (aij = )0 pll ppu-1r2) S D 1105208 Fll s (oyr2)-
a1 <a

Integrating in the z-variable, we finally get
[ (aij * f)aij/‘”vv;lvafvp(ufl/% N ||f||W;‘*pr*1((v>'v+2)'

Step 2. Assume v € [0, 1]. In that case we have |c(v—v.)| < (v)7(v.)? and the same argument

as above gives
[|(c = f)ﬂ”wgmwfm(#—l/% < ||f||wg’PW{f’1(<v>w)-

Step 8. Assume 7 € [-2,0). We decompose ¢ = ¢y + c_ with ¢ = cl},j5q and ¢ = ¢l <.

For the non-singular term ¢y we easily get, for any p € [1, o0],
[(ex * Fullpru-1r2y S W Flles
whence
||(C+ * f)unwgvafvp(uflﬂ) S ”f”w;lvafvl'

We now investigate the singular term c_. For any p € [1,3/|7|) we get

e s Dl v = e D2 S [ | [ 0= 0 Y 100

</ If(v*)lp{ / |v—v*|7p1|v_v*g1u1/2<v>}
5 Hf”ig“»l,)'v)a

where we have used that |y|p < 3 (so that the integral in v is bounded) and Lemma 321 Taking
derivatives and integrating in x it follows

g
‘ 2 (v)

o Aallyporngussay S Ifllwzowes oy ¥P € [L3/17).
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Remark that by Holder’s inequality, for any ¢ € (3/(3 + ), o0] we have

1/q
o OIS [ o= ol wgar £ 5 ([ 100 Ui 15l S 1

which implies
(e Ppllpgu-1r2) S fllzg, Vo e[l
and similarly
[[(c— = f)#”wgmwjm(#—lﬂ) S ||f||vv;“PW5"?7 Vp € [L,00].

Observe that in particular the operator T'f = (c_x*f)u is a bounded operator from W1 W5 (m) —
WrAWEL (=1/2) and from W»CW5E®(m) — WCWEH*(u~1/2), thus by interpolation also
from W2PWEP(m) — WPPWEP(u=1/2) for any p € [1,00]. This together with estimates of
previous steps completes the proof of points (i) and (ii).

Step 4. We prove now (iii) by duality. We write ||(as; * f)ull gr-1(,-1/2) = ll(as *f),ul/QHHﬁ,
hence we investigate SUPg] 1 <1 [((aij * f)ut/2, ¢)|. For any 0 > v+ 2+ 3/2,

[{(aij * Hn'/2, 8)| = [{(0)° £, () " {ai; * (1/2)})]

and
(@i * 12 @) ()] < )2 |12 L2 (o)) 6]l 22
Therefore
()7 £, ()™ agg * (W 2ON] < 1) Fll o 1(0) ™ {ass * (1 20) |,
with

(o)~ {aij * (120} | S 1) {ais * (W 222 |+ IVo((0)™ ) as * (W 29)}s |
+ (o) g+ (Vo 26 + 12V, 0) Hiza |+ 10) " {ai * (W2 Vad)} 17 |
SO0 i 2 1y ooy 190, S 10N,
and then

[[(ai; * f)#||H;5(#71/2) S ||f||H;5((v>9)-
For the term (¢ * f)u we argue in a similar way as in the previous step. O

We turn now to regularization properties of the semigroup Sp. We follow a technique intro-
duced by Hérau [10] for Fokker-Plank equations (see also [23] Section A.21] and [I1]).

Lemma 2.12. Consider hypothesis (H1), (H2) or (H3) and let mo be some weight function
with v+ o > 0. Define

mo if v €10, 1]; mo if v € [0,1];
= I : = aly| :
W T me  ify€[-2,0). () Mmg if y € [-2,0).
Then there hold:
(1) From L? to H® for £ > 1:
vt e (0,1], ISBE) | (L2 (ma), e (mo)y) < Ct 32
(2) From L' to L?:
vt e (0,1], 1S8()[| (Lt (ma),L2(m1)) < Ct5.
(3) From L? to L*°:
vt e (0,1], 188() | (L2 (ma), Lo (m1)) < Ct5.
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(4) From H=! to L?:
vt (0,1],  [ISe®) w1 my) 2mey < C 2
Proof of LemmalZ12. We consider the equation &; f = Bf and split the proof into four steps.

Step 1: From L? to H®. We only prove the case £ = 1, the other cases being treated in the same
way. Let us define

F(t, f):= ||f||%2(m1) +agt ||V’Uf||%2(mo) + a2t (Vo f, Vo f) L2 (mg) + a3 t? HVIfH%Q(mD)'

We now choose «;, i = 1,2,3 such that 0 < ag < as < a3 <1 and a% < 2aqa3. Then, there
holds

2‘F(t7 f) Z a3 t3 Hvzvf”%?(mo)
Moreover, denoting f; = Sp(t)f, we have

d d 9 9 d 9
E]:(taft) = E"ft”Lz(ml) + a1 [[VofillLzgme) toat E”v’llft”Lz(mo)

d
+ 2(12 t <vwft7 vvft>L2(m0) + Qo t2 E<vmft7 vat>L2(m())
d
2 2 3 2
+ 305 IV fulLang) + 038 GV fillZano):
We need to compute

GV oDy = X [ 1025 (02.)+ @21) 03 (B1)} i

laf=1
Let us denote f, := 0% f and f, := 05 f to simplify and recall that
6?(Bf) = dijaijf;v - Efm — U vzfm - MXsza
and
aS(Bf) = dijaijfv - Efv —v- vzfv - MXRfv
+ (05 aij)0ij f — (0y€) f — fo — M(9yxR) [
Using the same computation as in Lemma 2.8 we obtain

/ (02(Bf) (00) + (02 F) 02 (Bf)} md = To + Ty + Ty + T,

where
To = —2/C_Lij 8me 8jfv m%,
Ty = [ {mav) = 2MxR(0)} f2 £ i
Ty = — %G - alm% 6&(’)‘ 0. 2 9% + M (0% 2 2, 2
2= ( vaw) m2 + 0, 05 i [ femg { e+ M( uXR)}ffmmo |f:c| mgy
0
and
T3 = —/(83&ZJ)8Zf 8me mg
For the term T3, from the proof of Lemma 2.5 we get

