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Prols locaux et problèmes elliptiques à plusieurs échelles avec défauts Local proles and elliptic problems at dierent scales with defects

Nous présentons une approche possible pour l'approximation, à la fois à l'échelle microscopique et à l'échelle macroscopique, de la solution d'une équation elliptique dont le coecient oscillant est un perturbation "locale" d'une fonction ayant des propriétés géométriques simples, par exemple une fonction périodique. Cette approximation nécessite de savoir déterminer un prol local, solution d'une équation analogue de l'équation du correcteur en théorie de l'homogénéisation. Nous étudions ici, dans diérents cadres fonctionnels, le caractère bien posé de cette équation. Des questions reliées sont aussi évoquées.

1. Introduction

Motivation

Nous étudions dans cette Note une classe de problèmes elliptiques à plusieurs échelles qui, en un sens que nous précisons plus loin, sont des problèmes pour lesquels la théorie de l'homogénéisation ne fournit pas une réponse assez complète pour les questions que nous souhaitons examiner. Par nature, la théorie de l'homogénéisation est en eet une théorie de la réponse macroscopique, qui, additionnellement, peut éventuellement fournir, dans certains cas comme par exemple dans le célèbre cas périodique, des informations locales (i.e. à l'échelle petite, traditionnellement notée ε). Elle fournit aussi la ligne directrice pour des méthodes d'approximation numérique ecaces.

Dans les situations que nous étudions ici, la structure du matériau à cette petite échelle est typiquement une structure non idéale. On traite ici l'exemple prototypique d'une structure périodique perturbée localement par un "défaut" (mais d'autres structures plus générales, ou plus complexes seront étudiées dans nos travaux). Il est alors particulièrement intéressant de comprendre le prol local de la solution au voisinage de ces défauts, an, notamment, d'évaluer la réponse locale avec ecacité (c'est-à-dire avec un coût bien moins que proportionnel aux nombres de chargements considérés à l'échelle macroscopique, pour emprunter un langage issu de la mécanique). La théorie de l'homogénéisation qui, faut-il le rappeler ici, n'est pas conçue pour cela, ne sut pas à la compréhension de ces questions.

Cette étude s'inscrit dans une série d'études amorcées en [START_REF] Blanc | A possible homogenization approach for the numerical simulation of periodic microstructures with defects[END_REF] (les résultats en seront très brièvement rappelés ici) qui se poursuivront avec plus de détails dans [START_REF] Blanc | Local proles for elliptic problems at dierent scales : defects in, and interfaces between periodic structures, en préparation[END_REF][START_REF] Blanc | [END_REF] pour ce qui concerne les équations elliptiques et les équations analogues, et dans [START_REF] Lions | [END_REF] pour des équations, et donc des phénomènes mathématiques, complètement diérents. La motivation de cette série d'études est présente en ligrane dans certains de nos travaux antérieurs [START_REF] Blanc | A denition of the ground state energy for systems composed of innitely many particles[END_REF][START_REF] Blanc | Une variante de la théorie de l'homogénéisation stochastique des opérateurs elliptiques[END_REF][START_REF] Blanc | Stochastic homogenization and random lattices[END_REF] où nous avons exploré certaines structures non "parfaites" dans des problèmes d'homogénéisation. Signalons aussi que les résultats résumés dans cette Note ont été annoncés dans [START_REF] Lions | Cours 2013-2014 au Collège de France[END_REF].

Le cadre de travail

Pour cette Note (et ce sera le cas pour les travaux [START_REF] Blanc | Local proles for elliptic problems at dierent scales : defects in, and interfaces between periodic structures, en préparation[END_REF][START_REF] Blanc | [END_REF]), nous nous focalisons sur un problème elliptique (scalaire pour simplier) du type