Yto y+o

T1S/<v>”+“|fm||fv|m§S€t|\<v> = O iz (mey + e T E 05 f I T (o)
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In a similar way, using |9%a;;| < C{v)7+1, [02b;| < C(v)” and |9;m?| < C(v)°~tm?, we obtain
for the second term

LM .
75 [P 19l falmi+ [ 107+ Fncioicamdl Aol md — 10 3

M N e M
St [ {0+ 07+ Fdnapican} 027w + e [ {007+ Flngpicant 7 md

yto

+e W) Vol 12 20me) — 195 £l T2(m0)-

We now investigate Ty and, decomposing 0; fy = P,0; fo + (I — P,)0; f5 and the same for 9, f,,
we easily get

Ty S et{|(v)2 PoVu(02 D2y + 100)7F (1= Po) V(02 )32}
—1,— x o 42 P
+e 7t H{I1{0)* PoVu(05 NlIL2(mg) + I1(0) 7 (1 = Po) V(05 DIz () }-

For the remainder term T3, arguing as in the proof of Lemma 2.8 (term 75 in that lemma, see

229)) gives us
2 ™ at2 o
Ts S et{[|(0)2 PoVo(O2 ) Z2(me) + I1(0) > (I = Po) V(957 )72 () }
Ty, 2 a2
+elt 1{||<”>3vavf||%2(mo) + ||<U>W2 (- Pv)vaH%%mo)}-
Finally, putting together previous estimates we obtain
[T B0V0s + V19,5
1fe 2 y+2
< €t{||<v>w2 Vo FlZ20me) + 10)2 PV (Vi )7 2mgy + 1(0) 72 (T = Pu)Vv(sz)||%2<m0>}
—1,— +o ol y+2
+Ce7lt 1{||<v>wz Vo fl22(m) + I10)2 PV o (Vo )l Zamg) + 1(0) = (I = Pv)Vv(va)llizm[))}
—1,— 2 at2
+ O 0 PV F I a(ung) + 100 (L = POV F 2oy |
+ O L2 (mo) = IV f I 2(mg)-

Using Cauchy-Schwarz inequality, we also write the following

205KV f, Vo) £20me) < 02 (211Va f 32y + €& VS (o ) -

Moreover, picking up estimates of Lemma [Z8 it follows that: for any 0 < A < A, 2 and
0 < d < A2 — A, there are M, R > 0 large enough such that,

JBn1mE < -a{l0)F PVuf sy + 166)F (T = PIVaT IRy}

yto

= M F L2 () = 8ll{v) 2

also, for some €3 > 0 to be chosen later,

2 (my)s

/Vv(Bf)vvf mg < _CO{||<U>% vav(vvf)||2L2(m0) + ||<U>WT+2 (- Pv)vv(vvf)||2L2(mo)}

y+o

= MV B2y = 310 T il

ol 42
+ C{I0)F PVl + 10)75 (1= POV fla(g) |
+ O3 2m0) + O M IV 0 2oy + C0tIVarF 2
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and finally
2 1 2 ri2 2
Va(Bf)Vafmg < _CO{||<U> 2 vav(vzf)HL?(mo) + vy (I - Pv)vv(vzf)”N(mg)}

yto
= AV F 1 Z2mgy = @)= Ve fllZ2(mg)-

We choose

o = 52, a1 = 65/2, Qo = 84, Q3 = 89/2.
Therefore, for any ¢ € [0, 1], we can gather previous estimates to obtain
d
— F(t,
& F ()

X a+2
<+ (—eo + Ce2 4+ 052 4 C) {I(0)F PVufilagmy) + 10 F (1= P)Voful3agm |
x y+2
+ 1272 (—eo + C'2) {002 PoVu(Vofi)a(ng) + 100 (1= POVL(Vuf)lEe(ony) |

1 242
+ 132972 (o + Ce'2) {10} PaVo(VafllEengy + 100D (T = P)Vo(Va Sl one) |
Jyto

= A Sell 2 (my) = S160) = FellZamy) + CHE™? + ) fellEame)

y+o

= A2V fill 72 (ngy — t° (5 - 051/2) 10} Vo fell L2 m)

xt

to met”%z(mo)

— g2 (Asg/Qt — Ce% — &% — 0%t + 54) IV fell 3y — 5%/ (5 - 51/2) I (v)
We then choose € > 0 small enough such that the following conditions are fulfilled:
—co+ Cet? 4 Ce®? + Ce® < —K <0,

—co+Ce? < K <0,

A+ Ct(? + %) < —K <0,
§—Ce'? < —K <0,

Ce¥? 440" -t < —K <.

We have then proved that, for any ¢ € [0, 1],

d yto

ZF (b f2) < =K1 filE 2y + 1V felE2nay + IV aF W 2ong) | = 0110 E fell ey

which implies

O Vawfillf2mg) < Ft fe) < F(O, fo) = 1 follZ2(m, -
We deduce

Vi€ (0,1, [IVauSs(t)fllL2ame) < C ™2 | follL2(my);
and the proof of point (1) for £ =1 is complete.

Step 2: From L' to L?. We define,
G(t, 1) = [ fill2s ) + a0 N F (L, fo),
F(t, f1) = 1 fill 22 (myy + 1 Vo fill 72 ()
+ gtV fi, Vo L) 12 (me) + 3t Ve fill 22 (mo):

for some N to be chosen later. Thanks to Holder and Sobolev inequalities (in T2 x R3), there
holds

3/2 1/2
1) 79]122 S IVa0gl35 1 (0)4g] 1322,
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which implies that

1/2 3/2
113200y S 11y IV (mo £ 135
(2.36) S Cet ™| £ 31 may + Va0 F 22 mgy + €10 122 0m)

y+o

S Cet™ N f 1L gy + € IVaw f I T2(me) + 10D = 2,

where we have used in last line that (v)°~tmg < (v) 5% my. Arguing as in step 1, we have

~

yto
= fell 22 ma -

d ~
ZF (1) < =K1 filE 2y + 190t gy + 1V Wy | = 011 0)

Putting together previous estimates it follows

d L
ag(t, f1) S =K\ fill 11 (myy + o NEV L F (1, f) — KloéotN{HftH%%ml) + IV fill 22 (me) + t4||vmf||%2(mo)}

ate
— 6aot™|[(0) = fill 22 (o)

< =K fell 71 (o)
+ ao Nt fill 22 gy + CaoNEN TV fill 72 (ng) + CaoNEY Vo il 22 (g
yto

- K/aofN{HftH%?(ml) Vo fill 2 me) + L‘4||me||%2(mo)} — 0ot [ ()= fillF2(my)-

Choose t, € (0,1) so that NtV +! < K’V then, for any t € [0,.],

yto

d _
9 f) < K| fell71(mg) + Caot™ N fell72(myy — Saot™ [(0) = fill 22 (my)
= K" 00t™ { V0 full 2y + 1V S |-

Thanks to ([236), for any ¢ € [0, t.], we get

yto

g _
Eg(t7ft) < (K- Coonth 16)||ft||%1(m2) - aotN(5 —Ce)|[(v) 2 ft||%2(m1)
— gt K" = C&) [V f 32y

Taking NV = 16 and choosing € > 0 small enough then oy > 0 small enough, we get %g(t, ft) <0
then

Vte [0, t],  COYfillTagm,) < Gt fe) < GO0, fo) = [ follZsma)-
This ends the proof of point (2), using the fact that the norm is propagated for ¢ > t..
Step 4: From L* to L*°. Arguing by duality as in Lemma 210, the proof follows as in step 2.

Step 5: From H~' to L?. Using the duality approach as in Lemma 10, the proof follows
arguing as in step 1. O

Corollary 2.13. Consider hypothesis (H1), (H2) or (H2), and spaces &y, &1 of the type E or
& defined in 1)) and Z2). Then for any N < X\ < Ay, p, there exists N € N such that

1(ASE) ™ ()| (e, ,e0) < Ce ™, vVt > 0.

Proof. Tt is a consequence of the hypodissipativity properties of B (Lemmas [2.6] 27 [Z8]
and 21I0), the boundedness of the operator A (Lemma 2TT]), and the regularization properties
in Lemma 212 together with [T1, Lemma 2.4] and [§, Lemma 2.17]. O
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2.6. Proof of Theorem 2.7l Thanks to the estimates proven in previous section, we can now
turn to the proof of Theorem 2]

Proof of Theorem[2l Let £ be an admissible space defined in (2Z2) and consider ¢y > 1 large
enough such that F := Hﬁ?v defined in (1)) satisfies E C €. Recall that in the small/reference
space F we already have a spectral gap in Theorem

Then the proof of Theorem 2.]is a consequence of the hypo-dissipative properties of B in
Lemmas 2.6] 27 2.8 2.9 210 the boundedness of A in Lemma [2.11] and the regularizing
properties of (A * Sg)N(t) in Corollary 213, with which we are able to apply the “extension
theorem” from [8, Theorem 2.13] and [I1 Theorem 1.1]. O

3. THE NONLINEAR EQUATION

This section is devoted to the proof of Theorem[[LTl We develop a perturbative Cauchy theory
for the (nonlinear) Landau equation using the estimates on the linearized operator obtained in
the previous section.

Hereafter we consider hypothesis (HO) and some weight function m.

3.1. Functional spaces. We recall the following definitions

+ 2 at2
1125y = 1Y PRy + 100 PV By + 102 = POV B
and we also define the (stronger) norm
+2 42
1120y = 10 1 By + 10 PV By + 10605 (T = PV By

We define the space HU_ +(m) by duality

g1y = sup (f;M)r2im)
' ||hHH%’*(m)S1

Hence, we can define the space HiHU_ L(m) associated to the norm
HfH'HSH = HfHLzH +||V fHLzH m(v)—(1=0/2))
+ Hv2f”L2H ( > 2(1— a/2) + ||v3f||L2H m<v>—3(1—o/2))'

Observe that H3 L2(m) and 3 H, }(m) can be seen as interpolation spaces of some admissible
spaces € in ([Z2). Therefore the exponential decay for the semigroup Sa(t) of the linearized
Landau equation in Theorem 2Tl also holds in H3 L2(m) and H3H, !(m).

3.2. Dissipative norm for the linearized equation. We constuct now a norm for which the
linearized semigroup S, (t) is dissipative, with a rate as close as we want to the optimal rate
decay from Theorem 2] and also has a stronger dissipativity property.

Proposition 3.1. Let X := H3L2(m) andY := H3H, . (m), and consider some weight function
m’ satisfying (H1)-(H2)-(H3) with m’ < m(v)~=9/2)  Define for anyn > 0 and any Ao < A\
(where Ay > 0 is the optimal rate in Theorem [21]) the equivalent norm

(3.1) 03 22 (my = 0LF 3z £2 +/0 ISA(T)e*™ fII3gs 12 () dT-

Then there is n > 0 small enough such that the solution S,(t)f to the linearized equation
satisfies, for any t > 0 and some constant K > 0,
1d

5 dt”'SA( )G £2(my < =A2MISA®) FllFia 2 my — K||3A(t)f||'2HgH;*(m), Vie X, Ilf =0.
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Proof. First we remark that the norm || - [[3312(m) is equivalent to the norm || - [|33 12 (m)
defined in ([CIT)) for any 7 > 0 and any Ao < A1. Indeed, using Theorem 2] (that also holds in
H3L2(m)), we have

M3 L2 my < WFGe L2 my = 113 L2 (m) +/O ISA(T)e™T fll343 12 (gmry dT

<0l F13 22 (my +/0 C2e 2T £(124s 1 gy dT < (0 + O f 133 12 (-

We now compute, denoting f; = Sa(t) f,

1d 1 [0
= fell3ss 12 (my = WA S2 fe) 2z 12 (m +—/ —ISA (1) fill3gs L2 (my A7 =2 1 + D
2 dt HELZ(m) 3L3(m) 2 0 8t H3LZ(m')