-div (a(x/ε) ∇u ε ) = f (1)
posé sur un domaine régulier Ω ⊂ R d , avec des conditions au bord de Dirichlet homogènes, et avec un coecient a dont on suppose qu'il vérie toutes les propriétés qui rendent le problème elliptique bien posé. Pour éviter les spécicités de la dimension 2 (voir ce cas dans [START_REF] Blanc | Local proles for elliptic problems at dierent scales : defects in, and interfaces between periodic structures, en préparation[END_REF]), et parce que la dimension 1 est explicitement soluble donc facile, on supposera dans toute cette Note que d ≥ 3. Une hypothèse importante, et non usuelle, est que nous serons dans la plupart des situations (pas toujours, voir ci-dessous) contraints de supposer ce coecient a régulier. Bien que cette hypothèse soit clairement limitante du point de vue des applications, nous ne savons pas, dans l'état actuel de notre compréhension mathématique, comment nous en aranchir. On le verra ci-dessous. Comme annoncé, la fonction a est prise comme la somme d'une fonction simple du point de vue géométrique, et d'une perturbation de cette fonction. Pour simplier dans cette Note (sauf dans la section 5.1 ci-dessous), nous supposerons que la fonction sans perturbation est périodique. Nous considérons donc a = a per + b avec a per périodique et b une perturbation "locale" tendant vers 0 à l'inni (|x| -→ +∞) en un certain sens. Nous supposerons a per et b tous les deux bornés sur R d . L'idée de prendre une fonction non perturbée périodique assure qu'en l'absence de la perturbation le problème (1) relève alors de techniques classiques d'homogénéisation, cf. par exemple [START_REF] Jikov | Homogenization of dierential operators and integral functionals[END_REF]. On peut déterminer qualitativement le comportement asymptotique de la solution u ε . Il est classique de démontrer que u ε converge fortement dans L 2 (Ω) et faiblement dans H 1 0 (Ω) , vers u * solution de -div (A * ∇u * ) = f , Il est bien connu que la matrice homogénéisée A * , et, pour ce qui nous intéresse plus particulièrement ici, le comportement précisé de u ε (i.e. à l'échelle 1 dans la topologie forte de H 1 0 (Ω), et aussi localement à la petite échelle) s'obtiennent par résolution, pour tout vecteur p ∈ R d , du problème posé sur R d dit problème du correcteur, -div (a per (y) (p + ∇w p,per (y))) = 0, où w p,per est périodique, donc, en particulier, sous-linéaire à l'inni, et unique à constante additive près. Cette connaissance théorique peut se traduire dans des techniques d'approximation numériques maintenant bien établies. On notera que certaines de ces techniques, s'inspirant des développements théoriques, permettent d'ailleurs l'approximation pratique de u ε pour ε non asymptotiquement petit, et donc plus proche des applications réelles, voir e.g. [START_REF] Efendiev | Multiscale Finite Element method, Theory and applications[END_REF]. L'objectif est, en la présence de la perturbation b, de parvenir à des techniques théoriques et numériques d'approximation similaires.

Le cadre idéal pour traiter la question ci-dessus serait de pouvoir considérer le cas où la perturbation tend vers 0 à l'inni, au sens mathématique du terme. Malheureusement, nous ne savons pas traiter la question à ce degré de généralité et considérons donc b ∈ L r (R d ), pour un certain exposant 1 ≤ r < +∞, une grande valeur de l'exposant r permettant donc de s'approcher intuitivement du cas le plus général voulu.

Quand le coecient oscillant a per est remplacé par le coecient perturbé a = a per + b pour b ∈ L r , il est classique de réaliser que le comportement macroscopique de u ε mentionné ci-dessus n'est pas modié. On le montrera en détail dans [START_REF] Blanc | Local proles for elliptic problems at dierent scales : defects in, and interfaces between periodic structures, en préparation[END_REF]. C'est localement, au voisinage de l'origine et à l'échelle ε, que le comportement change. Le comprendre nécessite de considérer le problème

-div (a (p + ∇w p )) = 0 (2) 
analogue du problème du correcteur, où cette fois w p n'est plus nécessairement périodique, mais dont on impose qu'il est sous linéaire à l'inni :

w p (x) 1 + |x| |x|→∞ -→ 0, (3) 
puisqu'on s'attend, par le classique développement à deux échelles, à ce que [START_REF] Blanc | A possible homogenization approach for the numerical simulation of periodic microstructures with defects[END_REF], nous avons démontré, sous l'hypothèse b ∈ L 2 (R d ) (et sans hypothèse de régularité particulière sur a per ), le caractère bien posé de cette équation : elle admet alors une solution unique (à constante additive près), et cette solution est de la forme w p = w p,per + wp où w p,per est la solution périodique du problème périodique non perturbé et où ∇ wp qui appartient à L 2 (R d ). La preuve est une application directe du Lemme de Lax-Milgram, une fois l'équation écrite en terme de la fonction inconnue wp (voir (4) ci-dessous) et régularisée, par l'addition d'un terme d'ordre zéro, de façon classique. Ce résultat d'existence d'une solution w p convenable se révèle alors central pour notre objectif d'approximation. On peut alors utiliser ce "prol" w p pour approcher u ε par une formule de type deux échelles, et ceci à la petite échelle, au voisinage du défaut, i.e. de l'origine. Tous les détails sont donnés dans [START_REF] Blanc | A possible homogenization approach for the numerical simulation of periodic microstructures with defects[END_REF]. L'objet principal de cette Note est l'étude du problème (2)-(3) pour b ∈ L r (R d ) avec, cette fois, r non nécessairement égal à 2.

u ε -u * ≈ ε ∑ d i=1 w ei (./ε) ∂ i u * tende vers zéro avec ε. Dans

Cas d'un défaut L r , 1 ≤ r < d

Comme résumé ci-dessus dans le cas r = 2, on introduit wp = w p -w p,per où w p,per est la solution périodique dediv (a per (p + ∇w p,per )) = 0, de sorte que (2) se réécrit

-div (a ∇ wp ) = div (b (p + ∇w p,per )) . ( 4 
)
Nous supposerons (pour simplier) que ∇w p,per ∈ L ∞ (R d ), ce qui est par exemple obtenu par régularité elliptique quand a per est de régularité hölderienne C 0,α pour un certain α ∈ (0, 1) (voir par exemple le théorème 8.32 de [START_REF] Gilbarg | Elliptic partial dierential equations of second order[END_REF]). Considérons la fonction de Green de l'opérateur -div (a ∇.), à savoir la solution G(x, y), tendant vers 0 à l'inni en un sens faible, de -div x (a ∇ x G(x, y)) = δ(x -y). L'existence de cette solution est obtenue facilement par approximation (ajout de αG, pour α > 0 petit à l'équation, et limite α -→ 0) et son unicité par un Théorème de Liouville [START_REF] Moser | On Harnack's theorem for elliptic dierential equations[END_REF]. Il est alors classique que, pour tout

y ∈ R d , ∥G(., y)∥ L d/(d-2),∞ + ∥∇ x G(., y)∥ L d/(d-1),∞ ≤ C(d), (5) 
où C(d) est une constante qui ne dépend que de la dimension ambiante d. On a bien sûr désigné par L q,∞ l'espace L q faible, de Marcinkiewitz, déni par la quasi norme

|f | L q,∞ := sup s>0 ( s meas {x ; |f (x)| > s} 1/q
) .

On remarque enn que (5) est aussi vrai en permutant les rôles de x et y. Une fois [START_REF] Blanc | A possible homogenization approach for the numerical simulation of periodic microstructures with defects[END_REF] 

| wp (x)| ≤ ∥∇ y G(x, y)∥ L d/(d-1),∞ ∥b (p + ∇w p,per )∥ L d,1 . (6) 
On utilise alors l'interpolation de L d,1 entre L r = L r,r et L ∞ , pour r < d, pour contrôler le dernier facteur. On obtient ainsi une borne L ∞ sur wp . En fait, on a mieux. On remarque d'abord que la même formule de représentation de la solution par fonction de Green montre que, sidiv (a ∇v) = div(h) où h ∈ D(R d ) est une fonction régulière à support compact, alors (à constante additive près) la fonction v tend vers 0 à l'inni. En eet, on sait (voir [START_REF] Grüter | The Green function for uniformly elliptic equations[END_REF]) que G(x, y) -→ 0 quand |x -y| -→ ∞. En utilisant cela, et l'inégalité [START_REF] Blanc | Local proles for elliptic problems at dierent scales : defects in, and interfaces between periodic structures, en préparation[END_REF], on procède alors par densité de D(R d ) dans L d,1 (R d ) pour prouver la convergence de wp vers 0 à l'inni. L'unicité (toujours à constante additive près) de wp , et donc de w p , est obtenue par un résultat classique de type Théorème de Liouville, [START_REF] Moser | On Harnack's theorem for elliptic dierential equations[END_REF] : le coecient a est borné, et la solution wp tendant vers 0 à l'inni, elle est bornée, donc unique.