For I we write A = A+ B. Arguing exactly as in Section [2 more precisely Lemma 2TT] we
first obtain that A € B(H3L2(m), H3L?(u~'/?)), whence

(Aft, f)ms 2 (m) < CHftHH%L%(m,)-

Moreover, repeating the estimates for the hypodissipativity of B in Lemmas[2.6] and 2.8 we easily
get, for any Ao < A < Ap, 2 and some K > 0,

(Bf, Frasraom) < =AM FIBg 2 my = KN B ms , m)»
therefore it follows

L < =Ml Fl3ee p2my = WK F g 2oy + 1C1 Fell 308 12 (-

The second term is computed exactly

1 [0
.[2 = 5 g EHSA(T—i_t)f”?HiL%(m’) dr

1 [ 0 00
B 2 /0 EHSA(T + t)ng-LiLﬁ(m’) dr — )‘2/0 ||SA(T)6>‘QTft||%-Lng(m/) dr

1 T=+00 0
5 [”SA(T)e}\QTftH%—[iLg(m’)} 0 )\2/ ISa(T)eXT fill3s 12 (ry AT
T 0

1 00 .
_§||ft||’2}{ng(m/) —>\2/0 IS (7)™ fill34s 12 (gnry d

where we have used the semigroup decay.
Gathering previous estimates and using that A > Ay we obtain

L+ < =X {n”ﬁ”%ng(m) +/ 1S5 (7)™ fill3ss 12 (1) dT}
0

1
- nKHft”%-[iH%’*(m) +0C| fill iz 12 (mry — EHft”%-[gL%(m’)'
We complete the proof choosing n > 0 small enough. g

3.3. Nonlinear estimates. We prove in this section some estimates for the nonlinear operator
Q. We will use the following auxiliary results.

Lemma 3.2. Let -3 < a <0 and 6 > 3. Then

Aq(v) == /R3 [v — .| (0a) 7 dv, < (v)°.
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Proof. Let |v| <1/2, thus |v.| +1/2 <1+ |v —v,| and we get
@) = [ ol (0 —v) P do. < / foa]® (02) dv. < {0)°.
R3 R3

Consider now |v| > 1/2 and split the integral into two regions: |v — v,| > (v)/4 and |v — v,| <
(v)/4. For the first region we obtain

[t o=l ) o S @)% [ e, 5 (0
R

R3

For the second region, |v| > 1/2 and |v — v.| < (v)/4 imply |v.| > |v|/4, hence
Ly et 0 =0 ) P due S )70 ] 1o o= dus S (0) TR S (0)”
R3 lv—v.|<-% R3 lv—v.|<-%
O
Lemma 3.3. There holds:
(i) For any @ >~ +4+3/2
(i * F)@) vivg] + [(ais * £) () vil + [(aij * L)) S @7 1S llzzwpe)-
(i) For any ¢ > (y+ 1)+ + 3/2 (where x4 := max{z,0})
(b5 % A S ) 1 fll2(gyo)-
(i11) If v € [0,1], for any 6" >~ +3/2
(e HWIS @7 11l Lz qyery-
(i) If v € [-2,0), for any p > % and 8" > 3(1—1/p)
(e FYWIS @ 1 lLpwyery-

In particular, when v € (=3/2,0) we can choose p = 2 and 6" > 3/2; and when ~ €
[—2,-3/2] we can choose p =4 and 0" > 9/4.

Proof. Recall that 0 is an eigenvalue of the matrix a;; so that a;;(v — vs)v; = a5 (v — vs)vs; and
@i (v — V)00 = a5 (V — Vs )V4iVs;. Using this we can easily obtain, for any § > v+ 4+ 3/2,

[(aij * f)(v) viv;| = |/ aij (v — v )viv; fu| = |/ @i (V= Vi) UsiVs;j f]

S [ LS T s

S @212 (oye)-
In a similar way we get
(@i * F)()vil S @) 2 fllz(wyo-1)s
and we easily have, since vy € [-2, 1],

[(aij * £)@)] S )21 fll 22 (goyo-2)-

For the term (b * f), we recall that b;(z) = —2|z|7z; and we separate into two cases. When
v € [-1,1] we have, for any ¢’ > v+ 1+ 3/2,

% )] < / N ATA R / (o) )T £

Vs

S <U>7+1||f||L5(<v>7+1) S <U>7+1|\f||Lg(<v>9’)-
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When v € [-2, —1) we use Lemma [B2] to obtain, for any 6’ > 3/2,

1/2
(G NS [ o= 7185 ([ 0= 0P 07 ) g

SO 2 gy

Finally for the last term (¢ * f), recall that ¢(z) = —2(v 4 3)|z|” and separate into two cases.
When v € [0,1] then, for any 0”7 > v + 3/2,

el 5 [ W=l il [ @i
S @M Ly S @7 Lz o
When v € [-2,0) we use Lemma B.2] to obtain, for any p > m and for any 8” > 3(1 —1/p),

v (p—1)/p
ENOIS [ o=l ) )" 151 < (/ o — 0.7 () w) T

SO 1Lz oy
thanks to |y|p/(p — 1) < 3. O
We now prove nonlinear estimates for the Landau operator Q.