Remarque 1 On remarquera que la preuve ci-dessus n'utilise en fait pas la périodicité de a per (ni son éventuelle régularité) mais seulement le fait qu'on connaît l'existence et l'unicité d'une solution à gradient borné en l'absence de perturbation, établit la convergence de wp vers 0 à l'inni, ce qui est le point essentiel puisqu'il prouve a fortiori la sous-linéarité de w p , mais ne démontre pas que ∇ wp ∈ L r . Ceci proviendra, sous des hypothèses supplémentaires et avec une utilisation explicite de la périodicité, de la preuve donnée dans la section suivante, aussi applicable à r < d.

3. Cas d'un défaut L r , r quelconque < +∞ On démontre tout d'abord le résultat suivant. Des décroissances ponctuelles de ce type sont bien connues dans le cas du laplacien, ou pour un opérateur de type -div(a∇•) avec a régulier et périodique [START_REF] Blanc | Asymptotic behaviour of Green functions of divergence form operators with periodic coecients[END_REF]. Nous donnons ici une généralisation, sous une forme intégrée localement, au cas d'un a seulement borné, et non nécessairement périodique. Lemme 1 Pour tout 1 ≤ q ≤ 2, il existe une constante C telle que, pour tout R > 0, et pour tout

x ∈ R d , la fonction de Green G, solution de -div x (a ∇ x G(x, y)) = δ(x -y) vérie ∫ B2R\BR |∇ y G(x, y)| q dy ≤ C R d(q-1)-q , ( 7 
)
∫ B2R\BR |∇ x ∇ y G(x, y)| q dy ≤ C R d(q-1) , ( 8 
)
où on a noté

B 2R \B R = {R ≤ |x -y| ≤ 2R}.
Eléments de preuve : On remarque tout d'abord que, pour établir (7), il sut de prouver la même estimation avec ∇ x G(x, y), à savoir

∫ B2R\BR |∇ x G(x, y)| q dy ≤ C R d(q-1)-q , ( 9 
)
puis de procéder par symétrie. De plus, la preuve esquissée ci-dessous montre que l'on utilise seulement -div x (a ∇ x G(x, y)) = 0 en dehors de x = y, et donc en dérivant cette équation, on peut appliquer la même preuve à ∇ y G(x, y), ce qui permet de déduire (8) de l'inégalité [START_REF] Dolzmann | Estimates for Green's matrices of elliptic systems by L p theory[END_REF]. Il sut donc de montrer [START_REF] Dolzmann | Estimates for Green's matrices of elliptic systems by L p theory[END_REF]. Cette estimation est une conséquence de l'inégalité dite de Caccioppoli (voir par exemple [11, , vraie dès que le coecient est borné. On étend ensuite l'estimation (9) pour q = 1 par simple application de l'inégalité de Cauchy-Schwarz. Par interpolation, (9) est donc valide pour tout 1 ≤ q ≤ 2. ♢

Muni du Lemme 1, on démontre maintenant que, pour a per périodique et de régularité hölderienne C 0,α , α ∈ (0, 1), r ≥ 2 et b ∈ L r (R d ), la solution de (4) est telle que ∇ wp ∈ L r (R d ). Par un raisonnement classique, il s'ensuivra la sous-linéarité (3).