Lemma 3.4. Consider hypothesis (H1), (H2) or (H3).
(i) For any § > v+ 4+ 3/2, there holds

(Q(f:9), M Lzm) S I Izzqwyey gl . oy 12l m)
(ii) For any 0 >~ +4+3/2 and 0’ > 9/4, there holds
(Q(f,9).9)L2m) S W flLzwyey lolFr my» ¥ 7 € (=3/2,1];

and
(Q(f,9), 9 raemy S W lezqewoy 19013 my + 1z oyery 19l Z2gmy 3 7 € [-2,-3/2].
Proof. We write
(QUE9) Wiz = [ 95llass s = (b Plg}
- /(aij * f)(?lg 8Jh m2 — /(aij * f)alg 8jm2 h
+ [0y pgdsm? + [ Dghoym®
= T1 —|—T2—|—T3—|—T4
Step 1. Point (i). We estimate each term separately.
Step 1.1. For the first term, since the estimate for |v| < 1 is evident, we only consider the
case |v| > 1. We decompose 0;g = P,0;,9 + (I — P,)d;¢ and similarly for 9;h, where we recall
that P,0;g = v;|v|"2(v - V,g). We hence write

T1 = /(aij * f) {Pvaig Pvajh + Pvaig (I - Pv)ﬁjh + (I - Pv)aig Pvajh + (I - Pv)Big (I - PU)BJh} m2

2T+ Tho + Ths + Tha.
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Therefore we have, using Lemma [3.3]

(v-Vug) (v-Vyh)
Tll = /(aij * f)’l}i’Uj |’U|2 |’U|2 m2

S 2z wyo) /<v>7+2|v|72 |Vog| |Voh|m?

S z2 oy 1€0) 2 Vgl 2 my 10) 2 Vohl L2 (m)-
Moreover

L S O

S Wllzer [0l 19,1 (2 = P bl
o yt2
S llzz ey 1) 2 Vagllz my 1{0) 2 (I = Po)Vohll L2 (m),
and similarly
yt2 x
Tz SN fllzz oy 1K0) 2 (I = Po)Vugllzz(m) 1{0) 2 Voh L2 (m)-

For the term T}, we obtain
T = [(as )1~ PJOGH(T - P25}
S ”f”L%((v)e) /<U>V+2|(I = P,)Vug|[(I = P,)Vyh m?

vt2 v+2
Sz ey K0) 2 (I = Po)VagllLzm) 1 (v) 2 (I = Py)Vhl L2 (m)-

Step 1.2. Let us investigate the second term Ty, and again we only consider |v| > 1. Since
dym? = Cvj(v)?~2m?, where we recall that ¢ = 0 when m = (v)* and ¢ = s when m = e™{)"
the same argument as for 73 gives us

T2 = /(aij * f) {Pvalg 8jm2 + (I — Pv)&g 8jm2} h
= T21 + T22.

Then we have

Ty = C/(aij « fluiv; (v)7 % fom

2

S Wfllzzqn [ @202 0l [Vugl 11 m?

yto—2

2o
S 2z ey 1K0) ™2 Vogllz (my 1{0) 72 Rl L2 (m),
and we recall that v+ 0 — 2 < . For the other term we get

Ty, = C/(aij * f)vj<v>"_2 {(I-P,)dig} hm?
S Wl [ 05207210 = P Vgl bl

+o +o
Sl ez ey 160) 2 (I = Po)Vagll 2 im 10) = Al 12 (),

and recall that v+ o0 < v+ 2.
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Step 1.3. For the term Ty,
7= C [ (b £)osto) > gh®
S Wfllzzqn [ @410 ol Ihfm?

yto y+o

Sz wyey 1K0) 2 gllzzmy [1{0) 2 hllL2 (m)-

Remark that up to now we have obtained
Ty + T+ Ta S f 22 wyey Ngllmzomy 10l 2 (m)

however in the estimate of the term T3 (see below) we will get a worst estimate (with the norm

g/l 1, (m) instead of [|gl[a1 _(m))-
Step 1.4. We finally investigate the term T3 and we get

T5 S 2 cwye /<v>7+1 lg| |V wh| m?

y+2

S22 oy 110) 2 gllnzmy 1(0) 2 Vihl| 22 (m)
S 22wy gl a2 .. omy 110) 2 Vbl L2 m)-

We complete the proof of point (i) gathering previous estimates.

Step 2. Point (ii). Arguing as in Step 1, with h replaced by g, we already have
Ty + T+ Ty S\ fll2wyo) ||9||§15y*(m)7
and we only estimate the term 73. Integrating by parts we get
To= [ Nadsgm® =5 [texnygtm? =5 [y s nom** = 1411
The term 1 can be estimated exactly as Ty. For I, thanks to Lemma [3.3] we obtain

a2 .
ISz oy 10) 2 gll72my, iy € (=3/2,1];

and
LS 1 ez 10)F 91y + 1l ooy 100 g3y i € [—2,-3/2);
SIF 22 cwyoy 160D 2 gl T2 (my + 1F L2 opory 1002 9l T2y
and that concludes the proof. g

Lemma 3.5. Let assumption (HO) be in force.
(i) There holds

(Qf9), Mz rzm) S 112z om) |9llrz s . om) Pl e s (m)s
therefore
1QU: Dz =1 (my S Wz L2my lgllazmr . om)-

(ii) There holds
(Q(f,9)s @)rsrzm) S I fll#z L2 m) ||9||§{§H5’*(m) if v € (=3/2,1],
and
(Qf,9), 9)wzrzm) S Iz L2 m) ||9||3-L;H;,*(m)
+ 12z 1 (m) ||9||%—[;Lg(m) if v € [-2,-3/2].

xi v,
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Proof. We only prove point (i7). Point (¢) can be proven in the same manner, using the estimate
of Lemma [B.4}(7) instead of Lemma [B.4}(i7) as we shall do next.
We write

(QUf.9), Drzr2(my = (QUF9). 9 r2r2omy + > (O0Q(F:9),029) 12 13 () 1910 -2/,

1<[B]<3

and

BQf.9)= > Cﬁl 5,Q(00 f,0229).
Bi1+pB2=
Recall some inequalities that we shall use in the sequel:
1/2 1/2
lullem) S Nullmzsy, ellzoy) S IVeleamy,  Tullim) S IVul ) Il i)

Step 1. Using Lemma B4} (i7) we get
(Q(f.9),9)12r2(m) S /3 £ z2cwyey lglFrn my i 7 € (=3/2,1],

S a2z oy 1902281 (s
and, similarly,

(Q(f,9),9) 1212 (m)
Sz ooy 19022 ) + 1l 2an oyory |90 Z2 Lo my i 7 € [-2,-3/2].
Step 2. Case || = 1. From Lemma [34}(i7) it follows
(Q(f,079),079) 12 L2 (m () -a-o/2)