On représente (formellement, mais il est ensuite simple de donner un sens à cela par approximation et régularisation) la solution wp de (4) par wp (x) = ∫ ∇ y G(x, y) b(y) (p + ∇w p,per (y)) dy. En prenant le gradient des deux membres, et en utilisant la borne (8) sur des couronnes concentriques pour q tel que 1/q + 1/r = 1 (avec r ≥ 2), on montre aisément que ∇ wp ∈ L ∞ . On écrit alors (4) sous la forme div (a per ∇ wp ) = div (b ∇ wp ) + div (b (p + ∇w p,per )). Le résultat de [START_REF] Avellaneda | Compactness methods in the theory of homogenization[END_REF] (et c'est ici que la périodicité du coecient a per , ainsi que sa régularité hölderienne C 0,α , α ∈ (0, 1), sont utiles) permet alors d'obtenir l'estimation ∥∇ wp

∥ L r ≤ C ∥b∥ L r ( ∥∇ wp ∥ L ∞ + ∥p + ∇w p,per ∥ L ∞ ) et de conclure à l'existence de la solution voulue. Dans le cas r < 2, b ∈ L r ∩ L ∞ , donc b ∈ L 2 .
Le résultat que l'on vient de prouver, ou bien ceux de [START_REF] Blanc | A possible homogenization approach for the numerical simulation of periodic microstructures with defects[END_REF], montrent que ∇ wp existe dans L 2 , ce qui sut à démontrer l'existence de la solution sous-linéaire recherchée. On réécrit alors l'équation sous la formediv (a per ∇ wp ) = div (b ∇ wp ) + div (b (p + ∇w p,per )). Comme b∇ wp ∈ L 2r/(r+2) , et que 2r/(r + 2) ≤ r, on déduit alors des résultats de [START_REF] Avellaneda | Compactness methods in the theory of homogenization[END_REF] que ∇ wp ∈ L r .

L'unicité est obtenue par le raisonnement suivant : si on a deux solutions w p = w p,per + wp et v p = v p,per + ṽp , avec w p,per , v p,per périodiques et wp , ṽp ∈ L r , on commence par translater le problème à l'inni pour éliminer ṽp et wp . On en déduit que div(a per ∇w p,per ) = div(a per v p,per ), donc ∇w p,per = ∇v p,per . Ainsi, u = w p -v p vériediv (a per ∇u) = div (b ∇u), et ∇u ∈ L r . De plus, on sait que b ∈ L r , donc b∇u ∈ L r/2 . Les résultats de [START_REF] Avellaneda | Compactness methods in the theory of homogenization[END_REF] impliquent donc que ∇u ∈ L r/2 . En itérant, on obtient ∇u ∈ L r/n pour tout n ≤ r, et donc nalement une solution dans L 2 de -div(a∇u)) = 0, laquelle est nécessairement constante par application du résultat d'unicité de [START_REF] Blanc | A possible homogenization approach for the numerical simulation of periodic microstructures with defects[END_REF].

Les résultats obtenus se résument dans le Théorème 1 Supposons que

a = a per + b avec a per périodique borné et de classe C 0,α , α ∈ (0, 1), b ∈ L r ∩ L ∞ (R d ) pour un certain 1 ≤ r < +∞, et aussi de classe C 0,α . Alors le problème (2)-(3) admet une solution w p de la forme w p = w p,per + wp , avec ∇ wp ∈ L r ∩ L ∞ (R d ).
Une telle solution est unique à l'ajout d'une constante près. Dans le cas r < d, la régularité hölderienne de a per et b et la périodicité de a per ne sont pas nécessaires, et w p converge vers w p,per à l'inni.