/ 1220 V002 my—cioermny 367 € (=3/2,1],

< ||f||H§L3((v>9) ||Vmg||%§H3,*(m<v>—(1fa/2))'
and, similarly,
(Q(f,079),079) L2 12 (m(wy- -2y S I 22200y IV2gllZa 11 m(oy--er2)
1 ez )2y 1 V9172 2 gy -a-ermry i 7 € [=2,-3/2].
Moreover, thanks to Lemma [B41(4), we get

Q7 f,9) >L2L2( (v)—(-0/2))
/ 19 i Nl .- 126l i,_my--r)
SWIVeflluzrzwey 19l L2a _ mey-a-or2) IVegllLzm |, miwy-a-o/2)-

Step 3. Case || = 2. When By = 8, Lemma B4} (i) yields
(Q(f, 8159)7859>L§L%(m(v)*2(1*0/2)) S /3 ||f||L3( ||V 9||H1 L (m(v)y—2(1=0/2)) if vy € (=3/2,1],
S ||f||H2L2( HV QHLzHl L (m(v)—2(—0/2))"
and, similarly,

(Q(f,079),079) 2 L2 (mw)—20-r2) S | 202 (e [ V2 9HL2H1 (m{v)—20-0/2)
+ 1 22 oy V3 9HL2L2( ()—20-0s2)y i ¥ €[=2,-3/2].
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If |B1] = |B2| = 1 then, thanks to Lemma B4} (i), we obtain
Q2 f, 3529)7559>L3L3(m<v>—2<1—a/2))

S 2 Py
T3

u**

mw)—20-2/2) [Vagll g1 (mwy-20-0/2)

S IVafllmzrzwye) 1VagllLzmr | mwy-20-0/2) ||v§g||L§H1},*(m(v)*Q(lfﬁ/z))'

vk

Finally when ﬂl = 3, Lemma B4} (i) gives us
Q0 £,9),059) 12 12 () —201-2/2)

/ 192 £l oy 9l

v**

mw)—20-2/2) [ Vagll g1 (mwy—20-0/2)

S ||V2f||L6L2( vy l9llLa s, (mwy—2a-or2) ||Vi9||L§H;*(m<v>72<lfv/2>)

1/2
< ||v3f||L2L2( o) Hg”LzHl L (m{vy—20=0/2)) vagHLé]ﬂ L (m)—201=0/2)) ||V9239||L§H5,*(m(v>72<1ﬂ/2J)~

Step 4. Case || = 3. When Sy = 8, Lemma B4} (i7) implies
(Q(f,079),059) 12 L2 (m(w)~30-0/2) / 11122 yo) 1291 Fr oy -sa-army i 7 € (=3/2,1]

Sl arzez o) 1V290 T2 11 mgoy-s0-0r2)-
and, similarly,
(Q(f, 859)7859>L§L%(m(v> 3(1=0/2)) 3 ||f||H2L2( v)9) V3 9||L2H1 L (m(v)—3(1-0/2))
1 2y ) 1V29I1 L2 L2 (o502 17 € [=2,=3/2].
If |f1] = 1 and |B2] = 2 then, thanks to Lemma B:4H(7), we obtain
(QO7 £,0729),859) L2 12 (m (o) —30-2/2))

/ IVafllLz ooy V29l (o) -sa-a/2)) ”vggHH})’*(m<v>*3(1*"/2))

v**

SIVafllazez (o) IVagll Lz me)-sa-e/2) ”vigHLiH%Y*(m(v>*3(1*5/2))'

v,k

If |51] = 2 and |B2] = 1 then, thanks to Lemma B4H(7), we obtain
QD5 f,0529),059) 12 12 (1m () ~301-/2))

/ 192 L2y Il . om0t 20y 92l oy —s61— /20

v**

1/2 1/2
SIva f||L2L2 ”vmg”LéH%,**(m<v>*3(1*"/2>) ||vig||L/§H%Y**(m<y>*3(lfcr/2)) ||V§cg||L§H5’*(m(v>—3<1—a/2))-
Finally when £, = /3, Lemmam(i) gives us
(QO2f,9),079) 12 13 (m(w) ~s01-2/2))

v**

/ IV 2o ol

(m(o)-30-2/2) | Vagll g1 (mwy-30-0/2)

SIVafllzzea o 9l azas ., mew)-sa-or2y Vagll L2 ay _mew)-sa-o/2)-

vk

Step 5. Conclusion. We can conclude the proof gathering previous estimates and remarking
that, for any n = 0,1, 2, there holds

22 +o
||<U>72 vggHLiLg(m@)*("Jrl)(l*"/z)) = ||<U>72

n
Va3l L2 12 (m(v)—r-o/2)
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which implies

IVRgllLzm ,, miwy-eena-or2y SNVegllLzms (mew)-—n0-or2),
and observing also that
£l azr2 ey S 11z om)
and
Iz oyory S W fllazar omy iy € [=2,-3/2].
O
3.4. Proof of Theorem [I.T1 We consider the Cauchy problem for the perturbation f = F — p.
The equation satisfied by f = f(t,z,v) is
Of =Af+Q(f, f)
Jit=0 = fo = Fo —
From the conservation laws (see (L) and (ILI0)), for all ¢ > 0, IIyf; = 0 since Iy fy = 0,

more precisely [ fi(v)drdv = [v;fi(v)dzdv = [ |v]?fi(v) dzdv = 0, and also IoQ(fy, fi) =
because IIyQ( fo, fo) = 0.

Consider some weight function m and assumption (HO). We split the proof of Theorem [IT]
into three parts: Theorem [3.7] Theorem and Theorem below.

(3.2)

3.4.1. Stability estimate. We start proving a stability estimate.

Proposition 3.6. A solution [ = f; to B2) satisfies, at least formally, the following differential
inequality: for any Ao < A1 there holds

1d
§E|||f”|’2}{~;’Lg(m) < ol f 132 2 my — (K — C”lf”"i—[ng(m)>||f||g{?z’H1},*(m)7
for some constants K,C > 0.

Proof of Proposition [Z.8. Recall the norm ||| - |43 12 () defined in Proposition Bl Thanks to
B2) we write

1 d > T T
2dt”|ft|”’}-[3[,2 (m) = NS, Af)nzrzm) + / (SA(T)e™T fu, SA(T)ENT A f1) 243 12 () AT
0

+0(fe, Q(ft, fr)) 13 L2 (m) +/ (SA(T)ET fr, SA(T)EMTQ(fr, 1)) L2 (mry AT
0
=L+ 1L+ I3+ 1.
For the linear part I; + I, we already have from Propposition Bl that, for any Ay < A1,

L+ I < =22l F I3 2 my — K||ft||i¢gﬂg,*(m)-

Let us investigate the nonlinear part. For the term I, we use the fact that Ilpf; = 0 and
oQ(ft, fr) = 0 for all ¢ > 0, together with Theorem 2] to get

/ (SA (1) fur SATIPTT Qs Fo))ris 2 oty
0
S/ HSA(T)Q'\thHHgHg*(m')HSA(T)G'\NQ(ft,ft)”q-LSH*l(m/)dT
0

< HftHH3H1 ) 1Q(ft, fr) H’H3H / CPe el
S Wfellrs oy QU f)llagz prz 1 () -

tv*
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From Lemma B.5}H(7) we have
1QU e fllagz =t ey S I fellaez L2y 1 fellaz mx . mry-

Therefore, using that m’ < m(v)~(1=9/2) so that || f|| m

1 aa(m’) S ||f||H5,*(m), we obtain
I S fellra 2omy Wil ey omy S MFellaez 220y 12l by m)-

For the term I3, Lemma [3.5}(i4) gives us directly
Is S | fellazzomy ”ftH?'lQHé,*(m) + ||ft||%sz3(m) ||ft||7-L§H1},*(m)

S el L2 () ||ft||’2HgH1},*(m)'

We complete the proof gathering previous bounds. O

3.4.2. Cauchy problem in the close-to-equilibrium setting. Consider (HO) and some weight m.
We fix some weight function mq satisfying (H1)-(H2)-(H3) such that mg < m(v)~(1=9/2),
which is always possible. We will construct solutions on L{°(H3L2(m)) under a smallness
assumption on the initial data [ fol[#3 12 (m) < €0. Introduce the notation to simplify

X 1= HILA(m), Y = HIHD (m),
XO = ’HiL%(mo), YQ = H§H$7*(m0), ZO = IHiHl (mo)

U,k

and remark that || f|lz, < flly-

Theorem 3.7. There is a constant € = eg(m) > 0 such that, if || follx < €o then there exists
a global weak solution f to B2) that satisfies, for some constant C > 0,

£l oo (10,00):x) + 1| 22(0,00):7) < Ceo-
Moreover, if Foy = pn+ fo >0 then F(t) = p+ f(t) > 0.

Proof. For any integer n > 1 we define the iterative scheme

L= Af n—1 ¢n Of” = Af°
{8nf AFPFQUTLIY st ana { of 8
f|t:O _ f\t:O = fo

Firstly, the functions f™ are well defined on X for all ¢ > 0 thanks to the semigroup theory in
Theorem 2.1] and the stability estimates proven below.

Step 1. Stability of the scheme. We prove by induction that

t
(3.3) Vn2>0Yt>0, Au(t):=|fFI% + K/O 1713 dr < 2€5,

if ¢g > 0 is small enough. The case n = 0 easily follows from Proposition Bl Assume that (33)
holds for some n € N. Arguing as in Proposition 3.6 we obtain

d n n n n n n
T+ KIS < Gl 1S+ Gl Iy I
< CI M IS+ CUE Iy Wl 1L
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Integrating from 0 to ¢ it follows

t
A b) = IR+ 5 [ 17 dr
t
<Al + ¢ (supll ezl ) [ 1ol ar

t 1/2 t
+c< / IIf"(T)II?/dT) (iggnw*ﬂnx) ( / IIf"“(T)II?/dT>

< ol + CAn ()2 An i (1)
< [Ifollx + CeoAnta(t),
from which we conclude to B3)) for n + 1 if ¢y > 0 is small enough (so that Cey < 1/2).

1/2

Step 2. Convergence of the scheme. Now we can prove the convergence of the scheme in Xj.
Denote d™ = f**1 — f" that satisfies

O = Ad" + Q(f",d") + Q(d" ', f"), Vn e N
Ohd® = A"+ Q(f°, ).

We claim that for ¢y > 0 small enough, for any n € N it holds
t
(3.4) Vt>0,¥n>0, By(t):=[ld} %, + K/O 1213, dr < (C'e0)*",

for some constants C’ > 0 that does not depend on €. Let us prove the claim by induction. We
start with the case n = 0. Denote X¢ := H2L2(m}) (where mj < mo(v)~1=7/2) see [B1))
then we compute

t
G, =08 ) x, + [ (Sa(r)e™ A Salr)e™ ), dr
0

+n(Q(f° 1), d%) x, +/ (Sa(m)e™Q(f°, 1), Sa(r)e™d%) %, dr
0
::Il —|—IQ+I'3,—|—I4
Arguing as in Proposition B.f we get
L+ <-K|d|3,

and also

L S 0o 1M ve 1d e -
Now for the term I3 we get thanks to Lemma [B5H(7)

Is S Mo 1 2o Nellve S IF 0 £ Iy N1y -

Gathering previous estimates yields, for any ¢ > 0,

t t
ld 1%, + K/O 12113, dr < C/O 200 {11£7 v + LF7 M1y} l1d2 1y, dr.
2

t 1/2 t 1/
sc<sup|||f$|||xo) ( / ||f$||2yd7) ( / ||d2||2yodf) ,
7>0 0 0

Bo(t) < Ce2Bo(t)'/? = B(t) < Cel,

therefore we get
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where we have used B3] for f° and f!, which concludes the proof of ([B4]) for n = 0. Assume
now that ([34) holds for some n € N and let us prove (84) for n + 1. We compute

d t
Y G A SO NG s VRO R s
0

4 77<Q(fn+1,dn+1),dn+l>xo +/ <SA(T)6>‘2TQ(f"+1,d"+1), SA(T)ekgTdn+l>§0 dr
0

+0(Q(d", ), d" ) x, + / (Sa()eTQ(d™, f), Sa(r)eTd" ), dr
0
::11+IQ+IB+I4+I5+16.
Arguing as in Proposition B.6] we have
L+ I < —K|d"3,,

and
I3+ Lo S o ™IS, + 17 v lld™ o ™ s

The term I can be estimated as I, and that gives us

Is < Mld"llx 11" 1o lld™ lva.-

For the last term I5 we get using Lemma B.5}H(7)