Remarques

En plus des remarques ci-dessus, les faits suivants sont à souligner : Il est naturel que le cas r = d délimite une séparation entre deux comportements diérents ; ceci n'est pas un artice des techniques de preuve utilisées. En eet, supposons à l'extrême que l'équation (4) s'écrive -∆ wp = div (b p). On a donc wp ∝ ∫ x-y |x-y| d b(y) dy, ce qui sut à comprendre que le cas critique est b(y) ∝ |y| -1 , qui correspond à une criticité de l'espace L d . Pour r < d, on a, comme le montre la preuve, une solution wp tendant vers 0 à l'inni, alors que pour r > d, on ne peut pas s'attendre à avoir génériquement une solution bornée. les questions abordées ici sont très reliées, bien sûr, à la théorie des opérateurs de Calderon-Zygmund, et à la question de savoir à quelles conditions les opérateurs linéaires du type de celui déni implicitement par l'équation (4), et associant ∇ wp à b, agissent depuis, et vers, les espaces L r , 1 ≤ r < +∞, L ∞ , ou BM O. une preuve alternative d'existence et d'unicité, indépendante des preuves précédentes et bien plus courte, est possible dans le cas où la perturbation b ∈ L r est petite dans L ∞ . On eectue une estimée a priori de ∇ wp dans L r à partir de (4) que l'on écrit sous la formediv (a per ∇ wp ) = div (b ∇ wp ) + div (b (p + ∇w p,0 )), où w p,0 est la solution pour le problème non perturbé avec a per . Pour ∥b∥ L ∞ petite, cette estimée permet de construire une solution par point xe, sans utiliser aucune condition sur r ou propriété de a per autre que l'ellipticité. L'unicité suit.

Problèmes reliés et autres questions

Autres situations géométriques

Un cas intéressant, dont l'étude est très reliée aux arguments présentés ci-dessus, est le cas d'un "bi-cristal" consistant en la juxtaposition de deux géométries périodiques, l'une dans le demi-espace {x 1 < 0, x 2 , . . . , x d } et l'autre dans le demi-espace {x 1 > 0, x 2 , . . . , x d }, quand on suppose en outre que les deux cellules de périodicité de part et d'autre de l'interface x 1 = 0 sont alignées de manière cartésienne et en rapport rationnel mais non trivial. Un cas en un sens générique est le cas où la cellule de périodicité pour x 1 < 0 est de la forme

Q -= [0, R 1 ] × [0, R 2 ] × . . . × [0, R d ] alors que celle pour x 1 > 0 est de la forme Q + = [0, S 1 ] × [0, S 2 ] × . . . × [0, S d ] avec S k /R k ∈ Q pour tout 2 ≤ k ≤ d.
On suppose de plus que le coecient a dière selon que x 1 < 0 ou x 1 > 0 (par exemple S 1 ̸ = R 1 ). Quitte à choisir un multiple adéquat dans les dimensions k ≥ 2, la situation est donc une situation d'un "fond" périodique dans ces dimensions, commun aux deux demi-espaces, et de deux fonctions périodiques diérentes dans la direction k = 1. On comprend heuristiquement la similitude avec la situation d'un défaut localisé "monodimensionnel". En termes de coecient a, cette situation se traduit par a = a per,1,2 + b où a per,1,2 est un coecient "périodique" à gauche et à droite, reconstitué selon la géométrie dénie ci-dessus. Dans ce contexte particulier, le cas d'une perturbation b nulle est déjà intéressant (on renvoie à [START_REF] Blanc | Local proles for elliptic problems at dierent scales : defects in, and interfaces between periodic structures, en préparation[END_REF] pour le cas plus général b ∈ L r ). On peut dans ce cas, par des arguments proches de ceux développés ci-dessus mais un peu plus techniques, construire la solution w p du problème (2)-(3) : elle est périodique, de la période commune, dans les dimensions k ≥ 2, et est une modication, en fait disparaissant exponentiellement vite à l'inni dans les directions x 1 -→ ±∞, des solutions périodiques diérentes à gauche et à droite. On obtient ainsi le résultat suivant Théorème 2 Le résultat du Théorème 1 s'étend à la solution w p dediv (a (p + ∇w p )) = -div (a * p) où a * (x) = a * per,1 si x 1 < 0 et a * (x) = a * per,2 si x 1 > 0, sous les mêmes conditions. Les propriétés indiquées s'entendent dans les directions x 1 -→ -∞ (resp. x 1 -→ +∞), et les fonctions sont périodiques dans les directions x k , 2 ≤ k ≤ d. Lorsque b ≡ 0, w p dière en fait des correcteurs périodiques par une correction exponentiellement décroissante quand |x 1 | -→ ∞ Il est à noter que si une deuxième direction, disons k = 2, vient en plus à diérer, au sens où S 2 /R 2 ̸ ∈ Q, la situation devient incomparablement plus complexe, puisque l'on voit surgir, dans la direction transverse, des phénomènes quasi-périodiques. La nature mathématique du problème, et les techniques employées, s'en trouvent considérablement modiées et l'on renvoie à [START_REF] Blanc | Local proles for elliptic problems at dierent scales : defects in, and interfaces between periodic structures, en préparation[END_REF] pour le détail. Le cas où l'interface séparant les deux structures périodiques n'est plus alignée avec les deux cellules de périodicité, ou celui où les deux cellules ne sont pas elles-mêmes alignées (situation non cartésienne par exemple), sont, sauf miracle géométrique, de diculté équivalente.