Is < ™ llxo 1" 1zo 1™ e < Me™ o 11£™ 1y 1™ v -

Putting together all the estimates, it follows

t t
Bu(t) < C / 2, 2, dr + © / 172y I+ o 12 v, dr
0 0
t
e / 2o 12 1y, dr

t
§C<Sup||ff+l||xo) [ iz, ar
>0 0

t 1/2 t
e ( [z, dr> (supndz“nXO) ( [ s, df)
0 >0 0

2

t 1/2 t 1/
w0 (swtari ) ([zigar) ([ 1agar)
>0 0 0

Bn+1 (t) < CGQBnJ,_l (t) + CeoB, (t)l/2Bn+1(t)1/2
S Céan+1 (t) + OEO(O/Eo)an+1(t)1/2,

where we have used @3] for f and f"*! and also the induction hypothesis. If €y > 0 is small
enough so that Ceg < 1/2, we then get

Bnii(t) < Ceo(C'eq)"Bui1 ()2 = Bpyi(t) < C?e2(C'ep)®™ < (Cleg)? ),

Therefore the sequence (f™),, is a Cauchy sequence in L>°([0, 00); Xo) = L>([0, 00); H2 L?(my)),
and its limit f satisfies (B2]). We then deduce that

1/2

Hence it follows

||f||L°°([O>0°);X) + ||f||L2([O,oo);Y) < CEOu
by passing to the limit n — oo in [B3]). Moreover, since Fy = 1+ fo > 0 we easily obtain that
F(t)=p+ f(t) >0 (see e.g. [9]). O

We can now address the problem of uniqueness.
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Theorem 3.8. There is a constant €g = eg(m) > 0 such that, if || follx < €o then there exists
a unique global weak solution f € L>([0,00); X) N L?([0,0);Y) to (32).

Proof. Let f be the solution constructed in Theorem [B.7] that satisfies
112 10,00):%) + [1f 1 £2(70,00);7) < Ceéo-

Assume that there is another solution g with initial data go = fy and such that
91l 2o (0,00):%) + 91l £2(0,00)5v) < Ceo.

The difference f — g satisfies

O(f—9)=AMf—-9)+Qg, f—9)+Q(f — g, f)

with fo = go. We then compute the (standard) L2L2(mg) norm of the difference f — g

1d
2dt||f 9Tz 12 (mey = (M = 9)s f = 9)202(mo) +(Q9s [ = 9)s f = 9) L2122 (o)
+(QUf =9, ) f = 9)L2L2(mo)-
We write A = A+ B so that we obtain
(A(f=9) f =9 r2r2(me) < —K|f — 9||2LgHg,*(m(,) +CIf = gll7212(me)-
Moreover, Lemma B4 (ii) gives
<Q(gvf _g) f g> 2(mo) < C||g||H2L2(mo ||f g||L2H1 *(mo + CV||g||H2H1 (mo) ||f g||L2L2(mo)

whence, integrating in time,

t
/ (Qgrs fr —97)s fr — gT>L§L%(m0) dr
0

< C sup ||grllm202(me) / 1f7 = 9+ 172 113 o)
T€[0,t]

w0 ([ otz m0>) (m[lg;]nﬁ e s+ [ 167 = 00l m0>>-
T€(0,

Thanks to Lemma B:4}H(i) it follows

QU =9,0), f =D rz2r2(me) < CNf = 9llLzrzome) 1flazm , (mo) |f = 9281 (1m0)

U,k

which integrating in time gives

/0 QU — grs £). fr — 9} 12 L2y 7

<C( SUOP I fr— gflngLg(mo))/ | fellmz s, (mo) 1fr = grllL2 a2, (mo)
T€[0,t] 0

1/2 ¢
<C (/ ||fT||H§H%’**(mU)) < Sel[?t I fr = 971172 22 (o) +/0 ll.f+ —gr||%gH;’*(m(,)> ;
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and observe that || f[|L2(g2 1 ) S I fllzzyy < Ceo. Therefore

Lex (M0

t
161 = 9B n3m + X [ 12 = grllszan, ey dr
0
t t
<C [ 1o = el sszmg 47+ Ceo [ 1 =g oy

t
o sup 1= 90 Bansna + [ 15 =92y o )
T€[0,t] 0 ’

and when €y > 0 is small enough we conclude the proof of uniqueness by Gronwall’s inequality.
O

3.4.3. Convergence to equilibrium in the close-to-equilibrium setting.

Theorem 3.9. Consider (HO) and some weight m. There is a positive constant e, < €y S0
that, if ||| follx < €1, then the unique global weak solution f to (B2)) (contructed in Theorems[3.7]
and [Z8) verifies an exponential decay: for any A2 < A1 there exists C > 0 such that

VE20, |fillx < Ce || follx,
where we recall that Ay > 0 is the optimal rate given by the semigroup decay in Theorem 21
Proof. From Theorem [3.7] we have

t
sup [l F(O)II% + / 1 dr < e,
t>0 0

Using Proposition B we get, if 1 > 0 is small enough so that —K 4+ Ce; < —K/2, and for any
/\2 < /\1,

| =

£ < =AMl fII% — (B = Ce) I fI5

N | =
IS

t
K
< =XflflE = S I/15

and then we deduce an exponential convergence

vi>0,  IFOllx < e Yl folllx,
which implies
Vt>0,  [If®)]x < Ce 2 | follx-
O
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