Autres équations

Le cas examiné ici d'une équation scalaire elliptique sous forme divergence est clairement le plus simple qu'on puisse considérer. Il est vraisemblable, bien que nous n'ayons à ce jour pas examiné tous les détails, que nos arguments et résultats s'adaptent mutatis mutandis aux cas d'une équation elliptique non sous forme divergence, d'une équation semilinéaire elliptique, ou d'un système elliptique. On peut sans doute aussi (mais nous ne l'avons pas encore fait), dans ces situations encore "simples", considérer des données singulières (par exemple dans le second membre de (1)) qui exacerberont les diérences et ce même à l'échelle 1, entre les situations (type périodique) sans défaut, et celles avec défaut, puis étudier à l'aide des outils ci-dessus le comportement des solutions.

A contrario, l'extension à des équations dépendantes du temps (on pense par exemple à l'équation des ondes, même linéaire) risque d'être signicativement plus ardue.

Le cas d'équations complètement non linéaires, comme les équations de Hamilton-Jacobi, est lui aussi délicat et amène des résultats potentiellement radicalement diérents de ceux du cadre elliptique. Un exemple élémentaire montrant la diérence de comportements est fourni par l'équation monodimension- 

  établi et ceci remarqué, on écrit la solution de (4) sous la forme wp (x) = ∫ G(x, y)div (b (p + ∇w p,per )) = -∫ ∇ y G(x, y) (b (p + ∇w p,per )), d'où, pour chaque x ∈ R d , en utilisant l'inégalité de Hölder généralisée aux espaces de Lorentz,

  nelle suivante : la solution u ε de uε + |(u ε ) ′ | = b(x/ε) pour b ∈ D(R), b ≤ 0, b(0) < 0, b(0) = inf R b, converge uniformément vers ū, solution de ū(x) + |(ū) ′ (x)| = 0 pour x ̸ = 0 avec ū(0) = b(0). Cette solution vaut ū(x) = b(0)e -|x|et est donc diérente de u ε = u = 0, la solution obtenue en l'absence de b. A l'échelle 1, la solution est donc modiée par le seul défaut b(x/ε) (pourtant à support compact !), contrairement au cas elliptique considéré dans cette Note. De tels phénomènes seront étudiés dans[START_REF] Blanc | Local proles for elliptic problems at dierent scales : defects in, and interfaces between periodic structures, en préparation[END_REF][START_REF] Blanc | [END_REF][START_REF] Lions | [END_REF] et travaux ultérreurs.

  Si a est elliptique et borné, et si -div (a ∇u) = 0 dans la boule B 4R , alors

	tion 2.1, p 76]) : ∫	Proposi-|∇u| 2 ≤
	C R 2	∫	|u|	B R 2 où la constante C ne dépend que de a. En utilisant cette inégalité, on établit tout d'abord
		B 2R		
	l'estimation voulue dans le cas particulier q = 2, en recouvrant la couronne B 2R \B R de boules de rayons
	3R/2, et en utilisant une version intégrée de l'estimation ponctuelle classique (voir [8,9,13]) sur la fonc-
	tion de Green elle-même |G(x, y)| ≤	C |x -y| d-2